Functional Model of Commutative Operator Systems

V.A. Zolotarev
Department of Mechanics and Mathematics, V.N. Karazin Kharkiv National University 4 Svobody Sq., Kharkiv, 61077, Ukraine
E-mail:Vladimir.A.Zolotarev@univer.kharkov.ua

Received May 18, 2007
A functional model for a commutative system of the linear bounded operators $\left\{T_{1}, T_{2}\right\}$, when T_{1} is a contraction, is built. The construction of functional model is based on an analogue with many parameters of the Lax - Phillips scattering scheme for the isometric dilation $U(n)$ of the semigroup with two parameters $T(n)=T_{1}^{n_{1}} T_{2}^{n_{2}}$, where $n=\left(n_{1}, n_{2}\right) \in \mathbb{Z}_{+}^{2}$.

Key words: functional model, commutative operator system.
Mathematics Subject Classification 2000: 47A45.
As it is well known, one of the most natural ways of constructing the functional model of contraction operator $T(\|T\|<1)$ is based on the Lax-Phillips scattering scheme [1]. In this work, the functional model of commutative system of the linear bounded operators $\left\{T_{1}, T_{2}\right\},\left[T_{1}, T_{2}\right]=0$, when T_{1} is a contraction, is obtained using isometric extensions and an analogue with many variables of the Lax-Phillips scattering scheme [2-5].

It is shown that the weight matrices functions of model space have the form which is different from a traditional (the B.S. Pavlov model [1]) one and the structure of given weight functions itself is defined by external parameters of isometric extensions [2] of the operator system $\left\{T_{1}, T_{2}\right\}$. The functional model lies in the following: the operator T_{1} is realized by means of operator of multiplication by independent variable in a special function space, the second operator T_{2} represents the operator of multiplication by meromorphic operator function in the same space. It is typical of the constructed model to differ crucially from the well-known models in the nonselfadjoint case $[6,7]$.

1. Isometric Dilations of Commutative Operator System

I. Let a commutative system of the linear bounded operators $\left\{T_{1}, T_{2}\right\}$, [$\left.T_{1}, T_{2}\right]=T_{1} T_{2}-T_{2} T_{1}=0, T_{1}$ is a contraction, $\left\|T_{1}\right\| \leq 1$, be given in the separable Hilbert space H. Following $[2,3,8]$, define the commutative unitary extension for the system $\left\{T_{1}, T_{2}\right\}$.

Definition 1. Let E and \tilde{E} be the Hilbert spaces. The collection of mappings

$$
\begin{array}{ll}
V_{1}=\left[\begin{array}{cc}
T_{1} & \Phi \\
\Psi & K
\end{array}\right] ; \quad V_{2}=\left[\begin{array}{cc}
T_{2} & \Phi N \\
\Psi & K
\end{array}\right]: \quad H \oplus E \rightarrow H \oplus \tilde{E} \\
\stackrel{+}{V}_{1}=\left[\begin{array}{cc}
T_{1}^{*} & \Psi^{*} \\
\Phi^{*} & K^{*}
\end{array}\right] ; \quad \stackrel{+}{V_{2}}=\left[\begin{array}{cc}
T_{2}^{*} & \Psi^{*} \tilde{N}^{*} \\
\Phi^{*} & K^{*}
\end{array}\right]: \quad H \oplus \tilde{E} \rightarrow H \oplus E \tag{1.1}
\end{array}
$$

is said to be a commutative unitary extension of the commutative operator system T_{1}, T_{2} in $H,\left[T_{1}, T_{2}\right]=0$ if there are such operators σ, τ, N, Γ and $\tilde{\sigma}, \tilde{\tau}, \tilde{N}, \tilde{\Gamma}$ in the Hilbert spaces E and \tilde{E}, respectively, where $\sigma, \tau, \tilde{\sigma}, \tilde{\tau}$ are selfadjoint, and the relations:

1) $\quad \stackrel{+}{V} V_{1}=\left[\begin{array}{cc}I & 0 \\ 0 & I\end{array}\right] ; \quad V_{1} \stackrel{+}{V}_{1}=\left[\begin{array}{cc}I & 0 \\ 0 & I\end{array}\right]$;
2) $\quad V_{2}^{*}\left[\begin{array}{cc}I & 0 \\ 0 & \tilde{\sigma}\end{array}\right] V_{2}=\left[\begin{array}{cc}I & 0 \\ 0 & \sigma\end{array}\right] ; \quad \stackrel{V}{2}_{*}^{*}\left[\begin{array}{cc}I & 0 \\ 0 & \tau\end{array}\right] \stackrel{+}{V}_{2}=\left[\begin{array}{cc}I & 0 \\ 0 & \tilde{\tau}\end{array}\right]$;
3) $T_{2} \Phi-T_{1} \Phi N=\Phi \Gamma ; \quad \Psi T_{2}-\tilde{N} \Psi T_{1}=\tilde{\Gamma} \Psi$;
4) $\tilde{N} \Psi \Phi-\Psi \Phi N=K \Gamma-\tilde{\Gamma} K$;
5) $\tilde{N} K=K N$
hold.
Consider the following class of commutative systems of the linear operators $\left\{T_{1}, T_{2}\right\}$ [3].

Definition 2. The commutative operator system $\left\{T_{1}, T_{2}\right\}$ belongs to the class $C\left(T_{1}\right)$ and is said to be the contracting T_{1} operator system if:

1) T_{1} is a contraction, $\left\|T_{1}\right\| \leq 1$;
2) $E=\overline{\tilde{D}_{1} H} \supseteq \overline{\tilde{D}_{2} H} ; \quad \tilde{E}=\overline{D_{1} H} \supseteq \overline{D_{2} H} ;$
3) $\operatorname{dim} \overline{T_{2} \tilde{D}_{1} H}=\operatorname{dim} E ; \quad \operatorname{dim} \overline{D_{1} T_{2} H}=\operatorname{dim} \tilde{E}$;
4) the operators $\left.D_{1}\right|_{\tilde{E}},\left.\quad \tilde{D}_{1} T_{2}^{*}\right|_{\overline{T_{2} \tilde{D}_{1} H}},\left.\quad \tilde{D}_{1}\right|_{E},\left.\quad T_{2}^{*} D_{1}\right|_{\overline{D_{1} T_{2} H}}$
are boundedly invertible, where $D_{s}=T_{s}^{*} T_{s}-I, \tilde{D}_{s}=T_{s} T_{s}^{*}-I, s=1,2$.

It is easy to show that if $\left\{T_{1}, T_{2}\right\} \in C\left(T_{1}\right)$, then the unitary extension (1) always exists $[2,3]$.
II. Recall $[1,9,10]$ the construction of unitary dilation U for the contraction T_{1}. Let \mathcal{H} be the Hilbert space

$$
\begin{equation*}
\mathcal{H}=D_{-} \oplus H \oplus D_{+} \tag{1.4}
\end{equation*}
$$

where $D_{-}=l_{\mathbb{Z}_{-}}^{2}(E)$ and $D_{+}=l_{\mathbb{Z}_{+}}^{2}(\tilde{E})$. Define the dilation U on the vector functions $f=\left(u_{k}, h, v_{k}\right)$ from $\mathcal{H}(1.4)$ in the following way:

$$
\begin{equation*}
U f=\left(u_{k-1}, \tilde{h}, \tilde{v}_{k}\right) \tag{1.5}
\end{equation*}
$$

where $\tilde{h}=T_{1} h+\Phi u_{-1}, \tilde{v}_{0}=\Psi h+K u_{-1}, \tilde{v}_{k}=v_{k-1}, k=1,2, \ldots$. The unitary property of U (1.5) in \mathcal{H} follows from 1) (1.2).

The construction of isometric dilation [3] of the commutative operator system $\left\{T_{1}, T_{2}\right\} \in C\left(T_{1}\right)$ consists in the continuation of incoming D_{-}and outgoing D_{+} subspaces

$$
\begin{equation*}
D_{-}=l_{\mathbb{Z}_{-}}^{2}(E) ; \quad D_{+}=l_{\mathbb{Z}_{+}}^{2}(\tilde{E}) \tag{1.6}
\end{equation*}
$$

by the second variable " n_{2} ". Continue the functions $u_{n_{1}}$ of $l_{\mathbb{Z}_{-}}^{2}(E)$ from semiaxis $\mathbb{Z}_{\text {_ }}$ into domain

$$
\begin{equation*}
\tilde{\mathbb{Z}}_{-}^{2}=\mathbb{Z}_{-} \times\left(\mathbb{Z}_{-} \cup\{0\}\right)=\left\{n=\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}: n_{1}<0, n_{2} \leq 0\right\} \tag{1.7}
\end{equation*}
$$

using the Cauchy problem [2, 3].

$$
\left\{\begin{array}{l}
\tilde{\partial}_{2} u_{n}=\left(N \tilde{\partial}_{1}+\Gamma\right) u_{n} ; \quad n=\left(n_{1}, n_{2}\right) \in \tilde{\mathbb{Z}}_{-}^{2} ; \tag{1.8}\\
\left.u_{n}\right|_{n_{2}=0}=u_{n_{1}} \in l_{\mathbb{Z}_{-}}^{2}(E)
\end{array}\right.
$$

where $\tilde{\partial}_{1} u_{n}=u_{\left(n_{1}-1, n_{2}\right)}, \tilde{\partial}_{2} u_{n}=u_{\left(n_{1}, n_{2}-1\right)}$. As a result, we obtain the Hilbert space $D_{-}(N, \Gamma)$ formed by the solutions $u_{n}(1.8)$, besides, the norm in $D_{-}(N, \Gamma)$ is induced by the norm of initial data $\left\|u_{n}\right\|=\left\|u_{n_{1}}\right\|_{l_{\mathbb{Z}_{-}}^{2}(E)}$.

Similarly, continue the functions $v_{n_{1}} \in l_{\mathbb{Z}_{+}}^{2}(\tilde{E})$ from semiaxis \mathbb{Z}_{+}into domain $\mathbb{Z}_{+}^{2}=\mathbb{Z}_{+} \times \mathbb{Z}_{+}$using the Cauchy problem

$$
\left\{\begin{array}{l}
\tilde{\partial}_{2} v_{n}=\left(\tilde{N} \tilde{\partial}_{1}+\tilde{\Gamma}\right) v_{n} ; \quad n=\left(n_{1}, n_{2}\right) \in \mathbb{Z}_{+}^{2} \tag{1.9}\\
\left.v_{n}\right|_{n_{2}=0}=v_{n_{1}} \in l_{\mathbb{Z}_{+}}^{2}(E)
\end{array}\right.
$$

Denote by $D_{+}(\tilde{N}, \tilde{\Gamma})$ the Hilbert space formed by solutions $v_{n}(1.9)$, besides, $\left\|v_{n}\right\|=\left\|v_{n_{1}}\right\|_{l_{\mathbb{Z}_{+}}^{2}(\tilde{E})}$. Unlike the explicit recurrent scheme (1.8) of the layer-tolayer calculation of $n_{2} \rightarrow n_{2}-1$ for u_{n}, in this case of constructing v_{n} in \mathbb{Z}_{+}^{2}, we have an implicit linear equation system for the layer-to-layer calculation of $n_{2} \rightarrow n_{2}+1$ of function v_{n}.

Hereinafter, the following lemma [3] plays an important role.
Lemma 1.1. Suppose the commutative unitary extension $\left(V_{s}, \stackrel{+}{V}_{s}\right)$ (1.1) is such that

$$
\begin{equation*}
\operatorname{Ker} \Phi=\operatorname{Ker} \Psi^{*}=\{0\} \tag{1.10}
\end{equation*}
$$

Then $\operatorname{Ker} N \cap \operatorname{Ker} \Gamma=\{0\}$ given $\operatorname{Ker} K^{*}=\{0\}$, and respectively Ker $\tilde{N}^{*} \cap$ $\operatorname{Ker} \tilde{\Gamma}^{*}=0$ given Ker $K=\{0\}$.

The solvability of the Cauchy problem (1.9) follows from the given lemma [3].
Consider an operator function of the discrete argument

$$
\tilde{\sigma}_{\Delta}= \begin{cases}I: & \Delta=(1,0) \tag{1.11}\\ \tilde{\sigma}: & \Delta=(0,1)\end{cases}
$$

And let L_{0}^{n} be the nondecreasing broken line in \mathbb{Z}_{+}^{2} that connects points $O=(0,0)$ and $n=\left(n_{1}, n_{2}\right) \in \mathbb{Z}_{+}^{2}$, the linear segments of which are parallel to the axes $O X$, $n_{2}=0$, and $O Y, n_{1}=0$. By $\left\{P_{k}\right\}_{0}^{N}$ denote all integer-valued points from \mathbb{Z}_{+}^{2}, $P_{k} \in \mathbb{Z}_{+}^{2}\left(N=n_{1}+n_{2}\right)$ that lie on L_{0}^{n}, beginning with $(0,0)$ and finishing with point $\left(n_{1}, n_{2}\right)$, that are numbered in nonascending order (of one of the coordinates $\left.P_{k}\right)$. Define the quadratic form

$$
\begin{equation*}
\left\langle\tilde{\sigma} v_{k}\right\rangle_{L_{0}^{n}}^{2}=\sum_{k=0}^{N}\left\langle\tilde{\sigma}_{P_{k}-P_{k-1}} v_{P_{k}}, v_{P_{k}}\right\rangle \tag{1.12}
\end{equation*}
$$

on the vector functions $v_{k} \in D_{+}(\tilde{N}, \tilde{\Gamma})$ assuming that $P_{-1}=(-1,0)$.
Similarly, consider the nonincreasing broken line L_{m}^{-1} in $\tilde{\mathbb{Z}}_{-}^{2}(1.7)$ that connects points $m=\left(m_{1}, m_{2}\right) \in \tilde{\mathbb{Z}}_{-}^{2}$ and $(-1,0)$, the linear segments of which are parallel to $O X$ and $O Y$. And let $\left\{Q_{s}\right\}_{M}^{-1}, M=m_{1}+m_{2}$, be the integer-valued points on L_{m}^{-1}, beginning with $m=\left(m_{1}, m_{2}\right)$ and finishing with $(-1,0)$, that are numbered in nondescending order (of one of the coordinates Q_{s}). In $D_{-}(N, \Gamma)$ define the metric

$$
\begin{equation*}
\left\langle\sigma u_{k}\right\rangle_{L_{m}^{-1}}^{2}=\sum_{s=M}^{-1}\left\langle\sigma_{Q_{s}-Q_{s-1}} u_{Q_{s}}, u_{Q_{s}}\right\rangle \tag{1.13}
\end{equation*}
$$

besides $Q_{M}-Q_{M-1}=(1,0)$ and the operator function σ_{Δ} is defined similarly to $\tilde{\sigma}_{\Delta}$ (1.11). Denote by \tilde{L}_{-n}^{-1} the broken line in $\tilde{\mathbb{Z}}_{-}^{2}$ that is obtained from the curve L_{0}^{n} in $\mathbb{Z}_{+}^{2}, n \in \mathbb{Z}_{+}^{2}$, using the shift by " n "-

$$
\begin{equation*}
\tilde{L}_{-n}^{-1}=\left\{Q_{s}=\left(l_{1}, l_{2}\right) \in \tilde{\mathbb{Z}}_{-}^{2}:\left(l_{1}+n_{1}+1, l_{2}+n_{2}\right)=P_{k} \in L_{0}^{n}\right\} \tag{1.14}
\end{equation*}
$$

III. Having the Hilbert space $D_{-}(N, \Gamma)$, that is formed by the solutions of the Cauchy problem (1.8), and the space $D_{+}(\tilde{N}, \tilde{\Gamma})$, that is formed by the solutions of (1.9), define the Hilbert space

$$
\begin{equation*}
\mathcal{H}_{N, \Gamma}=D_{-}(N, \Gamma) \oplus H \oplus D_{+}(\tilde{N}, \tilde{\Gamma}) \tag{1.15}
\end{equation*}
$$

in which the norm is defined by the norm of the initial space $\mathcal{H}=D_{-} \oplus H \oplus D_{+}$ (1.4). Denote by $\hat{\mathbb{Z}}_{+}^{2}$ the subset in \mathbb{Z}_{+}^{2},

$$
\begin{equation*}
\hat{\mathbb{Z}}_{+}^{2}=\mathbb{Z}_{+}^{2} \backslash(\{0\} \times \mathbb{N})=\{(0,0)\} \cup\left(\mathbb{N} \times \mathbb{Z}_{+}\right) \tag{1.16}
\end{equation*}
$$

that obviously is an additional semigroup.

For every $n \in \hat{\mathbb{Z}}_{+}^{2}(1.16)$, define the operator function $U(n)$ that acts on the vectors $f=\left(u_{k}, h, v_{k}\right) \in \mathcal{H}_{N, \Gamma}$ (1.15) in the following way:

$$
\begin{equation*}
U(n) f=f(n)=\left(u_{k}(n), h(n), v_{k}(n)\right), \tag{1.17}
\end{equation*}
$$

where $u_{k}(n)=P_{D_{-}(N, \Gamma)} u_{k-n}\left(P_{D_{-}(N, \Gamma)}\right.$ is an orthoprojector that corresponds with the restriction on $\left.D_{-}(N, \Gamma)\right) ; h(n)=y_{0}$, besides $y_{k} \in H, k \in \mathbb{Z}_{+}^{2}$, is a solution of the Cauchy problem

$$
\left\{\begin{array}{l}
\tilde{\partial}_{1} y_{k}=T_{1} y_{k}+\Phi u_{\tilde{\tilde{}}} ; \tag{1.18}\\
\tilde{\partial}_{2} y_{k}=T_{2} y_{k}+\Phi N u_{\tilde{k}} ; \\
y_{n}=h ; \quad k=\left(k_{1}, k_{2}\right) \in \mathbb{Z}_{+}^{2}, \quad 0 \leq k_{1} \leq n_{1}-1, \quad 0 \leq k_{2} \leq n_{2} ;
\end{array}\right.
$$

at the same time $\tilde{k}=k-n$ when $0 \leq k_{1} \leq n_{1}-1,0 \leq k_{2} \leq n_{2}$, and, finally,

$$
\begin{equation*}
v_{k}(n)=\hat{v}_{k}+v_{k-n} \tag{1.19}
\end{equation*}
$$

and $\hat{v}_{k}=K u_{\tilde{k}}+\Psi y_{k}$, where y_{k} is a solution of the Cauchy problem (1.18).
In [3] it is shown that the operator function $U(n)(1.17)$ has the semigroup property and is the isometric dilation of the semigroup

$$
\begin{equation*}
T(n)=T_{1}^{n_{1}} T_{2}^{n_{2}}, \quad n=\left(n_{1}, n_{2}\right) \in \mathbb{Z}_{+}^{2} . \tag{1.20}
\end{equation*}
$$

IV. Make a similar continuation of subspaces D_{-}and D_{+}(1.6) from semiaxes \mathbb{Z}_{-}and \mathbb{Z}_{+}by the second variable " $n n_{2}$ ", corresponding to the dual situation. By $D_{+}\left(\tilde{N}^{*}, \tilde{\Gamma}^{*}\right)$ denote the Hilbert space generated by the solutions \tilde{v}_{n} of the Cauchy problem

$$
\left\{\begin{array}{l}
\partial_{2} \tilde{v}_{n}=\left(\tilde{N}^{*} \partial_{1}+\tilde{\Gamma}^{*}\right) \tilde{v}_{n} ; \quad n=\left(n_{1}, n_{2}\right) \in \mathbb{Z}_{+}^{2} ; \tag{1.21}\\
\left.\tilde{v}_{n}\right|_{n_{2}=0}=v_{n_{1}} \in l_{\mathbb{Z}_{+}}^{2}(\tilde{E}),
\end{array}\right.
$$

in which the norm is induced by the norm of initial data $\left\|\tilde{v}_{n}\right\|=\left\|v_{n_{1}}\right\|_{l_{\mathbb{Z}_{+}}^{2}(E)}$, besides $\partial_{1} \tilde{v}_{n}=\tilde{v}_{\left(n_{1}+1, n_{2}\right)}, \partial_{2} \tilde{v}_{n}=\tilde{v}_{\left(n_{1}, n_{2}+1\right)}$.

Continue now every function $u_{n_{1}} \in l_{\mathbb{Z}_{-}}^{2}(E)$ into domain $\tilde{\mathbb{Z}}_{-}^{2}(1.7)$ using the Cauchy problem

$$
\left\{\begin{array}{l}
\partial_{2} \tilde{u}_{n}=\left(N^{*} \partial_{1}+\Gamma^{*}\right) \tilde{u}_{n} ; \quad n=\left(n_{1}, n_{2}\right) \in \tilde{\mathbb{Z}}_{-}^{2} ; \tag{1.22}\\
\left.\tilde{u}_{n}\right|_{n_{2}=0}=u_{n_{1}} \in l_{\mathbb{Z}}^{2}(E) .
\end{array}\right.
$$

As a result, we obtain the Hilbert space $D_{-}\left(N^{*}, \Gamma^{*}\right)$ generated by \tilde{u}_{n}, solutions of (1.22), besides $\left\|\tilde{u}_{n}\right\|=\left\|u_{n_{1}}\right\|_{L_{Z_{-}}^{2}(E)}$.

The existence of the solution of the Cauchy problem (1.22) follows from Lem. 1.

Define the Hilbert space

$$
\begin{equation*}
\mathcal{H}_{N^{*}, \Gamma^{*}}=D_{-}\left(N^{*}, \Gamma^{*}\right) \oplus H \oplus D_{+}\left(\tilde{N}^{*}, \tilde{\Gamma}^{*}\right) \tag{1.23}
\end{equation*}
$$

in which the metric is induced by the norm of initial space $\mathcal{H}=D_{-} \oplus H \oplus D_{+}$ (1.4).

Define the operator function $\stackrel{+}{U}(n)$ for $n \in \hat{\mathbb{Z}}_{+}^{2}(1.16)$ in the space $\mathcal{H}_{N^{*}, \Gamma^{*}}$ (1.23), which acts on $\tilde{f}=\left(\tilde{u}_{k}, \tilde{h}, \tilde{v}_{k}\right) \in \mathcal{H}_{N^{*}, \Gamma^{*}}$ in the following way:

$$
\begin{equation*}
\stackrel{+}{U}(n) \tilde{f}=\tilde{f}(n)=\left(\tilde{u}_{k}(n), \tilde{h}(n), \tilde{v}(n)\right) \tag{1.24}
\end{equation*}
$$

where $\tilde{v}_{k}(n)=P_{D_{+}\left(\tilde{N}^{*}, \tilde{\Gamma}^{*}\right)} \tilde{v}_{k+n}\left(P_{D_{+}\left(\tilde{N}^{*}, \tilde{\Gamma}^{*}\right)}\right.$ is an orthoprojector on $\left.D_{+}\left(\tilde{N}^{*}, \tilde{\Gamma}^{*}\right)\right)$; $\tilde{h}(n)=\tilde{y}_{(-1 ; 0)}$, besides $\tilde{y}_{k}\left(k \in \tilde{\mathbb{Z}}_{-}^{2}\right)$ satisfies the Cauchy problem

$$
\left\{\begin{array}{l}
\partial_{1} \tilde{y}_{k}=T_{1}^{*} \tilde{y}_{k}+\Psi^{*} \tilde{v}_{\tilde{k}} ; \tag{1.25}\\
\partial_{2} \tilde{y}_{k}=T_{2}^{*} \tilde{y}_{k}+\Psi^{*} N^{*} \tilde{v}_{\tilde{k}} ; \\
\tilde{y}_{\left(-n_{1},-n_{2}\right)}=h ; k=\left(k_{1}, k_{2}\right) \in \tilde{\mathbb{Z}}_{-}^{2} ;
\end{array}\right.
$$

besides $\tilde{k}=k+n$ and $\left(-n_{1} \leq k_{1} \leq-1 ;-n_{2} \leq k_{2} \leq 0\right)$; finally,

$$
\begin{equation*}
\tilde{u}_{k}(n)=\hat{u}_{k}+\tilde{u}_{k+n}, \tag{1.26}
\end{equation*}
$$

and $\hat{u}_{k}=K^{*} \tilde{v}_{\tilde{k}}+\Phi^{*} \tilde{y}_{k}$, where \tilde{y}_{k} is a solution of system (1.26).
It is clear that the semigroup $\stackrel{+}{U}(n)(1.24)$ is the isometric dilation [3] of the semigroup $T^{*}(n)$, where $T(n)$ has the form of (1.20).

Note that the dilations $U(n)(1.17)$ and $\stackrel{+}{U}(n)$ (1.24) are unitary linked, i.e., $U^{*}\left(n_{1}, 0\right) f=\stackrel{+}{U}\left(n_{1}, 0\right) f$ for all $f \in \mathcal{H}(1.4)$ and for all $n_{1} \in \mathbb{Z}_{+}$, besides $U\left(n_{1}, 0\right)$ on \mathcal{H} is a unitary semigroup.

2. Scattering Scheme with Many Parameters and Translational Models

I. As it is known $[1,9]$, the construction of translational (as well as functional) model of contraction T and its dilation $U(1.5)$ follows naturally from the scattering scheme and from the properties of the wave operators $W_{ \pm}$and the scattering operator S.

In order to construct the wave operators $W_{ \pm}$in the case of many parameters it is necessary [4] to continue the vector functions from $l_{\mathbb{Z}}^{2}(\tilde{E})$ and $l_{\mathbb{Z}}^{2}(E)$ from
axis \mathbb{Z} into domain \mathbb{Z}^{2}. Continue every function $u_{n_{1}} \in l_{\mathbb{Z}}^{2}(E)$ to the function u_{n}, where $n=\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}$, using the Cauchy problem

$$
\left\{\begin{array}{l}
\tilde{\partial}_{2} u_{n}=\left(N \tilde{\partial}_{1}+\Gamma\right) u_{n} ; \quad n \in \mathbb{Z}^{2} ; \tag{2.1}\\
\left.u_{n}\right|_{n_{2}=0}=u_{n_{1}} \in l_{\mathbb{Z}}^{2}(E) ;
\end{array}\right.
$$

besides $\left\|u_{n}\right\|=\left\|u_{n_{1}}\right\|_{l_{\mathbb{Z}}^{2}(E)}$. Note that this continuation into the lower half-plane $\left(n_{2} \in \mathbb{Z}_{-}\right), u\left(n_{1}, n_{2}\right) \rightarrow u\left(n_{1}, n_{2}-1\right)$, has a recurrent nature and a continuation into the upper half-plane $u\left(n_{1}, n_{2}\right) \rightarrow u\left(n_{1}, n_{2}+1\right)$ may be carried out in a nonexplicit way in the context of suppositions of Lem. 1.1. As a result, we obtain the Hilbert space $l_{N, \Gamma}^{2}(E)$ in which the norm is induced by the norm of initial data.

Define now the shift operator $V(p)$

$$
\begin{equation*}
V(p) u_{n}=u_{n-p}, \tag{2.2}
\end{equation*}
$$

where $u_{n} \in l_{N, \Gamma}^{2}(E)$ for all $p \in \mathbb{Z}^{2}$. Obviously, the operator $V(p)(2.2)$ is isometric.
Knowing the perturbed $U(n)(1.17)$ and free $V(n)(2.2)$ operator semigroups, define the wave operator $W_{-}(n)$

$$
\begin{equation*}
W_{-}(k)=s-\lim _{n \rightarrow \infty} U(n, k) P_{D_{-}(N, \Gamma)} V(-n,-k) \tag{2.3}
\end{equation*}
$$

for every fixed $k \in \mathbb{Z}_{+}$, where $P_{D_{-}(N, \Gamma)}$ is the orthoprojector of narrowing onto the component u_{n}^{-}from $l_{N, \Gamma}^{2}(E)$ obtained as a result of continuation into $\tilde{\mathbb{Z}}_{-}^{2}(1.7)$ from semiaxis \mathbb{Z}_{-}using the Cauchy problem (2.1). It is obvious that $W_{-}(0)=W_{-}$, where the wave operator W_{-}corresponds with the dilation U (1.5) and the shift operator V in $l_{\mathbb{Z}}^{2}(E)[6]$. Thus, $W_{-}(k)(2.3)$ is a natural continuation of the wave operator W_{-}onto the " k "th horizontal line in \mathbb{Z}^{2} when $k \in \mathbb{Z}_{+}$.

Denote by $L_{0, k}^{\infty}$ the broken line in \mathbb{Z}_{+}^{2} consisting of the two linear segments: the first one is a vertical segment connecting points $O=(0,0)$ and $(0, k)$, where $k \in \mathbb{Z}_{+}$, and the second segment is a horizontal half-line from point $(0, k)$ to (∞, k). Similarly, choose the broken line $\tilde{L}_{-\infty, p}^{-1}$ in $\tilde{\mathbb{Z}}_{-}^{2}(1.7)$ that also consists of the two linear segments, the first of which is a half-line from $(-\infty,-p)$ to point $(-1,-p)$, where $p \in \mathbb{Z}_{+}$, and the second one is a vertical segment from point $(-1,-p)$ to $(-1,0)$. In the space $\mathcal{H}_{N, \Gamma}(1.15)$, specify the following quadratic form:

$$
\begin{equation*}
\langle f\rangle_{\sigma(p, k)}^{2}=\left\langle\sigma u_{n}\right\rangle_{\tilde{L}_{-\infty, p}^{-1}}^{2}+\|h\|^{2}+\left\langle\tilde{\sigma} v_{n}\right\rangle_{L_{0, k}^{\infty}}^{2} \tag{2.4}
\end{equation*}
$$

where corresponding σ and $\tilde{\sigma}$ in (2.4) are understood in the sense of (1.12) and (1.13).

Similarly to (2.4), in $l_{N, \Gamma}^{2}(E)$ specify the following σ-form:

$$
\begin{equation*}
\left\langle u_{n}\right\rangle_{\sigma(p, k)}^{2}=\left\langle\sigma u_{n}^{-}\right\rangle_{\tilde{L}_{-\infty, p}^{-1}}^{2}+\left\langle\sigma u_{n}^{+}\right\rangle_{L_{0, k}^{\infty}}, \tag{2.5}
\end{equation*}
$$

where $u_{n}^{ \pm}$are the continuations of functions from $l_{\mathbb{Z}_{ \pm}}^{2}(E)$ from semiaxes $\mathbb{Z}_{ \pm}$, $n_{2}=0$, obtained by using the Cauchy problem (2.1).

Theorem $2.1[4]$. The wave operator $W_{-}(k)$ (2.3) mapping $l_{N, \Gamma}^{2}(E)$ into the space $\mathcal{H}_{N, \Gamma}$ (1.15) exists for all $k \in \mathbb{Z}_{+}$, and it is an isometry

$$
\begin{equation*}
\left\langle W_{-}(k) u_{n}\right\rangle_{\sigma(p, k)}^{2}=\left\langle u_{n}\right\rangle_{\sigma(p, k)}^{2} \tag{2.6}
\end{equation*}
$$

in metrics (2.4), (2.5) for all $p \in \mathbb{Z}_{+}$. Moreover, the wave operator $W_{-}(k)$ (2.3) meets the conditions

$$
\begin{array}{ll}
\text { 1) } & U(1, s) W_{-}(k)=W_{-}(k+s) V(1, s) ; \tag{2.7}\\
\text { 2) } & W_{-}(k) P_{D_{-}(N, \Gamma)}=P_{D_{-}(N, \Gamma)}
\end{array}
$$

for all $k, s \in \mathbb{Z}_{+}$, where $P_{D_{-}(N, \Gamma)}$ is an orthoprojector onto $D_{-}(N, \Gamma)$.
II. Continue the vector functions $v_{n_{1}}$ from $l_{\mathbb{Z}}^{2}(\tilde{E})$ into domain \mathbb{Z}^{2} using the Cauchy problem

$$
\left\{\begin{array}{l}
\tilde{\partial}_{2} v_{n}=\left(\tilde{N} \tilde{\partial}_{1}+\tilde{\Gamma}\right) v_{n} ; \quad n=\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2} \tag{2.8}\\
\left.v_{n}\right|_{n_{2}=0}=v_{n_{1}} \in l_{\mathbb{Z}}^{2}(\tilde{E}) .
\end{array}\right.
$$

Denote the Hilbert space obtained in this way by $l_{\tilde{N}, \tilde{\Gamma}}(\tilde{E})$, besides $\left\|v_{n}\right\|=$ $\left\|v_{n_{1}}\right\|_{l_{Z}^{2}(\tilde{E})}$.

Similarly to $V(p)(2.2)$, introduce the shift operator

$$
\begin{equation*}
\tilde{V}(p) v_{n}=v_{n-p} \tag{2.9}
\end{equation*}
$$

for all $p \in \mathbb{Z}^{2}$ and all $v_{n} \in l_{\tilde{N}, \tilde{\Gamma}}^{2}(\tilde{E})$. Define the wave operator $W_{+}(p)$ from $\mathcal{H}_{N, \Gamma}$ into space $l_{\tilde{N}, \tilde{\Gamma}}^{2}(\tilde{E})$

$$
\begin{equation*}
W_{+}(p)=s-\lim _{n \rightarrow \infty} \tilde{V}(-n,-p) P_{D_{+}(\tilde{N}, \tilde{\Gamma})} U(n, p) \tag{2.10}
\end{equation*}
$$

for all $p \in \mathbb{Z}_{+}$, where $U(n)$ has the form of (1.17). It is obvious that $W_{+}(0)=W_{+}^{*}$, where W_{+}is the wave operator [1] corresponding to U (1.5) and to shift \tilde{V} in $l_{\mathbb{Z}}^{2}(\tilde{E})$.

Theorem 2.2 [4]. For all $p \in \mathbb{Z}_{+}$, the wave operator $W_{+}(p)$ (2.11) acting from space $\mathcal{H}_{N, \Gamma}$ into $l_{\tilde{N}, \tilde{\Gamma}}^{2}(\tilde{E})$ exists and satisfies the relations

$$
\begin{array}{ll}
\text { 1) } & W_{+}(p) U(1, s)=\tilde{V}(1, s) W_{+}(p+s) ; \\
\text { 2) } & W_{+}(p) P_{D_{+}(\tilde{N}, \tilde{\Gamma})}=P_{D_{+}(\tilde{N}, \tilde{\Gamma})} \tag{2.11}
\end{array}
$$

for all p, $s \in \mathbb{Z}_{+}$, where $P_{D_{+}(\tilde{N}, \tilde{\Gamma})}$ is an orthoprojector onto $D_{+}(\tilde{N}, \tilde{\Gamma})$.
Knowing the wave operators $W_{-}(k)(2.3)$ and $W_{+}(p)(2.10)$, define the scattering operator in a traditional way $[1,4]$:

$$
\begin{equation*}
S(p, k)=W_{+}(p) W_{-}(k) \tag{2.12}
\end{equation*}
$$

for all $p, k \in \mathbb{Z}_{+}$. It is obvious that when $p=k=0$, we have $S(0,0)=S$, where S is the standard scattering operator, $S=W_{+}^{*} W_{-}$, for the dilation U (1.5) [1].

Theorem 2.3 [4]. The scattering operator $S(p, k)$ (2.13) represents the bounded operator from $l_{N, \Gamma}^{2}(E)$ into $l_{\tilde{N}, \tilde{\Gamma}}^{2}(\tilde{E})$, besides

$$
\begin{align*}
& \text { 1) } \quad S(p, k) V(1, q)=\tilde{V}(1, q) S(p+q, k-q) ; \\
& \text { 2) } \quad S(p, k) P_{-} l_{N, \Gamma}^{2}(E) \subseteq P_{-} l_{\tilde{N}, \tilde{\Gamma}}^{2}(\tilde{E}) \tag{2.13}
\end{align*}
$$

for all $p, k, q \in \mathbb{Z}_{+}, 0 \leq q \leq k$, where P_{-}is the narrowing orthoprojector onto solutions of the Cauchy problems (2.1) and (2.9) with the initial data on semiaxis \mathbb{Z}_{-}when $n_{2}=0$.
III. Following [4], consider the nonnegative operator function $W_{p, k}$

$$
W_{p, k}=\left[\begin{array}{cc}
W_{+}(p) W_{+}^{*}(p) & S(p, k) \tag{2.14}\\
S^{*}(p, k) & W_{-}^{*}(k) W_{-}(k)
\end{array}\right]
$$

to define the Hilbert space

$$
\begin{equation*}
l^{2}\left(W_{p, k}\right)=\left\{g_{n}=\binom{v_{n}}{u_{n}}:\left\langle W_{p, k} g_{n}, g_{n}\right\rangle_{l^{2}}<\infty\right\} \tag{2.15}
\end{equation*}
$$

where $u_{n} \in l_{N, \Gamma}^{2}(E), v_{n} \in l_{N, \Gamma}^{2}(\tilde{E})$.
Let

$$
\begin{align*}
& W_{p, 0}^{\prime}=\left[\begin{array}{cc}
\tilde{V}(1, p) W_{+}(p) W_{+}^{*}(p) \tilde{V}^{*}(1, p) & S(0, p) \\
S^{*}(0, p) & I
\end{array}\right] ; \tag{2.16}\\
& \hat{V}(1, p)=\left[\begin{array}{cc}
\tilde{V}^{*}(-1,-p) & 0 \\
0 & V(1, p)
\end{array}\right] .
\end{align*}
$$

As it follows from [9], the operator

$$
\begin{equation*}
\hat{U}(1, p) g_{n}=\hat{V}(1, p) g_{n} \tag{2.17}
\end{equation*}
$$

acts from the Hilbert space

$$
l^{2}\left(W_{p, 0}^{\prime}\right)=\left\{g_{n}=\binom{v_{n}}{u_{n}}:\left\langle W_{p, 0}^{\prime} g_{n}, g_{n}\right\rangle_{l^{2}}<\infty\right\}
$$

into the space $l^{2}\left(W_{p, 0}\right)(2.15)$.
Denote by \hat{H}_{p} the Hilbert space

$$
\begin{equation*}
\hat{H}_{p}=l^{2}\left(W_{p, 0}\right) \ominus\binom{P_{+} l_{\tilde{N}, \tilde{\Gamma}}^{2}(\tilde{E})}{P_{-} l_{N, \Gamma}^{2}(E)} \tag{2.18}
\end{equation*}
$$

where $P_{ \pm}$are orthoprojectors onto solutions of the Cauchy problems (2.1), (2.8) with the initial data on $\mathbb{Z}_{ \pm}$. Consider also

$$
\hat{H}_{p}^{\prime}=l^{2}\left(W_{p, 0}^{\prime}\right) \ominus\binom{\tilde{V}^{*}(-1,-p) P_{+} l_{\tilde{N}, \tilde{\Gamma}}^{2}(\tilde{E})}{V(1, p) P_{-} l_{N, \Gamma}^{2}(E)}
$$

The spaces $\hat{H}_{p}(2.18)$ and $\hat{H}_{p}^{\prime}\left(2.18^{\prime}\right)$ are isomorphic one to another, besides, as it is easily seen, the operator $R_{p}: \hat{H}_{p} \rightarrow \hat{H}_{p}^{\prime}$ defining this isomorphism has the form

$$
R_{p}=P_{\hat{H}_{p}^{\prime}}\left[\begin{array}{cc}
\tilde{V}^{*}(1, p) & 0 \tag{2.19}\\
0 & V(-1,-p)
\end{array}\right] P_{\hat{H}_{p}}
$$

where $P_{\hat{H}_{p}}$ and $P_{\hat{H}_{p}^{\prime}}$ are orthoprojectors onto $\hat{H}_{p}(2.18)$ and $\hat{H}_{p}^{\prime}\left(2.18^{\prime}\right)$, respectively. Specify the operators \hat{T}_{1} and $\hat{T}(1, p)=\hat{T}_{1} \hat{T}_{2}^{p}, p \in \mathbb{Z}_{+}$,

$$
\begin{equation*}
\left(\hat{T}_{1} f\right)_{n}=P_{\hat{H}_{p}} f_{n-(1,0)} ; \quad(\hat{T}(1, p) f)_{n}=P_{\hat{H}_{p}} \hat{V}(1, p)\left(R_{p} f\right)_{n} \tag{2.20}
\end{equation*}
$$

for all $f_{n} \in \hat{H}_{p}(2.18)$. Note that the operator \hat{T}_{1} has the same form (2.20) in all spaces $\hat{H}_{p}(2.28)$.

Theorem 2.4 [4]. Consider the simple commutative unitary extension $\left(V_{s}, \stackrel{+}{V}_{s}\right)$ (2.1) corresponding to the commutative operator system $\left\{T_{1}, T_{2}\right\}$ from the class $C\left(T_{1}\right)$ (1.3) and let the suppositions of Lem. 1.1 take place, besides $\operatorname{dim} E=\operatorname{dim} \tilde{E}<\infty$. Then the isometric dilation $U(1, p)$ (1.17), $p \in \mathbb{Z}_{+}$, acting in the Hilbert space $\mathcal{H}_{N, \Gamma}$ (1.15) is unitary equivalent to the operator $\hat{U}(1, p)$ (2.17) mapping the space $l^{2}\left(W_{p, 0}^{\prime}\right)\left(2.15^{\prime}\right)$ into $l^{2}\left(W_{p, 0}\right)$ (2.15). Moreover, the operators T_{1} and $T(1, p)=T_{1} T_{2}^{p}$ (1.21) specified in H are unitary equivalent to the shift operator \hat{T}_{1} (2.20) and to the operator $\hat{T}(1, p)$ (2.20).

A similar translational model of dilation $\stackrel{+}{U}(n)(1.24)$ and semigroup $T^{*}(n)$ (1.20) is listed in [4].

3. Functional Models

I. In order to construct the functional models of dilations $U(n)$ (1.17) and $\stackrel{+}{U}(n)(1.24)$, it is necessary to realize the Fourier transformation of translational models from Sect. 2. The Fourier transformation \mathcal{F}

$$
\begin{equation*}
\mathcal{F}\left(u_{k}\right)=\sum_{k \in \mathbb{Z}} u_{k} \xi^{k}=u(\xi), \quad u_{k} \in l_{\mathbb{Z}}^{2}(E), \tag{3.1}
\end{equation*}
$$

specifies the isomorphism between $l_{\mathbb{Z}}^{2}(E)$ and the Hilbert space $L_{\mathbb{T}}^{2}(E)[1,9]$.
Realize the Fourier transformation \mathcal{F} (3.1) by variable n_{1} of every vector function u_{n} from the space $l_{N, \Gamma}^{2}(E), n=\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}$. Then we obtain (see the Cauchy problem (2.1)) the family of functions $u\left(\xi, n_{2}\right)$ specified on every n_{2}-th horizontal line $\left(n_{2} \in \mathbb{Z}\right)$, besides the transition from n_{2} to $n_{2}-1$ is specified by multiplication by the linear pencil of operators

$$
\begin{equation*}
u\left(\xi, n_{2}-1\right)=(N \xi+\Gamma) u\left(\xi, n_{2}\right) \tag{3.2}
\end{equation*}
$$

Note that a corresponding continuation into half-plane $n_{2} \in \mathbb{Z}_{+}$may be carried out in the context of suppositions of Lem. 1.1 when $\operatorname{dim} E<\infty$. As a result, we obtain the Hilbert space of functions $u\left(\xi, n_{2}\right)$, for which (3.2) takes place, besides $u(\xi)=u(\xi, 0) \in L_{\mathbb{T}}^{2}(E)$. We denote this space by $L_{\mathbb{T}}^{2}(N, \Gamma, E)$. It is obvious that the shift operator $V(p)(2.2)$, as a result of the Fourier transformation $\mathcal{F}(3.1)$ in space $L_{\mathbb{T}}^{2}(N, \Gamma, E)$, acts by multiplication

$$
\begin{equation*}
V(p) u(\xi)=\xi^{p_{1}}(N \xi+\Gamma)^{p_{2}} u(\xi) \tag{3.3}
\end{equation*}
$$

where $u(\xi)=u(\xi, 0)$ and $p=\left(p_{1}, p_{2}\right) \in \mathbb{Z}^{2}$. Similarly, the Fourier transformation \mathcal{F} (3.1) of space $l_{\mathbb{Z}}^{2}(\tilde{E})$ leads us to the Hilbert space $L_{\mathbb{T}}^{2}(\tilde{E})$. The Fourier transformation \mathcal{F} by the first variable n_{1} of every function $v_{n}=v_{\left(n_{1}, n_{2}\right)}$ from $l_{\tilde{N}, \tilde{\Gamma}}^{2}(\tilde{E})$ gives us the family of \tilde{E}-valued functions $v\left(\xi, n_{2}\right)$, for which

$$
\begin{equation*}
v\left(\xi, n_{2}-1\right)=(\tilde{N} \xi+\tilde{\Gamma}) v\left(\xi, n_{2}\right) \tag{3.4}
\end{equation*}
$$

takes place in view of the Cauchy problem (2.8). The obtained space of functions $v\left(\xi, n_{2}\right)$, where $v(\xi)=v(\xi, 0) \in L_{\mathbb{T}}^{2}(\tilde{E})$, we denote by $L_{\mathbb{T}}^{2}(\tilde{N}, \tilde{\Gamma}, \tilde{E})$. As in the previous case, the continuation by rule (3.5), when $n_{+} 2 \in \mathbb{Z}_{+}$, is possible when the suppositions of Lem. 1.1 are met and $\operatorname{dim} \tilde{E}<\infty$. The translation operator $\tilde{V}(p)(2.9)$ in the Hilbert space $L_{\mathbb{T}}^{2}(\tilde{N}, \tilde{\Gamma}, \tilde{E})$ is realized by multiplication operator

$$
\begin{equation*}
\tilde{V}(p) v(\xi)=\xi^{p_{1}}(\tilde{N} \xi+\tilde{\Gamma})^{p_{1}} v(\xi), \tag{3.5}
\end{equation*}
$$

where $v(\xi)=v(\xi, 0)$ and $p=\left(p_{1}, p_{2}\right) \in \mathbb{Z}^{2}$.
II. The translational invariance (2.13) of the operator $S(p, k)$ (2.11) signifies that the Fourier image of the scattering operator $S(p, k)$ represents the operator of multiplication by vector function. In particular, $\mathcal{F} S(0,0) u_{k}=S(\xi) u(\xi)$, where $u(\xi)=\mathcal{F}\left(u_{k}\right)(3.1)$ and $S(\xi)=K+\Psi\left(\xi I-T_{1}\right)^{-1} \Phi$ is the characteristic function of extension V_{1} (1.1) of the operator T_{1}. It follows from relation 1) (2.13) for the operator $S(p, k)$ that it is necessary to find the Fourier image of operator $S(p, 0)$ (or of $S(0, p)$, in view of 1) (2.13)) for all $p \in \mathbb{Z}_{+}$. Further, taking into account the translational invariance of operator $S(p, 0)$, it is obvious that it is sufficient to calculate how $S(p, 0)$ acts on the vector function $u_{k}^{0}=u \delta_{k, 0}$, where u is an arbitrary vector from E, and $\delta_{k, 0}$ is the Kronecker symbol. For simplicity, consider the case $\mathrm{p}=1$, then it follows from (2.3) and from (2.10) that

$$
\left.v_{n}^{m}=\tilde{V}(-m,-1) P_{D_{+}(\tilde{N}, \tilde{\Gamma})}\right) U(2 m, 1) P_{D_{-}(N, \Gamma)} V(-m, 0) u_{k}^{0} \rightarrow S(1,0) u_{k}^{0}
$$

when $m \rightarrow \infty, n \in \mathbb{Z}^{2}$. Elementary calculations show that the vector function v_{n}^{m} is given by

$$
\begin{gathered}
v_{\left(n_{1}, 0\right)}^{m}=\left(\ldots, 0, \Psi T_{1}^{m-1} \Phi u, \ldots, \Psi T_{1} \Phi u, \Psi \Phi u, K u, 0, \ldots\right) \\
v_{\left(n_{1},-1\right)}^{m}=\left(\ldots, 0, \Psi T_{1}^{m-1} T_{2} \Phi u, \ldots, \Psi T_{1} T_{2} \Phi u, \Psi T_{2} \Phi u,(K \Gamma+\Psi \Phi N) u, K N u, 0, \ldots\right),
\end{gathered}
$$

where the frame signifies the element corresponding to the null index, $n_{1}=0$. After the limit process, when $n \rightarrow \infty$ and the Fourier transformation is $\mathcal{F}(3.1)$, we obtain that the components $v\left(\xi, n_{2}\right)$ are given by

$$
\begin{aligned}
& v(\xi, 0)=S(\xi) u \\
& v(\xi,-1)=\left\{K N \xi+K \Gamma+\Psi \Phi N+\Psi\left(\xi-T_{1}\right)^{-1} T_{2} \Phi\right\} u
\end{aligned}
$$

Using now 3) (1.2), we obtain that

$$
\begin{equation*}
v(\xi,-1)=S(\xi)(N \xi+\Gamma) u \tag{3.6}
\end{equation*}
$$

Taking into account colligation relations 4), 5) (1.2), we can rewrite the equality (3.6) in the following way:

$$
\begin{equation*}
v(\xi,-1)=(\tilde{N} \xi+\tilde{\Gamma}) S(\xi) u \tag{3.7}
\end{equation*}
$$

Define the " k th" characteristic function $S(\xi, k)$ using the formula

$$
\begin{equation*}
S(\xi, k)=S(\xi)(N \xi+\Gamma)^{k}, \quad k \in \mathbb{Z}_{+} \tag{3.8}
\end{equation*}
$$

where $S(\xi)=K+\Psi\left(\xi I-T_{1}\right) \Phi$ and $S(\xi, 0)=S(\xi)$.

Theorem 3.1. Let $u_{k} \in l_{\mathbb{Z}}^{2}(E)$ and $u(\xi)=\mathcal{F}\left(u_{k}\right)$ (3.1). Then the Fourier transformation \mathcal{F} applied to the vector function $v=S(p, 0)$ u represents the family of \tilde{E}-valued functions $v(\xi,-k)$, where $0 \leq k \leq p, k \in \mathbb{Z}_{+}$, such that

$$
\begin{equation*}
v(\xi,-k)=S(\xi, k) u(\xi) \tag{3.9}
\end{equation*}
$$

besides the functions $S(\xi, k)$ are given by (3.8), $0 \leq k \leq p$, where $S(\xi, 0)=$ $S(\xi)=K+\Psi\left(\xi I-T_{1}\right)^{-1} \Phi$ is the characteristic function of extension V_{1} (1.1) corresponding to operator T_{1}.

Thus the Fourier transformation \mathcal{F} of operator $S(p, 0)$ leads us to the operator of multiplication by characteristic function $S(\xi)$ of the family of functions $u\left(\xi, n_{2}\right)$ from the space $L_{\mathbb{T}}^{2}(N, \Gamma, E)$ when $n_{2} \in \mathbb{Z}_{-} \cup\{0\}$.
III. In order to find a Fourier image of the weight function $W_{p, 0}(2.14)$, it is necessary to calculate the Fourier transformation of the operator $W_{+}(p) W_{+}^{*}(p)$ which is also the operator of multiplication by operator function. It follows from the definition (2.10) of the wave operator $W_{+}(p)$ that $W(n, p) \rightarrow W_{+}(p) W_{+}^{*}(p)$ when $n \rightarrow \infty$, where

$$
\begin{equation*}
W(n, p)=\tilde{V}(-n,-p) P_{D_{+}(\tilde{N}, \tilde{\Gamma})} U(n, p) U^{*}(n, p) P_{D_{+}(\tilde{N}, \tilde{\Gamma})} \tilde{V}^{*}(-n,-p) \tag{3.10}
\end{equation*}
$$

Using the unitary properties of $U(n, 0)$ and $\tilde{V}(n, 0), n \in \mathbb{Z}$, it is easy to ascertain that

$$
\begin{equation*}
W(n+1, p)=\tilde{V}(-n, 0) W(1, p) \tilde{V}(n, 0) \tag{3.11}
\end{equation*}
$$

Therefore, it is sufficient to calculate how the operator $W(1, p)$ acts. For simplicity, conduct calculations for the case of $p=2$. Let $f=\left(u_{k}, h, v_{k}\right) \in \mathcal{H}_{N, \Gamma}$ (1.15) then, using the form of $U(1.17)$, it is easy to show that

$$
\begin{equation*}
\tilde{V}(-1,-2) P_{D_{+}(\tilde{N}, \tilde{\Gamma})} U(1,2) f=\hat{v}_{k} \oplus P_{+} v_{k} \tag{3.12}
\end{equation*}
$$

where P_{+}, as usually, is the orthoprojector in $l_{\tilde{N}, \tilde{\Gamma}}^{2}(\tilde{E})$ on the subspace of solutions of the Cauchy problem (1.9) with the initial data on semiaxis \mathbb{Z}_{+}, and the vector function \hat{v}_{k} from \tilde{E} is defined at points $(-1,0),(-1,-1),(-1,-2)$ in the following way:

$$
\begin{align*}
& \hat{v}_{-1,0}=\Psi h+K u_{1,0} ; \quad \hat{v}_{-1,-1}=\Psi\left(T_{2} h+\Phi N_{-1,0}\right)+K u_{-1,-1} \tag{3.13}\\
& \hat{v}_{-1,-2}=\Psi\left\{T_{2}\left(T_{2} h+\Phi N_{-1,0}\right)+\Phi N u_{-1,-1}\right\}+K u_{-1,-2}
\end{align*}
$$

Make use of the fact that the function u_{k} is a solution of the Cauchy problem (1.8). Then, taking into account relations 3$)-5$) (1.2), we obtain that it is possible to write down the relations for the components (3.13), where $k=0,-1,-2$, in the following form:

$$
\left[\begin{array}{c}
\hat{v}_{-1,0} \\
\hat{v}_{-1,-1} \\
\hat{v}_{-1,-2}
\end{array}\right]=
$$

$$
=\left[\begin{array}{ccc}
I & 0 & 0 \tag{3.14}\\
\tilde{\Gamma} & \tilde{N} & 0 \\
\tilde{\Gamma}^{2} & \tilde{N} \tilde{\Gamma}+\tilde{\Gamma} \tilde{N} & \tilde{N}^{2}
\end{array}\right]\left[\begin{array}{l}
\Psi h+K u_{-1,0} \\
\Psi T_{1} h+\Psi \Phi u_{-1,0}+K u_{-2,0} \\
\Psi T_{1}^{2} h+\Psi T_{1} \Phi u_{-1,0}+\Psi \Phi u_{-2,0}+K u_{-3,0}
\end{array}\right] .
$$

Note that the right-hand member of equality (3.14) is expressed in the terms of operator T_{1} and external parameters of extension (1.1), and, moreover, the coefficients before $u_{-1, k}, k=0,-1,-2$, coincide with the corresponding coefficients of the Laurent factorization of characteristic function $S(\xi)=K+\Psi\left(\xi I-T_{1}\right)^{-1} \Phi$ (1.7) of the operator T_{1}. Introduce into examination the matrices

$$
\begin{gather*}
\tilde{L}_{2}=\left[\begin{array}{ccc}
I & 0 & 0 \\
\tilde{\Gamma} & \tilde{N} & 0 \\
\tilde{\Gamma}^{2} & \tilde{\Gamma} \tilde{N}+\tilde{N} \tilde{\Gamma} & \tilde{N}^{2}
\end{array}\right] ; \\
Q_{2}=\left[\begin{array}{ccc}
\Psi & 0 & 0 \\
\Psi T_{1} & 0 & 0 \\
\Psi T_{1}^{2} & 0 & 0
\end{array}\right] ; \quad R_{2}=\left[\begin{array}{ccc}
K & 0 & 0 \\
\Psi \Phi & K & 0 \\
\Psi T_{1} \Phi & \Psi \Phi & K
\end{array}\right] . \tag{3.15}
\end{gather*}
$$

Then it follows from (3.14) that the operator $W(1,2)(3.10)$ is given by

$$
\begin{equation*}
W(1,2)=P_{-1} \tilde{L}_{2}\left\{Q_{2} Q_{2}^{*}+R_{2} R_{2}^{*}\right\} \tilde{L}_{2}^{*} P_{-1} \oplus P_{D_{+}(\tilde{N}, \tilde{\Gamma})} \tag{3.16}
\end{equation*}
$$

where P_{-1} is the orthoprojector of narrowing on the vertical line $n_{1}=-1$ of grid \mathbb{Z}^{2} or the operator of multiplication by the Kronecker symbol $\delta_{n_{1},-1}$. If one makes use of the relations $\Psi \Psi^{*}+K K^{*}=I, \Psi T_{1}^{*}+K^{*}=0$ and $T_{1} T_{1}^{*}+\Phi \Phi^{*}=I$ that follow from condition 1) (1.2), then it is easy to show that

$$
\begin{equation*}
Q_{2} Q_{2}^{*}+R_{2} R_{2}^{*}=I \tag{3.17}
\end{equation*}
$$

Therefore, we finally obtain that

$$
\begin{equation*}
W(1,2)=P_{-1} \tilde{L}_{2} \tilde{L}_{2}^{*} P_{-1} \oplus P_{D_{+}(\tilde{N}, \tilde{\Gamma})} \tag{3.18}
\end{equation*}
$$

IV. In order to find the Fourier transformation of operator $W(1,2)(3.18)$, calculate the Fourier image of matrix $\tilde{L}_{2}(3.15)$. Let $v(\xi)=v(\xi, 0)=\sum_{-\infty}^{-1} \xi^{k} v_{k} \in$ $L_{\mathbb{T}}^{2}(\tilde{E})$, further construct the family of functions $v\left(\xi, n_{2}\right)$ from space $L_{\mathbb{T}}^{2}(\tilde{N}, \tilde{\Gamma}, \tilde{E})$ by rule (3.5)

$$
\begin{equation*}
v(\xi,-k)=(\tilde{N} \xi+\tilde{\Gamma})^{k} v(\xi), \quad k=0,1,2 \tag{3.19}
\end{equation*}
$$

It is easy to make sure that the coefficients before $\bar{\xi}$ in the family of functions $v(\xi,-k)(3.19)$, where $k=0,1,2$, correspondingly are equal to $v_{-1,0}, \tilde{N} v_{-2,0}+$
$\tilde{\Gamma} v_{-1,0}, \tilde{N}^{2} v_{-3,0}+(\tilde{N} \tilde{\Gamma}+\tilde{\Gamma} \tilde{N}) v_{-2,0}+\tilde{\Gamma}^{2} v_{-1,0}$, which signifies the application of matrix $\tilde{L}_{2}(3.15)$ to the vector column created by elements $v_{-1,0}, v_{-2,0}, v_{-3,0}$. Therefore the Fourier transformation $\mathcal{F}(3.1)$ of the operator $P_{-1} \tilde{L}_{2} \tilde{L}_{2}^{*} P_{-1}$ is given by

$$
\begin{gather*}
P_{-1}\left[\begin{array}{ccc}
I & 0 & 0 \\
\tilde{N} \xi+\tilde{\Gamma} & 0 & 0 \\
(\tilde{N} \xi+\tilde{\Gamma})^{2} & 0 & 0
\end{array}\right] \\
\times\left[\begin{array}{ccc}
I & \tilde{N}^{*} \bar{\xi}+\tilde{\Gamma}^{*} & \left(\tilde{N}^{*} \bar{\xi}+\tilde{\Gamma}^{*}\right)^{2} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] P_{-1}\left[\begin{array}{l}
v(\xi) \\
v(\xi,-1) \\
v(\xi,-2)
\end{array}\right] \tag{3.20}
\end{gather*}
$$

where P_{-1} is the operator of projection on the subspace $\{\bar{\xi} v\}, v \in \tilde{E}$, and the functions $v(\xi,-k)$ are constructed by rule (3.19), $k=0,1,2$. Taking into account the projector P_{-1}, after elementary calculations it is easy to see that the relation (3.20) is equal to

$$
\tilde{L}_{2} \tilde{L}_{2}^{*} P_{-1}\left[\begin{array}{l}
v(\xi) \\
v(\xi,-1) \\
v(\xi,-2)
\end{array}\right]=W_{2} P_{-1}\left[\begin{array}{l}
v(\xi) \\
v(\xi,-1) \\
v(\xi,-2)
\end{array}\right] .
$$

Thus, it follows from (3.10), (3.11) and (3.18) that the Fourier transformation of the operator $W_{+}(2) W_{+}^{*}(2)$ is given by

$$
\begin{equation*}
\mathcal{F}\left(W_{+}(2) W_{+}^{*}(2) v_{n}\right)=\left\{I-P_{-}\left(I-W_{2}\right) P_{-}\right\} v\left(\xi, n_{2}\right), \tag{3.21}
\end{equation*}
$$

where $v_{n} \in l_{\tilde{N}, \tilde{\Gamma}}^{2}(\tilde{E}), v\left(\xi, n_{2}\right) \in L_{\mathbb{T}}^{2}(\tilde{N}, \tilde{\Gamma}, \tilde{E}), W_{2}=\tilde{L}_{2} \tilde{L}_{2}^{*}$, and P_{-}is the orthoprojector on the subspace of functions of the type $\sum_{-\infty}^{-1} \xi^{k} v_{k}, v_{k} \in \tilde{E}$. To formulate the overall result for all $p \in \mathbb{Z}_{+}$, define the constant matrix
$W_{p}=P_{0}\left[\begin{array}{cccc}I & 0 & \cdots & 0 \\ \tilde{N} \xi+\tilde{\Gamma} & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ (\tilde{N} \xi+\tilde{\Gamma})^{p} & 0 & \cdots & 0\end{array}\right]\left[\begin{array}{cccc}I & \tilde{N}^{*} \bar{\xi}+\tilde{\Gamma}^{*} & \cdots & \left(\tilde{N}^{*} \bar{\xi}+\tilde{\Gamma}\right)^{p} \\ 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 0\end{array}\right]$,
where P_{0} is the operator of narrowing of every component of multiplication (3.22) of matrix $(p+1) \times(p+1)$ on the elements corresponding ξ^{0}.

Theorem 3.2. The Fourier transformation \mathcal{F} (3.1) of the operator $W_{+}(p) W_{+}^{*}(p)$, where the operator $W_{+}(p)$ is given by (2.10), is the multiplication
by constant matrix,

$$
\begin{equation*}
\mathcal{F}\left(W_{+}(p) W_{+}^{*}(p) v_{n}\right)=\left\{I-P_{-}\left(I-W_{p}\right) P_{-}\right\} v\left(\xi, n_{2}\right) \tag{3.23}
\end{equation*}
$$

besides W_{p} is given by (3.22), $v\left(\xi, n_{2}\right)=\mathcal{F}\left(v_{n}\right) \in L_{\mathbb{T}}^{2}(\tilde{N}, \tilde{\Gamma}, \tilde{E})$, where $v_{n} \in$ $l_{\tilde{N}, \tilde{\Gamma}}^{2}(\tilde{E})$ and P_{-}is the orthoprojector in $L_{\mathbb{T}}^{2}(\tilde{N}, \tilde{\Gamma}, \tilde{E})$ on the subspace of functions $v\left(\xi, n_{2}\right)$ such that $v(\xi, 0)$ is factorized into the series by powers $\left\{\xi^{k}\right\}_{k \in \mathbb{Z}_{-}}$, besides $v\left(\xi, n_{2}\right)$ are obtained from $v(\xi, 0)$ by rule (3.5).
V. It follows from Ths. 3.1 and 3.2 that the operator weight $W_{p, 0}(2.14)$ after the Fourier transformation $\mathcal{F}(3.1)$ is the operator of multiplication by function

$$
W(p, \xi)=\left[\begin{array}{cc}
I-P_{-}\left(I-W_{p}\right) P_{-} & S(\xi) \tag{3.24}\\
S^{*}(\xi) & I
\end{array}\right]
$$

where W_{p} is a constant matrix of the type (3.22), and $S(\xi)$ is the characteristic function of extension V_{1}. After this, it is obvious that the space $l^{2}\left(W_{p, 0}\right)(2.15)$, as a result of the Fourier transformation $\mathcal{F}(3.1)$, is given by

$$
\begin{equation*}
L_{\mathbb{T}}^{2}(W(p, \xi))=\left\{g(\xi)=\binom{v(\xi)}{u(\xi)}: \int_{0}^{2 \pi}\langle W(p, \xi) g(\xi), g(\xi)\rangle \frac{d \xi}{2 \pi i \xi}<\infty\right\} \tag{3.25}
\end{equation*}
$$

where $u(\xi)=u(\xi, 0) \in L_{\mathbb{T}}^{2}(E)$, and is continued to the family of functions $u\left(\xi, n_{2}\right)$ from $L_{\mathbb{T}}^{2}(N, F, E)$ by rule (3.2), and $v(\xi)=v(\xi, 0) \in L(\tilde{E})$ and it also has a continuation to the family $v\left(\xi, n_{2}\right)$ from $L_{\mathbb{T}}^{2}(\tilde{N}, \tilde{\Gamma}, \tilde{E})$ by formula (3.5). Using again Ths. 3.1 and 3.2 , it is easy to ascertain that the Fourier image of operator $W_{p, 0}^{\prime}\left(2.15^{\prime}\right)$ is the operator of multiplication by function

$$
W^{\prime}(p, \xi)=\left[\begin{array}{cc}
(\tilde{N} \xi+\tilde{\Gamma})^{p}\left\{I-P_{-}\left(I-W_{p}\right) P_{-}\right\}\left(\tilde{N}^{*} \bar{\xi}+\tilde{\Gamma}^{*}\right)^{p} & S(\xi) \tag{3.26}\\
S^{*}(\xi) & I
\end{array}\right]
$$

Therefore, the space $l^{2}\left(W_{p, 0}^{\prime}\right)\left(2.15^{\prime}\right)$, after the Fourier transformation $\mathcal{F}(3.1)$, is given by

$$
L_{\mathbb{T}}^{2}\left(W^{\prime}(p, \xi)\right)=\left\{g(\xi)=\binom{v(\xi)}{u(\xi)}: \int_{0}^{2 \pi}\left\langle W^{\prime}(p, \xi) g(\xi), g(\xi)\right\rangle \frac{d \xi}{2 \pi i \xi}<\infty\right\}
$$

where $u(\xi)$ and $v(\xi)$ have the same sense as in the definition of space $L_{\mathbb{T}}^{2}(W(p, \xi))$ (3.25).

In view of (3.3) and (3.5), it follows from (2.17) that the dilations $U(1,0)$ and $U(1, p)$ are the multiplication operators

$$
\begin{gather*}
\tilde{U}(1,0) g(\xi)=\xi g(\xi) ; \\
\tilde{U}(1, p) g(\xi)=\xi\left[\begin{array}{cc}
\left(\tilde{N}^{*} \bar{\xi}+\tilde{\Gamma}^{*}\right)^{-p} & 0 \\
0 & (N \xi+\Gamma)^{p}
\end{array}\right] g(\xi), \tag{3.27}
\end{gather*}
$$

where $p \in \mathbb{Z}_{+}$and $g(\xi) \in L_{\mathbb{T}}^{2}\left(W^{\prime}(p, \xi)\right)$. It is easy to see that the model space \hat{H}_{p} (2.18) after the Fourier transformation is equal to

$$
\begin{equation*}
\tilde{H}_{p}=L_{\mathbb{T}}^{2}(W(p, \xi)) \ominus\binom{H_{+}^{2}(\tilde{N}, \tilde{\Gamma}, \tilde{E})}{H_{-}^{2}(N, \Gamma, E)} \tag{3.28}
\end{equation*}
$$

where the Hardy subspaces $H_{-}^{2}(N, \Gamma, E)$ and $H_{+}^{2}(\tilde{N}, \tilde{\Gamma}, \tilde{E})$ are obtained from ordinary Hardy classes $H_{-}^{2}(E)$ and $H_{+}^{2}(\tilde{E})$ corresponding to domains $\mathbb{D}_{-}=$ $\{z \in \mathbb{C}:|z|>1\}$ and $\mathbb{D}_{+}=\{z \in \mathbb{C}:|z|<1\}$ using the rules (3.2) and (3.5), respectively.

Observation 1. Note that the Hardy space $H_{-}^{2}(N, \Gamma, E)$ contains the functions that are not holomorphic in \mathbb{D}_{-}. Really, every function $u\left(\xi,-n_{2}\right)=$ $(N \xi+\Gamma)^{n_{2}} u(\xi)$, where $u(\xi) \in H_{-}^{2}(E)$ and $n_{2} \in \mathbb{Z}_{+}$, is factorized into the Fourier series by powers $\left\{\xi^{k}\right\}$ when $k \in\left(\mathbb{Z}_{-}+n_{2}-1\right)$.

Similarly, the space $\hat{H}_{p}^{\prime}\left(2.18^{\prime}\right)$ after the Fourier transformation $\mathcal{F}(3.1)$ is given by

$$
\tilde{H}_{p}^{\prime}=L_{\mathbb{T}}^{2}\left(W^{\prime}(p, \xi)\right) \ominus\binom{\xi\left(\tilde{N}^{*} \bar{\xi}+\tilde{\Gamma}^{*}\right) H_{+}^{2}(\tilde{N}, \tilde{\Gamma}, \tilde{E})}{\xi(N \xi+\Gamma)^{p} H_{-}^{2}(N, \Gamma, E)},
$$

where the weight $W^{\prime}(p, \xi)$ is given by formula (3.26). The isomorphism \tilde{R}_{p} : $\tilde{H}_{p} \rightarrow \tilde{H}_{p}^{\prime}$ after the Fourier transformation of the operator R_{p} (2.19) represents

$$
\tilde{R}_{p}=P_{\tilde{H}_{p}^{\prime}}\left[\begin{array}{cc}
\bar{\xi}\left(\tilde{N}^{*} \bar{\xi}+\tilde{\Gamma}^{*}\right)^{p} & 0 \tag{3.29}\\
0 & \bar{\xi}(N \xi+\Gamma)^{-p}
\end{array}\right] P_{\tilde{H}_{p}}
$$

where $P_{\tilde{H}_{p}}$ and $P_{\tilde{H}_{p}^{\prime}}$ are the orthoprojectors on $\tilde{H}_{p}(3.28)$ and $\tilde{H}_{p}^{\prime}\left(3.28^{\prime}\right)$, respectively. Finally, the operators T_{1} and $T(1, p)=T_{1} T_{2}^{p}$ in space (3.28), in view of (3.27), act in the following way:

$$
\begin{gather*}
\left(\tilde{T}_{1} f\right)(\xi)=P_{\tilde{H}_{p}} \xi f(\xi) ; \\
(\tilde{T}(1, p) f)(\xi)=P_{\tilde{H}} \xi\left[\begin{array}{cc}
\left(\tilde{N}^{*} \bar{\xi}+\tilde{\Gamma}^{*}\right)^{-p} & 0 \\
0 & (N \xi+\Gamma)^{p}
\end{array}\right]\left(\tilde{R}_{p} f\right)(\xi), \tag{3.30}
\end{gather*}
$$

where $f(\xi) \in \tilde{H}_{p}(3.28)$, and $P_{\tilde{H}_{p}}$ is the orthoprojector on $\tilde{H}_{p}(3.28)$, besides \tilde{R}_{p} is given by (3.29). From this it follows immediately that the initial operator system $\left\{T_{1}, T_{2}\right\}$, given in H in space $\tilde{H}_{1}(3.28)$, will represent

$$
\begin{gather*}
\left(\tilde{T}_{1} f\right)(\xi)=P_{\tilde{H}_{1}} \xi f(\xi) \\
\left(\tilde{T}_{2} f\right)(\xi)=P_{\tilde{H}_{1}}\left[\begin{array}{cc}
\left(\tilde{N}^{*} \bar{\xi}+\tilde{\Gamma}^{*}\right)^{-1} & 0 \\
0 & N \xi+\Gamma
\end{array}\right]\left(\tilde{R}_{1} f\right)(\xi), \tag{3.31}
\end{gather*}
$$

where $f(\xi) \in \tilde{H}_{1}(3.28)$.
Theorem 3. Consider the simple [2, 3] commutative unitary extension $\left(V_{s}, \stackrel{+}{V_{s}}\right)(1.1)$ corresponding to the commutative operator system $\left\{T_{1}, T_{2}\right\}$ from the class $C\left(T_{1}\right)(1.3)$, and let the suppositions of Lem. 1.1 be met, besides $\operatorname{dim} E=$ $\operatorname{dim} \tilde{E}<\infty$. Then the isometric dilation $U(1, p)(1.17)$ acting in the Hilbert space $\mathcal{H}_{N, \Gamma}$ (1.15) is unitary equivalent to the functional model $\tilde{U}(1,0)$ (3.27), when $p=0$, in $L_{\mathbb{T}}^{2}\left(W^{\prime}(p, \xi)\right)\left(3.25^{\prime}\right)$ and to the operator $\tilde{U}(1, p)$ (3.27), when $p \in \mathbb{N}$, mapping the space $L_{\mathbb{T}}^{2}\left(W^{\prime}(p, \xi)\right)\left(3.25^{\prime}\right)$ into the space $L_{\mathbb{T}}^{2}(W(p, \xi))$ (3.25). Moreover, the operators T_{1} and $T(1, p)=T_{1} T_{2}^{p}$ (1.20) given in H are unitary equivalent to the functional model \tilde{T}_{1} (3.30) in \tilde{H}_{p} for all $p \in \mathbb{Z}_{+}$and to the operator $\tilde{T}_{1}(1, p)(3.30)$ in the concrete model space \tilde{H}_{p} (3.28) when $p \in \mathbb{N}$.
VI. We now turn to the dual situation corresponding to the dilation $\stackrel{+}{U}(n)$ (1.24) in $\mathcal{H}_{N^{*}, \Gamma^{*}}$. We list the main results concerning this case without proving.

Define the constant matrix \tilde{W}_{p} for all $p \in \mathbb{Z}_{+}$

$$
\tilde{W}_{p}=P_{0}\left[\begin{array}{cccc}
I & 0 & \cdots & 0 \tag{3.32}\\
N^{*} \bar{\xi}+\Gamma^{*} & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
\left(N^{*} \bar{\xi}+\Gamma^{*}\right)^{p} & 0 & \cdots & 0
\end{array}\right]\left[\begin{array}{cccc}
I & N \xi+\Gamma & \cdots & (N \xi+\Gamma)^{p} \\
0 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 0
\end{array}\right]
$$

where P_{0} is the operator of narrowing on the components corresponding to ξ^{0}.
Consider the weight operator function

$$
\tilde{W}(p, \xi)=\left[\begin{array}{cc}
I & S(\xi) \tag{3.33}\\
S^{*}(\xi) & I-P_{+}\left(I-\tilde{W}_{p}\right) P_{+}
\end{array}\right]
$$

where the constant matrix \tilde{W}_{p} is given by (3.32). Specify the Hilbert space

$$
\begin{equation*}
L_{\mathbb{T}}^{2}(\tilde{W}(p, \xi))=\left\{g(\xi)=\binom{v(\xi)}{u(\xi)}: \int_{0}^{2 \pi}\langle\tilde{W}(p, \xi) g(\xi), g(\xi)\rangle \frac{d \xi}{2 \pi i \xi}<\infty\right\} \tag{3.34}
\end{equation*}
$$

where $u(\xi) \in L_{\mathbb{T}}^{2}(E), v(\xi) \in L_{\mathbb{T}}^{2}(\tilde{E})$.

Moreover, similarly to (3.26), define the weight

$$
\tilde{W}^{\prime}(p, \xi)=\left[\begin{array}{cc}
I & S(\xi) \tag{3.35}\\
S^{*}(\xi) & (N \xi+\Gamma)^{* p}\left\{I-P_{+}\left(I-\tilde{W}_{p}\right) P_{+}\right\}(N \xi+\Gamma)^{p}
\end{array}\right]
$$

specifying the Hilbert space

$$
L_{\mathbb{T}}^{2}\left(\tilde{W}^{\prime}(p, \xi)\right)=\left\{g(\xi)=\binom{v(\xi)}{u(\xi)}: \int_{0}^{2 \pi}\left\langle\tilde{W}^{\prime}(p, \xi) g(\xi), g(\xi)\right\rangle \frac{d \xi}{2 \pi i \xi}<\infty\right\}
$$

where $u(\xi)$ and $v(\xi)$ have the same sense as in the definition of space $L_{\mathbb{T}}^{2}(\tilde{W}(p, \xi))$ (3.34).

Specify now the operator functions

$$
\begin{gather*}
\tilde{U}_{+}(1,0) g(\xi)=\bar{\xi} g(\xi) \\
\tilde{U}_{+}(1, p) g(\xi)=\bar{\xi}\left[\begin{array}{cc}
(\tilde{N} \xi+\tilde{\Gamma})^{* p} & 0 \\
0 & (N \xi+\Gamma)^{-p}
\end{array}\right] g(\xi) \tag{3.36}
\end{gather*}
$$

where $p \in \mathbb{Z}_{+}$and $g(\xi) \in L_{\mathbb{T}}^{2}\left(\tilde{W}^{\prime}(p, \xi)\right)$. In this case the model space $\hat{H}_{p,+}$ is given by

$$
\begin{equation*}
\tilde{H}_{p,+}=L_{\mathbb{T}}^{2}(\tilde{W}(p, \xi)) \ominus\binom{H_{+}^{2}\left(\tilde{N}^{*}, \tilde{\Gamma}^{*}, \tilde{E}\right)}{H_{-}^{2}\left(N^{*}, \Gamma^{*}, E\right)} \tag{3.37}
\end{equation*}
$$

where the Hardy spaces $H_{-}^{2}\left(N^{*}, \Gamma^{*}, E\right)$ and $H_{+}^{2}\left(\tilde{N}^{*}, \tilde{\Gamma}^{*}, \tilde{E}\right)$ are obtained from the standard Hardy classes $H_{-}^{2}(E)$ and $H_{+}^{2}(\tilde{E})$ just as in Subsect. V.

Similarly, consider the space

$$
\tilde{H}_{p,+}^{\prime}=L_{\mathbb{T}}^{2}\left(\tilde{W}^{\prime}(p, \xi)\right) \ominus\binom{\bar{\xi}(\tilde{N} \xi+\tilde{\Gamma})^{* p} H_{+}^{2}\left(\tilde{N}^{*}, \tilde{\Gamma}^{*}, \tilde{E}\right)}{\bar{\xi}(N \xi+\Gamma)^{-p} H_{-}^{2}\left(N^{*}, \Gamma^{*}, E\right)}
$$

besides the weight $\tilde{W}^{\prime}(p, \xi)$ is given by (3.35). Specify the operator

$$
\tilde{R}_{p,+}=P_{\tilde{H}_{p,+}^{\prime}}\left[\begin{array}{cc}
\xi\left(\tilde{N}^{*} \bar{\xi}+\tilde{\Gamma}^{*}\right)^{-p} & 0 \tag{3.38}\\
0 & \xi(N \xi+\Gamma)^{p}
\end{array}\right] P_{\tilde{H}_{p,+}}
$$

where $P_{\tilde{H}_{p,+}}$ and $P_{\tilde{H}_{p,+}^{\prime}}$ are the corresponding orthoprojectors on $\tilde{H}_{p,+}(3.37)$ and $\tilde{H}_{p,+}^{\prime}\left(3.37^{\prime}\right)$. It is clear that the operators T_{1}^{*} and $T^{*}(1, p)=T_{1}^{*} T_{2}^{* p}$ in space $\tilde{H}_{p,+}$ are given by

$$
\left(\tilde{T}_{1}^{*} f\right)(\xi)=P_{\tilde{H}_{p,+}} \bar{\xi} f(\xi)
$$

$$
\left(\tilde{T}^{*}(1, p) f\right)(\xi)=P_{\tilde{H}_{p,+}} \bar{\xi}\left[\begin{array}{cc}
\left(\tilde{N} \bar{\xi}+\tilde{\Gamma}^{*}\right)^{p} & 0 \tag{3.39}\\
0 & (N \xi+\Gamma)^{-p}
\end{array}\right]\left(\tilde{R}_{p,+} f\right)(\xi)
$$

for all $f(\xi) \in \tilde{H}_{p,+}$, where $P_{\tilde{H}_{p,+}}$ is the orthoprojector on $\tilde{H}_{p,+}$, and $\tilde{R}_{p,+}$ is given by (3.38). From this it easily follows that the initial operator system $\left\{T_{1}^{*}, T_{2}^{*}\right\}$, defined in H, in space $\tilde{H}_{1,+}(3.37)$ is given by

$$
\begin{gather*}
\left(\tilde{T}_{1}^{*} f\right)(\xi)=P_{\tilde{H}_{1,+}} \bar{\xi} f(\xi) \\
\left(\tilde{T}_{2}^{*} f\right)(\xi)=P_{\tilde{H}_{1,+}}\left[\begin{array}{cc}
\tilde{N}^{*} \bar{\xi}+\tilde{\Gamma}^{*} & 0 \\
0 & (N \xi+\Gamma)^{-1}
\end{array}\right]\left(\tilde{R}_{1,+} f\right)(\xi) \tag{3.40}
\end{gather*}
$$

where $f(\xi) \in \tilde{H}_{1,+}$.
Theorem 4. Let $V_{s}, \stackrel{+}{V}_{s}$ (3.1) be the simple [2, 3] commutative unitary extensions of a commutative operator system $\left\{T_{1}, T_{2}\right\}$ from the class $C\left(T_{1}\right)$ (1.3), besides the suppositions of Lem. 1.1 are met and $\operatorname{dim} E=\operatorname{dim} \tilde{E}<\infty$. Then the isometric dilation $\stackrel{+}{U}(1, p)$ (1.24), given in the Hilbert space $\mathcal{H}_{N^{*}, \Gamma^{*}}$ (3.22), is unitary equivalent to the functional model: $\tilde{U}_{+}(1,0)$ (3.36), when $p=0$ in $L_{\mathbb{T}}^{2}(\tilde{W}(p, \xi))$ (3.34), and to the operator $\tilde{U}_{+}(1, p)$ (3.36) mapping the space $L_{\mathbb{T}}^{2}\left(\tilde{W}^{\prime}(p, \xi)\right)$ (3.34) in $L_{\mathbb{T}}^{2}(\tilde{W}(p, \xi))$ (3.34). Moreover, the operators T_{1}^{*} and $T^{*}(1, p)=T_{1}^{*} T_{2}^{* p}$ (1.20) given in H are unitary equivalent to the functional model $\tilde{T}_{1}^{*}(3.40)$ in $\tilde{H}_{p,+}(3.37)$ for all $p \in \mathbb{Z}_{+}$and to the operator $\tilde{T}_{1}^{*}(1, p)$ (3.39) only in the concrete model space $\tilde{H}_{p,+}(3.37)$ when $p \in \mathbb{N}$.

References

[1] V.A. Zolotarev, Isometric Expansions of Commutative Systems of Linear Operators. - Mat. fiz., analiz, geom. 11 (2004), 282-301. (Russian)
[2] V.A. Zolotarev, Analitic Methods of Spectral Representations of Nonselfadjoint and Nonunitary Operators.. MagPress, Kharkov, 2003. (Russian)
[3] V.A. Zolotarev, On Isometric Dilations of Commutative Systems of Linear Operators. - J. Math. Phys., Anal., Geom. 1 (2005), 192-208.
[4] V.A. Zolotarev, Scattering Scheme with Many Parameters and Translational Models of Commutative Operator Systems. - J. Math. Phys., Anal., Geom. 3 (2007), 424447.
[5] J.A. Ball and V. Vinnikov, Hardy Spaces on a Finite Bordered Riemann Surface, Multivariable Operator Model Theory and Fourier Analysis Along a Unimodular Curve. In: Systems, Approximation, Singular Integral Operators, and Related Topics. Int. Workshop on Operator Theory and Appl., IWOTA (Alexander A. Borichev and Nicolai K. Nikolskii, Eds.), 2000, 37-56.
[6] M.S. Livs̆ic, N. Kravitsky, A. Markus, and V. Vinnikov, Theory of Commuting Nonselfadjoint Operators. - Math. Appl., Kluver Acad. Publ. Groups, Dordrecht, 332, 1995.
[7] V.A. Zolotarev, Time Cones and Functional Model on the Riemann Surface. - Mat. Sb. 181 (1990), 965-995. (Russian)
[8] V.A. Zolotarev, Model Representations of Commutative Systems of Linear Operators. - Funkts. Anal. i yego Prilozen. (1988), No. 22, 66-68. (Russian)
[9] B. Szökefalvi-Nagy and C. Foiaş, Harmony Analisys of Operators in the Hilbert Space. Mir, Moscow, 1970. (Russian)
[10] M.S. Brodskiy, Unitary Operator Colligations and their Characteristic Functions. - Usp. Mat. Nauk 33 (1978), No. 4, 141-168. (Russian)

