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In the paper, a multi-term asymptotic representation for distribution

function of the Riesz measure of subharmonic function in the plane is con-

sidered. It is shown that the "smallness" of the reminder term of asymptotic

representation does not guarantee the bounded variation with respect to the

angle variable of all terms of this asymptotics, and the conditions for this

property to be held are given.
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One of the most important problems in the function theory is a question on

the connection between the regularity in distribution of zeros (masses) of an entire

(subharmonic) function and its behavior at in�nity. A number of problems in the

�elds close to complex analysis, contiguous areas of mathematics, physics and

radiophysics lead to this question.

In the 30s of the previous century B. Levin (Ukraine) and A. P��uger (Switzer-

land) simultaneously and independently constructed the function theory of com-

pletely regular growth. The theory describes the connection between the distribu-

tion functions of zeros and the entire function in the terms of one-term asymptotic

representations?.

But sometimes either the behavior of function or the growth of distribution

function is given by multi-term asymptotic representation.

Let us recall these notions.

?In [6] there is an extensive bibliography.

c
 P. Agranovich, 2009



P. Agranovich

De�nition 1.? Let � be a measure in the plane. Its distribution function

�(t; �) is equal to measure � of sector f(r; �) : 0 < r � t; 0 � � < �g:

De�nition 2. A multi-term (polynomial) asymptotic representation of func-

tion f(t; �); t > 0; � 2 [0; 2�); as t!1; is

f(t; �) = �1(�)t
�1 +�2(�)t

�2 + : : :+�n(�)t
�n + '(t; �);

where �j; j = 1; 2; : : : ; n; are real functions; 0 � [�1] < �n < �n�1 < : : : < �1,

and function '(t; �) is small in a certain sense compared to the previous term.

Let �(t; �) be a distribution function of positive measure � in the plane.

We suppose that �(t; �) has a multi-term asymptotics, i.e.,

�(t; �) = �1(�)t
�1 +�2(�)t

�2 + : : :+�n(�)t
�n + '(t; �); t > 0; � 2 [0; 2�);

where �1(�) > 0; �j; j = 2; 3; : : : ; n; are real functions; 0 � [�1] < �n < �n�1 <

: : : < �1, and function '(t; �) is small in a certain sense compared to the previous

term.

It is known that in the case of polynomial asymptotics (n > 1) the properties
of the �rst term di�er essentially from other terms of this asymptotics. By [1]

and [2] the �rst term of asymptotics is a monotone nondecreasing function of �

for any �xed t. At the same time the second and the next terms of asymptotics

may have unbounded variation. Thus it is natural to study the in�uence of the

reminder term on the properties of the main terms of asymptotics. This problem

is the central item of the paper.

The example below is taken from [2] wherein there is some inaccuracy.

E x a m p l e 1. Let 0 � [�1] < �2 < �1 < [�1] + 1;

!j =

jX
k=1

k
�1�(�1��2);

c!
1

= 2�;

cj = c!j, j = 1; 2; : : : ; c0 = 0; c0
j
= cj�1 +

c

2
j
�1�(�1��2), j = 1; 2; : : : : Notice that

c
0

j
is the middle of the interval (cj�1; cj):
For � 2 [0; 2�] de�ne a continuous function �2 as follows:

�2(cj) = �2(2�) = 0; j = 0; 1; : : : ;

�2(c
0

j) =
1

j
; j = 1; 2; : : : :

Let �2 be a linear function on the other parts of interval [0; 2�].

?For the case of discrete measures the analogous notion is in [4].
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Evidently, the total variation V 2�
0 f�2g of �2 is 1.

For each �xed t � 0 let �(t; �) be a characteristic function of the segment

[c![t]; 2�].
We put

'(t; �) :=

�
0; 0 < t � 1; 0 � � < 2�;
��2(�)t

�2�(t; �); t > 1; 0 � � < 2�:
(1)

Now we divide the set

C n f(t; �) : t � 1; 0 � � < 2�g

into "curvilinear" rectangulars in the following way. First, we represent the set

as a union of annuli

1[
j=1

f(t; �) : j < t � j + 1; 0 � � < 2�g:

Then we cut the j�ring into "curvilinear" rectangulars:

B
�
(j; l) = fj � t < j + 1; cl � � < c

0

l+1g

and

B
�(j; l) = fj � t < j + 1; c0l+1 � � < cl+1g;

l = 0; 1; : : : :

Consider three measures in the plane de�ned by the following densities with

respect to measure dtd�, respectively:

p1(t; �) =

�
0; 0 < t � 1; 0 � � < 2�;
�1ht

�1�1; t > 1; 0 � � < 2�;

where the positive constant h will be chosen later;

p2(t; �) =

8<
:

0; 0 < t � 1; 0 � � < 2�;
�2

2
c
l
�1��2t

�2�1; t > 1; cl�1 < � � c
0

l
;

��2
2
c
l
�1��2t

�2�1; t > 1; c0
l
< � � cl;

l = 1; 2; : : : :

p3(t; �) =

8>><
>>:

0; 0 < t � 1; 0 � � < 2�;
0; j < t � j + 1; 0 � � � cj�1;

��2
2
c
l
�1��2t

�2�1; (t; �) 2 B
�
(j; l);

�2
2
c
l
�1��2t

�2�1; (t; �) 2 B�(j; l);

j = 1; 2; : : : ; l = j � 1; j; : : : :
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Consider the function

p = p1 + p2 + p3:

Notice that on the set
1S

k=j�1

(B
�
(j; k)

S
B
�(j; k)) the function p is equal to p1 and

on the set
j�2S
k=1

(B
�
(j; k)

S
B
�(j; k)):

p = p1 + p2:

It is not di�cult to show that p is a nonnegative function if h > 4
c
:

Let � be a positive measure corresponding to density p with respect to measure

dtd�: It is easy to see that the distribution function �(t; �) of this measure has

the form

�(t; �) = h�t
�1 +�2(�)t

�2 + '(t; �); (2)

where ' is de�ned by ( 1 ).

We have the following estimate for ' :

'(t; �) = O(t�1�1); t!1;

uniformly for � 2 [0; 2�]:
So, we have constructed the distribution function of the Riesz measure of

subharmonic function in the plane with the two-term asymptotic representation.

The second main term of this asymptotics �2 has the in�nite variation on [0; 2�]:

R e m a r k 1. It is easy to see that essential circumstance in the construction

of this example is the following fact. The slope of �2 is not less than �2
c
j
�1��2

on the interval (cj�1; cj):

Let us modify this example a little. Put

�2(c
0

n) = 
n; n = 1; 2; : : : ;

where 0 < 
n <
1
n
and

1X
n=1


n =1:

If we repeat the construction of Ex. 1 with these data, then we again obtain

a distribution function of the Riesz measure of subharmonic function in the plane.

This distribution function has a two-term asymptotic representation with the

analogous conclusions for function �2. The reminder term of this asymptotics

satis�es the estimate

j'(t; �)j = O(j�1
j); j � t < j + 1; j !1;

uniformly for � 2 [0; 2�]:
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Now we will show that it is possible to reduce essentially the growth of the

reminder term '(t; �) of a multi-term asymptotic representation, nevertheless,

the second main term of this asymptotics will still have the in�nite variation with

respect to the angle variable.

E x a m p l e 2. Consider the convergent series

1X
k=1

1

k(k + 1)
:

Further we will preserve the notations of Example 1.

Divide each set

ij := (cj�1; cj); j = 1; 2; : : : ;

into intervals by points:

cj;m := cj�1 + cj
�(�1��2)

mX
k=j

1

k(k + 1)
; m = j; j = 1; : : : :

On the segment [0; 2�] we de�ne a continuous function �2 in the following

way:

�2(0) = �2(2�) = �2(cj) = �2(cj;m) = 0;

j = 1; 2; : : : ; m = j; j + 1; : : : ;

�2(c
0

j;m) =
1

(m+ 1)(m+ 2)
;

j = 1; 2; : : : ; m = j; j + 1; : : : ;

where c0
j;m

is the middle of the interval (cj;m; cj;m+1):
�2 is taken to be a linear function on the rest of the parts of segment [0; 2�].
The maximum value of �2 is equal to 1=j(j + 1) on segment (cj�1; cj), j =

1; 2; : : : .
Simple calculations show that the variation of �2 is equal to 1=j on segment

(cj�1; cj), j = 1; 2; : : : . So, the function �2 has the in�nite variation on [0; 2�]:
Let us de�ne the functions '(t; �) and �(t; �) by formulas (1) and (2), respec-

tively.

On each interval ij there is a sequence of intervals on which �2(�) is a de-

creasing linear function. Notice? that on these intervals the slope of �2 is equal

to �2
c
j
�1��2 :

Now we carry out the construction to Example 1. It is clear how to choose

three densities of measures in the plane so that their sum is a density of non-

negative measure � with respect to measure dtd� in the plane. It is easy to see

?See Remark 1 .
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that �(t; �) is the distribution function of this measure. The reminder term ' of

this asymptotics satis�es the estimate

j'(t; �)j = O(j�1�2); j !1;

uniformly for � 2 [0; 2�]:
Moreover, the analysis of the constructions in Ex. 1 and Ex. 2 shows that it

is possible to reduce the growth of the remainder term and to obtain the same

conclusion about the behavior of the main terms of asymptotics.

We have demonstrated that the "smallness" of the reminder term of asymp-

totic representation does not guarantee the bounded variation with respect to the

angle variable of all terms of this asymptotics.

Moreover, the above examples show that if the distribution function of the

Riesz measure and the �rst main term of asymptotics satisfy the Lipschitz con-

dition? with respect to the angle variable at some point, then this condition does

not necessarily hold for other terms of asymptotics. In fact, it is easy to see that

in our examples this e�ect appears at point � = 2�:
There is a special situation when the boundedness of variation can be claimed

for all terms. This is the case

'(t; �) = '1(t)'2(�):

Theorem 1. Let a distribution function of measure � have the representation

�(t; �) =

nX
j=1

�j(�)t
�j + '(t; �); t > 0; � 2 [0; 2�]; (3)

where �1 is a monotone nondecreasing function, and '(t; �) = '1(t)'2(�) such

that for some q � 1

2TZ
T

j'1(t)j
q
dt = o(T �nq+1); T !1: (4)

Then each of asymptotic representation (3) is a function of bounded variation.

To prove this theorem we will use the following auxiliary statements about

the determinants of a speci�c type.

?Recall that function f(x) satis�es the Lipschitz condition in some point xo if there are such

positive numbers A and Æ that

jf(xo)� f(y)j � Ajxo � yj;

for jxo � yj < Æ:
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Lemma 1. ([5, vol. 2, V, probl. 76]) Let 0 < �n < �n�1 < : : : < �2 < �1 and

0 < �1 < �2 < : : : < �n: Then the determinant

��������

�
�n

1 �
�n�1

1 : : : �
�1

1

�
�n

2 �
�n�1

2 : : : �
�1

2

: : : : : : : : : : : :

�
�n
n �

�n�1
n : : : �

�1
n

��������
is positive.

Lemma 2. Let 0 < �n�1 < : : : < �2 < �1 and �k > 0; �k ! +1: If a

function 
(t) satis�es the estimate


(t) = o(t�n�1); t!1;

then it is possible to choose n numbers �kj
, j = 1; 2; : : : ; n; from the sequence

fakg such that the determinant

A =

��������


(�k1
) �

�n�1

k1
: : : �

�1

k1


(�k2
) �

�n�1

k2
: : : �

�1

k2

: : : : : : : : : : : :


(�kn) �
�n�1

kn
: : : �

�1

kn

��������
6= 0:

P r o o f. Without loss of generality, one may suppose that j
(t)j=t�n�1 tends
to zero monotonically as t!1:

We will use the induction for the proof of this lemma. We may choose two

numbers �k1
and �k2

such that the determinant

���� 
(�k1
) �

�n�1

k1


(�k2
) �

�n�1

k2

����
does not equal zero. It follows from the conditions for numbers �k, k = 1; 2; and
the function 
(t):

Assume this lemma is true for the determinants of order at most n � 1: Let
us use the Laplace expansion of determinant A along the last column. In virtue

of the assumption of induction the last element of this column �
�1

kn
is multiplied

by nonzero minor. Taking into account the inequalities for the orders �j , j =
1; 2; : : : ; n�1; we can conclude that in the sequence f�kg there is such a su�ciently

large number �n that the determinant A 6= 0. The lemma is proved.

Now we return to our theorem.

From (4) we get such a sequence of points fskg
1

k=1 that lim
k!1

sk = +1 and

'1(sk) = o(s�n
k
); k !1:
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In virtue of Lemma 2 we can choose n points s1; : : : ; sn from this sequence such

that the determinant ��������

s
�2

1 s
�3

1 : : : s
�n

1 '1(s1)
s
�2

2 s
�3

2 : : : s
�n

2 '1(s2)
: : : : : : : : : : : : : : :

s
�2
n s

�3
n : : : s

�n
n '1(sn)

��������
6= 0:

Substituting these points sk, k = 1; : : : ; n; in (3) we obtain the system of the

linear equations with non-vanishing determinant. Consequently, every term of

asymptotics (3) is the function of bounded variation with respect to variable �.

The theorem is proved.

Now we consider the case of the remainder term of general form.

Theorem 2. Let a distribution function of measure � have representation

(3), where �1 is a monotone nondecreasing function, and there are t1 < t2 <

: : : < tn�1 such that the remainder term '(tj ; �), j = 1; : : : ; n � 1; is a function

of bounded variation.

Then all terms of asymptotic representation (3) are the functions of bounded

variation.

P r o o f. Substituting the values tj, j = 1; : : : ; n� 1; in (3) we obtain the

system of the linear equations

nX
j=2

�j(�)t
�j

k
= �(tk; �)��1(�)t

�1

k
; k = 1; : : : ; n� 1:

In view of Lemma 1 the determinant of this system

��������

t
�2

1 t
�3

1 : : : t
�n

1

t
�2

2 t
�3

2 : : : t
�n

2

: : : : : : : : : : : :

t
�2
n t

�3
n : : : t

�n
n

��������
is not zero. So, it is easy to see that the bounded variation of the functions

�(tj ; �)��1(�)t
�1

j
; j = 1; : : : ; n� 1;

implies the bounded variation of the functions �k; k = 2; : : : ; n: Hence the re-

mainder term '(t; �) is also the function of bounded variation with respect to �

for any t. The theorem is proved.

R e m a r k 2. Notice that the above examples show that any "smallness" of

the remainder term does not retain di�erential properties of the functions �(t; �)
and �1 for other terms of asymptotics, even the Lipschitz condition. At the same

10 Journal of Mathematical Physics, Analysis, Geometry, 2009, vol. 5, No. 1
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time, the ful�lment of conditions of these theorems guarantees that the functions

�j; j = 2; 3; : : : ; n; and '(t; �) are di�erentiable with respect to � at those points,

where the functions �1 and �(t; �) are di�erentiable.
Thus for the asymptotic representations of measure distribution functions we

have found the su�cient conditions on the remainder term that guarantee the

boundedness of variation and the di�erentiability with respect to the angle vari-

able of all terms of this asymptotics.

Consider now the measure � that satis�es the conditions of Theorems 1 or 2.

It is known [1] that outside of any exceptional set the subharmonic function u(rei�)
corresponding to � has the following asymptotics:

u(rei�) =

nX
j=1

Hj(�)r
�j +  (rei�);

where

Hj(�) =
�

sin��j

�Z
��2�

cos �j(� � �� �)d�j(�); j = 1; 2; : : : ; n:

Obviously, from our theorems we obtain that every term of this asymptotics,

starting from the second one, is a Æ-subharmonic function.

This special case has been considered recently in the paper [3].

Acknowledgements. The author is grateful to the reviewer for very useful
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