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1. Introduction

We study some constructions in the class of geodesic metric spaces with Buse-
mann nonpositive curvature. Here we use not a classical definition of nonpositively
curved spaces ([2]), but the one introduced by B. Bowditch in [1] where the class
of spaces considered is called Busemann. This allows to include the consideration
of all C AT (0)-spaces, i.e., the complete simply connected spaces of nonpositive
curvature in the sense of A.D. Alexandrov and all strictly convex normed spaces.
The main question of the paper is: what are additional conditions for gluing and
limiting operations in the class of Busemann spaces to keep the resulting space in
the same class?

Similar problems for Alexandrov spaces were studied sufficiently deeply in
[3, 4], etc. Some operations in the class of Busemann spaces were studied in [5]
and [6]. The condition of nonpositivity of curvature in the sense of Busemann
is weaker than in the sense of Alexandrov. By this reason many results that are
true to Alexandrov spaces do not have direct generalization for Busemann spaces.
When applying Alexandrov spaces theory one should set additional requirements
in a number of situations.
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The paper is organized as follows. In Section 2 we recall some necessary defi-
nitions and facts from Busemann spaces theory. In Section 3 we prove the gluing
theorem which generalizes Reshetnyak’s gluing theorem known for Alexandrov
spaces (cf. [3, Th. 9.1.21]). When we speak about Busemann spaces, the gluing
theorem has the following formulation.

Theorem 3.1. Let (X1,dy1), (Xo,ds) and (X3,ds) be three Busemann spaces
represented as unions of closed convex subsets X; := A; U B;. Let g1 : By — As,
g2 : Bs — Ay and g3 : By — Aj be three isometries such that googiogs = Id | a,nB, -
Then the space X obtained as a factorspace X := (X1 UXoUX3)/{91,92,93} with
the metric d that coincides with d; in each X;, is a Busemann space.

In Section 4 we study the Hausdorff limits of Busemann spaces. The class of
all Busemann spaces is not closed under Hausdorff limit: the sequence of strictly
convex normed spaces can converge to the normed space with nonstrictly convex
norm. B. Kleiner introduced the notion of often convex space in [6]. The class of
often convex spaces is closed under limits and contains a subclass of Busemann
spaces. We study the Hausdorff limits of Busemann spaces under additional requi-
rement of unimodular convexity. The main result of the section is the following
theorem.

Theorem 4.3. Let the complete metric space (X,0,dx) with basepoint o be
a Hausdorff limit of unimodularly convex sequence (X, o0n,dy) of pointed Buse-
mann spaces. Then X is also a Busemann space and its convexity modulus 6, (€, )
for all x € X is bounded from below by the common low boundary of convezity
modules of spaces X,.

2. Preliminaries

The general theory of spaces with intrinsic metric can be found in [3, 4] and
[7]. Here we recall some basic facts related to Busemann nonpositively curved
spaces.

Definition 2.1. Let (X,d) be a geodesic space. We use the notation |zy| for
the distance d(x,y) between its points. A segment connecting the points x,y € X
is denoted [zy]. We say that X is a Busemann nonpositively curved space (shortly
Busemann space) if its metric is convez: if ¢ : [a,b] = X and d : [a',b'] = X are
affine parameterizations of two segments, then the function D : [a,b]x[a’,b'] — Ry

D(s,t) = |e(s)d(?)]

18 convex. FEquivalently, the space X is Busemann nonpositively curved if for any
three points x,y,z € X, for the arbitrary midpoint m between x and y and for
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arbitrary midpoint n between = and z the inequality
1
mn| < 51yl 21)
holds.

The following properties of the considered spaces are simple corollaries from
Def. 2.1. Each Busemann nonpositively curved space X is contractible, any its
two points are connected by the unique segment.

The class of Busemann nonpositively curved spaces contains all C AT(0)-
spaces and strictly convex Minkowski spaces.

The fact that some non-Minkowskian Finsler manifolds have nonpositive cur-
vature in sense of Busemann is less trivial. Finsler metrics having nonpositive
curvature in the sense of Busemann were studied in [8]. It is shown that every
Finsler manifold with Berwald metric and nonpositive flag curvatures is a genera-
lized Busemann space (geodesic space with the Busemann property of curvature
nonpositivity but without symmetry condition on the metric). The Finsler metric
F(z,dz) on the manifold M™ is a Berwald metric if there is a special coordinate
system, where its geodesics satisfy the system of differential equations

&' +2G(0,6) = 0.

Here G* := G'(x,y) are positive functions homogeneous of the second degree in
y. If the metric F is Riemannian, then G* = %Fék(x)yjyk, where Fé-k are Levi-
Chivita connection coefficients.

The Berwald condition is essential here. By Kelly-Straus theorem (cf. [9]),
if the Finsler space with Hilbert metric (of constant negative flag curvature) is
a Busemann space, then it is a Lobachevsky space.

In connection with convexity, the spaces with nonpositive curvature are some-
times called convex spaces (cf. [10]).

Definition 2.2. The metric space X is called locally convex if every its point
has a neighborhood that is the Busemann nonpositively curved space in the metric

of X.

Several strengthenings of the convexity property were introduced in [11].

Definition 2.3. The Busemann nonpositively curved space X 1is called strictly
convex if there is the strong inequality

|zom| < max{|zoy|, |zoz|}
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for every triple of points xy,y,z € X, where m s a midpoint between y and z.
The strictly convexr space X is called weakly uniformly convez if for any point
xzg € X the modulus of convexity function

Ozo (p,7) :=inf{r — |zom| | y, 2z € X,

1
lzoy| <y |woz| < v lyz| > pr, [ym| = |mz| = §IyZI}

18 positive for any u,r > 0. Finally, the weakly uniformly convex space X s called
uniformly convez if
im0y, (1, 7) = 00

r—+00

for any fized p > 0.

For example, every strictly convex Minkowski space is uniformly convex,
because its modulus of convexity function is homogeneous by r:

So(fty AT) = Ao (fs,7)

for all g, r, A > 0.

3. Gluing

The gluing theorem known for the Alexandrov spaces in Reshetnyak’s for-
mulation (cf. [12]) is not true for Busemann spaces with nonpositive curvature.
For example, the result of gluing of two normed half-planes with different norms
is a plane whose metric fails to be a Busemann nonpositive curvature. We will
prove the following version of the gluing theorem.

Theorem 3.1. Let (X1,dy), (Xo,ds) and (X3,ds) be three Busemann spaces
represented as unions of closed convex subsets X; := A; U B;. Let g1 : By — As,
g2 : Bs — Ay and g3 : By — A be three isometries such that googi0gs = Id |a,nB, -
Then the space X obtained as a factorspace X := (X1 UXoUX3)/{91,92,93} with
the metric d that coincides with d; in each X;, is a Busemann space.

P r o f.  Identifying each space X; with the corresponding subset in X,
we notice that
AiNB;=B3NA; C X;NXyN Xs.

As a corollary,

XiNXonNXs=A NBy =AyNBy = A3 N Bs.
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B,=A,
y

Fig. 1: The space X is a result of the gluing of spaces X1, Xo and X3.

Any two points z,y € X are contained in one of X; and connected in this
X; by a segment [zy| with natural parametrization ¢ : [a, ] — X;. Assume
for definiteness that z,y € X;. Since the distance in X between the points
that belong to X coincides with the distance di, then the parametrization c is
a natural parametrization of the path ¢ in the space X as well. Consequently,
the map ¢ represents a segment connecting z and y in X. It follows that X is
a geodesic space.

Let k ¢ Xy, that is k € By \ Ag = A3\ B3 = (X2 N X3) \ X1, be an arbitrary
point. Consider the segments [zk] and [ky] with natural parameterizations p :
[a,7] = X and ¢ : [6,8] — X. Denote s € [a,~] the infimum of parameters
o for which p(o) ¢ Xi, and ¢t € [4, 8] the supremum of parameters 7 for which
q(7) ¢ Xi. Since the sets A; and B; are closed, then p(s),q(t) € (Ba = A3) N X;.
It follows

lzylx = di(z,y) < di(z,p(s)) + di(p(s),q(t)) + di(q(t),y) < |zk|x + |kyl|x.

Consequently, every segment connecting  and y passes in X1, and the points
z and y are connected by the unique segment in X. If x,y € X;, then there is
a unique midpoint between z and y and it belongs to the same X;.

Let three points z,y,z € X and the midpoints m,n of segments [zy] and
[xz], respectively, be given. If z,y,2z € X; for some 4, then also m,n € X;, and
the inequality (2.1) is fulfilled automatically. Assume that z ¢ X, y ¢ X, and
z ¢ X3 (as in Fig. 1). Denote p an arbitrary point of the segment [yz] in the
intersection A; N By = A; N A N As, and ¢ the midpoint of the segment [zp]

(Fig. 2).
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Fig. 2:

Then from x,y,p € X3 there follows the inequality

1
Img|x < §|yP|X, (3.1)

and from z,p, z € Xy the inequality

1

janlx < 3lpzlx- (3.2)

Combining (3.1) and (3.2), we get

1 1
Imn|x < |mg|x + |qn|x < §(|yplx + |pzlx) = §Iyzlx-

4. Convergence in the Class of Busemann Nonpositively
Curved Spaces

Definition 4.1. The distortion of the map f : X — Y of the metric space
(X,dx) to the metric space (Y,dy) is defined by

dis(f) := sup_|dy(f(2),f(y)) —dx(z,y)|.
T,yeX

The uniform distance | XY |, between metric spaces (X,dx) and (Y,dy) is
defined by
| XY, := infdis(f),
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where the infimum is taken over all bijections f : X — Y. A sequence (X,,d,)
of metric spaces converges uniformly to the metric space (X,dx) if | X, Xy — 0.

For € > 0, e-net in the metric space X is a subset N C X such that for any
z € X there exists a € N with |za| < e.

Definition 4.2 [13, Part I, p. 7]. Let (X,d) be a bounded metric space and
(Xi,d;) be a sequence of bounded metric spaces with distances d;. The sequence
X; converges in the sense of Hausforff to the space X if for any € > 0 there exists
e-net N C X that is a uniform limit of e-nets Nj in X;.

The definition of the Hausdorff convergence in the case of nonbounded spaces is
valid in the category of pointed spaces. Let (X, 0,d) be a pointed metric space with
the marked point o and the metric d, and (X;, 0;,d;) be a sequence of pointed metric
spaces with the marked points o; and the metrics d;, respectively. The sequence X;
converges in the sense of Hausdorff to the space X if for any r > 0 the sequence
of balls Bx,(0;,) converges in the sense of Hausdorff to the ball Bx(o,T).

We say that the family of geodesic spaces {(Xq,ds)} with the metrics d,
is unimodularly convex if each of spaces (Xg,d,) is weakly uniformly convex
and there exists the positive function m(u,r) defined for u,r > 0 that bounds
convexity modules of all spaces X, from below uniformly

0z (1s7) = mp, 1) (4.1)

for any =z € X, and for all a.

Theorem 4.3. Let the complete metric space (X,0,dx) with basepoint o is
a Hausdorff limit of unimodularly convezr sequence (Xy,on,d,) of pointed Buse-
mann spaces. Then X is also a Busemann space and its convezity modulus 0z (e, r)
for all x € X is bounded from below by the common low boundary of convexity
modules of spaces X,,.

R em a r k. The unimodular convexity condition is essential here.
For example, Minkowski planes with the norms

1z )l = ¥l + [y

that are strictly convex when n > 1 converges in the sense of Hausdorff to the
non-strictly convex Minkowski plane with maximum norm

15 Y)lloo = max{]x], |y[}.

First, we need the following lemma.
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Lemma 4.4. Let the sequence (X,,0n,dy) and the space (X,0,dx) satisfy
the conditions of Th. 4.3. Then:

1. X is a geodesic space;

2. for any two points x,y € X the midpoint m between them is unique.

Prof By Claim 6.1 in [13, Part I| the metric of the space X is interior.
Consequently, X is geodesic as a complete space with interior metric.

Now we prove the second statement. Assume for the contrary
that for points z, y € X there exists two different midpoints mq, ms € X.
Put R := 2max{dx(0,z),dx(0,y)}. From the definition of Hausdorff conver-
gence in unbounded spaces, the balls By, (o, R) converge to the ball Bx (o, R).

Let the positive function L(u,r) be defined for p,r > 0 by the equality

L(p,r) = inf 5, (1, @),

where the infimum is taken over all x € X,, for all natural n. By the inequality

(4.1) the infimum is positive. The function L(u,r) is nondecreasing on p when

r > 0 is fixed. To see this it is sufficient to observe that for all n the functions

dz (4, ) have the mentioned property, where z € X, is arbitrary. Let uo > 1 > 0.

If do(z,y) <7, do(z,2) < r and du(y,z) > por hold for the points z,y,z € X,

then also dy(y, z) > pir. Hence 0, (p1,7) < 8p(p2, ), and o (p1,7) < da(pp2, 7).
Consequently, for all u,r > 0 there exists € > 0 such that

2 9
e<—-L <,u——e,7">.
9 r
Take € > 0 to satisfy the conditions

dx(ml, mg) — 3e > EM(E), (4.2)

where M (e) = 3dx(z,y) + 3¢, and

2
<Zr
€S9

dx(ml,mg) —9% 1
(2 ix(2.1) , idx(fE, y)) . (4.3)

Let X¢ be an e-net in the ball B(o, R) C X and a uniform limit of e-nets X, in
balls B(o,,R) C X,,. Let the number N € N be taken such that for all n > N
there exists a bijection ¢, : X, — X, for which

dis e < €. (4.4)
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Choose the points x¢, Ye, M1, M2 € X, with the conditions

dX(fE, $€) <€,

dx (y7 ye) <€
dx(mi,my.) <e,
dx(mg,mQ,e) < €.

For them
dX(l"E, ye) > dX(l", y) - 267
1
|dX(x57 ml,e) - EdX(xa y)| < 26’
1
|dX($€7 m2,€) - EdX(xa y)| S 267
1
|dX(y67 ml,e) - 5(1)((.’1;, y)| S 267
1
|dX(yea m?,e) - EdX (xa y)| <2
and

|dx (my,e,mae) — dx(mi,ma)| < 2e.

For arbitrary n > N we have

dn(Pep (@), Pen(ye)) > dx (,y) — 3e, (4.5)
and also 1
|dn(¢;7lz(xe)a ¢;7lz(m1,e)) - EdX(xayH < 3€a (4-6)
(B2 (), dh () = 5k ()] < 3e, (47)
(B2 (). B (mr,0) — dx(arv)] < B,
(6 () o hm ) — 5k (2, 9)] < Be
and

| (ben (11,6)s b (mi2,e)) — dix (mr, mo)| < 3e.

Consequently, from (4.2)

dn (e (M), bem(Mae)) > €M (e).
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e,n o Ye
qsenmlff %Ennfne mle&
336

Fig. 3:

Let 2z, € X, be the midpoint between ¢, }(mic) and ¢} (mo)
(Fig. 3). Consider also the following points. The point p; , € X,, in the segment
[ben(@e)ben(mae)], such that

dn((ﬁ;}L(q"e)apl,n) =

:{ sdx (z,y), if dn(dep(xe), dem(mie)) > 3dx (z,y)
dn(éb;ylz(ﬁﬁe)aébe,n( ,E)) otherwise.

The point p; , coincides with the endpoint gb;,ll(ml,e) of the segment if

A2 h), B ma,0) < Sdx (),

or its distance from ¢ (z.) is sdx (z,y) if
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The point py,, is defined analogously in the segment [¢_} (zc)¢; 5 (moa,c)]. Finally,
the point g, is the midpoint of the segment [p; np2.,] (Fig. 4).

Let us estimate the distance dy,(p1,n,p2,n) from below. From inequalities (4.6)
and (4.7) the distances dy(pi, ¢} (mi.)) and i = 1,2 satisfy the inequality

dn (i, QS;}l(mz,e)) < 3e.
Hence
dn(pl,nap2,n) > dn(gb;}l(ml’e), ¢€_}b(m2,e)) —6e > dx (m1,m2) — Q¢.

We have
dn(qs;rlz (Te), 2n) < dn(¢e_,7}b($e)a qn) + dn(qn, 2n)

dx(mi,mg) —9¢ 1
—d
dx(x,y) 9 X(fan)

1

1 _ -
+§ (dn (pl,na ¢e,7}b (ml,e)) +dp (pQ,na ¢e,7}b (mQ,e))
1 dx(my,mg) —3e 1
< —d —L|(2 —d 3
D) X(xay) < dX(iU,y) ) X(xay) + Je
1 3
< §dx($,y) — 5
Similarly,
_ 1 3
dn(gbe,}z(ye)azn) < §dX(£U,y) - 56'
Finally,
dn(ben () ben(ye)) < dx (,y) — 3¢,
contradicting to the inequality (4.5). [ ]

Now we can complete the proof.

Proof of Theorem 4.3. Let the points z,y, 2z € X and the midpoints p and
q of segments [zy] and [zz], respectively, be given. Denote

R :=2max{dx(0,z),dx (0,y),dx(0,2)}.

Fix the decreasing sequence ¢; — 0.

For each 4, choose ¢;-net X, C Bx/(o,R) which is a uniform limit of ¢;-nets
Xe¢;n C Bx, (0, R). Here Bx(o, R) and Bx, (0p, R) are balls in the spaces X and
X, respectively.

Let n(4) be the natural number such that there exists a bijection ¢; : X, ,,;) —
X, with the distortion

dis ¢; < €;.
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Let the distances from the points x;,y;,2; € X to z,y, 2z, respectively, be not
greater than ¢;. Denote p; € X,(;) the midpoint of the segment I (T

)

Pi € X, n(i) the point on the distance not greater than ¢; from p;, and p; = ¢; (pi) €
X its image in the bijection ¢;. Since by the condition the space X is proper and
the sequence p; is bounded, one can subtract the converging subsequence. We may
assume that the sequence p; is also converging. The points p; are (4¢;)-midpoints
between x and y, that is

1
|dx (z,pi) = 5dx (z,y)| < de;
and .
ldx (y,pi) — 5dx (2, y)| < 4ei.
Since €; — 0, when 7 — oo, the limit of the sequence p; is the midpoint between

z and y. From the uniqueness of midpoints in X, it follows that

lim p; = p.

1—00

Analogously, one can construct the sequence of (4¢;)-midpoints ¢; between z and
z converging to gq. We have

dx (pis ¢i) < dx, ., (Pir @) + € < dx,,, (Pi, @) + 3€;

_ _ 1
dx, . (; Y(yi), 7" (1)) + 3 < §dX(yiazi) + 4e;

Hence 1

that is X is Busemann nonpositively curved. The estimation of the convexity
modulus d,(e,7) in X can be proven in a similar way. [ |

Acknowledgement. The author is grateful to the referee for the number of
important remarks and corrections made.
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