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We present a direct construction of retrore�ecting curves by means of

Nonstandard Analysis. We construct non self-intersecting curves which are

of class C1, except for a hyper-�nite set of values, such that the probability

of a particle being re�ected from the curve with the velocity opposite to the

velocity of incidence, is in�nitely close to 1. The constructed curves are of

two kinds: a curve in�nitely close to a straight line and a curve in�nitely

close to the boundary of a bounded convex set. We shall see that the latter

curve is a solution of the problem: �nd the curve of maximum resistance

in�nitely close to a given curve.
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1. Introduction

A. A retrore�ector is an optical device that sends incident beams of light

back to their origin. If the retrore�ector is much smaller than the size of the

source of light, it actually reverses the direction of light. We proceed to de�ne

a mathematical retrore�ector.

Consider a set with piecewise smooth boundary, and the billiard in the comple-

ment of this set. The set is called mathematical retrore�ector (or just retrore�ec-

tor), if almost all incident particles are re�ected in such a way that the velocity of

re�ection is opposite to the velocity of incidence. In this paper we shall construct

two-dimensional retrore�ectors by means of Nonstandard Analysis.
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As far as we know, it is the �rst time that nonstandard analysis techniques

are used within the framework of mathematical retrore�ectors theory. In [6],

an asymptotically retrore�ecting sequence of sets was constructed. More precisely,

the sets in the sequence presented in [6] are contained in one �xed bounded convex

set and contain another one. �Asymptotically retrore�ecting� means that the sum

of the incidence velocity and the re�ection velocity converges in measure to zero,

with both the velocities being considered as functions on the (measurable) set of all

incident particles. In [5], an asymptotically retrore�ecting sequence of unbounded

sets was constructed, each of them containing a �xed half-plane and contained in

another one.

One can easily construct a partial retrore�ector; from Fig. 1, one can see that

only a part of the incident particles is reversed.

Fig. 1: A partial retrore�ector.

B. Let us formulate the main results of the paper. First, consider a set 
 with

piecewise smooth boundary, contained in the lower half-plane,


 � f(x; y) j y � 0g � R
2

and de�ne the mapping (�; �) 7! �
+

(�; �) as follows (see Fig. 2).

�Ω

ξ

��
�

�
�

Fig. 2: Angle of re�ection.

Consider the billiard in R
2 n 
. Tag billiard particles incident on 
 by their

point of the �rst intersection with the straight line y = 0 and by the velocity
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at the moment of intersection. That is, let a particle intersect the line at the

point (�; 0) and let the velocity at this point be v = �(cos �; sin �); then tag this

particle by (�; �) 2 R� [0; �]. The particle makes several re�ections from @
 and

�nally intersects the line y = 0 again and moves freely afterwards. Denote the

�nal velocity by v
+ = (cos �+
 (�; �); sin �

+

(�; �)). The mapping (�; �) 7! �

+

(�; �)

is de�ned on a subset of R � [0; �].

Theorem 1. There exists 
 such that its boundary @
 is a nonsel�ntersecting

curve in�nitely close to the line y = 0 and invariant with respect to the shift

(x; y) 7! (x+1; y). Moreover, for all (�; �) 2 [0; 1]� [0; �], �+
(�; �)�� � 0 holds,

except for a set of measure � 0.

Theorem 1 means that nearly all incident particles almost reverse direction,

and the re�ecting set is obtained from the half-plane by an in�nitely small modi-

�cation near its boundary.

C. Now �x a convex bounded set B � R
2 with nonempty interior and consider

a set � � B with piecewise smooth boundary @�. De�ne the mapping (�; �) 7!
�
+
� (�; �) in a similar way. Namely, consider the billiard in R2 n�. Let an incident

particle intersect @B for the �rst time at the point � and let the velocity at this

point form the angle � with the tangent to @B at �. The particle makes several

re�ections from �, then intersects @B again and �nally moves freely, the �nal

velocity making the angle �+� (�; �) with the tangent.

The mapping �
+
� is de�ned on a subset of @B � [0; �].

Theorem 2. There exists a set �� such that the boundary @�� is a closed

nonsel�ntersecting curve in�nitely close to @B and such that for all (�; �) 2 @B�
[0; �], �+��(�; �)� � � 0 holds, except for a set of measure � 0.

D. There is an application of these results in Newtonian aerodynamics. Sup-

pose that a body � moves forward through a highly rare�ed medium, and at the

same time slowly rotates. Due to elastic collisions between the body and the

medium particles, a braking force acting on the body in the direction opposite to

its motion is created. This force is called the force of aerodynamic resistance, or

just resistance.

The mean value of resistance is given by the formula

R(�) =
3

8

Z
@B

�Z
0

�
1 + cos(�+� (�; �)� �)

�
sin � d� d�; (1)

the factor 3=8 is chosen in such a way that substituting � = B one gets R(B) =

j@Bj, that is, resistance of the convex set B is just its perimeter.
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Consider the problem: maximize R(�) over all sets � � B such that @� is

near @B. The solution is given, say dynamically, by the sets �� determined in

Th. 2, for which R(��) � 1:5.

The paper is organized as follows. Theorems 1 and 2 are proved in Sects. 3

and 4, respectively. In Section 5 the maximization problem is examined in more

detail.

2. Self-Intersecting Mirrors

We present a rather elementary direct approach to this problem by means

of (nonstandard) In�nitesimal Calculus. As in [5], we use the basic re�ection

property of the ellipse (Fig. 3):

rays which hit between the foci are also re�ected between the foci.

F F1 2F F1 2

�

Fig. 3: Re�ection in an ellipse.

In particular, if the ellipse has foci F1(�c; 0); F2(c; 0); equation

x
2

a2
+
y
2

b2
= 1;

and eccentricity c=a � 0; then the angle of re�ection � is in�nitesimal, i.e., re�ec-

tion is almost opposite to incidence.

Assume light rays may have any direction whatsoever from above a line seg-

ment of length 1 and �x internal sequences Mi; Ni 2 �
N1 for i 2 �

N (where �N1
denotes the set of in�nite hypernatural numbers).

Divide the segment [0; 1] in N1 equal parts and in each of them de�ne an ellipse

with the major axis on the initial segment, as shown in Fig. 4, where F2i�1;1 and

F2i;1 denote the foci of the i� th ellipse, i = 1; : : : ; N1.

Each of the N1 ellipses veri�es the following conditions for exactness of sub-

division:
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0

0

F F1,1 2,1F F1,1 2,1
F F3,1 4,1F F3,1 4,1

F F5,1 6,1F F5,1 6,1 F7,1F7,1 F2N -2,1
1

F2N -2,1
1

F F2N -1,1 2N ,1
1 1

F F2N -1,1 2N ,1
1 1

1(N -1)/N1 1(N -1)/N1 11/N11/N1 2/N12/N1 3/N13/N1

F F1,1 2,1F F1,1 2,1

1/k11/k1 1/k11/k12/(k M )1 12/(k M )1 1

1/N11/N1

Fig. 4: First step.

k1 = 2N1

�
1 +

1

M1

�
;

a1 =
1

k1
+

1

k1M1
; b1 =

1

k1

r
1 +

2

M1
; c1 =

1

k1M1
:

Therefore the eccentricity e1 � 0 as required; but the probability P1 that

a light ray falls out of the foci window is given by

P1 = N1
2

k1
=

M1

M1 + 1
� 1:

Next de�ne new ellipses in each of the segments [(j � 1)=N1; F2j�1;1] and

[F2j;1; j=N1] for j = 1; : : : ; N1. Note that both segments have the length 1=k1 and

divide each of them into N2 equal parts wherein ellipses are de�ned again with

foci F2i�1;2 and F2i;2, i = 1; : : : ; N2, according to the following conditions:

k2 = 22N1N2

�
1 +

1

M1

��
1 +

1

M2

�
;

a2 =
1

k2
+

1

k2M2
; b2 =

1

k2

r
1 +

2

M2
; c2 =

1

k2M2
:

The probability P2 that a light ray falls out of the foci windows is given by

P2 = 2N1N2
2

k2
=

�
M1

M1 + 1

��
M2

M2 + 1

�
:
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Iteration of this procedure follows the pattern

ki = 2i
iY

j=1

Nj

iY
j=1

�
1 +

1

Mj

�
;

ai =
1

ki
+

1

kiMi
; bi =

1

ki

r
1 +

2

Mi
; ci =

1

kiMi
:

Interestingly enough, whatever the sequence Ni might be

Pi =

iY
j=1

Mj

Mj + 1
:

In particular, if for some �xed N 2 �
N1 all the Mj = N , then

PN2 =

�
1� 1

N + 1

�N2

� e
�

N2

N+1 � 0: (2)

Assume from now on that for some �xed N 2 �
N1; Mj � N so that (2) holds.

The possibility that a ray entering a foci window hits one of the smaller ellipses

and is not re�ected conveniently must also be considered. The following discusses

this situation. Consider Fig. 5, where one ellipse is centered at the origin of

coordinates for simplicity.

Let the light ray r pass through the window [F1;i�1F2;i�1] with inclination �.

2/(k N)i-12/(k N)i-1

F1,i-1F1,i-1 F2,i-1F2,i-1-ai-ai

-bi-bi

�

r

E

Fig. 5: Avoiding inconvenient hits.

As a matter of notational simpli�cation, de�ne

A := 2Ki�1Ni and B :=
Ki�1N

2
:
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The centered ellipse is given by

x
2

a2i

+
y
2

b2i

= 1 with ai =
1

A
and bi =

N

A(N + 1)

r
1 +

2

N
:

An equation of the light ray is

yt = tan �

�
x� 1

A
� t

B

�
for some t 2]0; 1[:

The light ray intersects the ellipse at a point (x; yt) when

� = arctan

 p
1� x2A2

B +At�ABx
�B �

p
N(N + 2)

N + 1

!
necessarily with

0 < x < 1=A;

but then

0 < � < arctan

 
B

At
�
p
N(N + 2)

N + 1

!

= arctan

 
N

Nit
�
p
N(N + 2)

4(N + 1)

!

therefore � � 0 as long as
N

Nit
� 0 and this happens whenever t � 1

N
and

Ni = N
3, thus the probability that the entering light rays hit a smaller ellipse is

approximately

N2
�1X

j=1

2j+1

N2kj

jY
i=1

Ni =
2

N2

N2
�1X

j=1

�
N

N + 1

�j

=
2

N

 
1�

�
N

N + 1

�N2
�1
!
� 2

N

�
1� e

�
N2

�1

N+1

�
hence in�nitesimal. Summarizing:

As long as all the Mi = N and Ni = N
3
, for some N 2 �

N1 , the

N
2
-th step of the foregoing procedure entails a sel�ntersecting "mirror"

which re�ects light rays along lines in�nitely near the incidence lines

with probability in�nitely near 1.

Although sel�ntersecting, our curve is �� continuous and in�nitely resistant.
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3. Simple Mirrors

From now on we will take all the Ni = N
3.

We eliminate self-intersections �indirectly� as illustrated in Fig. 6: extend the

mirror in�nitesimally towards the center of each ellipse [�ci;�P ] [ [P; ci], and

connect with the ellipse itself by means of two straight line segments r and r of

adequate inclination �.

-ci-ci

�

r

ciciP

r

Fig. 6: Eliminating self-intersections.

The angle � must of course be in�nitesimal, but also such that the line r, and

its symmetric r, do not intersect any of the inner ellipses. Finally, having thus

created more �re�ective� regions, their total length must be in�nitesimal. We now

sketch calculations

ci =
1

kiN
; ai+1 =

1

2kiN3
;

bi+1 =
1

2(N + 1)kiN2

r
1 +

2

N
:

For some positive � to be determined, the center C of the �rst inner ellipse

and the end point P verify

C = ci + ai+1 =
2N2 + 1

2kiN3
; P =

ci

1 + �
:
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The line r and inner ellipse E satisfy

r � y = tan� (x� P ) ; E � (x�C)2

a2i+1

+
y
2

b2i+1

= 1:

The angle � for which r is tangent to E is given by

� = arctan
� bi+1

ai+1

q
a2i+1 � (x� C)2

x� P
; ci < x < C:

Now, � � 0 whenever

q
a2i+1 � (x� C)2

x� P
� 0; but,

0 �

q
a2i+1 � (x� C)2

x� P
� ai+1

x� P
� ai+1

ci

1 + �

�
� 1

N2�

and � � 0 when � = 1
N . Any in�nitesimal angle � > � may be used to eliminate

the self-intersection. Moreover, as

ci � P =
1

kiN(N + 1)
<

1

N

2

kiN
;

the probability of a ray being inadequately re�ected by this procedure is in�nite-

simal.

Summarizing, the probability of a ray being re�ected with opposite direction

of incidence is given by

dPN2 � 1�
�
e
�

N2

N+1 +
2

N

�
1� e

�
N2

�1

N+1

��
� 1:

4. Convex Mirrors

As a matter of making terminology more precise, let � : �[0; 1] ! �
R
2 be

the curve thus de�ned in Sect. 3.

When one wants to take into account the size and the position of the mirror,

an a�ne transformation is in order: given distinct points P and Q in R2 , let

(v1; v2) := Q� P;

M :=

�
v1 �v2
v2 v1

�
;

�PQ(t) := P +M�(t); t 2 �[0; 1];
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�PQ describes the (simple plane) mirror positioned along �!
v , which we may

re-parametrize in I := [a; b]; a < b, by

�
I
PQ(t) := �PQ

�
t� a

b� a

�
; t 2 I: (3)

Suppose now that � : [0; `] � R ! R
2 is a C

1 regular curve parameterized

by arc length?. Let the �re�ective side� of � be its convex side as illustrated in

Fig. 7.

�´´�´´

Fig. 7: Convex mirror.

A mirror of almost maximum resistance adjusted to the curve may be

described in the following way

1. Pick an in�nite N 2 �
N1 and de�ne for 0 � j � 2N :

aj :=

(
j=2
N ; if j is even;
(j+1)=2

N � 1
N2 ; if j is odd;

bj := `aj ;

so that

[0; `] =

2N[
j=1

[bj�1; bj ];

bj � bj�1 =

(
`
N2 ; j is even;
`
N � `

N2 ; j is odd;
1 � j � 2N:

?Actually it su�ces that � is recti�able so that the following general procedure may be

adapted.
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2. De�ne

Pj := �(bj); 0 � j � 2N;

Ij := [bj ; bj+1]; 0 � j � 2N � 1:

and consider the polygon [P0; P1; : : : ; P2N ]. Also de�ne, for j 2 f0; : : : ;
2N � 1g (vide (3) above)

�j(t) :=

8>>><>>>:
�
Ij
PjPj+1

(t); if t 2 Ij & j is even;

Pj +
N

2

`
(t� bj)(Pj+1 � Pj); if t 2 Ij & j is odd:

Finally, �0 + � � � + �2N�1 is a mirror of almost maximum resistance whose

standard part is �. Under in�nite magni�cation, the geometry between Pj and

Pj+2 with j even is exempli�ed in Fig. 8 below.

PjPj

Pj+1Pj+1 Pj+2Pj+2

�/N
2

/N
2

�/N

Fig. 8: Curve under in�nitesimal microscope.

5. Calculus of the Resistance

We will now evaluate the resistance of the curve obtained in Sect. 3 by mini-

mizing R. To do so, we must maximize the angle �+��. We assume that the light

ray hits one inner ellipse between the foci, so that the direction of the re�ected ray

is almost inverted (elsewhere the probability is approximately zero). Therefore

the angle of re�ection �
+ � � is less than the angle of re�ection when a ray light

hits one of the foci (and consequently the ray is re�ected to the second foci).
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F
1

F
2

�

Fig. 9: Maximizing the angle of re�ection.

Let us consider the general case (the i-step) and let � be a half of the maximum

angle of re�ection, as exempli�ed in Fig. 9.

Therefore

tan� =
ci

bi
=

1p
N(N + 2)

and so

cos(�+ � �) � cos

 
2 arctan

1p
N(N + 2)

!

= 1� 2

(N + 1)2

and

R >�
3

8

�
2� 2

(N + 1)2

� 1Z
0

�Z
0

sin � d� d�

=
3

4

�
2� 2

(N + 1)2

�
� 1:5:

We also remark that the maximum resistance of any curve in�nitely close to

the segment [0; 1] � f0g is 1:5.
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