Journal of Mathematical Physics, Analysis, Geometry
2008, vol. 4, No. 3, pp. 420-440

Functional Model of Commutative Operator Systems

V.A. Zolotarev
Department of Mechanics and Mathematics, V.N. Karazin Kharkiv National University
4 Svobody Sq., Kharkiv, 61077, Ukraine
E-mail:Vladimir.A.Zolotarev@univer.kharkov.ua

Received May 18, 2007

A functional model for a commutative system of the linear bounded
operators {T1,T>}, when T} is a contraction, is built. The construction of
functional model is based on an analogue with many parameters of the Lax
— Phillips scattering scheme for the isometric dilation U(n) of the semigroup
with two parameters T'(n) = T{"' T;'?, where n = (ny,ny) € Z3.

Key words: functional model, commutative operator system.
Mathematics Subject Classification 2000: 47A45.

As it is well known, one of the most natural ways of constructing the func-
tional model of contraction operator T' (||T'|| < 1) is based on the Lax-Phillips
scattering scheme [1]. In this work, the functional model of commutative system
of the linear bounded operators {11, T}, [T}, T3] = 0, when T} is a contraction, is
obtained using isometric extensions and an analogue with many variables of the
Lax-Phillips scattering scheme [2-5].

It is shown that the weight matrices functions of model space have the form
which is different from a traditional (the B.S. Pavlov model [1]) one and the
structure of given weight functions itself is defined by external parameters of iso-
metric extensions |2| of the operator system {77,T5}. The functional model lies
in the following: the operator T} is realized by means of operator of multipli-
cation by independent variable in a special function space, the second operator
T5 represents the operator of multiplication by meromorphic operator function in
the same space. It is typical of the constructed model to differ crucially from the
well-known models in the nonselfadjoint case [6, 7].

1. Isometric Dilations of Commutative Operator System

I. Let a commutative system of the linear bounded operators {7T1,75},
[Ty, T3] = Th'To—T>T, = 0, T} is a contraction, ||T1|| < 1, be given in the separable
Hilbert space H. Following [2, 3, 8], define the commutative unitary extension
for the system {T7,T»}.
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Definition 1. Let E and E be the Hilbert spaces. The collection of mappings

[n o7 [ oN T -
VI_[\I/ % | VZ_[\I/ K] HeoFEF—- HoE, m
[T v o+ [Ty UN* ] - '
Vl_[cb* K] V2_[<I>* K* ] HOE—-HOE

s said to be a commutative unitary extension of the commutative operator system
Ty, Ty in H, [T}, Ty] = 0 if there are such operators o, 7, N, T and &, 7, N, T
i the Hilbert spaces EE and E, respectively, where o, T, ¢, T are selfadjoint, and
the relations:

+ I 0 + I 0
D vivi=1, ;1 VlV1:|:OI ;
2) V2 |: 0 & :| V2 - |: 0 o :| ) ‘/2 |: 0 7 :| VQ_ |: 0 7 :| 3
3) T®—T\®N = T} Ty — NUT, = ['¥; (1.2)

4) NU®— UIN = KT — T'K;
5 NK=KN

hold.
Consider the following class of commutative systems of the linear operators

{11, T} [3].

Definition 2. The commutative operator system {T1,T>} belongs to the class
C (Ty) and is said to be the contracting Ty operator system if:

1) Tyis a contraction, ||Ti|| < 1;

2)E =DHDDyH; E=DHDD,H;

3) dimT,D1H = dim E; dim D, TH = dim E;

4) the operators Di|z, DTy TR D, - T3 Dilpm

are boundedly invertible, where Dy =T;Ts — I, Dy =T, Ty — 1, s =1,2.
(1.3)

It is easy to show that if {T1,T>} € C (1), then the unitary extension (1)
always exists [2, 3].

IT. Recall [1, 9, 10| the construction of unitary dilation U for the contraction
Ty. Let H be the Hilbert space

H=D ®H®D,, (1.4)
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where D_ = [2 (E) and Dy = lZ+(E’). Define the dilation U on the vector
functions f = (ug, h,vg) from H (1.4) in the following way:

Uf = (uk_l,i},@k) : (1.5)

where h = T1h + Qu_1, 99 =Vh+ Ku_1, 0y =vi_1, k=1,2,... . The unitary
property of U (1.5) in H follows from 1) (1.2).

The construction of isometric dilation [3] of the commutative operator system
{T\,T>} € C (T) consists in the continuation of incoming D_ and outgoing D,
subspaces

D =B (B); Dy=2.(E) (L.6)

by the second variable “ny”. Continue the functions u,, of I2 (E) from semiaxis
Z_ into domain

22 =7_x (Z_U{0}) = {n = (n1,n2) € Z*: ny < 0,n2 <0} (1.7)

using the Cauchy problem |2, 3|.
{ Doy, = (Nél +F) up; n=(ny,ng) € 72,

=y €12 (B) 49

un|n2=0
where dyu, = U(ny—1,m2)5 Doty = U(nyna—1)- As a result, we obtain the Hilbert
space D_(N,I") formed by the solutions u, (1.8), besides, the norm in D_(N,T")
is induced by the norm of initial data ||uy,|| = ||un, ||l% (B)-

Similarly, continue the functions v,, € l%+(E) from semiaxis Z into domain
Z%r = Z4 X Z using the Cauchy problem
{ Doy = (]\751 + f‘) Un; n=(ny,ng) € Zﬁ_; (1.9)

Un =uwp, € l%+(E).

no=0

Denote by D (N,T) the Hilbert space formed by solutions v, (1.9), besides,

lonll = vaHl% () Unlike the explicit recurrent scheme (1.8) of the layer-to-
+

layer calculation of ny — mo — 1 for w,, in this case of constructing v, in Zi,
we have an implicit linear equation system for the layer-to-layer calculation of
ng — N9 + 1 of function v,,.

Hereinafter, the following lemma [3] plays an important role.

+
Lemma 1.1. Suppose the commutative unitary extension (Vs, V) (1.1) is
such that
Ker & = Ker U* = {0}. (1.10)
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Then Ker N NKerT' = {0} given Ker K* = {0}, and respectively Ker N* N
KerI'* =0 given Ker K = {0}.
The solvability of the Cauchy problem (1.9) follows from the given lemma [3].
Consider an operator function of the discrete argument

»={7 a2 e

And let Ly be the nondecreasing broken line in Zi that connects points O = (0, 0)
and n = (ny,ng) € Zi, the linear segments of which are parallel to the axes OX,
no = 0, and OY, ny = 0. By {Pk}év denote all integer-valued points from Z2,
Py € Z2 (N = ny + ng) that lie on L%, beginning with (0,0) and finishing with
point (n1,ns9), that are numbered in nonascending order (of one of the coordinates
Py). Define the quadratic form

WE

(6’0/6)%6’ = <&Pk*Pk71,UPk7UPk> (1'12)

k

i

on the vector functions v, € D, (N,T') assuming that P_; = (—1,0).

Similarly, consider the nonincreasing broken line L! in A (1.7) that connects
points m = (my,mg) € 72 and (—1,0), the linear segments of which are parallel
to OX and OY. And let {QS}X/[I, M = mq + mo, be the integer-valued points on
L.}, beginning with m = (m1,m2) and finishing with (—1,0), that are numbered
in nondescending order (of one of the coordinates QQs). In D_(N,I') define the

metric
-1

(our)i-1 = Y (00.~Qu 1uQ.,uQ.) » (1.13)
s=M

besides Qn — Qn—1 = (1,0) and the operator function o is defined similarly to
oa (1.11). Denote by L. the broken line in Z?2 that is obtained from the curve
LY in Z2, n € Z2, using the shift by “n” —

f’:}z = {Qs = (ll,lg) € 2% : (ll +ny+ 1,0+ n2) =P, € Lg’} . (1.14)

ITI. Having the Hilbert space D_(N,T'), that is formed by the solutions of the
Cauchy problem (1.8), and the space D4 (N,T'), that is formed by the solutions
of (1.9), define the Hilbert space

Hyr=D_(N,T)® H® D, (N,T), (1.15)

in which the norm is defined by the norm of the initial space H =D_&® H & D,
(1.4). Denote by Z?2 the subset in Z2,

2% = Z2\({0} x N) = {(0,0)} U(N x Zy), (1.16)

that obviously is an additional semigroup.
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For every n € Zi (1.16), define the operator function U(n) that acts on the
vectors f = (ug, h,vg) € Hyr (1.15) in the following way:

Un)f = f(n) = (ur(n), h(n), ve(n)), (1.17)

where ug(n) = Pp_(nryuk—n (Pp_(nr) is an orthoprojector that corresponds
with the restriction on D_(N,T)); h(n) = yo, besides y € H, k € 72, is a solution
of the Cauchy problem

élyk =Ty + Puj;
Doyr = Toyr + PNuy; (1.18)
Yn=h; k= (ki,ks)€Z%, 0<k <nj—1, 0<ky<ny;

at the same time k& = k — n when 0 <k <ny—1,0 < ky <ng, and, finally,
vg(n) = O + Vk—n (1.19)

and 0y = Kuj, + Uy, where y;, is a solution of the Cauchy problem (1.18).
In [3] it is shown that the operator function U(n) (1.17) has the semigroup
property and is the isometric dilation of the semigroup

T(n) =T/ T3?, n=(ni,ny) € Z3. (1.20)

IV. Make a similar continuation of subspaces D_ and D, (1.6) from semiaxes
Z_ and Z4 by the second variable “ny”, corresponding to the dual situation.

By D4 (]\7 *,f‘*) denote the Hilbert space generated by the solutions o, of the
Cauchy problem

Ooly, = (]\7*81 + f‘*> Up; N = (’I’Ll,’ng) € Z?i-; (1 21)
Dnl, _o=vn, €12 (E) '
Niny=0 ni Z 4+ )
in which the norm is induced by the norm of initial data ||o,| = ||vn1||l% (B)»
+

besides 010n = U(n,41,n5)> 920n = V(ny nyt1)- )
Continue now every function u,, € I2 (E) into domain Z% (1.7) using the
Cauchy problem

Oty = (N*0y +T*) ;1= (ny,my) € Z2;
- p (1.22)
Uinlp,—o = Uny €15_(E).

As a result, we obtain the Hilbert space D_ (N*,I'*) generated by 4y, solutions
of (1.22), besides ||u,| = ||un1||l% (B)-

The existence of the solution of the Cauchy problem (1.22) follows from Lem. 1.
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Define the Hilbert space
Hy-r =D_(N*T") & He D, (NF) (1.23)
in which the metric is induced by the norm of initial space H = D_ @& H & D,
(1.4).

+ ~
Define the operator function U (n) for n € Z2 (1.16) in the space Hy- -
(1.23), which acts on f= (ﬂk, ﬁ,6k> € Hy= - in the following way:

Um)f = f(n) = (), h(n), 5(n) ), (1.24)

where v (n) = PD+(N* f*)6k+n (PD+(N* ) is an orthoprojector on D4 (]\7*, f‘*) );
E(n) = 9J(—1,0), besides g, (k € 22,) satisfies the Cauchy problem
hgr =TT gk + W og;
g(fn1,fn2) =h; k= (ki,k2) € Z2—;
besides k = k + n and (—ny < k1 < —1; —ngy < ky < 0); finally,
Gy (n) = G + Ugn, (1.26)

and 4y, = K*0j, + ®*gj, where ¢, is a solution of system (1.26).
+
It is clear that the semigroup U (n) (1.24) is the isometric dilation [3] of the
semigroup 77 (n), where T'(n) has the form of (1.20).
+
Note that the dilations U(n) (1.17) and U (n) (1.24) are unitary linked, i.e.,

+
U* (n1,0) f =U (n1,0) f for all f € H (1.4) and for all ny € Z, besides U (ny,0)
on H is a unitary semigroup.

2. Scattering Scheme with Many Parameters and Translational
Models

I. As it is known [1, 9], the construction of translational (as well as functional)
model of contraction T and its dilation U (1.5) follows naturally from the scatter-
ing scheme and from the properties of the wave operators Wy and the scattering
operator S.

In order to construct the wave operators W in the case of many parameters

it is necessary [4] to continue the vector functions from /2 (E) and [2(E) from
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axis 7Z into domain Z2. Continue every function u,, € (2(E) to the function u,,
where n = (ny,n2) € Z2, using the Cauchy problem

Yoy — 3 . 2.
{ Osuy, = (N81+F2 Up; n € 77 2.1)
Un|py—g = Un, € 17(E);
besides ||uy|| = ||un, ||l%(E). Note that this continuation into the lower half-plane

(no € Z_), u(ny,na) — u(n1,ns — 1), has a recurrent nature and a continuation

into the upper half-plane u (n1,n2) = u (n1,n92 + 1) may be carried out in a non-

explicit way in the context of suppositions of Lem. 1.1. As a result, we obtain the

Hilbert space [% -(F) in which the norm is induced by the norm of initial data.
Define now the shift operator V(p)

V(p)un = tn—p, (2.2)

where uy,, € [3 (E) for all p € Z2. Obviously, the operator V (p) (2.2) is isometric.

Knowing the perturbed U(n) (1.17) and free V(n) (2.2) operator semigroups,
define the wave operator W_(n)

W_(k)=s— HILI{:O U(n,k)Pp_nryV(—n, —k) (2.3)
for every fixed k € Z., where Pp_(y ) is the orthoprojector of narrowing onto the
component u,, from I3, (E) obtained as a result of continuation into 72 (1.7) from
semiaxis Z_ using the Cauchy problem (2.1). It is obvious that W_(0) = W_,
where the wave operator W_ corresponds with the dilation U (1.5) and the shift
operator V in [2(E) [6]. Thus, W_ (k) (2.3) is a natural continuation of the wave
operator W_ onto the “k”th horizontal line in Z? when k € Z .

Denote by Lg5 the broken line in Z%r consisting of the two linear segments:
the first one is a vertical segment connecting points O = (0,0) and (0, k), where
k € 7Zy, and the second segment is a horizontal half-line from point (0,%) to
(00, k). Similarly, choose the broken line f/:})o’p in Z2 (1.7) that also consists of
the two linear segments, the first of which is a half-line from (—o00, —p) to point
(—1,—p), where p € Z,, and the second one is a vertical segment from point
(—1,—p) to (=1,0). In the space Hyr (1.15), specify the following quadratic
form:

<f>§(p,k) = <Uun>%:}m’p + ||h||2 + <&Un>%gf’k ) (2.4)

where corresponding o and & in (2.4) are understood in the sense of (1.12) and
(1.13).
Similarly to (2.4), in l?V,F(E) specify the following o-form:

(o) = (ot )1+ (o) e (2:5)
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where ul are the continuations of functions from [2 L(E) from semiaxes Zy,

ng = 0, obtained by using the Cauchy problem (2.1).

Theorem 2.1 [4]. The wave operator W_(k) (2.3) mapping l]2V7F(E) into the
space Hyr (1.15) exists for all k € 74, and it is an isometry

(W (k)un) 5 o) = (un) o pp) (2.6)

in metrics (2.4), (2.5) for all p € Z. Moreover, the wave operator W_(k) (2.3)
meets the conditions

) U)W (k) =W (k+s)V(L, s);
2)  W_(k)Pp_nr) = Pp_(n)

for all k, s € Z, where Pp_(n ) is an orthoprojector onto D_ (N,T).

(2.7)

II. Continue the vector functions vy, from I3 (E) into domain Z2 using the
Cauchy problem

Doy, = (]\751 + f‘) Up; n = (ny,ng) € Z%

Vnlp,—o = Vny € 13 (137) , (2.8)

Denote the Hilbert space obtained in this way by I (E), besides ||v,|| =

lvns iz (-
Similarly to V(p) (2.2), introduce the shift operator

<

(P)on = vn—yp (2.9)

for all p € Z? and all v, € 2

S (E) Define the wave operator W (p) from Hy

. 2 d
into space le (E)

Wi(p) = s — lim V(=n,—p)Pp (51U (n.p) (2.10)

n—o0

for all p € Z, where U(n) has the form of (1.17). It is obvious that W, (0) = W7,
where W, is the wave operator [1] corresponding to U (1.5) and to shift V in

2 ().
Theorem 2.2 [4]. For all p € Z, the wave operator W, (p) (2.11) acting

from space Hyr into l?{; 7 (E) exists and satisfies the relations

(2.11)
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for allp, s € Z ., where PD+(N,f‘) 15 an orthoprojector onto D N,f‘ .

Knowing the wave operators W_(k) (2.3) and W, (p) (2.10), define the scat-
tering operator in a traditional way [1, 4]:

S(p, k) = Wy (p)W- (k) (2.12)

for all p, k € Z,. It is obvious that when p = k = 0, we have S(0,0) = S, where
S is the standard scattering operator, S = Wi W_, for the dilation U (1.5) [1].

Theorem 2.3 [4|. The scattering operator S(p, k) (2.13) represents the bounded
operator from l?V,I‘(E) into l?\?,f (E), besides

2) S, k)P B (B) C P () (2.13)

forallp, k, g € Z4, 0 < q <k, where P_ is the narrowing orthoprojector onto
solutions of the Cauchy problems (2.1) and (2.9) with the initial data on semiazis
Z._ when ny = 0.

ITI. Following [4], consider the nonnegative operator function W),

_ | We(@Wilp) S(p, k)
W= | " (214)
to define the Hilbert space
v
l2 (Wp,k) = {gn = < un > : (Wp,kgn,gn)P < OO}, (215)
where u,, € ZJQ\,,F(E), vy € ZJQ\,,F (E)
Let B B
we o — | VAW (Wip)V:(1,p)  S(0,p)
Po 5*(0,p) r
- (2.16)
V(l p) — 4 (_L_p) 0
’ 0 V(l,p) |
As it follows from [9], the operator
U(L,p)gn = V(1,p)gn (2.17)
acts from the Hilbert space
0
l2( 12,0) = {gn = ( un > : <W;§,Ognagn>lz < OO} (2-15,)
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into the space I2 (W) (2.15).
Denote by H,, the Hilbert space

f P2 _(E
H,=1 (Wp,o)e< P—é\];\;FFEE? ) (2.18)

)

where Py are orthoprojectors onto solutions of the Cauchy problems (2.1), (2.8)
with the initial data on Z,. Consider also

g2 ’ V*( 1 —p)P+l2~ - (E !
H,=1*( pyo)e< V(l’p)PJ%{’F( () ) ) (2.18")

The spaces H,, (2.18) and ﬁz,) (2.18') are isomorphic one to another, besides, as it
is easily seen, the operator R, : pr — f[; defining this isomorphism has the form

Ry = Py, [ V*(g,p) V(—?, o) ]pgp, (2.19)

where Py and Pj iy are orthoprojectors onto H,, (2.18) and ET;J (2.18"), respec-
tively. Spec1fy the operators Ty and T(l,p) = T1T2 ,DE L,

A~

(71f) =P focois (TD)F) =Py VLD (Bf),  (220)

for all f, € H, (2.18). Note that the operator T has the same form (2.20) in all
spaces H) (2.28).

Theorem 2.4 [4|. Consider the simple commutative unitary -extension

(Vs, ;s) (2.1) corresponding to the commutative operator system {Ty,T>} from
the class C(Ty) (1.3) and let the suppositions of Lem. 1.1 take place, besides
dim E = dimE < co. Then the isometric dilation U(1,p) (1.17), p € Z, acting
in the Hilbert space ’HN,F (1.15) is unitary equivalent to the operator U(1,p) (2.17)
mapping the space 12 ( o) (2.15') into 12 (W) (2.15). Moreover, the operators
Ty and T(1,p) = Ty (1 21) specified in H are unitary equivalent to the shift
operator Ty (2.20) and to the operator T'(1, p) (2 20).

A similar translational model of dilation U (n) (1.24) and semigroup T*(n)
(1.20) is listed in [4].
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3. Functional Models

I. In order to construct the functional models of dilations U(n) (1.17) and

+
U (n) (1.24), it is necessary to realize the Fourier transformation of translational
models from Sect. 2. The Fourier transformation F

F(ug) =Y wl® = (), wp €l3(B), (3.1)

kEZ

specifies the isomorphism between 2 (E) and the Hilbert space L2(E) [1, 9].

Realize the Fourier transformation F (3.1) by variable n; of every vector
function wu,, from the space 3 (E), n = (n1,n2) € Z2 Then we obtain (see the
Cauchy problem (2.1)) the fafnily of functions u (&, n2) specified on every ms-th
horizontal line (ny € Z), besides the transition from ng to ng — 1 is specified by
multiplication by the linear pencil of operators

w(&ng —1) = (NE+Tu (&,n2) . (3.2)

Note that a corresponding continuation into half-plane ny € Z may be carried
out in the context of suppositions of Lem. 1.1 when dim F < oco. As a result, we
obtain the Hilbert space of functions u (&, n9), for which (3.2) takes place, besides
u(€) = u(€,0) € L2(E). We denote this space by L4(N,T', E). It is obvious that
the shift operator V(p) (2.2), as a result of the Fourier transformation F (3.1) in
space LZ(N,T, E), acts by multiplication

V(p)u(§) =& (N + )P u(), (3.3)
where u(¢) = u(£,0) and p = (p1,p2) € Z2. Similarly, the Fourier transformation

F (3.1) of space I3 (E) leads us to the Hilbert space L2 (E) The Fourier
transformation F by the first variable n; of every function v, = v(y, n,) from

l]2§7 7 (E) gives us the family of E-valued functions v (£, ns), for which

v (€ mg—1) = (Ng + f) v (€,712) (3.4)

takes place in view of the Cauchy problem (2.8). The obtained space of functions
v (€,n2), where v(£) = v(£,0) € L2 (E), we denote by L2 (N,f‘,E). As in the
previous case, the continuation by rule (3.5), when ny2 € Z, is possible when
the suppositions of Lem. 1.1 are met and dim £ < oo. The translation operator

V(p) (2.9) in the Hilbert space L2 (]\7, T, E) is realized by multiplication operator

Vo) = ¢ (Ne+1)" we), (3.5)

where v(¢) = v(¢,0) and p = (p1,p2) € Z*.
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IT. The translational invariance (2.13) of the operator S(p, k) (2.11) signifies
that the Fourier image of the scattering operator S(p, k) represents the operator
of multiplication by vector function. In particular, FS(0,0)ur = S(§)u(§), where
w(€) = F (ug) (3.1) and S(€) = K+ U (€I — T1) ' ® is the characteristic function
of extension V; (1.1) of the operator T;. It follows from relation 1) (2.13) for
the operator S(p,k) that it is necessary to find the Fourier image of operator
S(p,0) (or of S(0,p), in view of 1) (2.13)) for all p € Z,. Further, taking into
account the translational invariance of operator S(p,0), it is obvious that it is
sufficient to calculate how S(p,0) acts on the vector function ug = udy o, where u
is an arbitrary vector from E, and dj ¢ is the Kronecker symbol. For simplicity,
consider the case p=1, then it follows from (2.3) and from (2.10) that

vt = V(—m, —1)PD+(N’1:))U(2m, D Pp_(nn)V(=m, 0)u2 — S(1, 0)u2

when m — oo, n € Z2. Elementary calculations show that the vector function v
is given by

Vi o) = (o 0, T B, o, UT B, U, | K, 0, ...);

= (..., 0, ¥T" ' Ty Qu, ..., OT T2 ®u, ¥T5Pu,

m
v(nh_l)

(KT + U®N)u

,KNu,0,...),

where the frame signifies the element corresponding to the null index, n; = 0.
After the limit process, when n — oo and the Fourier transformation is F (3.1),
we obtain that the components v (£, n3) are given by

v(£,0) = S()u;
(e, —1) = {KNg + KT+ UGN + 0 (¢ — Ty) ! TQ@} u.

Using now 3) (1.2), we obtain that
(€, —1) = S(E)(NE +Tu. (3.6)

Taking into account colligation relations 4), 5) (1.2), we can rewrite the equality
(3.6) in the following way:

(e, —1) = (1\75 v f) S()u. (3.7)
Define the “kth” characteristic function S(€, k) using the formula
S(&k) = SONE+D), ke, (3:8)

where S(¢) = K + U (€] — T1) ® and S(¢,0) = S(¢).
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Theorem 3.1. Let uj, € I3(E) and u(¢) = F (ux) (3.1). Then the Fourier
transformation F applied to the vector function v = S(p,0)u represents the family
of E-valued functions v(&,—k), where 0 < k <p, k € Z, such that

1)(5, _k) = S(f, k)u(f), (3'
)

besides the functions S(&, k) are given by (3.8), 0 < k < p, where S(&,0
S(€) = K+ U (€I —T1) ' ® is the characteristic function of extension Vi (1.1)
corresponding to operator 1.

Thus the Fourier transformation F of operator S(p,0) leads us to the operator
of multiplication by characteristic function S(£) of the family of functions u (&, no)
from the space LZ(N,T, E) when ny € Z_ U {0}.

III. In order to find a Fourier image of the weight function W) (2.14), it is
necessary to calculate the Fourier transformation of the operator W (p)Wi(p)
which is also the operator of multiplication by operator function. It follows from
the definition (2.10) of the wave operator W (p) that W(n,p) — Wy (p)Wi(p)
when n — oo, where

Nej
~

W (n,p) = V(=n,=p)Pp, 5.V (n,p)U"(n,0) Py (.19 V* (=, =p).  (3.10)

Using the unitary properties of U(n,0) and V(n,0), n € Z, it is easy to ascertain
that . .

W(n+1,p) =V (=n,0)W(1,p)V(n,0). (3.11)
Therefore, it is sufficient to calculate how the operator W (1,p) acts. For simpli-
city, conduct calculations for the case of p = 2. Let f = (ug, h,v) € Hy,r (1.15)

then, using the form of U (1.17), it is easy to show that
V(-1, ~2)Pp, (5,0 U(1,2)f =04 ® Py, (3.12)

where P, as usually, is the orthoprojector in l?\? & (E) on the subspace of solu-
tions of the Cauchy problem (1.9) with the initial data on semiaxis Zy, and the
vector function vy from F is defined at points (—1,0), (—1,—1), (—1,—2) in the

following way:

10 =Yh+ Kuyo; 0-1,-1 =V (Toh+ ®N_19) + Ku_1_1;

A 3.13
V-1,-2 = U {T2 (TQh + @N,L()) + @Nufl’fl} + KU,L,Q. ( )

Make use of the fact that the function wuy is a solution of the Cauchy problem
(1.8). Then, taking into account relations 3)-5) (1.2), we obtain that it is possible
to write down the relations for the components (3.13), where £k = 0, —1, —2, in
the following form:

0_1,0
-1 | =
01,2
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I 0 0 Uh+ Ku_1
= r N 0 UT h + \I/q)u_l,g + KU_Q’O
I'? NI+I'N N? UTEh + T Pu_1 9+ TPu_9g + Ku_3

(3.14)
Note that the right-hand member of equality (3.14) is expressed in the terms of
operator T and external parameters of extension (1.1), and, moreover, the coeffi-
cients before u_y j, k = 0, —1, —2, coincide with the corresponding coefficients of
the Laurent factorization of characteristic function S(¢) = K + U (¢ —T,) ' ®
(1.7) of the operator T;. Introduce into examination the matrices

_ ! 0 0
I? TN+ NI N?
1
v 00 K 0 0 (3:15)
Q= | 9T1 0 0|; R=| ¥& K 0
UTZ 0 0 e ve K
Then it follows from (3.14) that the operator W (1,2) (3.10) is given by
W(l, 2) = P,lf/Q {QQQ; + RQR;} fzspfl D PD+(N,f‘)’ (316)
where P_; is the orthoprojector of narrowing on the vertical line n; = —1 of grid

Z? or the operator of multiplication by the Kronecker symbol &,, 1. If one makes
use of the relations YW* + KK* = I, UT7 + K* = 0 and T1 T} + ®®* = I that
follow from condition 1) (1.2), then it is easy to show that

Q2Q5 + RoR5 = 1. (3.17)

Therefore, we finally obtain that
W(1,2) = P L L3Py & Pp (5 5y (3.18)
IV. In order to find the Fourier transformation of operator W(1,2) (3.18),

—1
calculate the Fourier image of matrix Ly (3.15). Let v(¢) = v(&,0) = Zf’kvk €
—0o0

L2 (E), further construct the family of functions v (€, n2) from space L2 (N, T, E)
by rule (3.5)

~ \k
o€, —k) = (N¢+T) 0(©), k=012 (3.19)

It is easy to make sure that the coefficients before £ in the family of functions
v(€,—k) (3.19), where £ = 0, 1, 2, correspondingly are equal to v_j 9, Nv_g09 +
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f‘v_l,g, ]\721)_370 + (Nf’ + f’N) v_20 + f’2v_170, which signifies the application

of matrix Lo (3.15) to the vector column created by elements V_1,0, V-2,0, V—3,0-
Therefore the Fourier transformation F (3.1) of the operator P_j Lo L5P_; is given
by

I 0 0
P N§+f‘2 0 0
(N§+f) 00
N*€ + T (N*E+f*)2 v(§)
X 0 0 0 P_1 U(f, —]_) s (320)
0 0 0 v(&, —2)

where P_j is the operator of projection on the subspace {Ev}, v E E’, and the
functions v(&, —k) are constructed by rule (3.19), k = 0, 1, 2. Taking into account
the projector P_1, after elementary calculations it is easy to see that the relation
(3.20) is equal to

o v(£) v(§)
L2L§P,1 ’U(f, _1) =WaP 4 U(g, _1)
v(,—2) v(€, —2)

Thus, it follows from (3.10), (3.11) and (3.18) that the Fourier transformation of
the operator W (2)W}(2) is given by

F(WL2Wi(2)vy) ={I — P_ (I — W) P_}v({,no), (3.21)

where v, € l?\?f* (E), v (& n2) € L2 (N, T, E), Wy = fzgf/;, and P_ is the ortho-
-1

projector on the subspace of functions of the type Z kv, v € E. To formulate

—0o0
the overall result for all p € Z, define the constant matrix

N¢E+T o --- 0 0 0 0
W, =0 e e
~ \p
(N£+F) o --- 0 0 0 0
(3.22)

where Py is the operator of narrowing of every component of multiplication (3.22)
of matrix (p+ 1) X (p+ 1) on the elements corresponding £°.

Theorem 3.2. The Fourier transformation F (3.1) of the operator
Wi (p)Wi(p), where the operator W (p) is given by (2.10), is the multiplication

434 Journal of Mathematical Physics, Analysis, Geometry, 2008, vol. 4, No. 3



Functional Model of Commutative Operator Systems

by constant matrix,
F (Wi (p)Wi(p)vn) ={I — P- (I = W,) P-}v (£ n2), (3.23)

besides W, is given by (3.22), v(&,ng) = F (vy) € L2 (N,f‘,E), where v, €

l?\?f (E) and P_ 1is the orthoprojector in L% (N,f‘,E) on the subspace of func-

tions v (&, n2) such that v(£,0) is factorized into the series by powers {fk
besides v (&, n2) are obtained from v(&,0) by rule (3.5).

V. It follows from Ths. 3.1 and 3.2 that the operator weight W), o (2.14) after
the Fourier transformation F (3.1) is the operator of multiplication by function

}keZ_’

I—P_ (I-W,)P. S(& ] , (3.24)

where W), is a constant matrix of the type (3.22), and S(&) is the characteristic
function of extension V;. After this, it is obvious that the space 1% (W, ) (2.15),
as a result of the Fourier transformation F (3.1), is given by

2w

) =00 = () ) [ e-090.0057
0

2mi€

< ooy, (3.25)

where u(¢) = u(£,0) € L2(E), and is continued to the family of functions u (&, n2)
from L2(N,F,E) by rule (3.2), and v(¢) = v(£,0) € L (E) and it also has

a continuation to the family v (¢, ng) from L2 (N, T, E) by formula (3.5). Using

again Ths. 3.1 and 3.2, it is easy to ascertain that the Fourier image of operator
b0 (2.15') is the operator of multiplication by function
< =\P = \P
, (N§ + F) {(I-P (I-W,)P.} (N*§ + P*) S(€)
5*(¢) I
(3.26)
Therefore, the space I* (W} ;) (2.15'), after the Fourier transformation F (3.1), is

given by

2
. =96 = (1S )5 [ W0 09(0.00) gz <o
0

(3.25')
where u(£) and v(£) have the same sense as in the definition of space L2(W (p, £))
(3.25).
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In view of (3.3) and (3.5), it follows from (2.17) that the dilations U(1,0) and
U(1,p) are the multiplication operators

U(1,0)g(&) = £9(8);
~ ~ -p
(N*f’ + F*) 0
0 (NE+T)P

where p € Z, and g(¢) € L& (W'(p,£)). It is easy to see that the model space H,
(2.18) after the Fourier transformation is equal to

U(1,p)g(§) =¢ 9(§), (3.27)

(3.28)

H, = L3(W(p,¢)) & ( 7 <N’f’E> ) ,

H?(N,T,E)

where the Hardy subspaces H2(N,I',E) and H? (N,f’,E) are obtained from

ordinary Hardy classes H?(F) and H_2|_ (E’) corresponding to domains D_ =
{z€C:|z| >1} and Dy = {2 € C: |z| < 1} using the rules (3.2) and (3.5),
respectively.

Observation 1. Note that the Hardy space H2(N,T, E) contains
the functions that are not holomorphic in D_. Really, every function u (£, —ng) =
(N& +T)"2u(€), where u(¢) € H2(FE) and no € Z, is factorized into the Fourier
series by powers {¢¥} when k € (Z_ +ny —1).

Similarly, the space f[; (2.18") after the Fourier transformation F (3.1) is given

by
oy g ey ¢(N*€+T*)H? (N,T,E .
Hp—LT(W(p,s))e< <§(N§+F)2H2(J<V,F,E)> ) (3.28)

where the weight W'(p,{) is given by formula (3.26). The isomorphism Rp:
H, — H,, after the Fourier transformation of the operator R, (2.19) represents

3 (N*Z + f*)p 0

R, = Py,
P 0 E(NE+T)P

Py , (3.29)

where Py and Py, are the orthoprojectors on H, (3.28) and I;T;J (3.28"), respec-
p

tively. Finally, the operators Ty and T'(1,p) = T1T5 in space (3.28), in view of

(3.27), act in the following way:

(711) (&) = Pg,&F(0)

(N*E + f*) - 0

i Ve Ty (Rof)©,  (330)

(T(l,p)f) (6) = Py¢
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where f(€) € H, (3.28), and Py is the orthoprojector on H, (3.28), besides R, is
given by (3.29). From this it follows immediately that the initial operator system
{T1,T>}, given in H in space H; (3.28), will represent

(711) (&) = P, 7(6);
(Mg +1) I

(72r) (©) = Py, i NerT

(7ur) @), (3.31)

where f(£) € H; (3.28).

Theorem 3. Consider the simple [2, 3] commutative unitary extension

(Vs, IJ/;) (1.1) corresponding to the commutative operator system {T1, T2} from the
class C (Ty) (1.3), and let the suppositions of Lem. 1.1 be met, besides dim E =
dimE < co. Then the isometric dilation U(1,p) (1.17) acting in the Hilbert
space Hyr (1.15) is unitary equivalent to the functional model U(1,0) (3.27),
when p = 0, in L& (W'(p,€)) (3.25') and to the operator U(1,p) (3.27), when
p € N, mapping the space L% (W'(p,£)) (3.25') into the space LA(W (p,&)) (3.25).
Moreover, the operators T1 and T(l p) = T\T; (1.20) given in H are unitary
equivalent to the functional model T (3.30) in H for all p € Zy and to the
operator Ty (1,p) (3.30) in the concrete model space H (3.28) when p € N.

VI. We now turn to the dual situation corresponding to the dilation U (n)
(1.24) in H -+ p-. We list the main results concerning this case without proving.
Define the constant matrix W), for all p € Z

I 0 -~ 0 I N&+T - (NE4T)P
=gy | NEET 0 D00 0]
(N*§+I‘*) 0 -+ 0 0 0o - 0

(3.32)

where Py is the operator of narrowing on the components corresponding to £°.
Consider the weight operator function

I S(6)
S0 1-r (1) .

where the constant matrix Wp is given by (3.32). Specify the Hilbert space

W (p,¢) = (3.33)

2w

2 (W0.9) =90 = (15 ) [ (#0.000.50) 5=
0

M <0 p,
(3.34)
where u(¢) € LA(E), v(¢) € L2 (E’)
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Moreover, similarly to (3.26), define the weight

I S(€)

WO = o) werryr{1-p (1-W,) B} (ve Ty

(3.35)

specifying the Hilbert space

2w
72 (W',9) = {g(o = (09 [ (70.090.00) 5 < oo},

0
(3.34")
where u(£) and v(£) have the same sense as in the definition of space L2 (W(p, f))

(3.34).
Specify now the operator functions

Uy (1,0)9(8) = £9(8);

(Ne+D)” 0 ] 9(0), (3.36)

Us(1,p)g(€) =€ 0 (NE+T)P

where p € Z4 and g(¢) € L2 (W’(p,f)). In this case the model space Hj , is
given by

(3.37)

i, = L2 (W(pf)) S < Z%g;g)) )

where the Hardy spaces H? (N*,I'*, E) and H_2|_ (N*,f‘*,E) are obtained from
the standard Hardy classes H2(E) and H? (E) just as in Subsect. V.

Similarly, consider the space

H , =L% (W’(p,f)) S ( E(N f)*p HY (NFE) ) , (3.37)

+
§(NE+T)PH? (N*,T*, E)
besides the weight W' (p,£) is given by (3.35). Specify the operator

¢ (N*E + f*) - 0

. o Py (3.38)

Rps = P;
P+ H]’O,_i_

where ng . and Pz, | are the corresponding orthoprojectors on flp,Jr (3.37) and
’ p,

ﬁzl),-l- (3.37"). Tt is clear that the operators T; and T*(1,p) = Ty Ty? in space H, ;
are given by

(77) (©) = Pg, ,EF(€);
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o= = \P
(T*(Lp)f) (é) :ng,j[ (NgJ(;F) (Nf—EF)p

(Bot) ©  (3:39)

for all f(¢) € Hp, 1, where Py 1s the orthoprojector on H, ., and R, is given

by (3.38). From this itNeasily’follows that the initial operator system {77,T5},
defined in H, in space Hy 4 (3.37) is given by

(#0)© =Pa, | VT e b | ()@ o
where f(&) € Hy 4.

+
Theorem 4. Let Vi, Vi (3.1) be the simple [2, 3] commutative unitary
extensions of a commutative operator system {T1,To} from the class C (1)
(1.8), besides the suppositions of Lem. 1.1 are met and dimE = dimE < oo.

+
Then the isometric dilation U (1,p) (1.24), given in the Hilbert space Hy«
(3.22), is unitary equivalent to the functional model: Uy(1,0) (3.36), when p =0
in L2 (W(p,f)) (8.34), and to the operator U, (1,p) (3.86) mapping the space

L2 (W’(p,f)) (3.34) in L2 (W(p,£)> (3.34). Moreover, the operators Ty and

T*(1,p) = Tf]:;p (1.20) given in H are unitary equivalent to the functional model
TY (5.40) in Hp 4 (5.37) for all p € Z1 and to the operator Ty (1,p) (3.89) only
in the concrete model space Hy y (3.37) when p € N.
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