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edures of gluing and the Hausdor� limit in the 
lass of metri
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es nonpositively 
urved in the sense of Busemann are studied in thepaper. Conditions under whi
h the resulting spa
es belong to the same 
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s Subje
t Classi�
ation 2000: 53C23.1. Introdu
tionWe study some 
onstru
tions in the 
lass of geodesi
 metri
 spa
es with Buse-mann nonpositive 
urvature. Here we use not a 
lassi
al de�nition of nonpositively
urved spa
es ([2℄), but the one introdu
ed by B. Bowdit
h in [1℄ where the 
lassof spa
es 
onsidered is 
alled Busemann. This allows to in
lude the 
onsiderationof all CAT (0)-spa
es, i.e., the 
omplete simply 
onne
ted spa
es of nonpositive
urvature in the sense of A.D. Alexandrov and all stri
tly 
onvex normed spa
es.The main question of the paper is: what are additional 
onditions for gluing andlimiting operations in the 
lass of Busemann spa
es to keep the resulting spa
e inthe same 
lass?Similar problems for Alexandrov spa
es were studied su�
iently deeply in[3, 4℄, et
. Some operations in the 
lass of Busemann spa
es were studied in [5℄and [6℄. The 
ondition of nonpositivity of 
urvature in the sense of Busemannis weaker than in the sense of Alexandrov. By this reason many results that aretrue to Alexandrov spa
es do not have dire
t generalization for Busemann spa
es.When applying Alexandrov spa
es theory one should set additional requirementsin a number of situations.
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P.D. AndreevThe paper is organized as follows. In Se
tion 2 we re
all some ne
essary de�-nitions and fa
ts from Busemann spa
es theory. In Se
tion 3 we prove the gluingtheorem whi
h generalizes Reshetnyak's gluing theorem known for Alexandrovspa
es (
f. [3, Th. 9.1.21℄). When we speak about Busemann spa
es, the gluingtheorem has the following formulation.Theorem 3.1. Let (X1; d1), (X2; d2) and (X3; d3) be three Busemann spa
esrepresented as unions of 
losed 
onvex subsets Xi := Ai [ Bi. Let g1 : B2 ! A3,g2 : B3 ! A1 and g3 : B1 ! A2 be three isometries su
h that g2Æg1Æg3 = Id jA1\B1 .Then the spa
e X obtained as a fa
torspa
e X := (X1[X2[X3)=fg1; g2; g3g withthe metri
 d that 
oin
ides with di in ea
h Xi, is a Busemann spa
e.In Se
tion 4 we study the Hausdor� limits of Busemann spa
es. The 
lass ofall Busemann spa
es is not 
losed under Hausdor� limit: the sequen
e of stri
tly
onvex normed spa
es 
an 
onverge to the normed spa
e with nonstri
tly 
onvexnorm. B. Kleiner introdu
ed the notion of often 
onvex spa
e in [6℄. The 
lass ofoften 
onvex spa
es is 
losed under limits and 
ontains a sub
lass of Busemannspa
es. We study the Hausdor� limits of Busemann spa
es under additional requi-rement of unimodular 
onvexity. The main result of the se
tion is the followingtheorem.Theorem 4.3. Let the 
omplete metri
 spa
e (X; o; dX ) with basepoint o bea Hausdor� limit of unimodularly 
onvex sequen
e (Xn; on; dn) of pointed Buse-mann spa
es. Then X is also a Busemann spa
e and its 
onvexity modulus Æx(�; r)for all x 2 X is bounded from below by the 
ommon low boundary of 
onvexitymodules of spa
es Xn. 2. PreliminariesThe general theory of spa
es with intrinsi
 metri
 
an be found in [3, 4℄ and[7℄. Here we re
all some basi
 fa
ts related to Busemann nonpositively 
urvedspa
es.De�nition 2.1. Let (X; d) be a geodesi
 spa
e. We use the notation jxyj forthe distan
e d(x; y) between its points. A segment 
onne
ting the points x; y 2 Xis denoted [xy℄. We say that X is a Busemann nonpositively 
urved spa
e (shortlyBusemann spa
e) if its metri
 is 
onvex: if 
 : [a; b℄ ! X and d : [a0; b0℄! X area�ne parameterizations of two segments, then the fun
tion D : [a; b℄�[a0; b0℄! R+D(s; t) = j
(s)d(t)jis 
onvex. Equivalently, the spa
e X is Busemann nonpositively 
urved if for anythree points x; y; z 2 X, for the arbitrary midpoint m between x and y and for26 Journal of Mathemati
al Physi
s, Analysis, Geometry, 2009, vol. 5, No. 1
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 Constru
tions in the Class of Busemann Nonpositively Curved Spa
esarbitrary midpoint n between x and z the inequalityjmnj � 12 jyzj (2.1)holds.The following properties of the 
onsidered spa
es are simple 
orollaries fromDef. 2.1. Ea
h Busemann nonpositively 
urved spa
e X is 
ontra
tible, any itstwo points are 
onne
ted by the unique segment.The 
lass of Busemann nonpositively 
urved spa
es 
ontains all CAT (0)-spa
es and stri
tly 
onvex Minkowski spa
es.The fa
t that some non-Minkowskian Finsler manifolds have nonpositive 
ur-vature in sense of Busemann is less trivial. Finsler metri
s having nonpositive
urvature in the sense of Busemann were studied in [8℄. It is shown that everyFinsler manifold with Berwald metri
 and nonpositive �ag 
urvatures is a genera-lized Busemann spa
e (geodesi
 spa
e with the Busemann property of 
urvaturenonpositivity but without symmetry 
ondition on the metri
). The Finsler metri
F (x; dx) on the manifold Mn is a Berwald metri
 if there is a spe
ial 
oordinatesystem, where its geodesi
s satisfy the system of di�erential equations��i + 2Gi(�; _�) = 0:Here Gi := Gi(x; y) are positive fun
tions homogeneous of the se
ond degree iny. If the metri
 F is Riemannian, then Gi = 12�ijk(x)yjyk, where �ijk are Levi�Chivita 
onne
tion 
oe�
ients.The Berwald 
ondition is essential here. By Kelly�Straus theorem (
f. [9℄),if the Finsler spa
e with Hilbert metri
 (of 
onstant negative �ag 
urvature) isa Busemann spa
e, then it is a Loba
hevsky spa
e.In 
onne
tion with 
onvexity, the spa
es with nonpositive 
urvature are some-times 
alled 
onvex spa
es (
f. [10℄).De�nition 2.2. The metri
 spa
e X is 
alled lo
ally 
onvex if every its pointhas a neighborhood that is the Busemann nonpositively 
urved spa
e in the metri
of X.Several strengthenings of the 
onvexity property were introdu
ed in [11℄.De�nition 2.3. The Busemann nonpositively 
urved spa
e X is 
alled stri
tly
onvex if there is the strong inequalityjx0mj < maxfjx0yj; jx0zjg
Journal of Mathemati
al Physi
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P.D. Andreevfor every triple of points x0; y; z 2 X, where m is a midpoint between y and z.The stri
tly 
onvex spa
e X is 
alled weakly uniformly 
onvex if for any pointx0 2 X the modulus of 
onvexity fun
tionÆx0(�; r) := inffr � jx0mj j y; z 2 X;jx0yj � r; jx0zj � r; jyzj � �r; jymj = jmzj = 12 jyzjgis positive for any �; r > 0. Finally, the weakly uniformly 
onvex spa
e X is 
alleduniformly 
onvex if limr!+1 Æx0(�; r) = +1for any �xed � > 0.For example, every stri
tly 
onvex Minkowski spa
e is uniformly 
onvex,be
ause its modulus of 
onvexity fun
tion is homogeneous by r:Æo(�; �r) = �Æo(�; r)for all �; r; � > 0. 3. GluingThe gluing theorem known for the Alexandrov spa
es in Reshetnyak's for-mulation (
f. [12℄) is not true for Busemann spa
es with nonpositive 
urvature.For example, the result of gluing of two normed half-planes with di�erent normsis a plane whose metri
 fails to be a Busemann nonpositive 
urvature. We willprove the following version of the gluing theorem.Theorem 3.1. Let (X1; d1), (X2; d2) and (X3; d3) be three Busemann spa
esrepresented as unions of 
losed 
onvex subsets Xi := Ai [ Bi. Let g1 : B2 ! A3,g2 : B3 ! A1 and g3 : B1 ! A2 be three isometries su
h that g2Æg1Æg3 = Id jA1\B1 .Then the spa
e X obtained as a fa
torspa
e X := (X1[X2[X3)=fg1; g2; g3g withthe metri
 d that 
oin
ides with di in ea
h Xi, is a Busemann spa
e.P r o f. Identifying ea
h spa
e Xi with the 
orresponding subset in X,we noti
e that A1 \B1 = B3 \A2 � X1 \X2 \X3:As a 
orollary, X1 \X2 \X3 = A1 \B1 = A2 \B2 = A3 \B3:
28 Journal of Mathemati
al Physi
s, Analysis, Geometry, 2009, vol. 5, No. 1
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Fig. 1: The spa
e X is a result of the gluing of spa
es X1;X2 and X3.Any two points x; y 2 X are 
ontained in one of Xi and 
onne
ted in thisXi by a segment [xy℄ with natural parametrization 
 : [�; �℄ ! Xi. Assumefor de�niteness that x; y 2 X1. Sin
e the distan
e in X between the pointsthat belong to X1 
oin
ides with the distan
e d1, then the parametrization 
 isa natural parametrization of the path 
 in the spa
e X as well. Consequently,the map 
 represents a segment 
onne
ting x and y in X. It follows that X isa geodesi
 spa
e.Let k =2 X1, that is k 2 B2 n A2 = A3 nB3 = (X2 \X3) nX1, be an arbitrarypoint. Consider the segments [xk℄ and [ky℄ with natural parameterizations p :[�; 
℄ ! X and q : [Æ; �℄ ! X. Denote s 2 [�; 
℄ the in�mum of parameters� for whi
h p(�) =2 X1, and t 2 [Æ; �℄ the supremum of parameters � for whi
hq(�) =2 X1. Sin
e the sets Ai and Bi are 
losed, then p(s); q(t) 2 (B2 = A3)\X1.It followsjxyjX = d1(x; y) � d1(x; p(s)) + d1(p(s); q(t)) + d1(q(t); y) < jxkjX + jkyjX :Consequently, every segment 
onne
ting x and y passes in X1, and the pointsx and y are 
onne
ted by the unique segment in X. If x; y 2 Xi, then there isa unique midpoint between x and y and it belongs to the same Xi.Let three points x; y; z 2 X and the midpoints m;n of segments [xy℄ and[xz℄, respe
tively, be given. If x; y; z 2 Xi for some i, then also m;n 2 Xi, andthe inequality (2.1) is ful�lled automati
ally. Assume that x =2 X1, y =2 X2 andz =2 X3 (as in Fig. 1). Denote p an arbitrary point of the segment [yz℄ in theinterse
tion A1 \ B1 = A1 \ A2 \ A3, and q the midpoint of the segment [xp℄(Fig. 2).Journal of Mathemati
al Physi
s, Analysis, Geometry, 2009, vol. 5, No. 1 29
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Fig. 2:Then from x; y; p 2 X3 there follows the inequalityjmqjX � 12 jypjX ; (3.1)and from x; p; z 2 X2 the inequalityjqnjX � 12 jpzjX : (3.2)Combining (3.1) and (3.2), we getjmnjX � jmqjX + jqnjX � 12(jypjX + jpzjX) = 12 jyzjX :4. Convergen
e in the Class of Busemann NonpositivelyCurved Spa
esDe�nition 4.1. The distortion of the map f : X ! Y of the metri
 spa
e(X; dX ) to the metri
 spa
e (Y; dY ) is de�ned bydis(f) := supx;y2X jdY (f(x); f(y))� dX(x; y)j:The uniform distan
e jXY ju between metri
 spa
es (X; dX ) and (Y; dY ) isde�ned by jXY ju := inf dis(f);30 Journal of Mathemati
al Physi
s, Analysis, Geometry, 2009, vol. 5, No. 1



Geometri
 Constru
tions in the Class of Busemann Nonpositively Curved Spa
eswhere the in�mum is taken over all bije
tions f : X ! Y . A sequen
e (Xn; dn)of metri
 spa
es 
onverges uniformly to the metri
 spa
e (X; dX ) if jXnXju ! 0.For � > 0; �-net in the metri
 spa
e X is a subset N � X su
h that for anyx 2 X there exists a 2 N with jxaj < �:De�nition 4.2 [13, Part I, p. 7℄. Let (X; d) be a bounded metri
 spa
e and(Xi; di) be a sequen
e of bounded metri
 spa
es with distan
es di. The sequen
eXi 
onverges in the sense of Hausfor� to the spa
e X if for any � > 0 there exists�-net N� � X that is a uniform limit of �-nets Ni� in Xi.The de�nition of the Hausdor� 
onvergen
e in the 
ase of nonbounded spa
es isvalid in the 
ategory of pointed spa
es. Let (X; o; d) be a pointed metri
 spa
e withthe marked point o and the metri
 d, and (Xi; oi; di) be a sequen
e of pointed metri
spa
es with the marked points oi and the metri
s di, respe
tively. The sequen
e Xi
onverges in the sense of Hausdor� to the spa
e X if for any r > 0 the sequen
eof balls BXi(oi; r) 
onverges in the sense of Hausdor� to the ball BX(o; r).We say that the family of geodesi
 spa
es f(X�; d�)g with the metri
s d�is unimodularly 
onvex if ea
h of spa
es (X�; d�) is weakly uniformly 
onvexand there exists the positive fun
tion m(�; r) de�ned for �; r > 0 that bounds
onvexity modules of all spa
es X� from below uniformlyÆx(�; r) � m(�; r) (4.1)for any x 2 X� and for all �.Theorem 4.3. Let the 
omplete metri
 spa
e (X; o; dX ) with basepoint o isa Hausdor� limit of unimodularly 
onvex sequen
e (Xn; on; dn) of pointed Buse-mann spa
es. Then X is also a Busemann spa
e and its 
onvexity modulus Æx(�; r)for all x 2 X is bounded from below by the 
ommon low boundary of 
onvexitymodules of spa
es Xn.R e m a r k. The unimodular 
onvexity 
ondition is essential here.For example, Minkowski planes with the normsk(x; y)kn := npjxjn + jyjnthat are stri
tly 
onvex when n > 1 
onverges in the sense of Hausdor� to thenon-stri
tly 
onvex Minkowski plane with maximum normk(x; y)k1 := maxfjxj; jyjg:First, we need the following lemma.
Journal of Mathemati
al Physi
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P.D. AndreevLemma 4.4. Let the sequen
e (Xn; on; dn) and the spa
e (X; o; dX ) satisfythe 
onditions of Th. 4.3. Then:1. X is a geodesi
 spa
e;2. for any two points x; y 2 X the midpoint m between them is unique.P r o f. By Claim 6.1 in [13, Part I℄ the metri
 of the spa
e X is interior.Consequently, X is geodesi
 as a 
omplete spa
e with interior metri
.Now we prove the se
ond statement. Assume for the 
ontrarythat for points x, y 2 X there exists two di�erent midpoints m1, m2 2 X.Put R := 2maxfdX(o; x); dX (o; y)g. From the de�nition of Hausdor� 
onver-gen
e in unbounded spa
es, the balls BXn(on; R) 
onverge to the ball BX(o;R).Let the positive fun
tion L(�; r) be de�ned for �; r > 0 by the equalityL(�; r) = inf Æx(�; �);where the in�mum is taken over all x 2 Xn for all natural n. By the inequality(4.1) the in�mum is positive. The fun
tion L(�; r) is nonde
reasing on � whenr > 0 is �xed. To see this it is su�
ient to observe that for all n the fun
tionsÆx(�; r) have the mentioned property, where x 2 Xn is arbitrary. Let �2 > �1 > 0.If d�(x; y) � r, d�(x; z) � r and d�(y; z) � �2r hold for the points x; y; z 2 Xn,then also d�(y; z) � �1r. Hen
e Æx(�1; r) � Æx(�2; r), and Æ�(�1; r) � Æ�(�2; r).Consequently, for all �; r > 0 there exists � > 0 su
h that� < 29L��� 9�r ; r� :Take � > 0 to satisfy the 
onditionsdX(m1;m2)� 3� > �M(�); (4.2)where M(�) = 12dX(x; y) + 3�, and� < 29L�2dX(m1;m2)� 9�dX(x; y) ; 12dX(x; y)� : (4.3)Let X� be an �-net in the ball B(o;R) � X and a uniform limit of �-nets X�;n inballs B(on; R) � Xn. Let the number N 2 N be taken su
h that for all n > Nthere exists a bije
tion ��;n : X�;n ! X� for whi
hdis��;n < �: (4.4)
32 Journal of Mathemati
al Physi
s, Analysis, Geometry, 2009, vol. 5, No. 1
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tions in the Class of Busemann Nonpositively Curved Spa
esChoose the points x�; y�;m1;�;m2;� 2 X� with the 
onditionsdX(x; x�) < �;dX(y; y�) < �;dX(m1;m1;�) < �;dX(m2;m2;�) < �:For them dX(x�; y�) � dX(x; y) � 2�;jdX(x�;m1;�)� 12dX(x; y)j � 2�;jdX(x�;m2;�)� 12dX(x; y)j � 2�;jdX(y�;m1;�)� 12dX(x; y)j � 2�;jdX(y�;m2;�)� 12dX(x; y)j � 2�and jdX(m1;�;m2;�)� dX(m1;m2)j � 2�:For arbitrary n > N we havedn(��1�;n(x�); ��1�;n(y�)) � dX(x; y)� 3�; (4.5)and also jdn(��1�;n(x�); ��1�;n(m1;�))� 12dX(x; y)j � 3�; (4.6)jdn(��1�;n(x�); ��1�;n(m2;�))� 12dX(x; y)j � 3�; (4.7)jdn(��1�;n(y�); ��1�;n(m1;�))� 12dX(x; y)j � 3�;jdn(��1�;n(y�); ��1�;n(m2;�))� 12dX(x; y)j � 3�and jdn(��1�;n(m1;�); ��1�;n(m2;�))� dX(m1;m2)j � 3�:Consequently, from (4.2)dn(��1�;n(m1;�); ��1�;n(m2;�)) � �M(�):
Journal of Mathemati
al Physi
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Fig. 3:Let zn 2 Xn be the midpoint between ��1�;n(m1;�) and ��1�;n(m2;�)(Fig. 3). Consider also the following points. The point p1;n 2 Xn in the segment[��1�;n(x�)��1�;n(m1;�)℄, su
h thatdn(��1�;n(x�); p1;n) ==� 12dX(x; y); if dn(��1�;n(x�); ��1�;n(m1;�)) � 12dX(x; y)dn(��1�;n(x�); ��1�;n(m1;�)) otherwise:The point p1;n 
oin
ides with the endpoint ��1�;n(m1;�) of the segment ifdn(��1�;n(x�); ��1�;n(m1;�)) � 12dX(x; y);or its distan
e from ��1�;n(x�) is 12dX(x; y) ifdn(��1�;n(x�); ��1�;n(m1;�)) � 12dX(x; y):

r
r rrr

��1�;n(x�)
��1�;n(m1;�) ��1�;n(m2;�)p1;n p2;nqn

Fig. 4:34 Journal of Mathemati
al Physi
s, Analysis, Geometry, 2009, vol. 5, No. 1
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 Constru
tions in the Class of Busemann Nonpositively Curved Spa
esThe point p2;n is de�ned analogously in the segment [��1�;n(x�)��1�;n(m2;�)℄. Finally,the point qn is the midpoint of the segment [p1;np2;n℄ (Fig. 4).Let us estimate the distan
e dn(p1;n; p2;n) from below. From inequalities (4.6)and (4.7) the distan
es dn(pi; ��1�;n(mi;�)) and i = 1; 2 satisfy the inequalitydn(pi; ��1�;n(mi;�)) � 3�:Hen
e dn(p1;n; p2;n) � dn(��1�;n(m1;�); ��1�;n(m2;�))� 6� � dX(m1;m2)� 9�:We have dn(��1�;n(x�); zn) � dn(��1�;n(x�); qn) + dn(qn; zn)� 12dX(x; y)� L�2dX(m1;m2)� 9�dX(x; y) ; 12dX(x; y)�+12 �dn(p1;n; ��1�;n(m1;�)) + dn(p2;n; ��1�;n(m2;�)�� 12dX(x; y)� L�2dX(m1;m2)� 3�dX(x; y) ; 12dX(x; y)�+ 3�< 12dX(x; y)� 32�:Similarly, dn(��1�;n(y�); zn) < 12dX(x; y)� 32�:Finally, dn(��1�;n(x�); ��1�;n(y�)) < dX(x; y)� 3�;
ontradi
ting to the inequality (4.5).Now we 
an 
omplete the proof.P r o o f of Theorem 4.3. Let the points x; y; z 2 X and the midpoints p andq of segments [xy℄ and [xz℄, respe
tively, be given. DenoteR := 2maxfdX(o; x); dX (o; y); dX (o; z)g:Fix the de
reasing sequen
e �i ! 0.For ea
h i, 
hoose �i-net X�i � BX(o;R) whi
h is a uniform limit of �i-netsX�i;n � BXn(o;R). Here BX(o;R) and BXn(on; R) are balls in the spa
es X andXn, respe
tively.Let n(i) be the natural number su
h that there exists a bije
tion �i : X�i;n(i) !X�i with the distortion dis�i < �i:Journal of Mathemati
al Physi
s, Analysis, Geometry, 2009, vol. 5, No. 1 35



P.D. AndreevLet the distan
es from the points xi; yi; zi 2 X� to x; y; z, respe
tively, be notgreater than �i. Denote ~pi 2 Xn(i) the midpoint of the segment [��1i (xi)��1i (yi)℄,�pi 2 X�i;n(i) the point on the distan
e not greater than �i from ~pi, and pi = �i(�pi) 2X its image in the bije
tion �i. Sin
e by the 
ondition the spa
e X is proper andthe sequen
e pi is bounded, one 
an subtra
t the 
onverging subsequen
e. We mayassume that the sequen
e pi is also 
onverging. The points pi are (4�i)-midpointsbetween x and y, that is jdX(x; pi)� 12dX(x; y)j � 4�iand jdX(y; pi)� 12dX(x; y)j � 4�i:Sin
e �i ! 0, when i ! 1, the limit of the sequen
e pi is the midpoint betweenx and y. From the uniqueness of midpoints in X, it follows thatlimi!1 pi = p:Analogously, one 
an 
onstru
t the sequen
e of (4�i)-midpoints qi between x andz 
onverging to q. We havedX(pi; qi) � dXn(i)(�pi; �qi) + �i � dXn(i)(~pi; ~qi) + 3�i� 12dXn(i)(��1i (yi); ��1i (zi)) + 3�i � 12dX(yi; zi) + 4�i� 12dX(y; z) + 5�i:Hen
e dX(p; q) � 12dX(y; z);that is X is Busemann nonpositively 
urved. The estimation of the 
onvexitymodulus Æx(�; r) in X 
an be proven in a similar way.A
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