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E.A. Kuznetsov, D.S. Agafontsev, and F. DiasIt is well known that if the veloity V of a moving objet is suh that theequation !k = k �V (1)has a nontrivial solution where ! = !k is the dispersion law for linear wavesand k is the wave vetor, then this objet will lose energy due to Cherenkovradiation. This also pertains, to a large extent, to solitons as loalized stationaryentities. They annot exist if the resonane ondition (1) is satis�ed. Henefollows the �rst, and simplest, seletion rule for solitons: the soliton veloity mustbe either less than the minimum phase veloity of linear waves or greater thanthe maximum phase veloity. The boundary separating the region of existeneof solitons from the resonane region (1) determines the ritial soliton veloityVr. As it is easily seen, this veloity oinides with the group veloity of linearwaves at the touhing point where the straight line ! = kV is tangent to thedispersion urve ! = !k (in the multidimensional ase � the point of tangeny ofthe plane ! = k �V to the dispersion surfae). If touhing ours from below, thenthe ritial veloity determines the maximum soliton veloity for this parameterrange and, onversely, for touhing from above Vr oinides with the minimumphase veloity. Two regimes are possible in rossing this boundary orrespondingto superritial or subritial bifurations (soft or rigid exitation regimes).While approahing the superritial bifuration point from below or abovethe soliton amplitude vanishes smoothly aording to the same � Landau � law(/ jV � Vrj1=2) as for the phase transitions of the seond kind (see, for instane,[3℄). The behavior of solitons in this ase is ompletely universal, both for theiramplitudes and their shapes. As V ! Vr solitons transform into osillating wavetrains with the arrying frequeny orresponding to the extremal phase veloityof linear waves Vr. The shape of the wave train envelope oinides with thatfor the soliton of the standard � ubi � nonlinear Shr�odinger equation (NLS).The soliton width happens to be proportional to jV � Vrj�1=2.Bifurations of solitons were �rst observed for gravity-apillary waves in nu-merial simulations by Longuet�Higgins [4℄ and explained later in [5�9℄. Thenthe bifuration � a transition from periodi solutions to a soliton solution � wasstudied in [5℄ and [6℄ using normal forms. The stationary NLS for gravity-apillarywave solitons was derived in [8℄. In [10℄ it was shown that this mehanism an beextended to optial solitons. In fat, this paper provided the �rst demonstrationof the universality of soliton behavior near a superritial bifuration for waves ofarbitrary nature. It is worth noting that the universal harater of solitons allowsnot only to �nd their shapes, but also to study their stability. This analysis, asstated in [11℄, shows that near superritial bifuration the solitons are stable onlyin the one-dimensional ase.The question of whether the bifuration is superritial or subritial dependson the harater of nonlinear interation. The superritial bifuration ours for530 Journal of Mathematial Physis, Analysis, Geometry, 2008, vol. 4, No. 4



Bifurations of Solitary Wavesa fousing nonlinearity when the produt !00T < 0, where !00 = �2!=�k2 is theseond derivative of the frequeny with respet to the wave number, taken at thetouhing point k = k0, and T is the value of the matrix element Tk1k2k3k4 of thefour-wave interation for ki = k0. If !00T > 0, whih orresponds to a defousingnonlinearity, then there are no solitons � loalized solutions � with amplitudevanishing gradually as V ! Vr. In the theory of phase transitions this orre-sponds to a �rst-order phase transition, and in the theory of turbulene, usingLandau's terminology [12℄, it orresponds to a rigid regime of exitation. Thetransition through the ritial veloity is aompanied by a jump in the solitonamplitude. The magnitude of the jump is determined by the next higher-orderterms in the expansion of the Hamiltonian. Like for the �rst-order phase transi-tions, the universality of soliton behavior is no longer guaranteed in this situation.When the amplitude jump at this transition is small, it is enough to keep a �nitenumber of next order terms in the Hamiltonian expansion to desribe suh a bifur-ation. In the phase transitions this orresponds to a �rst-order phase transitionlose to a seond-order transition, whih ours, for example, near a tri-ritialpoint. As shown in [13℄, this situation arises for one-dimensional internal-wavesolitons propagating along the interfae between two ideal �uids with di�erentdensities in the presene of both gravity and apillarity. Aording to [13℄ thematrix element T in this ase vanishes for density ratio �1=�2 = (21 � 8p5)=11.This type of bifurations an also be met for gravity water waves with �nite depthwhen the matrix element T = 0 at �r = k0h � 1:363. In nonlinear optis, asshown in [11℄, a derease of T (Kerr onstant) an be provided by the interationof light pulses with aousti waves (Mandelstamm�Brillouin sattering). If thejump in soliton amplitude is of order one, then we need to keep all the remainderterms in the Hamiltonian expansion.In this paper we give a brief review of the reent results devoted to thissubjet. The main attention will be paid to the universality of soliton behaviorand stability of solitons while approahing the superritial bifuration point.The paper is organized as follows. The next setion is devoted to stationarysolitons for arbitrary nonlinear wave media and their properties near the super-ritial bifuration. Setion 2 deals with the stability of solitons based on theLyapunov theorem and the Hamiltonian approah. It is shown by means of inte-gral estimates of Sobolev type in their multipliative variant (Gagliardo�Nirenberginequalities) that only one-dimensional solitons are Lyapunov stable. It is worthnoting that, in ontrast to the method of normal forms, whih is extensively usedin [5, 6, 13, 14℄ for studying bifurations of solitons, the Hamiltonian approah isfundamental for investigating soliton stability. In the method of normal forms, theintrodution of envelopes is not unique. Consequently, the Hamiltonian equationsof motion lose their initial Hamiltonian struture after their averaging. In thissetion it is shown that near the bifuration point the multi-dimensional solitonsJournal of Mathematial Physis, Analysis, Geometry, 2008, vol. 4, No. 4 531



E.A. Kuznetsov, D.S. Agafontsev, and F. Diasare unstable due to the modulational instability. In the last setion we onsiderwhih nonlinear e�ets must be taken into aount near the transition from super-ritial to subritial bifurations and how they hange the shape of solitons andtheir stability. 2. Superritial BifurationsLet us onsider a purely onservative nonlinear wave medium whih an bedesribed by the HamiltonianH = Z !kjakj2dk+Hint; (2)where !k is the dispersion law of small-amplitude waves, ak are normal amplitudesof the waves, and the Hamiltonian Hint desribes the nonlinear interation of thewaves.The equations of motion of the medium an be written in terms of the ampli-tudes ak in the standard manner�ak�t + i!kak = �iÆHintÆa�k ; (3)so that in the absene of an interation the system onsists of a olletion ofnoninterating osillators (waves):ak(t) = ak(0)e�i!kt:Equation (3) desribes the dynamis in the wave number spae. To go bak tothe physial spae one needs to perform the inverse Fourier transform (x; t) = 1(2�)d=2 Z ak(t)eik�rdk: (4)Originally, the funtion  (x; t) is related to the harateristis of the medium(�utuations of the density and veloity of the medium, eletri and magneti�elds, and so on) by a linear transformation (see, for example, [15℄). It is impor-tant that if  (x; t) is a periodi funtion of the oordinates, then its spetrumak(t) onsists of a sum of Æ-funtions. For loalized distributions  (x; t) ! 0 asjxj ! 1. The Fourier amplitude ak(t), being a loalized funtion of k, does notontain Æ-funtion singularities.Let us now onsider the solution of (3) in the form of a soliton propagatingwith the onstant veloity V:  (x; t) =  (x�Vt):532 Journal of Mathematial Physis, Analysis, Geometry, 2008, vol. 4, No. 4



Bifurations of Solitary WavesIn this ase the entire dependene of ak on time t is ontained in the osillatingexponent: ak(t) = ke�ik�Vt;where by virtue of (3) the amplitude k will satisfy the equation(!k � k �V)k = �ÆHÆ�k � fk: (5)The di�erene !k � k �V appearing in this equation will be positive for all k ifthe soliton veloity is less than the minimum phase veloityjVj < min(!k=k): (6)Conversely, the di�erene will be negative for all k if the soliton veloity is greaterthan the maximum phase veloityjVj > max(!k=k): (7)We will show that a soliton solution is possible if the ondition (6) (or (7)) issatis�ed. Let us assume the opposite to be true � let the onditions (6) and (7)be violated, i.e., the equation (1) has a solution. For simpliity, we will assumethat it is unique: k = k0. Then, sine xÆ(x) = 0, the homogeneous linear equation(!k � k �V)Ck = 0possesses a nontrivial solution in the form of a monohromati waveCk = AÆ(k � k0):In this ase (5) an be written (by virtue of the Fredholm alternative)k = AÆ(k� k0) + fk!k � k �V with fk0 = 0: (8)This equation, in ontrast to (5), ontains a free parameter � the omplexamplitude A. It an be solved, for example, by iterations, taking AÆ(k � k0) asthe zeroth term. It is important that beause of the nonlinearity as a result ofiterations one will obtain multiple harmonis with k = nk0 where n is integer.The solution will onsist of a olletion of Æ-funtions. Correspondingly, in phy-sial spae the solution will be a periodi funtion of the oordinates, i.e., it willbe nonloalized. Hene follows the �rst seletion rule for solitons: the di�erene!k � k �V must be sign-de�nite, whih is equivalent to the requirements (6) or(7). In other words, it means the absene of Cherenkov radiation.Journal of Mathematial Physis, Analysis, Geometry, 2008, vol. 4, No. 4 533



E.A. Kuznetsov, D.S. Agafontsev, and F. DiasIn this entire sheme, however, there is an important exeption. Havingrepresented (5) in the form (8), we have in fat assumed that the singularity inthe expression fk!k � k �V (9)is nonremovable. This may not be the ase � the singularity in the denominatorin (9) ould be anelled with the numerator, i.e., it ould be removable [10℄.For example, this happens for the lassi soliton of the KdV equation, for equa-tions whih are generalizations of the KdV equation [16℄ for a ombination of theone-dimensional NLS and the MKdV equations [10, 17℄ integrated by the sameZakharov�Shabat operator [18℄ and so on. In all of these ases anellation oursas a result of the k dependene of the matrix elements. However, even in theseases, the seletion rule for solitons remains the same after the resonane (1) isremoved � the part remaining in the denominator must be sign-de�nite.In what follows the singularities in (9) are assumed to be nonremovable in theforbidden region, and we study the behavior of the soliton solution as the solitonveloity approahes the ritial value. For de�niteness, it is assumed that theplane ! = k �V is tangent to the dispersion surfae ! = !k from below, i.e., theriterion (6) holds. Let touhing our at the point k = k0. Then, instead of (8),in the allowed region k = fk!k � k �V :As the veloity V approahes the ritial value Vr, the denominator inthis expression beomes small near the touhing point, so that k gets a sharppeak at this point k = �12!������ + k0(Vr � V )��1 fk: (10)Here !�� = �2!=�k��k� is a symmetri, positive-de�nite, tensor of the seondderivatives, evaluated at k = k0, and � = k� k0.It is evident from (10) that as V approahes the ritial veloity, the width ofthe peak narrows as pVr � V , and the distribution orresponding to the mainpeak k = k0 approahes a monohromati wave. Aounting for nonlinearity, thespetrum ontains harmonis whih are multiples of k = k0. If it is assumed thatthe amplitude of the soliton vanishes gradually as V ! Vr (whih would orre-spond to a seond-order phase transition), then the solution  (x) (or, equivalently,k) an be sought as an expansion in terms of harmonis: (x0) = 1Xh=�1 n(X)eihk0�x0 ; x0 = x�Vt: (11)
534 Journal of Mathematial Physis, Analysis, Geometry, 2008, vol. 4, No. 4



Bifurations of Solitary WavesHere the small parameter � =p1� V=Vr (12)and the �slow� oordinate X = �x0 are formally introdued, so that  n(X) is theamplitude of the envelope of n-th harmoni. The assumption that the solitonamplitude vanishes ontinuously at V = Vr means that the leading term of theseries in (11) orresponds to the �rst harmoni, and all other harmonis are smallin the parameter �. This is the ondition under whih the nonlinear Shr�odingerequation is derived (see, for example, [10, 19, 2℄). In the present ase, we arriveat the stationary NLS�k0Vr�2 1 + 12!�� �2 1�X��X� +Bj 1j2 1 = 0 (13)at leading order in �, where B is related to the matrix ~Tk1k2k3k4 of four-waveinterations as B = �(2�)d ~Tk0k0k0k0 : (14)In this approximation the leading term in the interation Hamiltonian has theformHint = ~Tk0k0k0k02 Z �k1�k2k3k4Æk1+k2�k3�k4dk1dk2dk3dk4 = �B2 Z j 1j4dx;(15)and the tilde means renormalization of the vertex due to the three-wave intera-tion � in the present ase the interation with the zeroth and seond harmonis.As we have already noted, !�� in (13) is a symmetri positive-de�nite tensor.For this reason, performing a rotation to its prinipal axes and arrying out theorresponding extensions along eah axis, (13) an be transformed into the stan-dard form ��2 +� � �j j2 = 0; (16)where � = sign( ~T!��). Hene it follows, in the �rst plae, that soli-tons are possible only if � is negative (fousing nonlinearity when the produt~T!�� is negative) and, in the seond plae, that the amplitude of the solitons isproportional to � =p1� V=Vr;i.e., the amplitude vanishes aording to a square-root law, the size of the solitoninreases as 1=� as the veloity approahes the ritial value.In order to illustrate how this mehanism works onsider the simplest example,i.e., the time-dependent one-dimensional nonlinear Shr�odinger equationi� �t +  xx + 2j j2 = 0: (17)Journal of Mathematial Physis, Analysis, Geometry, 2008, vol. 4, No. 4 535



E.A. Kuznetsov, D.S. Agafontsev, and F. DiasAs is well known, this equation, unlike the general equation (3), has one additionalsymmetry, namely the gradient symmetry  !  ei�. To �nd the orrespondingsolution one should put  (x; t) = ei�t (x� V t), where  obeys the equationL(�i�x) � iV  x + � �  xx = 2j j2 : (18)For the present ase, in aordane with (1), the ondition for Cherenkov radiationwill be written as follows: kV = 
(k) or L(k) = 0 ; (19)where the dispersion law for the equation (18) takes the form
(k) = � + k2: (20)Hene one an see that for � < 0 the resonane ondition (19) is satis�ed for anyvalue of the veloity V ! Consequently solitons do not exist in this ase. This anbe heked diretly by solving equation (18): for � < 0 all solutions are periodior quasi-periodi. Soliton solutions are possible for positive �. Their veloitieslie in the range �2p� � V � 2p�. At the points k = �p� the dispersive urve
 = 
(k) touhes the straight line 
 = kVr. At these points the solution mustvanish in agreement with the general onsiderations. It diretly follows from theexat solution of (18): = ei�t eiV x0=2�kosh(�kx0) ; x0 = x� V t; �k =p� � V 2=4: (21)Solitons exist only for � > V 2=4: The upper boundary in this inequality de�nesthe ritial veloity Vr = 2p�:It is important to note also that for � > V 2=4 the operator L in the equation (18)is positive de�nite. 3. Stability of SolitonsTo inlude the time dependene in the averaged equations the amplitudes n in the expansion (11) must be assumed to depend not only on the �slow�oordinate X but also on the slow time T = �2t. Then a multisale expansiongives the nonstationary analog of the NLSEi t � �2 +� � �j j2 = 0 (22)instead of the stationary NLSE (16). The soliton stability problem for this equa-tion has been well studied (see, for example, [10℄ and [21℄). We reall the basi536 Journal of Mathematial Physis, Analysis, Geometry, 2008, vol. 4, No. 4



Bifurations of Solitary Wavespoints in the investigation of stability. The equation (22) as an equation forenvelopes inherits the anonial Hamiltonian form (3)i� �t = Æ ~HÆ � ; (23)where the Hamiltonian~H = �2N + Z (jr j2 � j j4)dr; (� = �1); (24)arises as a result of averaging the initial Hamiltonian. The equation (22) preserves,besides ~H, the total number N of partiles (adiabati invariant), so that solitonsare stationary points of the energy funtional E = ~H��2N with the �xed numberof partiles Æ(E + �2N) = 0: (25)The number of partiles (or intensity) in a soliton solution as a funtion of � hasthe form Ns = Z j j2dx = �2�d Z jg(�)j2d�; (26)where d is the dimension of the spae, and g(�) satis�es the equation�g +�g + jgj2g = 0:In the one-dimensional ase g = p2 seh � and, orrespondingly, Ns = 4�. In thetwo-dimensional ase Ns is independent of � for the entire family of solitons, whilein the three-dimensional ase Ns dereases with inreasing �. The dependene ofNs on �2 is ruial from the standpoint of soliton stability. It is obvious that themost dangerous disturbanes will be those having wave numbers lose to k = k0moving together with the soliton, i.e., modulation-type disturbanes.Aording to (25) the envelope solitons are stationary points of the energy Efor a �xed number of waves N . Therefore suh solutions will be stable in theLyapunov sense if they realize a minimum (or a maximum) of the energy for�xed N .Consider �rst the saling transformations leaving N unhanged, (x) = 1ad=2 s �xa� ; (27)where  s is the solitoni solution. The energy E under this transformationbeomes a funtion of the saling parameter a:E(a) = I1sa2 � I2sad ; (28)Journal of Mathematial Physis, Analysis, Geometry, 2008, vol. 4, No. 4 537



E.A. Kuznetsov, D.S. Agafontsev, and F. Diaswhere I1s = R jr sj2dx, I2s = R j sj4dx and � = �1. Hene it is easy to seethat in the one-dimensional ase the energy (28) is bounded from below and hasa minimum at a = 1 orresponding to the soliton solution. In this aseEs = �2�33 and 2I1s = I2s = 4�33 :The soliton also realizes a minimum of E with respet to another simple trans-formation, i.e., the gauge one,  0(x)!  0(x) exp[i�(x)℄, whih also preserves N ,E = Es + Z (�x)2 20dx:Thus, for d = 1 both simple transformations yield a minimum for the energy, thusindiating soliton stability for the one-dimensional geometry.Now we give an exat proof of this fat. The ruial point of this proof is basedon integral estimations of Sobolev type. These inequalities arise as the sequenesof general imbedding theorem. The (Sobolev) theorem says that a spae Lp anbe imbedded into the Sobolev spae W 12 if the spae dimensionD < 2p(p+ 4):This means that between the normskukp = �Z jujpdDx�1=p ; p > 0;kukW 12 = �Z (�2juj2 + jruj2)dDx�1=2 ; �2 > 0;there exists the following inequality (see, e.g., [23℄):kukp �MkukW 12 ; (29)where M is some positive onstant. For D = 1 and p = 4, the inequality (29) is1Z�1 j j4dx �M1 24 1Z�1 (�2j j2 + j xj2)dx352 : (30)Here it is straightforward to get a multipliative variant of the Sobolev inequality,the so-alled Gagliardo�Nirenberg inequality (GNI) [24℄ (see also [23, 25, 26℄).Use the saling transform x!�x in (29). Instead of (30) we have1Z�1 j j4dx �M1 24�2 1Z�1 j j2dx � �+ 1Z�1 j xj2dx � 1�352 :538 Journal of Mathematial Physis, Analysis, Geometry, 2008, vol. 4, No. 4



Bifurations of Solitary WavesThis inequality holds for any (positive) � inluding a minimal value for the r.h.s.The omputing of its minimum yields the GNI:I2�CN3=2I1=21 ; (31)where I1 = R j xj2dx, I2 = R j j4dx, and C is a new onstant. Then this inequa-lity an be improved by �nding the best (minimal possible) onstant C.To �nd Cbest onsider all extrema of the funtionalJf g = I2N3=2I1=21 : (32)The latter problem redues to the solution of stationary NLSE (16):��2 +  xx + 2j j2 = 0:Hene we �nd that the best onstant Cbest is a value of Jf g on the solitonsolution: Cbest = I2sN3=2I1=21s = 2I1=21sN3=2 : (33)This inequality allows us to obtain immediately a proof of 1D soliton stability.Substituting (31) into (24) results the following estimation for the energy:E � I1 � CbestI1=21 N3=2 = Es + (I1=21 � I1=21s )2: (34)The inequality beomes preise on the soliton solution, thus proving its stability.Note that this provides the stability of solitons not only with respet to smallperturbations, but also against �nite perturbations.In the three-dimensional ase, in ontrary, the funtion E(a) in (28) hasa maximum, orresponding to the soliton solution, and is unbounded from be-low as a! 0. The gauge transformation gives a minimum of E and therefore allsoliton solutions at d = 3 represent saddle points of the energy. That indiates apossible instability of solitons in this ase.The fat of (linear) instability of three-dimensional solitons follows from theVakhitov-Kolokolov riterion [20℄. It is as follows: if�Ns��2 > 0; (35)then the soliton is stable and, respetively, unstable if this derivative is negative.This riterion has a simple physial meaning. The value ��2 for the stationarynonlinear Shr�odinger equation (16) an be interpreted as the energy of the boundstate�soliton. If we add one �partile� to the system and the energy of this boundJournal of Mathematial Physis, Analysis, Geometry, 2008, vol. 4, No. 4 539



E.A. Kuznetsov, D.S. Agafontsev, and F. Diasstate dereases, then we have a stable situation. If by adding one �partile�the level ��2 is pushed towards the ontinuous spetrum, then suh a soliton isunstable.At d = 3 the derivative �Ns=��2 < 0 and therefore 3D solitons are unsta-ble (the modulational instability). For the two-dimensional ase the Vakhitov�Kolokolov riterion (35) gives an absene of linear exponential instability. A moredetailed analysis in this ase yields the power type instability (for details see thesurvey [21℄ and [22℄).Thus, the solitons are stable only in the one-dimensional ase, while in thetwo-dimensional (ritial) and three-dimensional ases they are unstable and anbe onsidered as separatrix solutions separating ollapsing solutions from the dis-persive ones [27℄.This is probably the simplest method for explaining the well-known empirialfat that solitons, as a rule, exist only in one-dimensional systems. For multidi-mensional systems the stable solitons are rare and an only appear as a result oftopologial onstraints or of a mehanism that removes Cherenkov singularities(whih is disussed in the present paper). The latter, as an be easily understood,is due to the existene of a ertain lass of symmetry.4. From Superritial to Subritial BifurationsFor subritial bifuration at the ritial veloity the soliton undergoes a jumpin its amplitude. In this ase the orresponding theory an be developed near thetransition point between subritial and superritial bifurations (in analogy withthe tri-ritial point for phase transitions). In the series of papers [11, 13, 28�30℄it was shown that in this ase the soliton behavior an be desribed by means ofthe generalized nonlinear Shr�odinger equation (NLSE) for the envelope  , whihin the one-dimensional ase is as follows:i� �t � �2!0 + !0002  xx � �j j2 + 4i�j j2 x +  bkj j2 + 3Cj j4 = 0; (36)where !0 � !(k0) and k0 are the arrying frequeny and the wave number, res-petively, �2 = (Vr � V )=Vr � 1, !000 the seond derivative of !(k) taken atk = k0. Here the four-wave oupling oe�ient � is assumed to have additionalsmallness haraterizing the proximity to the transition from superritial to sub-ritial bifurations. The transition point is de�ned from the equation � = 0.For example, for the interfaial deep-water waves propagating along the interfaebetween two ideal �uids in the presene of apillarity [28, 29℄� = k301 + � �A2r �A2� ;
540 Journal of Mathematial Physis, Analysis, Geometry, 2008, vol. 4, No. 4



Bifurations of Solitary Waveswhere � is the density ratio, A = (1 � �)=(1 + �) the Atwood number, A2r =5=16 and �r = (21 � 8p5)=11, as it was shown in [13℄. For � < �r, the four-wave oupling oe�ient � is negative, and the orresponding nonlinearity is ofthe fousing type. In this ase, the solitary waves near the ritial veloity Vrare desribed by the stationary (�=�t = 0) NLSE and undergo a superritialbifuration at V = Vr [13℄. For � > �r, the oupling oe�ient hanges sign and,as a result, the bifuration beomes subritial. For water waves in �nite depthh the oe�ient � hanges its sign at �r = k0h � 1:363 [31℄ while !000 is alwaysnegative. Thus the nonlinearity belongs to the fousing type for �(= kh) > �r andrespetively beomes defousing in the region � < �r [31, 32℄. In nonlinear optis,as shown in [11℄, a derease of � (Kerr onstant) an be provided by the interationof light pulses with aousti waves (Mandelstamm�Brillouin sattering).Beause of smallness of � we keep in (36) the following order nonlinear terms:the gradient term (� �) responsible for self-steepening of the pulse (analog ofthe Lifshitz term in phase transitions), the nonloal term (due to presene ofthe integral operator bk, the Fourier transform of its kernel is equal to jkj) andthe six-wave nonlinear term with oupling oe�ient C. Two additional 4-waveinteration terms, both loal and nonloal, appear as a result of expansion of thefour-wave matrix element Tk1k2k3k4 in powers of the small parameters �i = ki�k0:Tk1k2k3k4 = �2� + �2� (�1 + �2 + �3 + �4) (37)� 8� (j�1 � �3j+ j�2 � �3j+ j�2 � �4j+ j�1 � �4j):The existene of nonloal ontribution in the expansion is onneted with non-analytial dependene of the matrix element T in its arguments. For interfaialdeep-water waves (IW) this nonanalytiity originates from the solution of Laplaeequation for the hydrodynami potential and its redution to the moving inter-fae. For instane, for water waves (WW) with a �nite depth the nonloal termis absent [32℄ as well as for eletromagneti waves in nonlinear dieletris [11℄beause of the analytiity of matrix elements with respet to frequenies, whihis a onsequene of ausality (see, for example, Refs. [11, 33℄). In the latter asethe spatial dispersion e�ets are relativistially small and an be negleted.For both IW and WW near the transition point, !000C is positive; moreover, is also positive for IW, and therefore the orresponding nonlinearities are fousing,thus providing the existene of loalized solutions. Depending on the sign of �there exist two branhes of solitons. For IW they were found numerially [28, 29℄using the Petviashvili sheme [34℄. Expliit solutions for both kinds of IW solitonsan be obtained in the limiting ase only when V ! Vr. For negative � theseare the lassial NLS solitons with a seh shape. For the subritial bifurationat V = Vr the soliton amplitude remains �nite with algebrai deay (� 1=jxj)Journal of Mathematial Physis, Analysis, Geometry, 2008, vol. 4, No. 4 541



E.A. Kuznetsov, D.S. Agafontsev, and F. Diasat in�nity [28, 29℄. When a nonloal nonlinearity is absent ( = 0), the solitonsolutions an be found expliitly. For both branhes at large � the number ofwaves N = R j j2dx approahes from below and above the same value Nr whihoinides with the number of waves N on the solitons with � = 0. For the solitonsin �bers this property means that the energy of optial pulse saturates tendingto the onstant value with a derease of the pulse duration.On the other hand, all solitons of (36) are stationary points of the energy Efor �xed number of waves : Æ(E + �2N) = 0, where the energy in dimensionlessvariables is given byE = Z �j xj2 + �2 j j4 + i�( �x �  x �)j j2 � 2 j j2k̂j j2 � Cj j6� dx: (38)This allows one to use the Lyapunov theorem in the analysis of their stability.Here, for the IW, � � (Vr � V )1=2j�� �rj�1, C = 319=1281 and� = sign(�� �r); � = 6=p427;  = 32=p427; (39)and for the WW ase (ompare with [32℄)� = sign(�r � �); � � �0:397; C � 0:176: (40)As shown in [11, 28, 29, 32℄, for N < Nr solitons orresponding to the superriti-al branh realize the minimum values of the energy and therefore they are stablein the Lyapunov sense, i.e., stable with respet to not only small perturbationsbut also against �nite ones. In partiular, the boundedness of E from below anbe viewed if one onsiders the saling transformation  = (1=a)1=2 s(x=a) retain-ing the number of waves N , where  =  s(x) is the soliton solution. Under thistransform E beomes a funtion of the saling parameter a:E (a) = �1a � 12a2� �2 Z j sj4 dx: (41)It is worth noting that the dispersion term and all nonlinear terms in E, exeptR �2 j j4dx, have the same saling dependene / a�2. The latter means that at� = 0 (36) an be related to the ritial NLS equation like the two-dimensionalubi NLS equation. From (41) it is also seen that for � < 0 E(a) has a min-imum orresponding to the soliton. Unlike in the superritial ase, the salingtransformation for another soliton branh with � > 0 gives a maximum of E(a)on solitons and unboundedness of E as a ! 0. Under the gauge transformation =  sei�, on the ontrary, the energy reahes a minimum on soliton solutionsand onsequently the solitons with � > 0 represent saddle points. This indiatesa possible instability of solitons for the whole subritial branh, at least withrespet to �nite perturbations.542 Journal of Mathematial Physis, Analysis, Geometry, 2008, vol. 4, No. 4



Bifurations of Solitary WavesWe onsider this question in detail and emphasize a nonlinear stage of insta-bility following to our reent paper [30℄. This problem, indeed, is not trivial inspite of a lose similarity with the ritial NLSE. It is worth noting that (36) at� =  = C = 0 represents an integrable model (the so-alled derivative NLSE)[35℄, and exponentially deaying solitons in this model are stable. It is more orless evident also that small oe�ients ; C annot break the stability of soli-tons. This means that in the spae of parameters we may expet the existene ofa threshold. Above this, the threshold solitons must be unstable and the deve-lopment of this instability may lead to ollapse, i.e., the formation of a singularityin �nite time.Consider the energy (38) written in terms of amplitude r and phase ' ( =rei'): E = Z �r2x + �2 r4 � 2 r2bkr2 � 13r6 + r2 �'x + �r2�2� dx; (42)where by an appropriate hoie of the new dimensionless variables the renormal-ized onstant ~C = C + �2 an be taken equal to 1/3. Hene one an see that theenergy takes its minimum value when the last term in (42) vanishes, i.e. when'x + �r2 = 0: (43)The integration of this equation gives an x�dependene for the phase that isalled the hirp in nonlinear optis. It is interesting to note that the remainingpart of the energy does not ontain the phase at all.First, study the loal model when  = 0. Let the energy be negative insome region 
 : E
 < 0. Then, following [36, 26℄, one an establish that dueto radiation of small amplitude waves E
 < 0 an only derease, beoming moreand more negative, but the maximum value of j j, aording to the mean valuetheorem, an only inrease: maxx2
 j j4 � 3jE
jN
 : (44)This proess is possible only for the energies whih are unbounded from below.In aordane with (41) suh a situation is realized when � > 0. In this ase theradiation leads to the appearane of in�nitely large amplitudes r. However, it isimpossible to onlude that the singularity formation develops in �nite time.For  > 0 the estimations on the maximum value of j j are not as transparentas they are for the loal ase. Instead of (44), it is possible to obtain a similarestimate maxx j j4 � 3jEjN :However, it is expressed through the total energy E and the total number ofwaves N . Besides, two inequalities must be satis�ed: E < 0 and N < 2N2 .Journal of Mathematial Physis, Analysis, Geometry, 2008, vol. 4, No. 4 543



E.A. Kuznetsov, D.S. Agafontsev, and F. DiasFor interfaial waves, N2 � 1:39035 > Nr � 1:3521. Thus, the maximum am-plitude in this ase is bounded from below by a onservative quantity and thismaximum an never disappear during the nonlinear evolution.Now we onsider the situation where the self-steepening proess anbe negleted (� = 0). In this ase (36) beomesi t +  xx � �2 � �j j2 +  bkj j2 + 3Cj j4 = 0:It is possible to obtain a riterion of ollapse using the virial equation (for details,see [37, 36, 38℄). This equation is written for the positive de�nite quantityR = Z x2j j2dx;whih, up to the multiplier N , oinides with the mean square size of the distri-bution. The seond derivative of R with respet to time is de�ned by the virialequation Rtt = 8�E � �4 Z j j4dx� : (45)Hene, for � > 0 one an easily obtain the following inequality:Rtt < 8E;whih yields, after double integration, R < 4Et2+�1t+�2. Here �1;2 are onstantswhih are obtained from the initial onditions. Hene, it follows that for the stateswith negative energy, E < 0, there always exists suh a moment of time t0 whenthe positive de�nite quantity R vanishes. At this moment of time the amplitudebeomes in�nite. Therefore the ondition E < 0 represents a su�ient riterion ofollapse (ompare with [37, 36℄). However, it is neessary to add that this riterionan be improved in the same way as in [39, 27℄ for the three-dimensional ubiNLS equation. From (45) one an see that for the stationary ase (on the solitonsolution) Es = �4 R j sj4dx, in agreement with (41). As it was shown before, for� > 0 the soliton realizes a saddle point of E for �xed N . It follows from (41) thatfor small a the energy beomes unbounded from below, but for a > 1 it dereases(this orresponds to spreading). Therefore in order to ahieve a blow-up regimethe system should pass through the energeti barrier equal to Es. Thus, for thisase the riterion E < 0 must be hanged into the sharper riterion: E < Es.This riterion an be obtained rigorously using step by step the sheme presentedin [39, 27℄ and therefore we skip its derivation.
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