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A functional model for a commutative system of the linear bounded
operators fT1; T2g, when T1 is a contraction, is built. The construction of
functional model is based on an analogue with many parameters of the Lax
� Phillips scattering scheme for the isometric dilation U(n) of the semigroup
with two parameters T (n) = T

n1

1 T
n2

2 , where n = (n1; n2) 2 Z
2
+.
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As it is well known, one of the most natural ways of constructing the func-

tional model of contraction operator T (kTk < 1) is based on the Lax�Phillips

scattering scheme [1]. In this work, the functional model of commutative system

of the linear bounded operators fT1; T2g, [T1; T2] = 0, when T1 is a contraction, is

obtained using isometric extensions and an analogue with many variables of the

Lax�Phillips scattering scheme [2�5].

It is shown that the weight matrices functions of model space have the form

which is di�erent from a traditional (the B.S. Pavlov model [1]) one and the

structure of given weight functions itself is de�ned by external parameters of iso-

metric extensions [2] of the operator system fT1; T2g. The functional model lies

in the following: the operator T1 is realized by means of operator of multipli-

cation by independent variable in a special function space, the second operator

T2 represents the operator of multiplication by meromorphic operator function in

the same space. It is typical of the constructed model to di�er crucially from the

well-known models in the nonselfadjoint case [6, 7].

1. Isometric Dilations of Commutative Operator System

I. Let a commutative system of the linear bounded operators fT1; T2g,
[T1; T2] = T1T2�T2T1 = 0, T1 is a contraction, kT1k � 1, be given in the separable

Hilbert space H. Following [2, 3, 8], de�ne the commutative unitary extension

for the system fT1; T2g.
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De�nition 1. Let E and ~E be the Hilbert spaces. The collection of mappings

V1 =

�
T1 �

	 K

�
; V2 =

�
T2 �N

	 K

�
: H �E ! H � ~E;

+

V 1=

�
T �1 	�

�� K�

�
;

+

V 2=

�
T �2 	� ~N�

�� K�

�
: H � ~E ! H �E

(1:1)

is said to be a commutative unitary extension of the commutative operator system

T1, T2 in H, [T1; T2] = 0 if there are such operators �, � , N , � and ~�, ~� , ~N , ~�

in the Hilbert spaces E and ~E, respectively, where �, � , ~�, ~� are selfadjoint, and

the relations:

1)
+

V 1 V1 =

�
I 0

0 I

�
; V1

+

V 1=

�
I 0

0 I

�
;

2) V �2

�
I 0

0 ~�

�
V2 =

�
I 0

0 �

�
;

+

V �2

�
I 0

0 �

�
+

V 2=

�
I 0

0 ~�

�
;

3) T2�� T1�N = ��; 	T2 � ~N	T1 = ~�	;

4) ~N	��	�N = K�� ~�K;

5) ~NK = KN

(1:2)

hold.

Consider the following class of commutative systems of the linear operators

fT1; T2g [3].

De�nition 2. The commutative operator system fT1; T2g belongs to the class

C (T1) and is said to be the contracting T1 operator system if:

1)T1is a contraction, kT1k � 1;

2)E = ~D1H � ~D2H; ~E = D1H � D2H;

3) dimT2 ~D1H = dimE; dimD1T2H = dim ~E;

4) the operators D1j ~E ;
~D1T

�

2

���
T2 ~D1H

; ~D1

���
E
; T �2D1jD1T2H

are boundedly invertible, where Ds = T �s Ts � I; ~Ds = TsT
�

s � I; s = 1; 2:

(1:3)

It is easy to show that if fT1; T2g 2 C (T1), then the unitary extension (1)

always exists [2, 3].

II. Recall [1, 9, 10] the construction of unitary dilation U for the contraction

T1. Let H be the Hilbert space

H = D� �H �D+; (1:4)
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where D� = l2
Z
�

(E) and D+ = l2
Z+

( ~E). De�ne the dilation U on the vector

functions f = (uk; h; vk) from H (1.4) in the following way:

Uf =
�
uk�1; ~h; ~vk

�
; (1:5)

where ~h = T1h+ �u�1, ~v0 = 	h+Ku�1, ~vk = vk�1, k = 1; 2; : : : . The unitary

property of U (1.5) in H follows from 1) (1.2).

The construction of isometric dilation [3] of the commutative operator system

fT1; T2g 2 C (T1) consists in the continuation of incoming D� and outgoing D+

subspaces

D� = l2Z
�

(E); D+ = l2Z+(
~E) (1:6)

by the second variable �n2�. Continue the functions un1 of l2
Z
�

(E) from semiaxis

Z� into domain

~Z2
�
= Z�� (Z� [ f0g) =

�
n = (n1; n2) 2 Z

2 : n1 < 0; n2 � 0
	

(1:7)

using the Cauchy problem [2, 3].(
~@2un =

�
N ~@1 + �

�
un; n = (n1; n2) 2 ~Z2

�
;

unjn2=0 = un1 2 l2
Z
�

(E)
(1:8)

where ~@1un = u(n1�1;n2),
~@2un = u(n1;n2�1). As a result, we obtain the Hilbert

space D�(N;�) formed by the solutions un (1.8), besides, the norm in D�(N;�)

is induced by the norm of initial data kunk = kun1kl2
Z
�

(E).

Similarly, continue the functions vn1 2 l2
Z+

( ~E) from semiaxis Z+ into domain

Z
2
+ = Z+� Z+ using the Cauchy problem(

~@2vn =
�
~N ~@1 + ~�

�
vn; n = (n1; n2) 2 Z

2
+;

vnjn2=0 = vn1 2 l2
Z+

(E):
(1:9)

Denote by D+( ~N; ~�) the Hilbert space formed by solutions vn (1.9), besides,

kvnk = kvn1kl2
Z+

( ~E). Unlike the explicit recurrent scheme (1.8) of the layer-to-

layer calculation of n2 ! n2 � 1 for un, in this case of constructing vn in Z
2
+,

we have an implicit linear equation system for the layer-to-layer calculation of

n2 ! n2 + 1 of function vn.

Hereinafter, the following lemma [3] plays an important role.

Lemma 1.1. Suppose the commutative unitary extension (Vs,
+

V s) (1.1) is

such that

Ker� = Ker	� = f0g: (1:10)

422 Journal of Mathematical Physics, Analysis, Geometry, 2008, vol. 4, No. 3



Functional Model of Commutative Operator Systems

Then KerN \ Ker� = f0g given KerK� = f0g, and respectively Ker ~N� \
Ker ~�� = 0 given KerK = f0g.

The solvability of the Cauchy problem (1.9) follows from the given lemma [3].

Consider an operator function of the discrete argument

~�� =

�
I : � = (1; 0);

~� : � = (0; 1):
(1:11)

And let Ln0 be the nondecreasing broken line in Z2
+ that connects points O = (0; 0)

and n = (n1; n2) 2 Z
2
+, the linear segments of which are parallel to the axes OX,

n2 = 0, and OY , n1 = 0. By fPkg
N
0 denote all integer-valued points from Z

2
+,

Pk 2 Z
2
+ (N = n1 + n2) that lie on Ln0 , beginning with (0; 0) and �nishing with

point (n1; n2), that are numbered in nonascending order (of one of the coordinates

Pk). De�ne the quadratic form

h~�vki
2
Ln
0
=

NX
k=0



~�Pk�Pk�1vPk ; vPk

�
(1:12)

on the vector functions vk 2 D+( ~N; ~�) assuming that P�1 = (�1; 0).
Similarly, consider the nonincreasing broken line L�1m in ~Z2

�
(1.7) that connects

points m = (m1;m2) 2 ~Z2
�
and (�1; 0), the linear segments of which are parallel

to OX and OY . And let fQsg
�1
M , M = m1+m2, be the integer-valued points on

L�1m , beginning with m = (m1;m2) and �nishing with (�1; 0), that are numbered
in nondescending order (of one of the coordinates Qs). In D�(N;�) de�ne the

metric

h�uki
2
L
�1
m

=

�1X
s=M



�Qs�Qs�1

uQs
; uQs

�
; (1:13)

besides QM �QM�1 = (1; 0) and the operator function �� is de�ned similarly to

~�� (1.11). Denote by ~L�1
�n the broken line in ~Z2

�
that is obtained from the curve

Ln0 in Z
2
+, n 2 Z

2
+, using the shift by �n� �

~L�1
�n =

n
Qs = (l1; l2) 2 ~Z2

�
: (l1 + n1 + 1; l2 + n2) = Pk 2 Ln0

o
: (1:14)

III. Having the Hilbert space D�(N;�), that is formed by the solutions of the

Cauchy problem (1.8), and the space D+( ~N; ~�), that is formed by the solutions

of (1.9), de�ne the Hilbert space

HN;� = D�(N;�)�H �D+( ~N; ~�); (1:15)

in which the norm is de�ned by the norm of the initial space H = D� �H �D+

(1.4). Denote by Ẑ
2
+ the subset in Z

2
+,

Ẑ
2
+ = Z

2
+n(f0g � N) = f(0; 0)g [ (N � Z+); (1:16)

that obviously is an additional semigroup.
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For every n 2 Ẑ
2
+ (1.16), de�ne the operator function U(n) that acts on the

vectors f = (uk; h; vk) 2 HN;� (1.15) in the following way:

U(n)f = f(n) = (uk(n); h(n); vk(n)) ; (1:17)

where uk(n) = PD
�
(N;�)uk�n (PD

�
(N;�) is an orthoprojector that corresponds

with the restriction onD�(N;�)); h(n) = y0, besides yk 2 H, k 2 Z
2
+, is a solution

of the Cauchy problem8<
:

~@1yk = T1yk +�u~k;
~@2yk = T2yk +�Nu~k;

yn = h; k = (k1; k2) 2 Z
2
+; 0 � k1 � n1 � 1; 0 � k2 � n2;

(1:18)

at the same time ~k = k � n when 0 � k1 � n1 � 1, 0 � k2 � n2, and, �nally,

vk(n) = v̂k + vk�n (1:19)

and v̂k = Ku~k +	yk, where yk is a solution of the Cauchy problem (1.18).

In [3] it is shown that the operator function U(n) (1.17) has the semigroup

property and is the isometric dilation of the semigroup

T (n) = T
n1
1 T

n2
2 ; n = (n1; n2) 2 Z

2
+: (1:20)

IV. Make a similar continuation of subspaces D� and D+ (1.6) from semiaxes

Z� and Z+ by the second variable �n2�, corresponding to the dual situation.

By D+

�
~N�; ~��

�
denote the Hilbert space generated by the solutions ~vn of the

Cauchy problem(
@2~vn =

�
~N�@1 + ~��

�
~vn; n = (n1; n2) 2 Z

2
+;

~vnjn2=0 = vn1 2 l2
Z+

( ~E);
(1:21)

in which the norm is induced by the norm of initial data k~vnk = kvn1kl2
Z+

(E),

besides @1~vn = ~v(n1+1;n2), @2~vn = ~v(n1;n2+1).

Continue now every function un1 2 l2
Z
�

(E) into domain ~Z2
�
(1.7) using the

Cauchy problem�
@2~un = (N�@1 +��) ~un; n = (n1; n2) 2 ~Z2

�
;

~unjn2=0 = un1 2 l2
Z
�

(E):
(1:22)

As a result, we obtain the Hilbert space D� (N�;��) generated by ~un, solutions

of (1.22), besides k~unk = kun1kl2
Z
�

(E).

The existence of the solution of the Cauchy problem (1.22) follows from Lem. 1.
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De�ne the Hilbert space

HN�;�� = D� (N�;��)�H �D+

�
~N�; ~��

�
; (1:23)

in which the metric is induced by the norm of initial space H = D� � H � D+

(1.4).

De�ne the operator function
+

U (n) for n 2 Ẑ
2
+ (1.16) in the space HN�;��

(1.23), which acts on ~f =
�
~uk; ~h; ~vk

�
2 HN�;�� in the following way:

+

U (n) ~f = ~f(n) =
�
~uk(n); ~h(n); ~v(n)

�
; (1:24)

where ~vk(n) = P
D+( ~N�;~��)~vk+n (PD+( ~N�;~��) is an orthoprojector onD+

�
~N�; ~��

�
);

~h(n) = ~y(�1;0), besides ~yk (k 2 ~Z2
�
) satis�es the Cauchy problem

8<
:

@1~yk = T �1 ~yk +	�~v~k;

@2~yk = T �2 ~yk +	� ~N�~v~k;

~y(�n1;�n2) = h; k = (k1; k2) 2 ~Z2
�
;

(1:25)

besides ~k = k + n and (�n1 � k1 � �1; �n2 � k2 � 0); �nally,

~uk(n) = ûk + ~uk+n; (1:26)

and ûk = K�~v~k +��~yk, where ~yk is a solution of system (1.26).

It is clear that the semigroup
+

U (n) (1.24) is the isometric dilation [3] of the

semigroup T �(n), where T (n) has the form of (1.20).

Note that the dilations U(n) (1.17) and
+

U (n) (1.24) are unitary linked, i.e.,

U� (n1; 0) f =
+

U (n1; 0) f for all f 2 H (1.4) and for all n1 2 Z+, besides U (n1; 0)

on H is a unitary semigroup.

2. Scattering Scheme with Many Parameters and Translational

Models

I. As it is known [1, 9], the construction of translational (as well as functional)

model of contraction T and its dilation U (1.5) follows naturally from the scatter-

ing scheme and from the properties of the wave operators W� and the scattering

operator S.

In order to construct the wave operators W� in the case of many parameters

it is necessary [4] to continue the vector functions from l2
Z

�
~E
�
and l2

Z
(E) from
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axis Z into domain Z
2. Continue every function un1 2 l2

Z
(E) to the function un,

where n = (n1; n2) 2 Z
2, using the Cauchy problem(
~@2un =

�
N ~@1 + �

�
un; n 2 Z

2;

unjn2=0 = un1 2 l2
Z
(E);

(2:1)

besides kunk = kun1kl2
Z
(E). Note that this continuation into the lower half-plane

(n2 2 Z�), u (n1; n2)! u (n1; n2 � 1), has a recurrent nature and a continuation

into the upper half-plane u (n1; n2)! u (n1; n2 + 1) may be carried out in a non-

explicit way in the context of suppositions of Lem. 1.1. As a result, we obtain the

Hilbert space l2N;�(E) in which the norm is induced by the norm of initial data.

De�ne now the shift operator V (p)

V (p)un = un�p; (2:2)

where un 2 l2N;�(E) for all p 2 Z
2. Obviously, the operator V (p) (2.2) is isometric.

Knowing the perturbed U(n) (1.17) and free V (n) (2.2) operator semigroups,

de�ne the wave operator W�(n)

W�(k) = s� lim
n!1

U(n; k)PD
�
(N;�)V (�n;�k) (2:3)

for every �xed k 2 Z+, where PD
�
(N;�) is the orthoprojector of narrowing onto the

component u�n from l2N;�(E) obtained as a result of continuation into ~Z2
�
(1.7) from

semiaxis Z� using the Cauchy problem (2.1). It is obvious that W�(0) = W�,

where the wave operator W� corresponds with the dilation U (1.5) and the shift

operator V in l2
Z
(E) [6]. Thus, W�(k) (2.3) is a natural continuation of the wave

operator W� onto the �k�th horizontal line in Z
2 when k 2 Z+.

Denote by L10;k the broken line in Z
2
+ consisting of the two linear segments:

the �rst one is a vertical segment connecting points O = (0; 0) and (0; k), where

k 2 Z+, and the second segment is a horizontal half-line from point (0; k) to

(1; k). Similarly, choose the broken line ~L�1
�1;p in

~Z2
�
(1.7) that also consists of

the two linear segments, the �rst of which is a half-line from (�1;�p) to point

(�1;�p), where p 2 Z+, and the second one is a vertical segment from point

(�1;�p) to (�1; 0). In the space HN;� (1.15), specify the following quadratic

form:

hfi2�(p;k) = h�uni
2
~L�1
�1;p

+ khk2 + h~�vni
2
L1
0;k
; (2:4)

where corresponding � and ~� in (2.4) are understood in the sense of (1.12) and

(1.13).

Similarly to (2.4), in l2N;�(E) specify the following �-form:

huni
2
�(p;k) =



�u�n

�2
~L�1
�1;p

+


�u+n

�
L1
0;k

; (2:5)
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where u�n are the continuations of functions from l2
Z
�

(E) from semiaxes Z�,

n2 = 0, obtained by using the Cauchy problem (2.1).

Theorem 2.1 [4]. The wave operator W�(k) (2.3) mapping l2N;�(E) into the

space HN;� (1.15) exists for all k 2 Z+, and it is an isometry

hW�(k)uni
2
�(p;k) = huni

2
�(p;k) (2:6)

in metrics (2.4), (2.5) for all p 2 Z+. Moreover, the wave operator W�(k) (2.3)

meets the conditions

1) U(1; s)W�(k) =W�(k + s)V (1; s);

2) W�(k)PD
�
(N;�) = PD

�
(N;�)

(2:7)

for all k, s 2 Z+, where PD
�
(N;�) is an orthoprojector onto D�(N;�).

II. Continue the vector functions vn1 from l2
Z

�
~E
�
into domain Z

2 using the

Cauchy problem8<
:

~@2vn =
�
~N ~@1 + ~�

�
vn; n = (n1; n2) 2 Z

2;

vnjn2=0 = vn1 2 l2
Z

�
~E
�
:

(2:8)

Denote the Hilbert space obtained in this way by l ~N;~�

�
~E
�
, besides kvnk =

kvn1kl2
Z( ~E)

.

Similarly to V (p) (2.2), introduce the shift operator

~V (p)vn = vn�p (2:9)

for all p 2 Z
2 and all vn 2 l2~N;~�

�
~E
�
. De�ne the wave operator W+(p) from HN;�

into space l2~N;~�

�
~E
�
W+(p) = s� lim

n!1

~V (�n;�p)P
D+( ~N;~�)U(n; p) (2:10)

for all p 2 Z+; where U(n) has the form of (1.17). It is obvious thatW+(0) =W �

+;

where W+ is the wave operator [1] corresponding to U (1.5) and to shift ~V in

l2
Z

�
~E
�
.

Theorem 2.2 [4]. For all p 2 Z+, the wave operator W+(p) (2.11) acting

from space HN;� into l2~N;~�

�
~E
�
exists and satis�es the relations

1) W+(p)U(1; s) = ~V (1; s)W+(p+ s);

2) W+(p)PD+( ~N;~�) = P
D+( ~N;~�)

(2:11)
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for all p, s 2 Z+; where PD+( ~N;~�) is an orthoprojector onto D+

�
~N; ~�

�
.

Knowing the wave operators W�(k) (2.3) and W+(p) (2.10), de�ne the scat-

tering operator in a traditional way [1, 4]:

S(p; k) =W+(p)W�(k) (2:12)

for all p, k 2 Z+. It is obvious that when p = k = 0, we have S(0; 0) = S; where

S is the standard scattering operator, S =W �

+W�, for the dilation U (1.5) [1].

Theorem 2.3 [4]. The scattering operator S(p; k) (2.13) represents the bounded

operator from l2N;�(E) into l2~N;~�

�
~E
�
, besides

1) S(p; k)V (1; q) = ~V (1; q)S(p + q; k � q);

2) S(p; k)P�l
2
N;�(E) � P�l

2
~N;~�

�
~E
� (2:13)

for all p, k, q 2 Z+, 0 � q � k; where P� is the narrowing orthoprojector onto

solutions of the Cauchy problems (2.1) and (2.9) with the initial data on semiaxis

Z� when n2 = 0.

III. Following [4], consider the nonnegative operator function Wp;k

Wp;k =

�
W+(p)W

�

+(p) S(p; k)

S�(p; k) W �

�
(k)W�(k)

�
(2:14)

to de�ne the Hilbert space

l2 (Wp;k) =

�
gn =

�
vn
un

�
: hWp;kgn; gnil2 <1

�
; (2:15)

where un 2 l2N;�(E), vn 2 l2N;�

�
~E
�
.

Let

W 0

p;0 =

�
~V (1; p)W+(p)W

�

+(p)
~V �(1; p) S(0; p)

S�(0; p) I

�
;

V̂ (1; p) =

�
~V �(�1;�p) 0

0 V (1; p)

�
:

(2:16)

As it follows from [9], the operator

Û(1; p)gn = V̂ (1; p)gn (2:17)

acts from the Hilbert space

l2
�
W 0

p;0

�
=

�
gn =

�
vn
un

�
:


W 0

p;0gn; gn
�
l2
<1

�
(2:150)
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into the space l2 (Wp;0) (2.15).

Denote by Ĥp the Hilbert space

Ĥp = l2 (Wp;0)	

 
P+l

2
~N;~�

�
~E
�

P�l
2
N;�(E)

!
; (2:18)

where P� are orthoprojectors onto solutions of the Cauchy problems (2.1), (2.8)

with the initial data on Z�. Consider also

Ĥ 0

p = l2
�
W 0

p;0

�
	

 
~V �(�1;�p)P+l

2
~N;~�

�
~E
�

V (1; p)P�l
2
N;�(E)

!
: (2:180)

The spaces Ĥp (2.18) and Ĥ
0

p (2.18
0) are isomorphic one to another, besides, as it

is easily seen, the operator Rp : Ĥp ! Ĥ 0

p de�ning this isomorphism has the form

Rp = P
Ĥ0
p

�
~V �(1; p) 0

0 V (�1;�p)

�
P
Ĥp
; (2:19)

where P
Ĥp

and P
Ĥ0p

are orthoprojectors onto Ĥp (2.18) and Ĥ 0

p (2.180), respec-

tively. Specify the operators T̂1 and T̂ (1; p) = T̂1T̂
p
2 , p 2 Z+,�

T̂1f

�
n
= P

Ĥp
fn�(1;0);

�
T̂ (1; p)f

�
n
= P

Ĥp
V̂ (1; p) (Rpf)n (2:20)

for all fn 2 Ĥp (2.18). Note that the operator T̂1 has the same form (2.20) in all

spaces Ĥp (2.28).

Theorem 2.4 [4]. Consider the simple commutative unitary extension

(Vs,
+

V s) (2.1) corresponding to the commutative operator system fT1; T2g from

the class C (T1) (1.3) and let the suppositions of Lem. 1.1 take place, besides

dimE = dim ~E <1. Then the isometric dilation U(1; p) (1.17), p 2 Z+, acting

in the Hilbert space HN;� (1.15) is unitary equivalent to the operator Û(1; p) (2.17)

mapping the space l2
�
W 0

p;0

�
(2.15 0) into l2 (Wp;0) (2.15). Moreover, the operators

T1 and T (1; p) = T1T
p
2 (1.21) speci�ed in H are unitary equivalent to the shift

operator T̂1 (2.20) and to the operator T̂ (1; p) (2.20).

A similar translational model of dilation
+

U (n) (1.24) and semigroup T �(n)

(1.20) is listed in [4].
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3. Functional Models

I. In order to construct the functional models of dilations U(n) (1.17) and
+

U (n) (1.24), it is necessary to realize the Fourier transformation of translational

models from Sect. 2. The Fourier transformation F

F (uk) =
X
k2Z

uk�
k = u(�); uk 2 l2

Z
(E); (3:1)

speci�es the isomorphism between l2
Z
(E) and the Hilbert space L2

T
(E) [1, 9].

Realize the Fourier transformation F (3.1) by variable n1 of every vector

function un from the space l2N;�(E), n = (n1; n2) 2 Z
2. Then we obtain (see the

Cauchy problem (2.1)) the family of functions u (�; n2) speci�ed on every n2-th

horizontal line (n2 2 Z), besides the transition from n2 to n2 � 1 is speci�ed by

multiplication by the linear pencil of operators

u (�; n2 � 1) = (N� + �)u (�; n2) : (3:2)

Note that a corresponding continuation into half-plane n2 2 Z+ may be carried

out in the context of suppositions of Lem. 1.1 when dimE <1. As a result, we

obtain the Hilbert space of functions u (�; n2), for which (3.2) takes place, besides

u(�) = u(�; 0) 2 L2
T
(E). We denote this space by L2

T
(N;�; E). It is obvious that

the shift operator V (p) (2.2), as a result of the Fourier transformation F (3.1) in

space L2
T
(N;�; E), acts by multiplication

V (p)u(�) = �p1(N� + �)p2u(�); (3:3)

where u(�) = u(�; 0) and p = (p1; p2) 2 Z
2. Similarly, the Fourier transformation

F (3.1) of space l2
Z

�
~E
�

leads us to the Hilbert space L2
T

�
~E
�
. The Fourier

transformation F by the �rst variable n1 of every function vn = v(n1;n2) from

l2~N;~�

�
~E
�
gives us the family of ~E-valued functions v (�; n2), for which

v (�; n2 � 1) =
�
~N� + ~�

�
v (�; n2) (3:4)

takes place in view of the Cauchy problem (2.8). The obtained space of functions

v (�; n2), where v(�) = v(�; 0) 2 L2
T

�
~E
�
, we denote by L2

T

�
~N; ~�; ~E

�
. As in the

previous case, the continuation by rule (3.5), when n+2 2 Z+, is possible when

the suppositions of Lem. 1.1 are met and dim ~E < 1. The translation operator
~V (p) (2.9) in the Hilbert space L2

T

�
~N; ~�; ~E

�
is realized by multiplication operator

~V (p)v(�) = �p1
�
~N� + ~�

�p1
v(�); (3:5)

where v(�) = v(�; 0) and p = (p1; p2) 2 Z
2.
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II. The translational invariance (2.13) of the operator S(p; k) (2.11) signi�es

that the Fourier image of the scattering operator S(p; k) represents the operator

of multiplication by vector function. In particular, FS(0; 0)uk = S(�)u(�), where

u(�) = F (uk) (3.1) and S(�) = K+	(�I � T1)
�1� is the characteristic function

of extension V1 (1.1) of the operator T1. It follows from relation 1) (2.13) for

the operator S(p; k) that it is necessary to �nd the Fourier image of operator

S(p; 0) (or of S(0; p), in view of 1) (2.13)) for all p 2 Z+. Further, taking into

account the translational invariance of operator S(p; 0), it is obvious that it is

su�cient to calculate how S(p; 0) acts on the vector function u0k = uÆk;0, where u

is an arbitrary vector from E, and Æk;0 is the Kronecker symbol. For simplicity,

consider the case p=1, then it follows from (2.3) and from (2.10) that

vmn = ~V (�m;�1)P
D+( ~N;~�))U(2m; 1)PD�(N;�)V (�m; 0)u0k ! S(1; 0)u0k

when m!1, n 2 Z
2. Elementary calculations show that the vector function vmn

is given by

vm(n1;0) =
�
:::; 0;	Tm�11 �u; :::;	T1�u;	�u; Ku ; 0; :::

�
;

vm(n1;�1)=
�
:::; 0;	Tm�11 T2�u; :::;	T1T2�u;	T2�u; (K� +	�N)u ;KNu; 0; :::

�
;

where the frame signi�es the element corresponding to the null index, n1 = 0.

After the limit process, when n! 1 and the Fourier transformation is F (3.1),

we obtain that the components v (�; n2) are given by

v(�; 0) = S(�)u;

v(�;�1) =
n
KN� +K� +	�N +	(� � T1)

�1
T2�

o
u:

Using now 3) (1.2), we obtain that

v(�;�1) = S(�)(N� + �)u: (3:6)

Taking into account colligation relations 4), 5) (1.2), we can rewrite the equality

(3.6) in the following way:

v(�;�1) =
�
~N� + ~�

�
S(�)u: (3:7)

De�ne the �kth� characteristic function S(�; k) using the formula

S(�; k) = S(�)(N� + �)k; k 2 Z+; (3:8)

where S(�) = K +	(�I � T1)� and S(�; 0) = S(�).
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Theorem 3.1. Let uk 2 l2
Z
(E) and u(�) = F (uk) (3.1). Then the Fourier

transformation F applied to the vector function v = S(p; 0)u represents the family

of ~E-valued functions v(�;�k), where 0 � k � p, k 2 Z+, such that

v(�;�k) = S(�; k)u(�); (3:9)

besides the functions S(�; k) are given by (3.8), 0 � k � p, where S(�; 0) =

S(�) = K + 	(�I � T1)
�1 � is the characteristic function of extension V1 (1.1)

corresponding to operator T1.

Thus the Fourier transformation F of operator S(p; 0) leads us to the operator

of multiplication by characteristic function S(�) of the family of functions u (�; n2)

from the space L2
T
(N;�; E) when n2 2 Z� [ f0g.

III. In order to �nd a Fourier image of the weight function Wp;0 (2.14), it is

necessary to calculate the Fourier transformation of the operator W+(p)W
�

+(p)

which is also the operator of multiplication by operator function. It follows from

the de�nition (2.10) of the wave operator W+(p) that W (n; p) ! W+(p)W
�

+(p)

when n!1, where

W (n; p) = ~V (�n;�p)P
D+( ~N;~�)U(n; p)U

�(n; p)P
D+( ~N;~�)

~V �(�n;�p): (3:10)

Using the unitary properties of U(n; 0) and ~V (n; 0), n 2 Z, it is easy to ascertain

that

W (n+ 1; p) = ~V (�n; 0)W (1; p) ~V (n; 0): (3:11)

Therefore, it is su�cient to calculate how the operator W (1; p) acts. For simpli-

city, conduct calculations for the case of p = 2. Let f = (uk; h; vk) 2 HN;� (1.15)

then, using the form of U (1.17), it is easy to show that

~V (�1;�2)P
D+( ~N;~�)U(1; 2)f = v̂k � P+vk; (3:12)

where P+, as usually, is the orthoprojector in l2~N;~�

�
~E
�
on the subspace of solu-

tions of the Cauchy problem (1.9) with the initial data on semiaxis Z+, and the

vector function v̂k from ~E is de�ned at points (�1; 0), (�1;�1), (�1;�2) in the

following way:

v̂�1;0 = 	h+Ku1;0; v̂�1;�1 = 	(T2h+�N�1;0) +Ku�1;�1;

v̂�1;�2 = 	 fT2 (T2h+�N�1;0) + �Nu�1;�1g+Ku�1;�2:
(3:13)

Make use of the fact that the function uk is a solution of the Cauchy problem

(1.8). Then, taking into account relations 3)�5) (1.2), we obtain that it is possible

to write down the relations for the components (3.13), where k = 0, �1, �2, in
the following form: 2

4 v̂�1;0
v̂�1;�1
v̂�1;�2

3
5 =
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=

2
4 I 0 0

~� ~N 0
~�2 ~N ~� + ~� ~N ~N2

3
5
2
4 	h+Ku�1;0

	T1h+	�u�1;0 +Ku�2;0
	T 2

1 h+	T1�u�1;0 +	�u�2;0 +Ku�3;0

3
5 :
(3:14)

Note that the right-hand member of equality (3.14) is expressed in the terms of

operator T1 and external parameters of extension (1.1), and, moreover, the coe�-

cients before u�1;k, k = 0, �1, �2, coincide with the corresponding coe�cients of

the Laurent factorization of characteristic function S(�) = K + 	(�I � T1)
�1�

(1.7) of the operator T1. Introduce into examination the matrices

~L2 =

2
4 I 0 0

~� ~N 0
~�2 ~� ~N + ~N ~� ~N2

3
5 ;

Q2 =

2
4 	 0 0

	T1 0 0

	T 2
1 0 0

3
5 ; R2 =

2
4 K 0 0

	� K 0

	T1� 	� K

3
5 :

(3:15)

Then it follows from (3.14) that the operator W (1; 2) (3.10) is given by

W (1; 2) = P�1 ~L2 fQ2Q
�

2 +R2R
�

2g
~L�2P�1 � P

D+( ~N;~�); (3:16)

where P�1 is the orthoprojector of narrowing on the vertical line n1 = �1 of grid

Z
2 or the operator of multiplication by the Kronecker symbol Æn1;�1. If one makes

use of the relations 		� +KK� = I, 	T �1 +K� = 0 and T1T
�

1 + ��� = I that

follow from condition 1) (1.2), then it is easy to show that

Q2Q
�

2 +R2R
�

2 = I: (3:17)

Therefore, we �nally obtain that

W (1; 2) = P�1 ~L2
~L�2P�1 � P

D+( ~N;~�): (3:18)

IV. In order to �nd the Fourier transformation of operator W (1; 2) (3.18),

calculate the Fourier image of matrix ~L2 (3.15). Let v(�) = v(�; 0) =

�1X
�1

�kvk 2

L2
T

�
~E
�
, further construct the family of functions v (�; n2) from space L2

T

�
~N; ~�; ~E

�
by rule (3.5)

v(�;�k) =
�
~N� + ~�

�k
v(�); k = 0; 1; 2: (3:19)

It is easy to make sure that the coe�cients before � in the family of functions

v(�;�k) (3.19), where k = 0, 1, 2, correspondingly are equal to v�1;0, ~Nv�2;0 +
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~�v�1;0, ~N2v�3;0 +
�
~N ~� + ~� ~N

�
v�2;0 + ~�2v�1;0, which signi�es the application

of matrix ~L2 (3.15) to the vector column created by elements v�1;0, v�2;0, v�3;0.

Therefore the Fourier transformation F (3.1) of the operator P�1 ~L2
~L�2P�1 is given

by

P�1

2
64

I 0 0
~N� + ~� 0 0�
~N� + ~�

�2
0 0

3
75

�

2
64 I ~N�� + ~��

�
~N�� + ~��

�2
0 0 0

0 0 0

3
75P�1

2
4 v(�)

v(�;�1)
v(�;�2)

3
5 ; (3:20)

where P�1 is the operator of projection on the subspace
�
�v
	
, v 2 ~E, and the

functions v(�;�k) are constructed by rule (3.19), k = 0, 1, 2. Taking into account

the projector P�1, after elementary calculations it is easy to see that the relation

(3.20) is equal to

~L2
~L�2P�1

2
4 v(�)

v(�;�1)
v(�;�2)

3
5 =W2P�1

2
4 v(�)

v(�;�1)
v(�;�2)

3
5 :

Thus, it follows from (3.10), (3.11) and (3.18) that the Fourier transformation of

the operator W+(2)W
�

+(2) is given by

F
�
W+(2)W

�

+(2)vn
�
= fI � P� (I �W2)P�g v (�; n2) ; (3:21)

where vn 2 l2~N;~�

�
~E
�
, v (�; n2) 2 L2

T

�
~N; ~�; ~E

�
, W2 = ~L2

~L�2, and P� is the ortho-

projector on the subspace of functions of the type

�1X
�1

�kvk, vk 2 ~E. To formulate

the overall result for all p 2 Z+, de�ne the constant matrix

Wp = P0

2
6664

I 0 � � � 0
~N� + ~� 0 � � � 0

� � � � � � � � � � � ��
~N� + ~�

�p
0 � � � 0

3
7775
2
6664

I ~N�� + ~�� � � �
�
~N�� + ~�

�p
0 0 � � � 0

� � � � � � � � � � � �
0 0 � � � 0

3
7775 ;

(3:22)

where P0 is the operator of narrowing of every component of multiplication (3.22)

of matrix (p+ 1)� (p+ 1) on the elements corresponding �0.

Theorem 3.2. The Fourier transformation F (3.1) of the operator

W+(p)W
�

+(p), where the operator W+(p) is given by (2.10), is the multiplication
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by constant matrix,

F
�
W+(p)W

�

+(p)vn
�
= fI � P� (I �Wp)P�g v (�; n2) ; (3:23)

besides Wp is given by (3.22), v (�; n2) = F (vn) 2 L2
T

�
~N; ~�; ~E

�
, where vn 2

l2~N;~�

�
~E
�

and P� is the orthoprojector in L2
T

�
~N; ~�; ~E

�
on the subspace of func-

tions v (�; n2) such that v(�; 0) is factorized into the series by powers
�
�k
	
k2Z

�

,

besides v (�; n2) are obtained from v(�; 0) by rule (3.5).

V. It follows from Ths. 3.1 and 3.2 that the operator weight Wp;0 (2.14) after

the Fourier transformation F (3.1) is the operator of multiplication by function

W (p; �) =

�
I � P� (I �Wp)P� S(�)

S�(�) I

�
; (3:24)

where Wp is a constant matrix of the type (3.22), and S(�) is the characteristic

function of extension V1. After this, it is obvious that the space l
2 (Wp;0) (2.15),

as a result of the Fourier transformation F (3.1), is given by

L2
T
(W (p; �)) =

8<
:g(�) =

�
v(�)

u(�)

�
:

2�Z
0

hW (p; �)g(�); g(�)i
d�

2�i�
<1

9=
; ; (3:25)

where u(�) = u(�; 0) 2 L2
T
(E), and is continued to the family of functions u (�; n2)

from L2
T
(N;F;E) by rule (3.2), and v(�) = v(�; 0) 2 L

�
~E
�

and it also has

a continuation to the family v (�; n2) from L2
T

�
~N; ~�; ~E

�
by formula (3.5). Using

again Ths. 3.1 and 3.2, it is easy to ascertain that the Fourier image of operator

W 0

p;0 (2.15
0) is the operator of multiplication by function

W 0(p; �) =

" �
~N� + ~�

�p
fI � P� (I �Wp)P�g

�
~N�� + ~��

�p
S(�)

S�(�) I

#
:

(3:26)

Therefore, the space l2
�
W 0

p;0

�
(2.150), after the Fourier transformation F (3.1), is

given by

L2
T
(W 0(p; �)) =

8<
:g(�) =

�
v(�)

u(�)

�
:

2�Z
0



W 0(p; �)g(�); g(�)

� d�

2�i�
<1

9=
; ;

(3:250)

where u(�) and v(�) have the same sense as in the de�nition of space L2
T
(W (p; �))

(3.25).
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In view of (3.3) and (3.5), it follows from (2.17) that the dilations U(1; 0) and

U(1; p) are the multiplication operators

~U(1; 0)g(�) = �g(�);

~U(1; p)g(�) = �

" �
~N�� + ~��

�
�p

0

0 (N� + �)p

#
g(�); (3:27)

where p 2 Z+ and g(�) 2 L2
T
(W 0(p; �)). It is easy to see that the model space Ĥp

(2.18) after the Fourier transformation is equal to

~Hp = L2
T
(W (p; �))	

 
H2
+

�
~N; ~�; ~E

�
H2
�
(N;�; E)

!
; (3:28)

where the Hardy subspaces H2
�
(N;�; E) and H2

+

�
~N; ~�; ~E

�
are obtained from

ordinary Hardy classes H2
�
(E) and H2

+

�
~E
�
corresponding to domains D � =

fz 2 C : jzj > 1g and D + = fz 2 C : jzj < 1g using the rules (3.2) and (3.5),

respectively.

O b s e r v a t i o n 1. Note that the Hardy space H2
�
(N;�; E) contains

the functions that are not holomorphic in D � . Really, every function u (�;�n2) =
(N� +�)n2u(�), where u(�) 2 H2

�
(E) and n2 2 Z+, is factorized into the Fourier

series by powers
�
�k
	
when k 2 (Z�+ n2 � 1).

Similarly, the space Ĥ 0

p (2.18
0) after the Fourier transformation F (3.1) is given

by

~H 0

p = L2
T

�
W 0(p; �)

�
	

 
�

�
~N�� + ~��

�
H2
+

�
~N; ~�; ~E

�
�(N� + �)pH2

�
(N;�; E)

!
; (3:280)

where the weight W 0(p; �) is given by formula (3.26). The isomorphism ~Rp :
~Hp ! ~H 0

p after the Fourier transformation of the operator Rp (2.19) represents

~Rp = P ~H0
p

"
�

�
~N�� + ~��

�p
0

0 �(N� +�)�p

#
P ~Hp

; (3:29)

where P ~Hp
and P ~H0

p

are the orthoprojectors on ~Hp (3.28) and ~H 0

p (3.28
0), respec-

tively. Finally, the operators T1 and T (1; p) = T1T
p
2 in space (3.28), in view of

(3.27), act in the following way:�
~T1f
�
(�) = P ~Hp

�f(�);

�
~T (1; p)f

�
(�) = P ~H�

" �
~N�� + ~��

�
�p

0

0 (N� + �)p

#�
~Rpf

�
(�); (3:30)
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where f(�) 2 ~Hp (3.28), and P ~Hp
is the orthoprojector on ~Hp (3.28), besides ~Rp is

given by (3.29). From this it follows immediately that the initial operator system

fT1; T2g, given in H in space ~H1 (3.28), will represent�
~T1f
�
(�) = P ~H1

�f(�);

�
~T2f
�
(�) = P ~H1

" �
~N�� + ~��

�
�1

0

0 N� + �

#�
~R1f

�
(�); (3:31)

where f(�) 2 ~H1 (3.28).

Theorem 3. Consider the simple [2, 3] commutative unitary extension

(Vs,
+

Vs) (1.1) corresponding to the commutative operator system fT1; T2g from the

class C (T1) (1.3), and let the suppositions of Lem. 1.1 be met, besides dimE =

dim ~E < 1. Then the isometric dilation U(1; p) (1.17) acting in the Hilbert

space HN;� (1.15) is unitary equivalent to the functional model ~U(1; 0) (3.27),

when p = 0, in L2
T
(W 0(p; �)) (3.25 0) and to the operator ~U(1; p) (3.27), when

p 2 N, mapping the space L2
T
(W 0(p; �)) (3.25 0) into the space L2

T
(W (p; �)) (3.25).

Moreover, the operators T1 and T (1; p) = T1T
p
2 (1.20) given in H are unitary

equivalent to the functional model ~T1 (3.30) in ~Hp for all p 2 Z+ and to the

operator ~T1(1; p) (3.30) in the concrete model space ~Hp (3.28) when p 2 N.

VI. We now turn to the dual situation corresponding to the dilation
+

U (n)

(1.24) in HN�;�� . We list the main results concerning this case without proving.

De�ne the constant matrix ~Wp for all p 2 Z+

~Wp = P0

2
664

I 0 � � � 0

N�� +�� 0 � � � 0

� � � � � � � � � � � ��
N�� + ��

�p
0 � � � 0

3
775
2
664

I N� +� � � � (N� + �)p

0 0 � � � 0

� � � � � � � � � � � �
0 0 � � � 0

3
775 ;

(3:32)

where P0 is the operator of narrowing on the components corresponding to �0.

Consider the weight operator function

~W (p; �) =

"
I S(�)

S�(�) I � P+

�
I � ~Wp

�
P+

#
; (3:33)

where the constant matrix ~Wp is given by (3.32). Specify the Hilbert space

L2
T

�
~W (p; �)

�
=

8<
:g(�) =

�
v(�)

u(�)

�
:

2�Z
0

D
~W (p; �)g(�); g(�)

E
d�

2�i�
<1

9=
; ;

(3:34)

where u(�) 2 L2
T
(E), v(�) 2 L2

T

�
~E
�
.
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Moreover, similarly to (3.26), de�ne the weight

~W 0(p; �) =

"
I S(�)

S�(�) (N� + �)�p
n
I � P+

�
I � ~Wp

�
P+

o
(N� + �)p

#
(3:35)

specifying the Hilbert space

L2
T

�
~W 0(p; �)

�
=

8<
:g(�) =

�
v(�)

u(�)

�
:

2�Z
0

D
~W 0(p; �)g(�); g(�)

E
d�

2�i�
<1

9=
; ;

(3:340)

where u(�) and v(�) have the same sense as in the de�nition of space L2
T

�
~W (p; �)

�
(3.34).

Specify now the operator functions

~U+(1; 0)g(�) = �g(�);

~U+(1; p)g(�) = �

" �
~N� + ~�

�
�p

0

0 (N� +�)�p

#
g(�); (3:36)

where p 2 Z+ and g(�) 2 L2
T

�
~W 0(p; �)

�
. In this case the model space Ĥp;+ is

given by

~Hp;+ = L2
T

�
~W (p; �)

�
	

 
H2
+

�
~N�; ~��; ~E

�
H2
�
(N�;��; E)

!
; (3:37)

where the Hardy spaces H2
�
(N�;��; E) and H2

+

�
~N�; ~��; ~E

�
are obtained from

the standard Hardy classes H2
�
(E) and H2

+

�
~E
�
just as in Subsect. V.

Similarly, consider the space

~H 0

p;+ = L2
T

�
~W 0(p; �)

�
	

 
�

�
~N� + ~�

�
�p

H2
+

�
~N�; ~��; ~E

�
�(N� + �)�pH2

�
(N�;��; E)

!
; (3:370)

besides the weight ~W 0(p; �) is given by (3.35). Specify the operator

~Rp;+ = P ~H0
p;+

"
�

�
~N�� + ~��

�
�p

0

0 �(N� + �)p

#
P ~Hp;+

; (3:38)

where P ~Hp;+
and P ~H0

p;+

are the corresponding orthoprojectors on ~Hp;+ (3.37) and

~H 0

p;+ (3.370). It is clear that the operators T �1 and T �(1; p) = T �1 T
�p
2 in space ~Hp;+

are given by �
~T �1 f
�
(�) = P ~Hp;+

�f(�);
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�
~T �(1; p)f

�
(�) = P ~Hp;+

�

" �
~N� + ~��

�p
0

0 (N� + �)�p

#�
~Rp;+f

�
(�) (3:39)

for all f(�) 2 ~Hp;+, where P ~Hp;+
is the orthoprojector on ~Hp;+, and ~Rp;+ is given

by (3.38). From this it easily follows that the initial operator system fT �1 ; T
�

2 g,
de�ned in H, in space ~H1;+ (3.37) is given by�

~T �1 f
�
(�) = P ~H1;+

�f(�);

�
~T �2 f
�
(�) = P ~H1;+

�
~N�� + ~�� 0

0 (N� + �)�1

��
~R1;+f

�
(�); (3:40)

where f(�) 2 ~H1;+.

Theorem 4. Let Vs,
+

Vs (3.1) be the simple [2, 3] commutative unitary

extensions of a commutative operator system fT1; T2g from the class C (T1)

(1.3), besides the suppositions of Lem. 1.1 are met and dimE = dim ~E < 1.

Then the isometric dilation
+

U (1; p) (1.24), given in the Hilbert space HN�;��

(3.22), is unitary equivalent to the functional model: ~U+(1; 0) (3.36), when p = 0

in L2
T

�
~W (p; �)

�
(3.34), and to the operator ~U+(1; p) (3.36) mapping the space

L2
T

�
~W 0(p; �)

�
(3.34 ) in L2

T

�
~W (p; �)

�
(3.34). Moreover, the operators T �1 and

T �(1; p) = T �1 T
�p
2 (1.20) given in H are unitary equivalent to the functional model

~T �1 (3.40) in ~Hp;+ (3.37) for all p 2 Z+ and to the operator ~T �1 (1; p) (3.39) only

in the concrete model space ~Hp;+ (3.37) when p 2 N.
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