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In the paper, a multi-term asymptotic representation for distribution
function of the Riesz measure of subharmonic function in the plane is con-
sidered. It is shown that the "smallness" of the reminder term of asymptotic
representation does not guarantee the bounded variation with respect to the
angle variable of all terms of this asymptotics, and the conditions for this
property to be held are given.
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One of the most important problems in the function theory is a question on
the connection between the regularity in distribution of zeros (masses) of an entire
(subharmonic) function and its behavior at infinity. A number of problems in the
fields close to complex analysis, contiguous areas of mathematics, physics and
radiophysics lead to this question.

In the 30s of the previous century B. Levin (Ukraine) and A. Pfliiger (Switzer-
land) simultaneously and independently constructed the function theory of com-
pletely regular growth. The theory describes the connection between the distribu-
tion functions of zeros and the entire function in the terms of one-term asymptotic
representations®.

But sometimes either the behavior of function or the growth of distribution
function is given by multi-term asymptotic representation.

Let us recall these notions.

*In [6] there is an extensive bibliography.
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Definition 1.* Let p be a measure in the plane. Its distribution function
w(t,0) is equal to measure p of sector {(r,a) : 0 <r <t;0 < a <6}

Definition 2. A multi-term (polynomial) asymptotic representation of func-
tion f(t,0),t> 0,0 € [0,27), as t — o0, is

f(£,0) = AL(0)t°* + Ag(0)t7? + ... + Ap(0)t" + o(t, ),

where Aj,j = 1,2,...,n, are real functions; 0 < [p1] < pp < pp—1 < ... < p1,
and function ¢(t,0) is small in a certain sense compared to the previous term.

Let w(t,0) be a distribution function of positive measure p in the plane.
We suppose that u(t,6) has a multi-term asymptotics, i.e.,

u(t,0) = AL(O)P + Ag(0)tP + ...+ Ap(0)t7" + (£,6), t >0, 0 € [0,27),

where Aq(0) > 0; Aj,7 = 2,3,...,n, are real functions; 0 < [p1] < pp < pp—1 <
... < p1, and function (¢, #) is small in a certain sense compared to the previous
term.

It is known that in the case of polynomial asymptotics (n > 1) the properties
of the first term differ essentially from other terms of this asymptotics. By [1]
and [2| the first term of asymptotics is a monotone nondecreasing function of 6
for any fixed ¢t. At the same time the second and the next terms of asymptotics
may have unbounded variation. Thus it is natural to study the influence of the
reminder term on the properties of the main terms of asymptotics. This problem
is the central item of the paper.

The example below is taken from [2] wherein there is some inaccuracy.

Example 1. Let 0 < [p1] < pa < p1 <[]+ L;

J
wj = Zkflf(prpz);
k=1

CWoo = 2T,

¢j=cwj, j=1,2,...;0=0;¢;=¢j 1+ §57 7= j=1,2,.... Notice that
c; is the middle of the interval (c;j-1,¢;).
For 6 € [0, 27| define a continuous function Ay as follows:

Ag(cj) = Ap(2m) =0, 5 =0,1,...;

Let Ay be a linear function on the other parts of interval [0, 27].

*For the case of discrete measures the analogous notion is in [4].
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Evidently, the total variation VZ™{Ay} of Ay is occ.

For each fixed ¢ > 0 let x(¢,-) be a characteristic function of the segment
[cwyy, 27].

We put

t,0) =1 " 0<t<1,0<6<2n, W
PROYIZ 0 A0 0)tP2x(4,0), t>1,0 <60 < 2m.

Now we divide the set
C\{(t,0):t<1,0<0<2n}
into "curvilinear" rectangulars in the following way. First, we represent the set
as a union of annuli
o0
Uit 0):j <t<j+1,0<0 <2},
=1
Then we cut the j—ring into "curvilinear" rectangulars:
B*(Jal) = {.7 <t <.7+ ].,Cl < 0 < CE+1}

and
B*(]vl) :{] §t<j+1702+1 §0<Cl+]_},
1=0,1,....

Consider three measures in the plane defined by the following densities with
respect to measure dtdf, respectively:

(t,0) = 0, 0<t<1,0<0 < 2m,
PRETI= ot 1, ¢£>1,0<6 < 2r,

where the positive constant h will be chosen later;

0, 0<t<1,0<0 < 2m,
p2(t7 0) = pZ%lﬂl—p%tﬂZ—l, t> 17cl—1 <0 < CE,
—pQ%lm*p?t”*l, t>1,¢ <6<,
[=1,2,....
0, 0<t<1,0<0 < 2m,
_ 07 ]<t§]+]—70§0§03—17
ps(hO) = 2t (4,6) € B.(j 1),

ptin e, (10) € (1),
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Consider the function
p=p1+p2+ps.

o0
Notice that on the set |J (B«(J,k)J B*(4,k)) the function p is equal to p; and
k=j—1
j—2
on the set (B«(43,k) U B*(J,k)):
k=1

p =p1+p2.

It is not difficult to show that p is a nonnegative function if A > %.

Let 4 be a positive measure corresponding to density p with respect to measure
dtdf. Tt is easy to see that the distribution function pu(t,#) of this measure has
the form

pu(t, 0) = hot' + N (0)t7* + (t,0), (2)

where ¢ is defined by (1 ).
We have the following estimate for ¢ :

p(t,0) = O(t" ™), t — oo,

uniformly for 6 € [0, 27].

So, we have constructed the distribution function of the Riesz measure of
subharmonic function in the plane with the two-term asymptotic representation.
The second main term of this asymptotics Ay has the infinite variation on [0, 27].

Remark 1. Itiseasy to see that essential circumstance in the construction
of this example is the following fact. The slope of As is not less than —% gPr—p2
on the interval (¢;j_1,¢;).

Let us modify this example a little. Put

AQ(C;L) =Tn, N = 1a27"'a

where 0 < v, < % and
o0
D = oo
n=1

If we repeat the construction of Ex. 1 with these data, then we again obtain
a distribution function of the Riesz measure of subharmonic function in the plane.
This distribution function has a two-term asymptotic representation with the
analogous conclusions for function Ay. The reminder term of this asymptotics
satisfies the estimate

lp(t,0)] = O™ )), j<t<j+1, j— o0,

uniformly for 6 € [0, 27].
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Now we will show that it is possible to reduce essentially the growth of the
reminder term ¢(t,0) of a multi-term asymptotic representation, nevertheless,
the second main term of this asymptotics will still have the infinite variation with
respect to the angle variable.

Example 2. Consider the convergent series
> T
— k(k+1)

Further we will preserve the notations of Example 1.
Divide each set

Z] = (Cj,l,Cj), J=12...,

into intervals by points:

1

m
Cjm = Cj—1 + Cj_(pl_p2) Z k(k + 1)3

k=j

m=y7, 7=1,....

On the segment [0,27] we define a continuous function Ay in the following
way:
A2(0) = Ay(2m) = Az(cj) = Az(cjm) = 0,
7=L2...; m=y4,75+1,...;
l_ ) — 1
P (m41)(m+2)
i=1,2... m=4741,...,

where C},m is the middle of the interval (¢;m,¢jm+1)-

Ay is taken to be a linear function on the rest of the parts of segment [0, 27].

The maximum value of Ay is equal to 1/5(j 4+ 1) on segment (¢j_1,¢j), j =
1,2,....

Simple calculations show that the variation of Ay is equal to 1/5 on segment
(cj—1,¢5), 5 =1,2,.... So, the function Ay has the infinite variation on [0, 27].

Let us define the functions ¢(t,6) and p(t,0) by formulas (1) and (2), respec-
tively.

On each interval 4; there is a sequence of intervals on which Ay () is a de-
creasing linear function. Notice* that on these intervals the slope of A, is equal
to —2jo—r2,

Now we carry out the construction to Example 1. It is clear how to choose
three densities of measures in the plane so that their sum is a density of non-
negative measure p with respect to measure dtdf in the plane. It is easy to see

*See Remark 1 .
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that u(t,0) is the distribution function of this measure. The reminder term ¢ of
this asymptotics satisfies the estimate

lo(t,0) = O(j” %), j — oo,

uniformly for 6 € [0, 27].

Moreover, the analysis of the constructions in Ex. 1 and Ex. 2 shows that it
is possible to reduce the growth of the remainder term and to obtain the same
conclusion about the behavior of the main terms of asymptotics.

We have demonstrated that the "smallness" of the reminder term of asymp-
totic representation does not guarantee the bounded variation with respect to the
angle variable of all terms of this asymptotics.

Moreover, the above examples show that if the distribution function of the
Riesz measure and the first main term of asymptotics satisfy the Lipschitz con-
dition* with respect to the angle variable at some point, then this condition does
not necessarily hold for other terms of asymptotics. In fact, it is easy to see that
in our examples this effect appears at point 8 = 2.

There is a special situation when the boundedness of variation can be claimed
for all terms. This is the case

@(t,0) = p1(t)p2(0).

Theorem 1. Let a distribution function of measure p have the representation
n
p(t,0) =D A;(0)t% + o(t,0),t > 0,6 € [0, 2x], (3)
7=1

where A1 is a monotone nondecreasing function, and @(t,0) = @1(t)p2(0) such
that for some g > 1

2T
/ pLOdt = o(T7 ), T — oo, (4)
A

Then each of asymptotic representation (3) is a function of bounded variation.

To prove this theorem we will use the following auxiliary statements about
the determinants of a specific type.

*Recall that function f(x) satisfies the Lipschitz condition in some point x, if there are such
positive numbers A and § that

1f(z0) = F(y)] < Alzo —yl,

for |z, —y| < 6.
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Lemma 1. (|5, vol. 2, V, probl. 76|) Let 0 < p, < pp—1 < ... < p2 < p1 and
O0<a; <as <...<ay. Then the determinant

o amt ol

Pn Pn—1 Pl
b ceo b
ot abrt L ot

1S positive.
Lemma 2. Let 0 < pp_1 < ... < p2 < p1 and o > 0, — +00. If a
function y(t) satisfies the estimate
V(t) = o(t’4), t — oo,

then 1t is possible to choose n numbers ag;, j = 1,2,...,n, from the sequence
{ar} such that the determinant

(o, ) ag’l’_l agi
1
Ao v(ak,) oy ak; £0.
() aiz_l . aii

Proof Without loss of generality, one may suppose that |y(¢)|/t*»~1 tends
to zero monotonically as t — oo.

We will use the induction for the proof of this lemma. We may choose two
numbers oy, and oy, such that the determinant

7(ak1) aglhl
-1
7(ak2) ak:

does not equal zero. It follows from the conditions for numbers ay, £ = 1,2, and
the function ().

Assume this lemma is true for the determinants of order at most n — 1. Let
us use the Laplace expansion of determinant A along the last column. In virtue
of the assumption of induction the last element of this column ozZ; is multiplied
by nonzero minor. Taking into account the inequalities for the orders p;, j =
1,2,...,n—1, we can conclude that in the sequence {ay} there is such a sufficiently
large number «, that the determinant A # 0. The lemma is proved.

Now we return to our theorem.

From (4) we get such a sequence of points {s;}2°, that klim sk = +o00 and
—00

v1(sg) = 0(32”), k — oo.
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In virtue of Lemma 2 we can choose n points si,...,s, from this sequence such
that the determinant

st sP s pi(s)
sh? s L shr pi(s2) £0.
shroshE oo s pi(sy)

Substituting these points s, k = 1,...,n, in (3) we obtain the system of the
linear equations with non-vanishing determinant. Consequently, every term of
asymptotics (3) is the function of bounded variation with respect to variable 6.
The theorem is proved.

Now we consider the case of the remainder term of general form.

Theorem 2. Let a distribution function of measure p have representation
(8), where Ay is a monotone nondecreasing function, and there are t; < to <
oo < tp_1 such that the remainder term ¢(t;,0), j =1,...,n —1, is a function
of bounded variation.

Then all terms of asymptotic representation (3) are the functions of bounded
variation.

Proof. Substituting the values t;, j =1,...,n—1, in (3) we obtain the
system of the linear equations

n
D AjO) = ptk,0) — A(O)E, k=1,...,n—1.
7j=2

In view of Lemma 1 the determinant of this system

el e

p2 p3 Pn

et .t
2 3

thr ths .. thr

is not zero. So, it is easy to see that the bounded variation of the functions
pu(ty, 0) — A (O, j=1,...,n—1,

implies the bounded variation of the functions Ay, & = 2,...,n. Hence the re-
mainder term ¢(t,0) is also the function of bounded variation with respect to @
for any t. The theorem is proved.

Remark 2. Notice that the above examples show that any "smallness" of
the remainder term does not retain differential properties of the functions u(t,8)
and A for other terms of asymptotics, even the Lipschitz condition. At the same
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time, the fulfilment of conditions of these theorems guarantees that the functions
Aj,j=2,3,...,n, and ¢(t,0) are differentiable with respect to € at those points,
where the functions A; and p(t,0) are differentiable.

Thus for the asymptotic representations of measure distribution functions we
have found the sufficient conditions on the remainder term that guarantee the
boundedness of variation and the differentiability with respect to the angle vari-
able of all terms of this asymptotics.

Consider now the measure p that satisfies the conditions of Theorems 1 or 2.
It is known [1] that outside of any exceptional set the subharmonic function u(re®)
corresponding to u has the following asymptotics:

u(re?) = ZHj(H)rpj + p(re'?),
7j=1

where
0
™
H;(0) = (0 —a—m)dA, 1 =1,2,...,n.
0= i [ cospy(0—a=mdy(@). j=1.2m
0—2m

Obviously, from our theorems we obtain that every term of this asymptotics,
starting from the second one, is a §-subharmonic function.
This special case has been considered recently in the paper [3].
Acknowledgements. The author is grateful to the reviewer for very useful
remarks.
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