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The paper provides a brief review of the recent results devoted to bi-
furcations of solitary waves. The main attention is paid to the universality
of soliton behavior and stability of solitons while approaching supercriti-
cal bifurcations. Near the transition point from supercritical to subcritical
bifurcations, the stability of two families of solitons is studied in the frame-
work of the generalized nonlinear Schrédinger equation. It is shown that
one-dimensional solitons corresponding to the family of supercritical bifur-
cations are stable in the Lyapunov sense. The solitons from the subcritical
bifurcation branch are unstable. The development of this instability results
in the collapse of solitons. Near the time of collapse, the pulse amplitude
and its width exhibit a self-similar behavior with a small asymmetry in the
pulse tails due to self-steepening.
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1. Introduction

According to the usual definition, solitons are nonlinear localized objects pro-
pagating uniformly with a constant velocity (see, for example, |1, 2]). The soliton
velocity V represents the main soliton characteristics which often defines the soli-
ton shape, in particular its amplitude and width.
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It is well known that if the velocity V of a moving object is such that the
equation
W = k-V (1)

has a nontrivial solution where w = wy is the dispersion law for linear waves
and k is the wave vector, then this object will lose energy due to Cherenkov
radiation. This also pertains, to a large extent, to solitons as localized stationary
entities. They cannot exist if the resonance condition (1) is satisfied. Hence
follows the first, and simplest, selection rule for solitons: the soliton velocity must
be either less than the minimum phase velocity of linear waves or greater than
the maximum phase velocity. The boundary separating the region of existence
of solitons from the resonance region (1) determines the critical soliton velocity
Ver. As it is easily seen, this velocity coincides with the group velocity of linear
waves at the touching point where the straight line w = kV is tangent to the
dispersion curve w = wy (in the multidimensional case — the point of tangency of
the plane w = k - V to the dispersion surface). If touching occurs from below, then
the critical velocity determines the maximum soliton velocity for this parameter
range and, conversely, for touching from above V., coincides with the minimum
phase velocity. Two regimes are possible in crossing this boundary corresponding
to supercritical or subcritical bifurcations (soft or rigid excitation regimes).

While approaching the supercritical bifurcation point from below or above
the soliton amplitude vanishes smoothly according to the same — Landau — law
(o |V = Ver|'/?) as for the phase transitions of the second kind (see, for instance,
[3]). The behavior of solitons in this case is completely universal, both for their
amplitudes and their shapes. As V' — V,,. solitons transform into oscillating wave
trains with the carrying frequency corresponding to the extremal phase velocity
of linear waves V... The shape of the wave train envelope coincides with that
for the soliton of the standard — cubic — nonlinear Schrédinger equation (NLS).
The soliton width happens to be proportional to |V — V,,|~1/2.

Bifurcations of solitons were first observed for gravity-capillary waves in nu-
merical simulations by Longuet-Higgins [4] and explained later in [5-9]. Then
the bifurcation — a transition from periodic solutions to a soliton solution — was
studied in |5] and |6] using normal forms. The stationary NLS for gravity-capillary
wave solitons was derived in [8]. In [10] it was shown that this mechanism can be
extended to optical solitons. In fact, this paper provided the first demonstration
of the universality of soliton behavior near a supercritical bifurcation for waves of
arbitrary nature. It is worth noting that the universal character of solitons allows
not only to find their shapes, but also to study their stability. This analysis, as
stated in [11], shows that near supercritical bifurcation the solitons are stable only
in the one-dimensional case.

The question of whether the bifurcation is supercritical or subcritical depends
on the character of nonlinear interaction. The supercritical bifurcation occurs for
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a focusing nonlinearity when the product "7 < 0, where w” = 9?w/0k? is the
second derivative of the frequency with respect to the wave number, taken at the
touching point k = ko, and 7" is the value of the matrix element Ty, g,k,k, Of the
four-wave interaction for k; = ky. If w”"T > 0, which corresponds to a defocusing
nonlinearity, then there are no solitons — localized solutions — with amplitude
vanishing gradually as V' — V... In the theory of phase transitions this corre-
sponds to a first-order phase transition, and in the theory of turbulence, using
Landau’s terminology [12], it corresponds to a rigid regime of excitation. The
transition through the critical velocity is accompanied by a jump in the soliton
amplitude. The magnitude of the jump is determined by the next higher-order
terms in the expansion of the Hamiltonian. Like for the first-order phase transi-
tions, the universality of soliton behavior is no longer guaranteed in this situation.
When the amplitude jump at this transition is small, it is enough to keep a finite
number of next order terms in the Hamiltonian expansion to describe such a bifur-
cation. In the phase transitions this corresponds to a first-order phase transition
close to a second-order transition, which occurs, for example, near a tri-critical
point. As shown in [13], this situation arises for one-dimensional internal-wave
solitons propagating along the interface between two ideal fluids with different
densities in the presence of both gravity and capillarity. According to [13] the
matrix element 7" in this case vanishes for density ratio p;/ps = (21 — 8v/5)/11.
This type of bifurcations can also be met for gravity water waves with finite depth
when the matrix element T = 0 at .. = koh = 1.363. In nonlinear optics, as
shown in [11], a decrease of T' (Kerr constant) can be provided by the interaction
of light pulses with acoustic waves (Mandelstamm-—Brillouin scattering). If the
jump in soliton amplitude is of order one, then we need to keep all the remainder
terms in the Hamiltonian expansion.

In this paper we give a brief review of the recent results devoted to this
subject. The main attention will be paid to the universality of soliton behavior
and stability of solitons while approaching the supercritical bifurcation point.

The paper is organized as follows. The next section is devoted to stationary
solitons for arbitrary nonlinear wave media and their properties near the super-
critical bifurcation. Section 2 deals with the stability of solitons based on the
Lyapunov theorem and the Hamiltonian approach. It is shown by means of inte-
gral estimates of Sobolev type in their multiplicative variant (Gagliardo-Nirenberg
inequalities) that only one-dimensional solitons are Lyapunov stable. It is worth
noting that, in contrast to the method of normal forms, which is extensively used
in |5, 6, 13, 14| for studying bifurcations of solitons, the Hamiltonian approach is
fundamental for investigating soliton stability. In the method of normal forms, the
introduction of envelopes is not unique. Consequently, the Hamiltonian equations
of motion lose their initial Hamiltonian structure after their averaging. In this
section it is shown that near the bifurcation point the multi-dimensional solitons

Journal of Mathematical Physics, Analysis, Geometry, 2008, vol. 4, No. 4 031



E.A. Kuznetsov, D.S. Agafontsev, and F. Dias

are unstable due to the modulational instability. In the last section we consider
which nonlinear effects must be taken into account near the transition from super-
critical to subcritical bifurcations and how they change the shape of solitons and
their stability.

2. Supercritical Bifurcations

Let us consider a purely conservative nonlinear wave medium which can be
described by the Hamiltonian

H= /wk|ak|2dk + Hjpt, (2)

where wy, is the dispersion law of small-amplitude waves, a; are normal amplitudes
of the waves, and the Hamiltonian Hj;,; describes the nonlinear interaction of the
waves.
The equations of motion of the medium can be written in terms of the ampli-
tudes aj in the standard manner
da 5Hlnt

k .
— tiwgar = —1
ot kCk

so that in the absence of an interaction the system consists of a collection of
noninteracting oscillators (waves):

ar(t) = ag(0)e "t

Equation (3) describes the dynamics in the wave number space. To go back to
the physical space one needs to perform the inverse Fourier transform

P(x,t) = W /ak(t)eik'rdk. (4)

Originally, the function (x,t) is related to the characteristics of the medium
(fluctuations of the density and velocity of the medium, electric and magnetic
fields, and so on) by a linear transformation (see, for example, [15]). It is impor-
tant that if ¢(x,t) is a periodic function of the coordinates, then its spectrum
ay(t) consists of a sum of d-functions. For localized distributions 1(x,t) — 0 as
|x| = co. The Fourier amplitude ax(t), being a localized function of k, does not
contain Jd-function singularities.

Let us now consider the solution of (3) in the form of a soliton propagating
with the constant velocity V:

Blx,1) = p(x — V).
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In this case the entire dependence of a; on time ¢ is contained in the oscillating
exponent:

ag(t) = cpe VY,

where by virtue of (3) the amplitude ¢; will satisfy the equation

0H
(we — k- V)ey, =50 =Tk (5)
Ck
The difference wr — k- V appearing in this equation will be positive for all k if
the soliton velocity is less than the minimum phase velocity

|V| < min(wg/k). (6)

Conversely, the difference will be negative for all k if the soliton velocity is greater
than the maximum phase velocity

|V| > max(wg/k). (7)

We will show that a soliton solution is possible if the condition (6) (or (7)) is
satisfied. Let us assume the opposite to be true — let the conditions (6) and (7)
be violated, i.e., the equation (1) has a solution. For simplicity, we will assume
that it is unique: k = kg. Then, since zd(z) = 0, the homogeneous linear equation

(wpy —k-V)Cr=0

possesses a nontrivial solution in the form of a monochromatic wave
Cr = Ad(k — ko).

In this case (5) can be written (by virtue of the Fredholm alternative)

f

Ck :A(S(k—ko)'f‘u)k_—lli.v.

with fi, = 0. (8)
This equation, in contrast to (5), contains a free parameter — the complex
amplitude A. It can be solved, for example, by iterations, taking Ad(k — ko) as
the zeroth term. It is important that because of the nonlinearity as a result of
iterations one will obtain multiple harmonics with k = nky where n is integer.
The solution will consist of a collection of d-functions. Correspondingly, in phy-
sical space the solution will be a periodic function of the coordinates, i.e., it will
be nonlocalized. Hence follows the first selection rule for solitons: the difference
wr — k- V must be sign-definite, which is equivalent to the requirements (6) or
(7). In other words, it means the absence of Cherenkov radiation.
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In this entire scheme, however, there is an important exception. Having
represented (5) in the form (8), we have in fact assumed that the singularity in
the expression

Tk

wr,—k-V (9)
is nonremovable. This may not be the case — the singularity in the denominator
in (9) could be cancelled with the numerator, i.e., it could be removable [10].
For example, this happens for the classic soliton of the KdV equation, for equa-
tions which are generalizations of the KdV equation [16] for a combination of the
one-dimensional NLS and the MKdV equations [10, 17| integrated by the same
Zakharov-Shabat operator |18] and so on. In all of these cases cancellation occurs
as a result of the k dependence of the matrix elements. However, even in these
cases, the selection rule for solitons remains the same after the resonance (1) is
removed — the part remaining in the denominator must be sign-definite.

In what follows the singularities in (9) are assumed to be nonremovable in the
forbidden region, and we study the behavior of the soliton solution as the soliton
velocity approaches the critical value. For definiteness, it is assumed that the
plane w = k -V is tangent to the dispersion surface w = wy from below, i.e., the
criterion (6) holds. Let touching occur at the point k = ko. Then, instead of (8),
in the allowed region

e

S ook V'
As the velocity V approaches the critical value V.., the denominator in

this expression becomes small near the touching point, so that c; gets a sharp
peak at this point

Ck

1 —1
ek = | gwapriatp +ko(Ver V)| fi- (10)

Here wop = 0w/ 0k 0kg is a symmetric, positive-definite, tensor of the second
derivatives, evaluated at k = kg, and x = k — ky.

It is evident from (10) that as V approaches the critical velocity, the width of
the peak narrows as /Vg — V, and the distribution corresponding to the main
peak k = kg approaches a monochromatic wave. Accounting for nonlinearity, the
spectrum contains harmonics which are multiples of k = kg. If it is assumed that
the amplitude of the soliton vanishes gradually as V' — V,, (which would corre-
spond to a second-order phase transition), then the solution 1(x) (or, equivalently,
¢x) can be sought as an expansion in terms of harmonics:

() = D (X)X X' =x -Vt (11)

h=—o00
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Here the small parameter
A= V1= V/Vs (12)

and the “slow” coordinate X = Ax’ are formally introduced, so that 1), (X) is the
amplitude of the envelope of n-th harmonic. The assumption that the soliton
amplitude vanishes continuously at V = V., means that the leading term of the
series in (11) corresponds to the first harmonic, and all other harmonics are small
in the parameter X. This is the condition under which the nonlinear Schrédinger
equation is derived (see, for example, [10, 19, 2|). In the present case, we arrive
at the stationary NLS
0%y

1
_ 2 - vy 2 _
koVer A1 + 2“"158)@8){[; + Bl "1 =0 (13)

at leading order in A\, where B is related to the matrix Tk1k2k3k4 of four-wave
interactions as
B = _(ZW)diokokoko' (14)

In this approximation the leading term in the interaction Hamiltonian has the
form

B

Tk kokok * %
Hing = =72 | Cly Chy Chis Chs Oky + ka2 —ks —ky K1 dkodksdky = -5

9 / |41 |*dx,
(15)
and the tilde means renormalization of the vertex due to the three-wave interac-
tion — in the present case the interaction with the zeroth and second harmonics.
As we have already noted, wqg in (13) is a symmetric positive-definite tensor.
For this reason, performing a rotation to its principal axes and carrying out the
corresponding extensions along each axis, (13) can be transformed into the stan-

dard form
=N+ Ay — plipp = 0, (16)

where g = sign(Twaa). Hence it follows, in the first place, that soli-
tons are possible only if y is negative (focusing nonlinearity when the product
Twae is negative) and, in the second place, that the amplitude of the solitons is

proportional to
A= V1=V,

i.e., the amplitude vanishes according to a square-root law, the size of the soliton
increases as 1/ as the velocity approaches the critical value.

In order to illustrate how this mechanism works consider the simplest example,
i.e., the time-dependent one-dimensional nonlinear Schriédinger equation

0y 2, _
ZE +Q/J:c:c + 2|Q/J| Q/J = 0. (17)
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As is well known, this equation, unlike the general equation (3), has one additional
symmetry, namely the gradient symmetry ¢ — 1e*®. To find the corresponding
solution one should put ¥ (z,t) = e?"4p(z — V't), where 1) obeys the equation

L(—i0y) = iVapy + vth — g = 203p*0. (18)

For the present case, in accordance with (1), the condition for Cherenkov radiation
will be written as follows:

kV =Q(k) or L(k)=0, (19)
where the dispersion law for the equation (18) takes the form
Q(k) = v + k% (20)

Hence one can see that for v < 0 the resonance condition (19) is satisfied for any
value of the velocity V! Consequently solitons do not exist in this case. This can
be checked directly by solving equation (18): for v < 0 all solutions are periodic
or quasi-periodic. Soliton solutions are possible for positive . Their velocities
lie in the range —2y/v <V < 2y/v. At the points k = /v the dispersive curve
Q = Q(k) touches the straight line @ = kV,,. At these points the solution must
vanish in agreement with the general considerations. It directly follows from the
exact solution of (18):

Qﬁ—eiytw ¥=x-Vt, Ak=\/v—-V2/4 (21)
- cosh(Akz') T ’ N ’

Solitons exist only for v > V?2/4. The upper boundary in this inequality defines
the critical velocity
Ve = 2¢/1.

It is important to note also that for v > V?/4 the operator L in the equation (18)
is positive definite.

3. Stability of Solitons

To include the time dependence in the averaged equations the amplitudes
Yy, in the expansion (11) must be assumed to depend not only on the “slow”
coordinate X but also on the slow time 7" = A?t. Then a multiscale expansion
gives the nonstationary analog of the NLSE

ithy — A2+ Avp — plip*p = 0 (22)

instead of the stationary NLSE (16). The soliton stability problem for this equa-
tion has been well studied (see, for example, [10] and [21]). We recall the basic

536 Journal of Mathematical Physics, Analysis, Geometry, 2008, vol. 4, No. 4



Bifurcations of Solitary Waves

points in the investigation of stability. The equation (22) as an equation for
envelopes inherits the canonical Hamiltonian form (3)

&p 6H
Yot T oy (23)
where the Hamiltonian
=N + / (VPP — [plYdr,  (u=—1), (24)

arises as a result of averaging the initial Hamiltonian. The equation (22) preserves,
besides H, the total number N of particles (adiabatic invariant), so that solitons
are stationary points of the energy functional £ = H— 2N with the fixed number
of particles

S(E 4+ M\?N) = 0. (25)

The number of particles (or intensity) in a soliton solution as a function of A has
the form

N, = [ uax =3t [ ig(c) P (26)
where d is the dimension of the space, and g(¢) satisfies the equation
—g+Ag + g9 =0.

In the one-dimensional case g = v/2sech & and, correspondingly, Ny = 4. In the
two-dimensional case N is independent of A for the entire family of solitons, while
in the three-dimensional case [Ny decreases with increasing A. The dependence of
N, on A is crucial from the standpoint of soliton stability. It is obvious that the
most dangerous disturbances will be those having wave numbers close to k = kg
moving together with the soliton, i.e., modulation-type disturbances.

According to (25) the envelope solitons are stationary points of the energy £
for a fixed number of waves N. Therefore such solutions will be stable in the
Lyapunov sense if they realize a minimum (or a maximum) of the energy for
fixed N.

Consider first the scaling transformations leaving N unchanged,

1 x
P = =0 (5) (27)
where 1, is the solitonic solution. The energy E under this transformation

becomes a function of the scaling parameter a:

E(a) = hs _ D (28)

a2  ad’
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where I1s = [|Vis|2dx, Ios = [|1hs|'dx and p = —1. Hence it is easy to see
that in the one-dimensional case the energy (28) is bounded from below and has
a minimum at @ = 1 corresponding to the soliton solution. In this case

2)° 40
ES == —T and 2_[15 == -[28 == T

The soliton also realizes a minimum of £ with respect to another simple trans-
formation, i.e., the gauge one, ¢y(z) — o (x) exp[ix(z)], which also preserves N,

E=&+/uﬁ%@.

Thus, for d = 1 both simple transformations yield a minimum for the energy, thus
indicating soliton stability for the one-dimensional geometry.

Now we give an exact proof of this fact. The crucial point of this proof is based
on integral estimations of Sobolev type. These inequalities arise as the sequences
of general imbedding theorem. The (Sobolev) theorem says that a space L, can
be imbedded into the Sobolev space Wy if the space dimension

2
D < —(p+4).
p

This means that between the norms

1/p
lully = [ / |u|pd%] L p>0,

1/2
lulhg = | [ G2 + 19uf)a?e] 2 >0
there exists the following inequality (see, e.g., [23]):
lullp < Mllullyy, (29)

where M is some positive constant. For D = 1 and p = 4, the inequality (29) is
o o0 2
[ ttas <o | [ 2 + vy (30)
—00 — 00

Here it is straightforward to get a multiplicative variant of the Sobolev inequality,
the so-called Gagliardo—Nirenberg inequality (GNI) [24] (see also [23, 25, 26]).
Use the scaling transform z—az in (29). Instead of (30) we have

2

o0 o0 o0 1
[ wttde <o | [ wPdeea [l S
—0o0 —0o0 — 00
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This inequality holds for any (positive) « including a minimal value for the r.h.s.
The computing of its minimum yields the GNI:

L<CN321}/%, (31)

where I1 = [ |¢py>dz, I, = [|1|*dz, and C is a new constant. Then this inequa-
lity can be improved by finding the best (minimal possible) constant C.
To find Cpest consider all extrema of the functional

I

T{p) = e

(32)

The latter problem reduces to the solution of stationary NLSE (16):

_>‘2¢ + Yoo + 2|¢|2¢ =0.

Hence we find that the best constant Cpes is a value of J{i} on the soliton
solution: P
Ly 21/

Chest = = .

(33)

This inequality allows us to obtain immediately a proof of 1D soliton stability.
Substituting (31) into (24) results the following estimation for the energy:

E > I — oot PN32 = By + (1117 — 11132, (34)

The inequality becomes precise on the soliton solution, thus proving its stability.
Note that this provides the stability of solitons not only with respect to small
perturbations, but also against finite perturbations.

In the three-dimensional case, in contrary, the function E(a) in (28) has
a maximum, corresponding to the soliton solution, and is unbounded from be-
low as @ — 0. The gauge transformation gives a minimum of E and therefore all
soliton solutions at d = 3 represent saddle points of the energy. That indicates a
possible instability of solitons in this case.

The fact of (linear) instability of three-dimensional solitons follows from the
Vakhitov-Kolokolov criterion [20]. It is as follows: if

ON;

a0 >0 (35)

then the soliton 1s stable and, respectively, unstable if this derivative is negative.
This criterion has a simple physical meaning. The value —\? for the stationary

nonlinear Schrédinger equation (16) can be interpreted as the energy of the bound

state—soliton. If we add one “particle” to the system and the energy of this bound
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state decreases, then we have a stable situation. If by adding one “particle”
the level —\? is pushed towards the continuous spectrum, then such a soliton is
unstable.

At d = 3 the derivative dN;/0X? < 0 and therefore 3D solitons are unsta-
ble (the modulational instability). For the two-dimensional case the Vakhitov—
Kolokolov criterion (35) gives an absence of linear exponential instability. A more
detailed analysis in this case yields the power type instability (for details see the
survey [21] and [22]).

Thus, the solitons are stable only in the one-dimensional case, while in the
two-dimensional (critical) and three-dimensional cases they are unstable and can
be considered as separatrix solutions separating collapsing solutions from the dis-
persive ones [27].

This is probably the simplest method for explaining the well-known empirical
fact that solitons, as a rule, exist only in one-dimensional systems. For multidi-
mensional systems the stable solitons are rare and can only appear as a result of
topological constraints or of a mechanism that removes Cherenkov singularities
(which is discussed in the present paper). The latter, as can be easily understood,
is due to the existence of a certain class of symmetry.

4. From Supercritical to Subcritical Bifurcations

For subcritical bifurcation at the critical velocity the soliton undergoes a jump
in its amplitude. In this case the corresponding theory can be developed near the
transition point between subcritical and supercritical bifurcations (in analogy with
the tri-critical point for phase transitions). In the series of papers [11, 13, 28-30]
it was shown that in this case the soliton behavior can be described by means of
the generalized nonlinear Schrodinger equation (NLSE) for the envelope 1, which
in the one-dimensional case is as follows:

20

o~ Vot Db — plp P+ 4Bl e+ ygRIY + 30k =0, (36)

where wy = w(ky) and ky are the carrying frequency and the wave number, res-
pectively, A2 = (V — V)/Ver < 1, wf the second derivative of w(k) taken at
k = ko. Here the four-wave coupling coefficient y is assumed to have additional
smallness characterizing the proximity to the transition from supercritical to sub-
critical bifurcations. The transition point is defined from the equation p = 0.
For example, for the interfacial deep-water waves propagating along the interface
between two ideal fluids in the presence of capillarity [28, 29|

kg
+p

M= 1 (Azr_AQ)J
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where p is the density ratio, A = (1 — p)/(1 + p) the Atwood number, A? =
5/16 and p. = (21 — 8v/5)/11, as it was shown in [13]. For p < pe, the four-
wave coupling coefficient p is negative, and the corresponding nonlinearity is of
the focusing type. In this case, the solitary waves near the critical velocity V,,
are described by the stationary (90/0t = 0) NLSE and undergo a supercritical
bifurcation at V' = V., [13]. For p > p,, the coupling coefficient changes sign and,
as a result, the bifurcation becomes subcritical. For water waves in finite depth
h the coefficient p changes its sign at 6. = koh ~ 1.363 [31] while wj is always
negative. Thus the nonlinearity belongs to the focusing type for (= kh) > 6., and
respectively becomes defocusing in the region 6 < 6., [31, 32]. In nonlinear optics,
as shown in [11], a decrease of y (Kerr constant) can be provided by the interaction
of light pulses with acoustic waves (Mandelstamm-Brillouin scattering).

Because of smallness of p we keep in (36) the following order nonlinear terms:
the gradient term (~ ) responsible for self-steepening of the pulse (analog of
the Lifshitz term in phase transitions), the nonlocal term (due to presence of
the integral operator k, the Fourier transform of its kernel is equal to |k|) and
the six-wave nonlinear term with coupling coefficient C'. Two additional 4-wave
interaction terms, both local and nonlocal, appear as a result of expansion of the
four-wave matrix element Ty, k,ksk, I powers of the small parameters x; = k; — ko:

wo B
Thikoksks = o T %(ﬁl + ko + K3 + Kq) (37)
—%(Vv’l — k3| + [k — k3| + [k2 — Ka| + |K1 — Ka4l).

The existence of nonlocal contribution in the expansion is connected with non-
analytical dependence of the matrix element 7' in its arguments. For interfacial
deep-water waves (IW) this nonanalyticity originates from the solution of Laplace
equation for the hydrodynamic potential and its reduction to the moving inter-
face. For instance, for water waves (WW) with a finite depth the nonlocal term
is absent [32] as well as for electromagnetic waves in nonlinear dielectrics [11]
because of the analyticity of matrix elements with respect to frequencies, which
is a consequence of causality (see, for example, Refs. [11, 33]). In the latter case
the spatial dispersion effects are relativistically small and can be neglected.

For both IW and WW near the transition point, wjC' is positive; moreover,
is also positive for IW, and therefore the corresponding nonlinearities are focusing,
thus providing the existence of localized solutions. Depending on the sign of u
there exist two branches of solitons. For IW they were found numerically |28, 29|
using the Petviashvili scheme [34]. Explicit solutions for both kinds of IW solitons
can be obtained in the limiting case only when V' — V... For negative p these
are the classical NLS solitons with a sech shape. For the subcritical bifurcation
at V = V, the soliton amplitude remains finite with algebraic decay (~ 1/|z|)
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at infinity [28, 29]. When a nonlocal nonlinearity is absent (y = 0), the soliton
solutions can be found explicitly. For both branches at large A the number of
waves N = [ ||2dz approaches from below and above the same value N, which
coincides with the number of waves N on the solitons with p = 0. For the solitons
in fibers this property means that the energy of optical pulse saturates tending
to the constant value with a decrease of the pulse duration.

On the other hand, all solitons of (36) are stationary points of the energy F
for fixed number of waves : §(E + A2N) = 0, where the energy in dimensionless
variables is given by

B- [ [w + DIl + i85 — )l — PRI — Cll° | de. (38)

This allows one to use the Lyapunov theorem in the analysis of their stability.
Here, for the IW, X ~ (Vi — V)2|p — p,,| 7%, C = 319/1281 and

i =sign(p— pur), B =6/VA2T, =32/ViZT, (39)
and for the WW case (compare with [32])
p =sign(f, —0), B~ —0.397, C ~0.176. (40)

As shown in [11, 28, 29, 32], for N < N, solitons corresponding to the supercriti-
cal branch realize the minimum values of the energy and therefore they are stable
in the Lyapunov sense, i.e., stable with respect to not only small perturbations
but also against finite ones. In particular, the boundedness of E from below can
be viewed if one considers the scaling transformation ¢ = (1/a)'/?,(z/a) retain-
ing the number of waves N, where ¢ = 1)4(x) is the soliton solution. Under this
transform £ becomes a function of the scaling parameter a:

B@=(5-5z) 5 [ Wl (41)

It is worth noting that the dispersion term and all nonlinear terms in E, except
f%|¢|4dsc, have the same scaling dependence oc a~2. The latter means that at
p =0 (36) can be related to the critical NLS equation like the two-dimensional
cubic NLS equation. From (41) it is also seen that for p < 0 E(a) has a min-
imum corresponding to the soliton. Unlike in the supercritical case, the scaling
transformation for another soliton branch with g > 0 gives a maximum of E(a)
on solitons and unboundedness of £ as ¢ — 0. Under the gauge transformation
1 = 1pge’X, on the contrary, the energy reaches a minimum on soliton solutions
and consequently the solitons with x4 > 0 represent saddle points. This indicates
a possible instability of solitons for the whole subcritical branch, at least with
respect to finite perturbations.
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We consider this question in detail and emphasize a nonlinear stage of insta-
bility following to our recent paper [30]. This problem, indeed, is not trivial in
spite of a close similarity with the critical NLSE. It is worth noting that (36) at
pu =y = C = 0 represents an integrable model (the so-called derivative NLSE)
[35], and exponentially decaying solitons in this model are stable. It is more or
less evident also that small coefficients v, C' cannot break the stability of soli-
tons. This means that in the space of parameters we may expect the existence of
a threshold. Above this, the threshold solitons must be unstable and the deve-
lopment of this instability may lead to collapse, i.e., the formation of a singularity
in finite time.

Consider the energy (38) written in terms of amplitude r and phase ¢ (¢ =
re'?):

E = / [r + 'L_Lr4 gr27<:\r2 — %7"6 + 72 (¢z + ,6’7"2)2 dz, (42)
where by an appropriate choice of the new dimensionless variables the renormal-
ized constant C' = C + B2 can be taken equal to 1/3. Hence one can see that the
energy takes its minimum value when the last term in (42) vanishes, i.e. when

@z + Br* = 0. (43)

The integration of this equation gives an z—dependence for the phase that is
called the chirp in nonlinear optics. It is interesting to note that the remaining
part of the energy does not contain the phase at all.

First, study the local model when v = 0. Let the energy be negative in
some region € : Eq < 0. Then, following [36, 26|, one can establish that due
to radiation of small amplitude waves Eq < 0 can only decrease, becoming more
and more negative, but the maximum value of |¢|, according to the mean value
theorem, can only increase:

3| E
max ||t > 3| Bal Q|

44
e Ng ( )

This process is possible only for the energies which are unbounded from below.
In accordance with (41) such a situation is realized when p > 0. In this case the
radiation leads to the appearance of infinitely large amplitudes r. However, it is
impossible to conclude that the singularity formation develops in finite time.

For v > 0 the estimations on the maximum value of |¢| are not as transparent
as they are for the local case. Instead of (44), it is possible to obtain a similar
estimate

3lE|

4

ax |yl > 22

However, it is expressed through the total energy E and the total number of
waves V. Besides, two inequalities must be satisfied: £ < 0 and N < QTNZ
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For interfacial waves, No = 1.39035 > N, = 1.3521. Thus, the maximum am-
plitude in this case is bounded from below by a conservative quantity and this
maximum can never disappear during the nonlinear evolution.

Now we consider the situation where the self-steepening process can
be neglected (5 = 0). In this case (36) becomes

i+ Puw — N2 — b2+ yk|y[? + 3C|y[p = 0.

It is possible to obtain a criterion of collapse using the virial equation (for details,
see [37, 36, 38]). This equation is written for the positive definite quantity

k= [ 2lfs,

which, up to the multiplier N, coincides with the mean square size of the distri-
bution. The second derivative of R with respect to time is defined by the virial

equation
_ H 4

Hence, for p > 0 one can easily obtain the following inequality:
Ry < 8E,

which yields, after double integration, R < AEt*+aqt+ay. Here a2 are constants
which are obtained from the initial conditions. Hence, it follows that for the states
with negative energy, E < 0, there always exists such a moment of time £y when
the positive definite quantity R vanishes. At this moment of time the amplitude
becomes infinite. Therefore the condition £ < 0 represents a sufficient criterion of
collapse (compare with [37, 36]). However, it is necessary to add that this criterion
can be improved in the same way as in |39, 27| for the three-dimensional cubic
NLS equation. From (45) one can see that for the stationary case (on the soliton
solution) Ey = 4 [[4s|*dz, in agreement with (41). As it was shown before, for
p > 0 the soliton realizes a saddle point of E for fixed N. It follows from (41) that
for small a the energy becomes unbounded from below, but for ¢ > 1 it decreases
(this corresponds to spreading). Therefore in order to achieve a blow-up regime
the system should pass through the energetic barrier equal to E,. Thus, for this
case the criterion £ < 0 must be changed into the sharper criterion: E < FE;.
This criterion can be obtained rigorously using step by step the scheme presented
in [39, 27] and therefore we skip its derivation.
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Fig. 1: Initial (solid line) and final (dashed line) at ¢ = 1.18 distributions for [¢|,
interfacial waves, selfsimilar variables. The soliton amplitude was increased by
1%, u = 1, A = 1. The ratio between final and initial soliton amplitudes in the
physical variables is about 11.

In order to verify all the theoretical arguments about the formation of collapse
presented above we performed a numerical integration of the NLSE (36) for u > 0
by using the standard 4th order Runge-Kutta scheme. The initial conditions were
chosen in the form of solitons but with larger amplitudes than for the stationary
solitons. Increasing in the initial amplitude varied in the interval from 0.1% up to
10%. The initial phase was given by means of (43). In all runs with theses initial
conditions we observed a high increase of the soliton amplitude up to a factor 14
with a shrinking of its width. In a peak region the pulses for both IW and WW
cases behaved similarly. Near the maximum the pulse peak was almost symmetric:
anisotropy was not visible. The difference was observed in the asymptotic regions
far from the pulse core, where the pulses had different asymmetries for IW and
WW because of the opposite sign for 5 (see (39), (40)). For the given values of
we did not observe the simultaneous formation of two types of singularities with
blowing-up amplitudes and sharp gradients as it was demonstrated in the recent
numerical experiments for the three-dimensional collapse of short optical pulses
due to self-focusing and self-steepening in the framework of the generalized NLS
equation [40] and equations of the Kadomtsev—Petvishvili type [41].
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Fig. 2: Initial (solid line) and final (dashed line) at ¢t = 2.7192 distributions for
|, WW solitons, selfsimilar variables. The soliton amplitude was increased by
1%, u = 1, A = 1. The ratio between final and initial soliton amplitudes in the
physical variables is about 11.

In our numerical computations we found that the amplitude and its spatial
collapsing distribution developed in a selfsimilar manner. Near the collapse point
in the equation (with g > 0) one can neglect the term proportional to p. In this
asymptotic regime (36) admits selfsimilar solutions,

(4. ) 1/4 z
T(I‘,t) (t[] t) f ((t[] _t)1/2> ? (46)
where g is the collapse time.

To verify that we approached the asymptotic behavior given by (46), at each
moment of time we normalized the i-function by the maximum (in z) of its
modulus max |[¢)| = M and introduced new self-similar variables,

T/)(.’E,t) :Ma(gaT)a §:M2(x_xmaa:)7 7 =1InM. (47)

Here %4, is the point corresponding to the maximum of |¢|. In comparison
with those given by (46), new variables are more convenient because they do not
require the determination of the collapsing time ty.

Fig. 1 and Fig. 2 show typical dependences of || as a function of the self-
similar variable £ at ¢ = 0 (solid line) and at the final time (dashed line) for
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Fig. 3: Dependence of 1/ max |1|* on time. Interfacial waves.

both the IW and WW cases. In both figures one can see a fairly good coincidence
between the initial soliton distribution and the final one at the central (collapsing)
part of the pulse and asymmetry of the pulse at its tails due to self-steepening.
The latter demonstrates that the collapse has a selfsimilar behavior. The form of
the central part of the pulse approaches the soliton shape because asymptotically
the NLS model (36) tends to the critical NLS system. It should be mentioned that
this has been well known for the classical two-dimensional NLS equation since the
paper by Fraiman [42].

Fig. 3 shows how 1/max |¢|* depends on time. This dependence is almost
linear in the correspondence with the selfsimilar law (46). If the initial amplitudes
were less than the stationary soliton values, then the distribution would spread
in time dispersively, in full correspondence with qualitative arguments based on
the scaling transformations (41).
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