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eRe
eived June 25, 2008The paper provides a brief review of the re
ent results devoted to bi-fur
ations of solitary waves. The main attention is paid to the universalityof soliton behavior and stability of solitons while approa
hing super
riti-
al bifur
ations. Near the transition point from super
riti
al to sub
riti
albifur
ations, the stability of two families of solitons is studied in the frame-work of the generalized nonlinear S
hr�odinger equation. It is shown thatone-dimensional solitons 
orresponding to the family of super
riti
al bifur-
ations are stable in the Lyapunov sense. The solitons from the sub
riti
albifur
ation bran
h are unstable. The development of this instability resultsin the 
ollapse of solitons. Near the time of 
ollapse, the pulse amplitudeand its width exhibit a self-similar behavior with a small asymmetry in thepulse tails due to self-steepening.Key words: stability, 
riti
al regimes, wave 
ollapse.Mathemati
s Subje
t Classi�
ation 2000: 37K50, 70K50.1. Introdu
tionA

ording to the usual de�nition, solitons are nonlinear lo
alized obje
ts pro-pagating uniformly with a 
onstant velo
ity (see, for example, [1, 2℄). The solitonvelo
ity V represents the main soliton 
hara
teristi
s whi
h often de�nes the soli-ton shape, in parti
ular its amplitude and width.
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E.A. Kuznetsov, D.S. Agafontsev, and F. DiasIt is well known that if the velo
ity V of a moving obje
t is su
h that theequation !k = k �V (1)has a nontrivial solution where ! = !k is the dispersion law for linear wavesand k is the wave ve
tor, then this obje
t will lose energy due to Cherenkovradiation. This also pertains, to a large extent, to solitons as lo
alized stationaryentities. They 
annot exist if the resonan
e 
ondition (1) is satis�ed. Hen
efollows the �rst, and simplest, sele
tion rule for solitons: the soliton velo
ity mustbe either less than the minimum phase velo
ity of linear waves or greater thanthe maximum phase velo
ity. The boundary separating the region of existen
eof solitons from the resonan
e region (1) determines the 
riti
al soliton velo
ityV
r. As it is easily seen, this velo
ity 
oin
ides with the group velo
ity of linearwaves at the tou
hing point where the straight line ! = kV is tangent to thedispersion 
urve ! = !k (in the multidimensional 
ase � the point of tangen
y ofthe plane ! = k �V to the dispersion surfa
e). If tou
hing o

urs from below, thenthe 
riti
al velo
ity determines the maximum soliton velo
ity for this parameterrange and, 
onversely, for tou
hing from above V
r 
oin
ides with the minimumphase velo
ity. Two regimes are possible in 
rossing this boundary 
orrespondingto super
riti
al or sub
riti
al bifur
ations (soft or rigid ex
itation regimes).While approa
hing the super
riti
al bifur
ation point from below or abovethe soliton amplitude vanishes smoothly a

ording to the same � Landau � law(/ jV � V
rj1=2) as for the phase transitions of the se
ond kind (see, for instan
e,[3℄). The behavior of solitons in this 
ase is 
ompletely universal, both for theiramplitudes and their shapes. As V ! V
r solitons transform into os
illating wavetrains with the 
arrying frequen
y 
orresponding to the extremal phase velo
ityof linear waves V
r. The shape of the wave train envelope 
oin
ides with thatfor the soliton of the standard � 
ubi
 � nonlinear S
hr�odinger equation (NLS).The soliton width happens to be proportional to jV � V
rj�1=2.Bifur
ations of solitons were �rst observed for gravity-
apillary waves in nu-meri
al simulations by Longuet�Higgins [4℄ and explained later in [5�9℄. Thenthe bifur
ation � a transition from periodi
 solutions to a soliton solution � wasstudied in [5℄ and [6℄ using normal forms. The stationary NLS for gravity-
apillarywave solitons was derived in [8℄. In [10℄ it was shown that this me
hanism 
an beextended to opti
al solitons. In fa
t, this paper provided the �rst demonstrationof the universality of soliton behavior near a super
riti
al bifur
ation for waves ofarbitrary nature. It is worth noting that the universal 
hara
ter of solitons allowsnot only to �nd their shapes, but also to study their stability. This analysis, asstated in [11℄, shows that near super
riti
al bifur
ation the solitons are stable onlyin the one-dimensional 
ase.The question of whether the bifur
ation is super
riti
al or sub
riti
al dependson the 
hara
ter of nonlinear intera
tion. The super
riti
al bifur
ation o

urs for530 Journal of Mathemati
al Physi
s, Analysis, Geometry, 2008, vol. 4, No. 4



Bifur
ations of Solitary Wavesa fo
using nonlinearity when the produ
t !00T < 0, where !00 = �2!=�k2 is these
ond derivative of the frequen
y with respe
t to the wave number, taken at thetou
hing point k = k0, and T is the value of the matrix element Tk1k2k3k4 of thefour-wave intera
tion for ki = k0. If !00T > 0, whi
h 
orresponds to a defo
usingnonlinearity, then there are no solitons � lo
alized solutions � with amplitudevanishing gradually as V ! V
r. In the theory of phase transitions this 
orre-sponds to a �rst-order phase transition, and in the theory of turbulen
e, usingLandau's terminology [12℄, it 
orresponds to a rigid regime of ex
itation. Thetransition through the 
riti
al velo
ity is a

ompanied by a jump in the solitonamplitude. The magnitude of the jump is determined by the next higher-orderterms in the expansion of the Hamiltonian. Like for the �rst-order phase transi-tions, the universality of soliton behavior is no longer guaranteed in this situation.When the amplitude jump at this transition is small, it is enough to keep a �nitenumber of next order terms in the Hamiltonian expansion to des
ribe su
h a bifur-
ation. In the phase transitions this 
orresponds to a �rst-order phase transition
lose to a se
ond-order transition, whi
h o

urs, for example, near a tri-
riti
alpoint. As shown in [13℄, this situation arises for one-dimensional internal-wavesolitons propagating along the interfa
e between two ideal �uids with di�erentdensities in the presen
e of both gravity and 
apillarity. A

ording to [13℄ thematrix element T in this 
ase vanishes for density ratio �1=�2 = (21 � 8p5)=11.This type of bifur
ations 
an also be met for gravity water waves with �nite depthwhen the matrix element T = 0 at �
r = k0h � 1:363. In nonlinear opti
s, asshown in [11℄, a de
rease of T (Kerr 
onstant) 
an be provided by the intera
tionof light pulses with a
ousti
 waves (Mandelstamm�Brillouin s
attering). If thejump in soliton amplitude is of order one, then we need to keep all the remainderterms in the Hamiltonian expansion.In this paper we give a brief review of the re
ent results devoted to thissubje
t. The main attention will be paid to the universality of soliton behaviorand stability of solitons while approa
hing the super
riti
al bifur
ation point.The paper is organized as follows. The next se
tion is devoted to stationarysolitons for arbitrary nonlinear wave media and their properties near the super-
riti
al bifur
ation. Se
tion 2 deals with the stability of solitons based on theLyapunov theorem and the Hamiltonian approa
h. It is shown by means of inte-gral estimates of Sobolev type in their multipli
ative variant (Gagliardo�Nirenberginequalities) that only one-dimensional solitons are Lyapunov stable. It is worthnoting that, in 
ontrast to the method of normal forms, whi
h is extensively usedin [5, 6, 13, 14℄ for studying bifur
ations of solitons, the Hamiltonian approa
h isfundamental for investigating soliton stability. In the method of normal forms, theintrodu
tion of envelopes is not unique. Consequently, the Hamiltonian equationsof motion lose their initial Hamiltonian stru
ture after their averaging. In thisse
tion it is shown that near the bifur
ation point the multi-dimensional solitonsJournal of Mathemati
al Physi
s, Analysis, Geometry, 2008, vol. 4, No. 4 531



E.A. Kuznetsov, D.S. Agafontsev, and F. Diasare unstable due to the modulational instability. In the last se
tion we 
onsiderwhi
h nonlinear e�e
ts must be taken into a

ount near the transition from super-
riti
al to sub
riti
al bifur
ations and how they 
hange the shape of solitons andtheir stability. 2. Super
riti
al Bifur
ationsLet us 
onsider a purely 
onservative nonlinear wave medium whi
h 
an bedes
ribed by the HamiltonianH = Z !kjakj2dk+Hint; (2)where !k is the dispersion law of small-amplitude waves, ak are normal amplitudesof the waves, and the Hamiltonian Hint des
ribes the nonlinear intera
tion of thewaves.The equations of motion of the medium 
an be written in terms of the ampli-tudes ak in the standard manner�ak�t + i!kak = �iÆHintÆa�k ; (3)so that in the absen
e of an intera
tion the system 
onsists of a 
olle
tion ofnonintera
ting os
illators (waves):ak(t) = ak(0)e�i!kt:Equation (3) des
ribes the dynami
s in the wave number spa
e. To go ba
k tothe physi
al spa
e one needs to perform the inverse Fourier transform (x; t) = 1(2�)d=2 Z ak(t)eik�rdk: (4)Originally, the fun
tion  (x; t) is related to the 
hara
teristi
s of the medium(�u
tuations of the density and velo
ity of the medium, ele
tri
 and magneti
�elds, and so on) by a linear transformation (see, for example, [15℄). It is impor-tant that if  (x; t) is a periodi
 fun
tion of the 
oordinates, then its spe
trumak(t) 
onsists of a sum of Æ-fun
tions. For lo
alized distributions  (x; t) ! 0 asjxj ! 1. The Fourier amplitude ak(t), being a lo
alized fun
tion of k, does not
ontain Æ-fun
tion singularities.Let us now 
onsider the solution of (3) in the form of a soliton propagatingwith the 
onstant velo
ity V:  (x; t) =  (x�Vt):532 Journal of Mathemati
al Physi
s, Analysis, Geometry, 2008, vol. 4, No. 4



Bifur
ations of Solitary WavesIn this 
ase the entire dependen
e of ak on time t is 
ontained in the os
illatingexponent: ak(t) = 
ke�ik�Vt;where by virtue of (3) the amplitude 
k will satisfy the equation(!k � k �V)
k = �ÆHÆ
�k � fk: (5)The di�eren
e !k � k �V appearing in this equation will be positive for all k ifthe soliton velo
ity is less than the minimum phase velo
ityjVj < min(!k=k): (6)Conversely, the di�eren
e will be negative for all k if the soliton velo
ity is greaterthan the maximum phase velo
ityjVj > max(!k=k): (7)We will show that a soliton solution is possible if the 
ondition (6) (or (7)) issatis�ed. Let us assume the opposite to be true � let the 
onditions (6) and (7)be violated, i.e., the equation (1) has a solution. For simpli
ity, we will assumethat it is unique: k = k0. Then, sin
e xÆ(x) = 0, the homogeneous linear equation(!k � k �V)Ck = 0possesses a nontrivial solution in the form of a mono
hromati
 waveCk = AÆ(k � k0):In this 
ase (5) 
an be written (by virtue of the Fredholm alternative)
k = AÆ(k� k0) + fk!k � k �V with fk0 = 0: (8)This equation, in 
ontrast to (5), 
ontains a free parameter � the 
omplexamplitude A. It 
an be solved, for example, by iterations, taking AÆ(k � k0) asthe zeroth term. It is important that be
ause of the nonlinearity as a result ofiterations one will obtain multiple harmoni
s with k = nk0 where n is integer.The solution will 
onsist of a 
olle
tion of Æ-fun
tions. Correspondingly, in phy-si
al spa
e the solution will be a periodi
 fun
tion of the 
oordinates, i.e., it willbe nonlo
alized. Hen
e follows the �rst sele
tion rule for solitons: the di�eren
e!k � k �V must be sign-de�nite, whi
h is equivalent to the requirements (6) or(7). In other words, it means the absen
e of Cherenkov radiation.Journal of Mathemati
al Physi
s, Analysis, Geometry, 2008, vol. 4, No. 4 533



E.A. Kuznetsov, D.S. Agafontsev, and F. DiasIn this entire s
heme, however, there is an important ex
eption. Havingrepresented (5) in the form (8), we have in fa
t assumed that the singularity inthe expression fk!k � k �V (9)is nonremovable. This may not be the 
ase � the singularity in the denominatorin (9) 
ould be 
an
elled with the numerator, i.e., it 
ould be removable [10℄.For example, this happens for the 
lassi
 soliton of the KdV equation, for equa-tions whi
h are generalizations of the KdV equation [16℄ for a 
ombination of theone-dimensional NLS and the MKdV equations [10, 17℄ integrated by the sameZakharov�Shabat operator [18℄ and so on. In all of these 
ases 
an
ellation o

ursas a result of the k dependen
e of the matrix elements. However, even in these
ases, the sele
tion rule for solitons remains the same after the resonan
e (1) isremoved � the part remaining in the denominator must be sign-de�nite.In what follows the singularities in (9) are assumed to be nonremovable in theforbidden region, and we study the behavior of the soliton solution as the solitonvelo
ity approa
hes the 
riti
al value. For de�niteness, it is assumed that theplane ! = k �V is tangent to the dispersion surfa
e ! = !k from below, i.e., the
riterion (6) holds. Let tou
hing o

ur at the point k = k0. Then, instead of (8),in the allowed region 
k = fk!k � k �V :As the velo
ity V approa
hes the 
riti
al value V
r, the denominator inthis expression be
omes small near the tou
hing point, so that 
k gets a sharppeak at this point 
k = �12!������ + k0(V
r � V )��1 fk: (10)Here !�� = �2!=�k��k� is a symmetri
, positive-de�nite, tensor of the se
ondderivatives, evaluated at k = k0, and � = k� k0.It is evident from (10) that as V approa
hes the 
riti
al velo
ity, the width ofthe peak narrows as pV
r � V , and the distribution 
orresponding to the mainpeak k = k0 approa
hes a mono
hromati
 wave. A

ounting for nonlinearity, thespe
trum 
ontains harmoni
s whi
h are multiples of k = k0. If it is assumed thatthe amplitude of the soliton vanishes gradually as V ! V
r (whi
h would 
orre-spond to a se
ond-order phase transition), then the solution  (x) (or, equivalently,
k) 
an be sought as an expansion in terms of harmoni
s: (x0) = 1Xh=�1 n(X)eihk0�x0 ; x0 = x�Vt: (11)
534 Journal of Mathemati
al Physi
s, Analysis, Geometry, 2008, vol. 4, No. 4



Bifur
ations of Solitary WavesHere the small parameter � =p1� V=V
r (12)and the �slow� 
oordinate X = �x0 are formally introdu
ed, so that  n(X) is theamplitude of the envelope of n-th harmoni
. The assumption that the solitonamplitude vanishes 
ontinuously at V = V
r means that the leading term of theseries in (11) 
orresponds to the �rst harmoni
, and all other harmoni
s are smallin the parameter �. This is the 
ondition under whi
h the nonlinear S
hr�odingerequation is derived (see, for example, [10, 19, 2℄). In the present 
ase, we arriveat the stationary NLS�k0V
r�2 1 + 12!�� �2 1�X��X� +Bj 1j2 1 = 0 (13)at leading order in �, where B is related to the matrix ~Tk1k2k3k4 of four-waveintera
tions as B = �(2�)d ~Tk0k0k0k0 : (14)In this approximation the leading term in the intera
tion Hamiltonian has theformHint = ~Tk0k0k0k02 Z 
�k1
�k2
k3
k4Æk1+k2�k3�k4dk1dk2dk3dk4 = �B2 Z j 1j4dx;(15)and the tilde means renormalization of the vertex due to the three-wave intera
-tion � in the present 
ase the intera
tion with the zeroth and se
ond harmoni
s.As we have already noted, !�� in (13) is a symmetri
 positive-de�nite tensor.For this reason, performing a rotation to its prin
ipal axes and 
arrying out the
orresponding extensions along ea
h axis, (13) 
an be transformed into the stan-dard form ��2 +� � �j j2 = 0; (16)where � = sign( ~T!��). Hen
e it follows, in the �rst pla
e, that soli-tons are possible only if � is negative (fo
using nonlinearity when the produ
t~T!�� is negative) and, in the se
ond pla
e, that the amplitude of the solitons isproportional to � =p1� V=V
r;i.e., the amplitude vanishes a

ording to a square-root law, the size of the solitonin
reases as 1=� as the velo
ity approa
hes the 
riti
al value.In order to illustrate how this me
hanism works 
onsider the simplest example,i.e., the time-dependent one-dimensional nonlinear S
hr�odinger equationi� �t +  xx + 2j j2 = 0: (17)Journal of Mathemati
al Physi
s, Analysis, Geometry, 2008, vol. 4, No. 4 535



E.A. Kuznetsov, D.S. Agafontsev, and F. DiasAs is well known, this equation, unlike the general equation (3), has one additionalsymmetry, namely the gradient symmetry  !  ei�. To �nd the 
orrespondingsolution one should put  (x; t) = ei�t (x� V t), where  obeys the equationL(�i�x) � iV  x + � �  xx = 2j j2 : (18)For the present 
ase, in a

ordan
e with (1), the 
ondition for Cherenkov radiationwill be written as follows: kV = 
(k) or L(k) = 0 ; (19)where the dispersion law for the equation (18) takes the form
(k) = � + k2: (20)Hen
e one 
an see that for � < 0 the resonan
e 
ondition (19) is satis�ed for anyvalue of the velo
ity V ! Consequently solitons do not exist in this 
ase. This 
anbe 
he
ked dire
tly by solving equation (18): for � < 0 all solutions are periodi
or quasi-periodi
. Soliton solutions are possible for positive �. Their velo
itieslie in the range �2p� � V � 2p�. At the points k = �p� the dispersive 
urve
 = 
(k) tou
hes the straight line 
 = kV
r. At these points the solution mustvanish in agreement with the general 
onsiderations. It dire
tly follows from theexa
t solution of (18): = ei�t eiV x0=2�k
osh(�kx0) ; x0 = x� V t; �k =p� � V 2=4: (21)Solitons exist only for � > V 2=4: The upper boundary in this inequality de�nesthe 
riti
al velo
ity V
r = 2p�:It is important to note also that for � > V 2=4 the operator L in the equation (18)is positive de�nite. 3. Stability of SolitonsTo in
lude the time dependen
e in the averaged equations the amplitudes n in the expansion (11) must be assumed to depend not only on the �slow�
oordinate X but also on the slow time T = �2t. Then a multis
ale expansiongives the nonstationary analog of the NLSEi t � �2 +� � �j j2 = 0 (22)instead of the stationary NLSE (16). The soliton stability problem for this equa-tion has been well studied (see, for example, [10℄ and [21℄). We re
all the basi
536 Journal of Mathemati
al Physi
s, Analysis, Geometry, 2008, vol. 4, No. 4



Bifur
ations of Solitary Wavespoints in the investigation of stability. The equation (22) as an equation forenvelopes inherits the 
anoni
al Hamiltonian form (3)i� �t = Æ ~HÆ � ; (23)where the Hamiltonian~H = �2N + Z (jr j2 � j j4)dr; (� = �1); (24)arises as a result of averaging the initial Hamiltonian. The equation (22) preserves,besides ~H, the total number N of parti
les (adiabati
 invariant), so that solitonsare stationary points of the energy fun
tional E = ~H��2N with the �xed numberof parti
les Æ(E + �2N) = 0: (25)The number of parti
les (or intensity) in a soliton solution as a fun
tion of � hasthe form Ns = Z j j2dx = �2�d Z jg(�)j2d�; (26)where d is the dimension of the spa
e, and g(�) satis�es the equation�g +�g + jgj2g = 0:In the one-dimensional 
ase g = p2 se
h � and, 
orrespondingly, Ns = 4�. In thetwo-dimensional 
ase Ns is independent of � for the entire family of solitons, whilein the three-dimensional 
ase Ns de
reases with in
reasing �. The dependen
e ofNs on �2 is 
ru
ial from the standpoint of soliton stability. It is obvious that themost dangerous disturban
es will be those having wave numbers 
lose to k = k0moving together with the soliton, i.e., modulation-type disturban
es.A

ording to (25) the envelope solitons are stationary points of the energy Efor a �xed number of waves N . Therefore su
h solutions will be stable in theLyapunov sense if they realize a minimum (or a maximum) of the energy for�xed N .Consider �rst the s
aling transformations leaving N un
hanged, (x) = 1ad=2 s �xa� ; (27)where  s is the solitoni
 solution. The energy E under this transformationbe
omes a fun
tion of the s
aling parameter a:E(a) = I1sa2 � I2sad ; (28)Journal of Mathemati
al Physi
s, Analysis, Geometry, 2008, vol. 4, No. 4 537



E.A. Kuznetsov, D.S. Agafontsev, and F. Diaswhere I1s = R jr sj2dx, I2s = R j sj4dx and � = �1. Hen
e it is easy to seethat in the one-dimensional 
ase the energy (28) is bounded from below and hasa minimum at a = 1 
orresponding to the soliton solution. In this 
aseEs = �2�33 and 2I1s = I2s = 4�33 :The soliton also realizes a minimum of E with respe
t to another simple trans-formation, i.e., the gauge one,  0(x)!  0(x) exp[i�(x)℄, whi
h also preserves N ,E = Es + Z (�x)2 20dx:Thus, for d = 1 both simple transformations yield a minimum for the energy, thusindi
ating soliton stability for the one-dimensional geometry.Now we give an exa
t proof of this fa
t. The 
ru
ial point of this proof is basedon integral estimations of Sobolev type. These inequalities arise as the sequen
esof general imbedding theorem. The (Sobolev) theorem says that a spa
e Lp 
anbe imbedded into the Sobolev spa
e W 12 if the spa
e dimensionD < 2p(p+ 4):This means that between the normskukp = �Z jujpdDx�1=p ; p > 0;kukW 12 = �Z (�2juj2 + jruj2)dDx�1=2 ; �2 > 0;there exists the following inequality (see, e.g., [23℄):kukp �MkukW 12 ; (29)where M is some positive 
onstant. For D = 1 and p = 4, the inequality (29) is1Z�1 j j4dx �M1 24 1Z�1 (�2j j2 + j xj2)dx352 : (30)Here it is straightforward to get a multipli
ative variant of the Sobolev inequality,the so-
alled Gagliardo�Nirenberg inequality (GNI) [24℄ (see also [23, 25, 26℄).Use the s
aling transform x!�x in (29). Instead of (30) we have1Z�1 j j4dx �M1 24�2 1Z�1 j j2dx � �+ 1Z�1 j xj2dx � 1�352 :538 Journal of Mathemati
al Physi
s, Analysis, Geometry, 2008, vol. 4, No. 4



Bifur
ations of Solitary WavesThis inequality holds for any (positive) � in
luding a minimal value for the r.h.s.The 
omputing of its minimum yields the GNI:I2�CN3=2I1=21 ; (31)where I1 = R j xj2dx, I2 = R j j4dx, and C is a new 
onstant. Then this inequa-lity 
an be improved by �nding the best (minimal possible) 
onstant C.To �nd Cbest 
onsider all extrema of the fun
tionalJf g = I2N3=2I1=21 : (32)The latter problem redu
es to the solution of stationary NLSE (16):��2 +  xx + 2j j2 = 0:Hen
e we �nd that the best 
onstant Cbest is a value of Jf g on the solitonsolution: Cbest = I2sN3=2I1=21s = 2I1=21sN3=2 : (33)This inequality allows us to obtain immediately a proof of 1D soliton stability.Substituting (31) into (24) results the following estimation for the energy:E � I1 � CbestI1=21 N3=2 = Es + (I1=21 � I1=21s )2: (34)The inequality be
omes pre
ise on the soliton solution, thus proving its stability.Note that this provides the stability of solitons not only with respe
t to smallperturbations, but also against �nite perturbations.In the three-dimensional 
ase, in 
ontrary, the fun
tion E(a) in (28) hasa maximum, 
orresponding to the soliton solution, and is unbounded from be-low as a! 0. The gauge transformation gives a minimum of E and therefore allsoliton solutions at d = 3 represent saddle points of the energy. That indi
ates apossible instability of solitons in this 
ase.The fa
t of (linear) instability of three-dimensional solitons follows from theVakhitov-Kolokolov 
riterion [20℄. It is as follows: if�Ns��2 > 0; (35)then the soliton is stable and, respe
tively, unstable if this derivative is negative.This 
riterion has a simple physi
al meaning. The value ��2 for the stationarynonlinear S
hr�odinger equation (16) 
an be interpreted as the energy of the boundstate�soliton. If we add one �parti
le� to the system and the energy of this boundJournal of Mathemati
al Physi
s, Analysis, Geometry, 2008, vol. 4, No. 4 539
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reases, then we have a stable situation. If by adding one �parti
le�the level ��2 is pushed towards the 
ontinuous spe
trum, then su
h a soliton isunstable.At d = 3 the derivative �Ns=��2 < 0 and therefore 3D solitons are unsta-ble (the modulational instability). For the two-dimensional 
ase the Vakhitov�Kolokolov 
riterion (35) gives an absen
e of linear exponential instability. A moredetailed analysis in this 
ase yields the power type instability (for details see thesurvey [21℄ and [22℄).Thus, the solitons are stable only in the one-dimensional 
ase, while in thetwo-dimensional (
riti
al) and three-dimensional 
ases they are unstable and 
anbe 
onsidered as separatrix solutions separating 
ollapsing solutions from the dis-persive ones [27℄.This is probably the simplest method for explaining the well-known empiri
alfa
t that solitons, as a rule, exist only in one-dimensional systems. For multidi-mensional systems the stable solitons are rare and 
an only appear as a result oftopologi
al 
onstraints or of a me
hanism that removes Cherenkov singularities(whi
h is dis
ussed in the present paper). The latter, as 
an be easily understood,is due to the existen
e of a 
ertain 
lass of symmetry.4. From Super
riti
al to Sub
riti
al Bifur
ationsFor sub
riti
al bifur
ation at the 
riti
al velo
ity the soliton undergoes a jumpin its amplitude. In this 
ase the 
orresponding theory 
an be developed near thetransition point between sub
riti
al and super
riti
al bifur
ations (in analogy withthe tri-
riti
al point for phase transitions). In the series of papers [11, 13, 28�30℄it was shown that in this 
ase the soliton behavior 
an be des
ribed by means ofthe generalized nonlinear S
hr�odinger equation (NLSE) for the envelope  , whi
hin the one-dimensional 
ase is as follows:i� �t � �2!0 + !0002  xx � �j j2 + 4i�j j2 x + 
 bkj j2 + 3Cj j4 = 0; (36)where !0 � !(k0) and k0 are the 
arrying frequen
y and the wave number, res-pe
tively, �2 = (V
r � V )=V
r � 1, !000 the se
ond derivative of !(k) taken atk = k0. Here the four-wave 
oupling 
oe�
ient � is assumed to have additionalsmallness 
hara
terizing the proximity to the transition from super
riti
al to sub-
riti
al bifur
ations. The transition point is de�ned from the equation � = 0.For example, for the interfa
ial deep-water waves propagating along the interfa
ebetween two ideal �uids in the presen
e of 
apillarity [28, 29℄� = k301 + � �A2
r �A2� ;
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Bifur
ations of Solitary Waveswhere � is the density ratio, A = (1 � �)=(1 + �) the Atwood number, A2
r =5=16 and �
r = (21 � 8p5)=11, as it was shown in [13℄. For � < �
r, the four-wave 
oupling 
oe�
ient � is negative, and the 
orresponding nonlinearity is ofthe fo
using type. In this 
ase, the solitary waves near the 
riti
al velo
ity V
rare des
ribed by the stationary (�=�t = 0) NLSE and undergo a super
riti
albifur
ation at V = V
r [13℄. For � > �
r, the 
oupling 
oe�
ient 
hanges sign and,as a result, the bifur
ation be
omes sub
riti
al. For water waves in �nite depthh the 
oe�
ient � 
hanges its sign at �
r = k0h � 1:363 [31℄ while !000 is alwaysnegative. Thus the nonlinearity belongs to the fo
using type for �(= kh) > �
r andrespe
tively be
omes defo
using in the region � < �
r [31, 32℄. In nonlinear opti
s,as shown in [11℄, a de
rease of � (Kerr 
onstant) 
an be provided by the intera
tionof light pulses with a
ousti
 waves (Mandelstamm�Brillouin s
attering).Be
ause of smallness of � we keep in (36) the following order nonlinear terms:the gradient term (� �) responsible for self-steepening of the pulse (analog ofthe Lifshitz term in phase transitions), the nonlo
al term (due to presen
e ofthe integral operator bk, the Fourier transform of its kernel is equal to jkj) andthe six-wave nonlinear term with 
oupling 
oe�
ient C. Two additional 4-waveintera
tion terms, both lo
al and nonlo
al, appear as a result of expansion of thefour-wave matrix element Tk1k2k3k4 in powers of the small parameters �i = ki�k0:Tk1k2k3k4 = �2� + �2� (�1 + �2 + �3 + �4) (37)� 
8� (j�1 � �3j+ j�2 � �3j+ j�2 � �4j+ j�1 � �4j):The existen
e of nonlo
al 
ontribution in the expansion is 
onne
ted with non-analyti
al dependen
e of the matrix element T in its arguments. For interfa
ialdeep-water waves (IW) this nonanalyti
ity originates from the solution of Lapla
eequation for the hydrodynami
 potential and its redu
tion to the moving inter-fa
e. For instan
e, for water waves (WW) with a �nite depth the nonlo
al termis absent [32℄ as well as for ele
tromagneti
 waves in nonlinear diele
tri
s [11℄be
ause of the analyti
ity of matrix elements with respe
t to frequen
ies, whi
his a 
onsequen
e of 
ausality (see, for example, Refs. [11, 33℄). In the latter 
asethe spatial dispersion e�e
ts are relativisti
ally small and 
an be negle
ted.For both IW and WW near the transition point, !000C is positive; moreover, 
is also positive for IW, and therefore the 
orresponding nonlinearities are fo
using,thus providing the existen
e of lo
alized solutions. Depending on the sign of �there exist two bran
hes of solitons. For IW they were found numeri
ally [28, 29℄using the Petviashvili s
heme [34℄. Expli
it solutions for both kinds of IW solitons
an be obtained in the limiting 
ase only when V ! V
r. For negative � theseare the 
lassi
al NLS solitons with a se
h shape. For the sub
riti
al bifur
ationat V = V
r the soliton amplitude remains �nite with algebrai
 de
ay (� 1=jxj)Journal of Mathemati
al Physi
s, Analysis, Geometry, 2008, vol. 4, No. 4 541
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al nonlinearity is absent (
 = 0), the solitonsolutions 
an be found expli
itly. For both bran
hes at large � the number ofwaves N = R j j2dx approa
hes from below and above the same value N
r whi
h
oin
ides with the number of waves N on the solitons with � = 0. For the solitonsin �bers this property means that the energy of opti
al pulse saturates tendingto the 
onstant value with a de
rease of the pulse duration.On the other hand, all solitons of (36) are stationary points of the energy Efor �xed number of waves : Æ(E + �2N) = 0, where the energy in dimensionlessvariables is given byE = Z �j xj2 + �2 j j4 + i�( �x �  x �)j j2 � 
2 j j2k̂j j2 � Cj j6� dx: (38)This allows one to use the Lyapunov theorem in the analysis of their stability.Here, for the IW, � � (V
r � V )1=2j�� �
rj�1, C = 319=1281 and� = sign(�� �
r); � = 6=p427; 
 = 32=p427; (39)and for the WW 
ase (
ompare with [32℄)� = sign(�
r � �); � � �0:397; C � 0:176: (40)As shown in [11, 28, 29, 32℄, for N < N
r solitons 
orresponding to the super
riti-
al bran
h realize the minimum values of the energy and therefore they are stablein the Lyapunov sense, i.e., stable with respe
t to not only small perturbationsbut also against �nite ones. In parti
ular, the boundedness of E from below 
anbe viewed if one 
onsiders the s
aling transformation  = (1=a)1=2 s(x=a) retain-ing the number of waves N , where  =  s(x) is the soliton solution. Under thistransform E be
omes a fun
tion of the s
aling parameter a:E (a) = �1a � 12a2� �2 Z j sj4 dx: (41)It is worth noting that the dispersion term and all nonlinear terms in E, ex
eptR �2 j j4dx, have the same s
aling dependen
e / a�2. The latter means that at� = 0 (36) 
an be related to the 
riti
al NLS equation like the two-dimensional
ubi
 NLS equation. From (41) it is also seen that for � < 0 E(a) has a min-imum 
orresponding to the soliton. Unlike in the super
riti
al 
ase, the s
alingtransformation for another soliton bran
h with � > 0 gives a maximum of E(a)on solitons and unboundedness of E as a ! 0. Under the gauge transformation =  sei�, on the 
ontrary, the energy rea
hes a minimum on soliton solutionsand 
onsequently the solitons with � > 0 represent saddle points. This indi
atesa possible instability of solitons for the whole sub
riti
al bran
h, at least withrespe
t to �nite perturbations.542 Journal of Mathemati
al Physi
s, Analysis, Geometry, 2008, vol. 4, No. 4



Bifur
ations of Solitary WavesWe 
onsider this question in detail and emphasize a nonlinear stage of insta-bility following to our re
ent paper [30℄. This problem, indeed, is not trivial inspite of a 
lose similarity with the 
riti
al NLSE. It is worth noting that (36) at� = 
 = C = 0 represents an integrable model (the so-
alled derivative NLSE)[35℄, and exponentially de
aying solitons in this model are stable. It is more orless evident also that small 
oe�
ients 
; C 
annot break the stability of soli-tons. This means that in the spa
e of parameters we may expe
t the existen
e ofa threshold. Above this, the threshold solitons must be unstable and the deve-lopment of this instability may lead to 
ollapse, i.e., the formation of a singularityin �nite time.Consider the energy (38) written in terms of amplitude r and phase ' ( =rei'): E = Z �r2x + �2 r4 � 
2 r2bkr2 � 13r6 + r2 �'x + �r2�2� dx; (42)where by an appropriate 
hoi
e of the new dimensionless variables the renormal-ized 
onstant ~C = C + �2 
an be taken equal to 1/3. Hen
e one 
an see that theenergy takes its minimum value when the last term in (42) vanishes, i.e. when'x + �r2 = 0: (43)The integration of this equation gives an x�dependen
e for the phase that is
alled the 
hirp in nonlinear opti
s. It is interesting to note that the remainingpart of the energy does not 
ontain the phase at all.First, study the lo
al model when 
 = 0. Let the energy be negative insome region 
 : E
 < 0. Then, following [36, 26℄, one 
an establish that dueto radiation of small amplitude waves E
 < 0 
an only de
rease, be
oming moreand more negative, but the maximum value of j j, a

ording to the mean valuetheorem, 
an only in
rease: maxx2
 j j4 � 3jE
jN
 : (44)This pro
ess is possible only for the energies whi
h are unbounded from below.In a

ordan
e with (41) su
h a situation is realized when � > 0. In this 
ase theradiation leads to the appearan
e of in�nitely large amplitudes r. However, it isimpossible to 
on
lude that the singularity formation develops in �nite time.For 
 > 0 the estimations on the maximum value of j j are not as transparentas they are for the lo
al 
ase. Instead of (44), it is possible to obtain a similarestimate maxx j j4 � 3jEjN :However, it is expressed through the total energy E and the total number ofwaves N . Besides, two inequalities must be satis�ed: E < 0 and N < 2N2
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E.A. Kuznetsov, D.S. Agafontsev, and F. DiasFor interfa
ial waves, N2 � 1:39035 > N
r � 1:3521. Thus, the maximum am-plitude in this 
ase is bounded from below by a 
onservative quantity and thismaximum 
an never disappear during the nonlinear evolution.Now we 
onsider the situation where the self-steepening pro
ess 
anbe negle
ted (� = 0). In this 
ase (36) be
omesi t +  xx � �2 � �j j2 + 
 bkj j2 + 3Cj j4 = 0:It is possible to obtain a 
riterion of 
ollapse using the virial equation (for details,see [37, 36, 38℄). This equation is written for the positive de�nite quantityR = Z x2j j2dx;whi
h, up to the multiplier N , 
oin
ides with the mean square size of the distri-bution. The se
ond derivative of R with respe
t to time is de�ned by the virialequation Rtt = 8�E � �4 Z j j4dx� : (45)Hen
e, for � > 0 one 
an easily obtain the following inequality:Rtt < 8E;whi
h yields, after double integration, R < 4Et2+�1t+�2. Here �1;2 are 
onstantswhi
h are obtained from the initial 
onditions. Hen
e, it follows that for the stateswith negative energy, E < 0, there always exists su
h a moment of time t0 whenthe positive de�nite quantity R vanishes. At this moment of time the amplitudebe
omes in�nite. Therefore the 
ondition E < 0 represents a su�
ient 
riterion of
ollapse (
ompare with [37, 36℄). However, it is ne
essary to add that this 
riterion
an be improved in the same way as in [39, 27℄ for the three-dimensional 
ubi
NLS equation. From (45) one 
an see that for the stationary 
ase (on the solitonsolution) Es = �4 R j sj4dx, in agreement with (41). As it was shown before, for� > 0 the soliton realizes a saddle point of E for �xed N . It follows from (41) thatfor small a the energy be
omes unbounded from below, but for a > 1 it de
reases(this 
orresponds to spreading). Therefore in order to a
hieve a blow-up regimethe system should pass through the energeti
 barrier equal to Es. Thus, for this
ase the 
riterion E < 0 must be 
hanged into the sharper 
riterion: E < Es.This 
riterion 
an be obtained rigorously using step by step the s
heme presentedin [39, 27℄ and therefore we skip its derivation.
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xFig. 1: Initial (solid line) and �nal (dashed line) at t = 1:18 distributions for j j,interfa
ial waves, selfsimilar variables. The soliton amplitude was in
reased by1%, � = 1, � = 1. The ratio between �nal and initial soliton amplitudes in thephysi
al variables is about 11.In order to verify all the theoreti
al arguments about the formation of 
ollapsepresented above we performed a numeri
al integration of the NLSE (36) for � > 0by using the standard 4th order Runge�Kutta s
heme. The initial 
onditions were
hosen in the form of solitons but with larger amplitudes than for the stationarysolitons. In
reasing in the initial amplitude varied in the interval from 0.1% up to10%. The initial phase was given by means of (43). In all runs with theses initial
onditions we observed a high in
rease of the soliton amplitude up to a fa
tor 14with a shrinking of its width. In a peak region the pulses for both IW and WW
ases behaved similarly. Near the maximum the pulse peak was almost symmetri
:anisotropy was not visible. The di�eren
e was observed in the asymptoti
 regionsfar from the pulse 
ore, where the pulses had di�erent asymmetries for IW andWW be
ause of the opposite sign for � (see (39), (40)). For the given values of �we did not observe the simultaneous formation of two types of singularities withblowing-up amplitudes and sharp gradients as it was demonstrated in the re
entnumeri
al experiments for the three-dimensional 
ollapse of short opti
al pulsesdue to self-fo
using and self-steepening in the framework of the generalized NLSequation [40℄ and equations of the Kadomtsev�Petvishvili type [41℄.
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xFig. 2: Initial (solid line) and �nal (dashed line) at t = 2:7192 distributions forj j, WW solitons, selfsimilar variables. The soliton amplitude was in
reased by1%, � = 1, � = 1. The ratio between �nal and initial soliton amplitudes in thephysi
al variables is about 11.In our numeri
al 
omputations we found that the amplitude and its spatial
ollapsing distribution developed in a selfsimilar manner. Near the 
ollapse pointin the equation (with � > 0) one 
an negle
t the term proportional to �. In thisasymptoti
 regime (36) admits selfsimilar solutions,r(x; t) = (t0 � t)�1=4f � x(t0 � t)1=2� ; (46)where t0 is the 
ollapse time.To verify that we approa
hed the asymptoti
 behavior given by (46), at ea
hmoment of time we normalized the  -fun
tion by the maximum (in x) of itsmodulus max j j �M and introdu
ed new self-similar variables, (x; t) =M (�; �); � =M2(x� xmax); � = lnM: (47)Here xmax is the point 
orresponding to the maximum of j j. In 
omparisonwith those given by (46), new variables are more 
onvenient be
ause they do notrequire the determination of the 
ollapsing time t0.Fig. 1 and Fig. 2 show typi
al dependen
es of j j as a fun
tion of the self-similar variable � at t = 0 (solid line) and at the �nal time (dashed line) for546 Journal of Mathemati
al Physi
s, Analysis, Geometry, 2008, vol. 4, No. 4
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tFig. 3: Dependen
e of 1=max j j4 on time. Interfa
ial waves.both the IW and WW 
ases. In both �gures one 
an see a fairly good 
oin
iden
ebetween the initial soliton distribution and the �nal one at the 
entral (
ollapsing)part of the pulse and asymmetry of the pulse at its tails due to self-steepening.The latter demonstrates that the 
ollapse has a selfsimilar behavior. The form ofthe 
entral part of the pulse approa
hes the soliton shape be
ause asymptoti
allythe NLS model (36) tends to the 
riti
al NLS system. It should be mentioned thatthis has been well known for the 
lassi
al two-dimensional NLS equation sin
e thepaper by Fraiman [42℄.Fig. 3 shows how 1=max j j4 depends on time. This dependen
e is almostlinear in the 
orresponden
e with the selfsimilar law (46). If the initial amplitudeswere less than the stationary soliton values, then the distribution would spreadin time dispersively, in full 
orresponden
e with qualitative arguments based onthe s
aling transformations (41).A
knowledgments. The authors thank A.I. Dya
henko for valuable dis
us-sions 
on
erning the numeri
al simulations. We a
knowledge support from CNRSunder the framework of PICS No. 4251 and RFBR under Grant 07-01-92165.The work of DA and EK was also supported by RFBR (Grant 06-01-00665),the Program of RAS "Fundamental problems in nonlinear dynami
s" and GrantNSh 7550.2006.2.
Journal of Mathemati
al Physi
s, Analysis, Geometry, 2008, vol. 4, No. 4 547



E.A. Kuznetsov, D.S. Agafontsev, and F. DiasReferen
es[1℄ V.E. Zakharov, S.V. Manakov, S.P. Novikov, and L.P. Pitaevskii, Teoriya solitonov.Nauka, Mos
ow, 1980. (Russian) [In Engl.: Soliton Theory, Plenum Press, New York,London, 1984.℄[2℄ A.C. Newell, Solitons in Mathemati
s and Physi
s. SIAM, Philadelphia, 1985.[3℄ L.D. Landau and E.M. Lifshitz, Statisti
al Physi
s. Part 1. Pergamon Press, NewYork, 1980. [Russian orig.: Nauka, Mos
ow, 1995, 521.℄[4℄ M.S. Longuet-Higgins, Capillary-Gravity Waves of Solitary Type on Deep Water.� J. Fluid Me
h. 200 (1989), 451�470.[5℄ G. Iooss and K. Kir
hg�assner, Bifur
ation d'Ondes Solitaires en Pr�esen
e d'uneFaible Tension super�Cielle. � C.R. A
ad. S
i. Paris, S�er. I. 311 (1990), 265�268.[6℄ J.-M. Vanden-Broe
k and F. Dias, Gravity-Capillary Solitary Waves in Water ofIn�nite Depth and Related Free-Surfa
e Flows. � J. Fluid Me
h. 240 (1992), 549�557.[7℄ F. Dias and G. Iooss, Gravity-Capillary Solitary Waves with Damped Os
illations.� Physi
a D 65 (1993), 399�423.[8℄ M.S. Longuet-Higgins, Capillary-Gravity Waves of Solitary Type and EnvelopeSolitons on Deep Water. � J. Fluid Me
h. 252 (1993), 703�711.[9℄ T.R. Akylas, Envelope Solitons with Stationary Crests. � Phys. Fluids 5 (1993),789�791.[10℄ V.E. Zakharov and E.A. Kuznetsov, Opti
al Solitons and Quasisolitons. � Z. �Eksp.Teor. Fiz. 113 (1998), 1892. [JETP 86 (1998), 1035�1046.℄ (Russian)[11℄ E.A. Kuznetsov, Hard Soliton Ex
itation: Stability Investigation. � Z. Eksp. Teor.Fiz. 116 (1999), 299. [JETP 89 (1999), 163.℄ (Russian)[12℄ L.D. Landau, On the Problem of a Turbulen
e. � Dokl. Akad. Nauk USSR 44 (1944),339; L.D. Landau and E.M. Lifshitz, Fluid me
hani
s. 3rd Engl. Ed. PergamonPress, New York, 1986. [Russian orig., 3rd Ed.: Nauka, Mos
ow, 1986.℄[13℄ F. Dias and G. Iooss, Capillary-Gravity Interfa
ial Waves in Deep Water. � Eur.J. Me
h. B/Fluids 15 (1996), 367�390.[14℄ G. Iooss, Existen
e d'Orbites Homo
lines �a un �Equilibre Elliptique, pour un Syst�emeR�eversible. � C.R. A
ad. S
i. Paris 324 (1997), 933�997.[15℄ V.E. Zakharov and E.A. Kuznetsov, Hamiltonian Formalism for Nonlinear Waves. �Usp. Fiz. Nauk 167 (1997), 1137�1168. (Russian) [Phys. Usp. 40 (1997), 1087�1116.℄[16℄ J. Ny
ander, Steady Vorti
es in Plasmas and Geophysi
al Flows. � Chaos 4 (1994),253.[17℄ E.M. Gromov and V.I. Talanov, Nonlinear Dynami
s of Short Pulses in DispersiveMedia. � Z. �Eksp. Teor. Fiz. 110 (1996), 137. [JETP 83 (1996), 73℄ (Russian);Short Opt. Solitons in Fibers. � Chaos 10 (2000) 551�558.548 Journal of Mathemati
al Physi
s, Analysis, Geometry, 2008, vol. 4, No. 4



Bifur
ations of Solitary Waves[18℄ V.E. Zakharov and A.B. Shabat, Exa
t Theory of Two-Dimensional Self-Fo
usingand One-Dimensional Self-Modulation of Waves in Nonlinear Media. � Z. Eksp.Teor. Fiz. 61 (1996), 118�134. [Sov. Phys. JETP 34 (1972), 62�69.℄ (Russian)[19℄ V.E. Zakharov, Handbook of Plasma Physi
s. 2. Basi
 Plasma Physi
s II, (A. Galeevand R. Sudan, Eds.). North�Holland, Amsterdam, 1984.[20℄ N.G. Vakhitov and A.A. Kolokolov, Stationary Solutions of the Wave Equation inMedia with Saturated Nonlinearity. � Izv. VUZ. Radio�zika 16 (1973), 1020�1028.[Radiophys. Quant. Ele
tron. 16 (1973), 783.℄[21℄ E.A. Kuznetsov, A.M. Ruben
hik, and V.E. Zakharov, Soliton Stability in Plasmasand Fluids. � Phys. Rep. 142 (1986), 103.[22℄ E.A. Kuznetsov and S.K. Turitsyn, Talanov Transformations for Sel�o
using Prob-lems and Instability of Waveguides. � Phys. Let. 112A (1985), 273.[23℄ O.A. Ladyzhenskaya, The Mathemati
al Theory of Vis
ous In
ompressible Flow.Fizmatgiz, Mos
ow, 1961. (Russian)[24℄ L. Nirenberg, An Extended Interpolation Inequality. � Ann. S
i. Norm. Sup. Pisa20 (1966), No. 4, 733�737.[25℄ M.I. Weinstein, Nonlinear S
hrodinger Equations and Sharp Interpolation Esti-mates. � Comm. Math. Phys. 87 (1983), 567�576.[26℄ E.A. Kuznetsov, Wave Collapse in Plasmas and Fluids. � Chaos 6 (1996), 381�390.[27℄ E.A. Kuznetsov, J.J. Rasmussen, K. Rypdal, and S.K. Turitsyn, Sharper Criteriaof the Wave Collapse. � Physi
a D 87 (1995), 273�284.[28℄ D.S. Agafontsev, F. Dias, and E.A. Kuznetsov, Bifur
ations and Stability of InternalSolitary Waves. � Pis'ma v ZhETF 85 (2006), 241. (Russian) [JETP Let. 83 (2006),201.℄[29℄ D.S. Agafontsev, F. Dias, and E.A. Kuznetsov, Deep-Water Internal Solitary WavesNear Criti
al Density Ratio. � Physi
a D 225 (2007), 153.[30℄ D.S. Agafontsev, F. Dias, and E.A. Kuznetsov, Collapse of Solitary Wavesnear Transition from Super
riti
al to Sub
riti
al Bifur
ations. � Pis'ma ZhETF87 (2008), 767�771. (Russian) [JETP Let. 87 (2008), No. 12, 667�671.℄,arXiv:0805.1620v1.[31℄ G.B. Whitham, Nonlinear Dispersive Waves. � Pro
. Rod. So
. A. 283 (1965), 238.[Eur. J. Me
h. B/Fluids 22 (1965), 273.℄[32℄ D.S. Agafontsev, Deep-Water Internal Solitary Waves near Criti
al Density Ratio.� Pis'ma ZhETF 87 (2008), 225. (Russian)[33℄ L.D. Landau and E.M. Lifshitz, Ele
trodynamika Sploshnykh Sred. Nauka, Mos
ow,1982. (Russian) [In Engl.: Ele
trodynami
s of Continuous Media, 2-nd Ed. London,Pergamon, 1984.℄[34℄ V.I. Petviashvili, On the Equation for Unusual Soliton. � Fizika Plasmy 2 (1976),469. [Sov. J. Plasma Phys. 2 (1976), 247.℄Journal of Mathemati
al Physi
s, Analysis, Geometry, 2008, vol. 4, No. 4 549



E.A. Kuznetsov, D.S. Agafontsev, and F. Dias[35℄ D.J. Kaup and A.C. Newell, Stationary Solutions of the Wave Equation in theMedium with Saturated Nonlinearity. � J. Math. Phys. 19 (1978), Iss.4, 798�801.[36℄ V.E. Zakharov, Collapse of Langmure Waves. � Z. Eksp. Teor. Fiz. [Sov. Phys.JETP 35 (1972), 908.℄[37℄ S.N. Vlasov, V.A. Petrish
hev, and V.I. Talanov, Averaged Des
ription of WaveBeams in Linear and Nonlinear Media (the Method of Moments). � Izv. VUZ. Ra-dio�zika 14 (1971), 1353. (Russian) [Radiophys. Quant. Ele
tron. 14 (1974), 1062.℄[38℄ V.E. Zakharov, Collapse and Self-Fo
using of Langmuir Waves. Handbook ofPlasma Physi
s. 2. Basi
 Plasma Physi
s. (A.A. Galeev and R.N. Sudan, Eds.)Elsevier, North-Holland, 1984.[39℄ S.K. Turitsyn, Nonstable Solitons and Sharp Criteria for Wave Collapse. � Phys.Rev. E47 (1993), R1316.[40℄ N.A. Zharova, A.G. Litvak, and V.A. Mironov, Self-Fo
using of Wave Pa
kets andEnvelope Sho
k Formation in Nonlinear Dispersive Media. � Z. Eksp. Teor. Fiz.130 (2006), 21. [JETP 103 (2006), 15.℄ (Russian)[41℄ A.A. Balakin, A.G. Litvak, V.A. Mironov, and S.A. Skobelev, Stru
tural Features ofthe Self-A
tion Dynami
s of Ultrashort Ele
tromagneti
 Pulses. � Zh. Eksp. Teor.Fiz. 131 (2007), 408. [JETP 104 (2007), 363.℄ (Russian)[42℄ G.M. Fraiman, Asymptoti
 Stability of Manifold of Self-Similar Solutions in Self-Fo
using. � Z. Eksp. Teor. Fiz. 88 (1985), 390. (Russian) [Sov. Phys. JETP 61(1985), 228.℄

550 Journal of Mathemati
al Physi
s, Analysis, Geometry, 2008, vol. 4, No. 4


