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1. Introduction

In kinetic theory the state of rare�ed gas is described by the distribution

function f(t; v; x), where t 2 R1 is time, v =
�
v1; v2; v3

�
2 R3 is the velocity of

molecule, and x =
�
x1; x2; x3

�
2 R3 is its position in the space. This function is

a solution of non-linear integro-di�erential Boltzmann equation [1�3]

D(f) = Q(f; f); (1)

D(f) =
@f

@t
+ v

@f

@x
; (2)

Q(f; f) =
d2

2

Z
R3

dv1

Z
�

d�j(v � v1; �)j

�[f(t; v0

1; x)f(t; v
0

; x)� f(t; v1; x)f(t; v; x)]; (3)
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where @f
@x

(or simply f
0

) denotes the spatial gradient of distribution f , d is the

diameter of particles, v; v1, v
0

, v
0

1 are velocities of two molecules before and after

collision, respectively; the vector � belongs to the unit sphere � � R3.

The most general form of the local-equilibrium Maxwell solutions of Boltz-

mann equation (in short, local Maxwellians M =M(t; v; x)), i.e., the exact solu-
tions of the system

D(M) = Q(M;M) = 0; (4)

was studied in [2, 4, 5]. A rather full description of the solutions mentioned

above and a particular analysis of their physical sense can be found, for example,

in [1�3]. The geometrical structure and the physical sense of local Maxwellians

were studied in detail in [6] and the complete analysis of corresponding possible

motions of gas was carried out.

One of these motions was called "accelerating-packing" as it can be described

by the following Maxwellian:

M = �

�
�

�

�3=2

e��(v�ev)
2

; (5)

where

� = � � e�(ev2+2ux) (6)

is the density of the �ow; � = const; � = 1
2T is its inverse temperature (T is the

absolute temperature); ev = v � ut (7)

is its mass velocity (here u; v 2 R3 - arbitrary constant vectors). It is easy to see

from (6), (7) that the vector u has a role of "mass acceleration", and the density �

changes from 0 to +1, besides for any �xed x 2 R3 its minimum value is reached

when t = t0, where

t0 =
1

u2
(u; v); (8)

but for any �xed t 2 R1 it increases only along the vector u.

For the approximate description of interaction between two �ows of "accele-
rating-packing" type, which have su�ciently small temperatures, let us consider,

by the analogy with [6�8], the following bimodal distribution:

f = '1M1 + '2M2; (9)

where the Maxwellians Mi, i = 1; 2, have the form (5)�(7) but with di�erent

hydrodynamical parameters �i, �i, �i, evi, vi, ui, i = 1; 2, and the coe�cient

functions

'i = 'i(t; x); i = 1; 2; (10)
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are nonnegative and smooth. The purpose is to �nd such a form of functions (10)

and such a behaviour of parameters vi; ui, i = 1; 2, and so on that together with

the "low-temperature limiting transition"

�i ! +1; i = 1; 2; (11)

make the error, i.e., some norm of di�erence between the sides of Boltzmann

equation (1)�(3), arbitrary small.

In Section 2 the rigorous statement of the problem is formulated and several

possible variants of its solution are presented.

2. Main Results

Following [6�8], consider the "mixed" or "uniform-integral" error between the

values D and Q (see (1)�(3)):

� = sup
(t;x)2R4

Z
R3

jD(f)�Q(f; f)jdv: (12)

The problem is to �nd any possible su�cient conditions for the in�nitesimality

of the value (12) if the distribution f has a bimodal form (9), (10) with the modes

Mi, i = 1; 2, of the type (5)�(7) with the limiting restriction (11).

Now we will prove a number of theorems and corollaries which give various

possibilities for solving this problem.

First, it is convenient to adopt the de�nition.

De�nition 1. Denote as P (Rn) a class of nonnegative functions from C1(Rn)
which have �nite supports (in short, �nite functions) or fast decrease at in�nity.

Theorem 1. Let the functions 'i, i = 1; 2, in distribution (9) have the form

'i(t; x) =
Di

(1 + t2)�i
Ci

 
x+ ui

(vi � uit)
2

2u2i

!
; i = 1; 2; (13)

where the constants �i; Di are as follows:

Di > 0; �i �
1

2
; i = 1; 2; (14)

and the functions Ci belong to P (R3); i = 1; 2. Let the conditions be ful�lled:

ui =
uoi

�nii
; i = 1; 2 (15)

vi =
voi

�kii
; i = 1; 2; (16)
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where

ni � 1; ki �
1

2
; ki �

1

2
ni; i = 1; 2; (17)

and uoi; voi 2 R3 are arbitrary �xed vectors.

Then the error � in (12) is correctly de�ned, and there exists such a value �
0

that

� � �
0

; (18)

besides it has the limit

lim
�i!+1;i=1;2

�
0

= K(�1; �2)

2X
i=1

�iDi sup
x2R3

f�i(x)Ci(x+ ai)g ; (19)

where K(�1; �2) is some constant, the functions �i(x) are as follows:

�i(x) =

24 1; ni > 1; ki >
1
2
;

expf2uoixg; ni = 1; ki >
1
2
;

expfv2oi + 2uoixg; ni = 1; ki =
1
2
;

(20)

and the vector constants ai, i = 1; 2, are equal to
uoiv

2

oi

2u2oi
if ki =

1
2
ni and they are

equal to zero if ki 6= 1
2
ni.

P r o o f. The substitution of (9) into equations (1)�(3), by taking into

account (5)�(7) (with indexes i = 1; 2 for all values, respectively, see after (9))

and the fact that for each of Mi, i = 1; 2, the relation (4) is valid after some

evident estimations, the changes of variables and transformations analogous to

those done in [7,8] with the utilization of the technique developed in [6], leads to

the following inequality:

� � �
0

= sup
(t;x)2R4

2X
i;j=1;i6=j

24 Z
R3

����@'i@t +

�
up
�i

+ vi � uit

�
@'i

@x

+ '1'2�j(t; x)
d2p
�

Z
R3

Fije
�w2

dw

������ �i(t; x)��3=2e�u2du
+ '1'2

�1(t; x)�2(t; x)

�2
d2
Z
R3

e�w
2
�u2Fijdwdu

35 ; (21)

where

Fij = Fij(u; t; w) =

����� up
�i

+ vi � vj + (uj � ui)t�
wp
�j

����� ; i 6= j; (22)
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and

�i(t; x) = �i expf�i((vi � uit)
2 + 2uix)g; i = 1; 2: (23)

From (21)�(23) it can be easily seen that for veri�cation of the existence of

values �, �
0

it is su�cient to check that the products of functions (23) on the

values

'i;
@'i

@t
;

����@'i@x

���� ; 'it; t�ui@'i@x

�
; i = 1; 2; (24)

are bounded with respect to t; x on R4 for any �xed �i, i = 1; 2, if the functions

'i, i = 1; 2, have the form (13). Let us consider every one of the mentioned above

products separately. The �rst one, 'i�i(t; x), as a result of denotation

y = x+ ui
(vi � uit)

2

2u2i
; (25)

evidently, will have the form

�i expf2�iuiyg �
Di

(1 + t2)�i
� Ci(y): (26)

It follows from (26) that not only this expression itself, but also its product

on t is bounded with respect to t; y on R4 because of (14) and the properties of

functions Ci(y); i = 1; 2. The analogous conclusion is also true for other three

products because it follows from (13) that (once more after changing (25))

@'i

@t
= � Di

(1 + t2)�i

�
2�it

1 + t2
Ci(y) + (ui; C

0

i)
(ui; vo)� tu2i

u2i

�
; (27)

@'i

@x
=

Di

(1 + t2)�i
C

0

i(y); i = 1; 2: (28)

Further, the suppositions (15)�(17), as it can be seen from (23), guarantee

that for any (t; x) 2 R4 there exists the limit

lim
�i!+1;i=1;2

�i(t; x) = �i�i(x); i = 1; 2; (29)

with functions �i(x) of the form (20). Expressions (22) for every �xed u; t; w (and

on every compact in R4, even uniformly) tend to zero

lim
�i!+1;i=1;2

Fij = 0; i 6= j: (30)

Besides, from (25) it follows that the value y � x due to (15), (16) has the

form

uoi

2u2oi

0@ voi

�
ki�

1

2
ni

i

� uoit

�
1

2
ni

i

1A2

(31)
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and, consequently, by conditions (17) has the following �nite limit:

lim
�i!+1;i=1;2

(y � x) =

"
0; if ki >

1
2
ni

uoiv
2

oi

2u2oi
; if ki =

1
2
ni

= ai; i = 1; 2: (32)

Thus, because of the supposition of smoothness (see Def.1), the functions Ci(y)
and C

0

i(y) with �i ! +1, i = 1; 2, tend to their values at point x+ ai; i = 1; 2.
At the same time the factor near C

0

i in (27) obviously tends to zero, therefore in

(27) the second summand vanishes. Since the parentheses near @'i

@x
in (21) also

tend to zero, we can, applying Lem. 1 from [7] (its conditions can be easily checked

from (27)�(32)) and using the boundness and continuity of all expressions as well

as good convergence of all integrals in (21), pass to the limit under the signs of

supremums and integrals entering into (21). Finally, the trivial integration with

respect to w and u yields (19), where the constant K(�1; �2) is as follows:

K(�1; �2) = 2max
i=1;2

�
�i sup

t2R1

jtj
(1 + t2)�i+1

�
: (33)

The theorem is proved.

Corollary 1. Let all suppositions of Theorem 1 be ful�lled. Then

8" > 0; 9Æ > 0; 8D1;D2 : 0 < D1;D2 < Æ;
9�o > 0; 8�i > �o; i = 1; 2;

� < ":

(34)

P r o o f is evident because of (18), (19) and the fact that Ci(x+ai) 2 P (R3),
i = 1; 2, for any ai from (32), so the products �i(x)Ci(x+ai) are bounded on R3.

Under the conditions of Th. 1, as it can be seen from (13), (23), the explicit

dependence of the �ows on the temperatures (i.e. on �i; i = 1; 2) is present at the
densities �i(t; x), but not at the desired coe�cient functions 'i(t; x) (they depend

on �i only through (15), (16), and this dependence does not play an essential role

(see (19)).

Let us now consider a result based on some other assumptions which give the

possibility to compensate the increase of �i(t; x) with �i ! +1, i = 1; 2.

Theorem 2. Let

'i(t; x) =  i(t; x) exp
�
��i((vi � uit)

2 + 2uix)
	
; i = 1; 2; (35)

where the smooth functions  i � 0 are such that the values (24) with the substi-

tution of  i for 'i, i = 1; 2, are bounded with respect to t; x on R4, and (15) is

valid but now for

ni �
1

2
: (36)
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Then the inequality (18) holds true, besides for ni >
1
2

lim
�i!+1;i=1;2

�
0

=

2X
i=1

�i sup
(t;x)2R4

����@ i@t + vi
@ i

@x
+  1 2�d

2�jjv1 � v2j
����

+2�d2�1�2jv1 � v2j sup
(t;x)2R4

( 1 2) = L; (37)

and for ni =
1
2
in addition to (37) a new summand arises

lim
�i!+1;i=1;2

�
0

= L+
4p
�

2X
i=1

�ijuoij sup
(t;x)2R4

 i: (38)

P r o o f. From (35) instead of (27), (28) we have

@'i

@t
= exp

�
��i((vi � uit)

2 + 2uix)
	�@ i

@t
+ 2�i i((vi; ui)� tu2i )

�
; (39)

@'i

@x
= exp

�
��i((vi � uit)

2 + 2uix)
	�@ i

@x
� 2�i iui

�
; i = 1; 2: (40)

The formulas (21), (22) evidently remain true. Thus the substitution of (35),

(39), (40) in (21), taking into account (23), yields (18) with

�
0

= sup
(t;x)2R4

2X
i;j=1;i 6=j

24 Z
R3

����@ i@t + 2�i i((vi; ui)� tu2i )

+

�
up
�i

+ vi � uit

��
@ i

@x
� 2�i iui

�

+ 1 2�j
d2p
�

Z
R3

Fije
�w2

dw

������ �i��3=2e�u2du
+ 1 2

d2

�2
�1�2

Z
R6

e�w
2
�u2Fijdwdu

35 ; (41)

(the existence of the values � and �
0

follows from the conditions of Th. 2) or, in

short, after some obvious simpli�cations,

�
0

= ��3=2 sup
(t;x)2R4

2X
i=1

�i

Z
R3

�����@ i@t +Ai +Bi

����+Ai

�
e�u

2

du; (42)
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where

Ai = Ai(u; t) =  1 2
d2p
�
�j

Z
R3

e�w
2

Fijdw; i 6= j; (43)

Bi = Bi(u; t) =
@ i

@x

�
up
�i

+ vi � uit

�
� 2 i

p
�i(u; ui): (44)

The limiting transition in (42) can be done in the same way as in the proof of

Th. 1, but the result will be di�erent. Indeed it follows from (22) and (15) that

lim
�i!+1;i=1;2

Fij = jvi � vj j; i 6= j; (45)

whence, from (43) after trivial integration with respect to w,

lim
�i!+1;i=1;2

Ai =  1 2�d
2�j jv1 � v2j; i 6= j: (46)

The limit of Bi depends on the quantity of parameter ni

lim
�i!+1;i=1;2

Bi = vi
@ i

@x
+ 2 iHi; i = 1; 2; (47)

where

Hi =

�
0; ni >

1
2

�(u; uoi); ni =
1
2
:

(48)

Passing to the limit in (42) with the use of (46)�(48), after integration with

respect to u (in the second case from (48) the value (42) must be bounded from

above once more when one chooses a "supplementary" summand 2 ij(u; uoi)j
whose integration together with the factor e�u

2

yields the second term in (38)),

we obtain (37), (38). The theorem is proved.

Corollary 2. Let the requirements (35), (15), (36) be ful�lled and the func-

tions  i be of the form

 i = DiCi(t); i = 1; 2; (49)

where Di > 0, and smooth, nonnegative functions Ci are such that the expressions

tCi and tC
0

i are bounded on R1.

Then:

a) For C1, C2, v1, v2 which satisfy the following conditions:

suppC1 \ suppC2 = � (50)

or

v1 = v2; (51)

the statement (34) holds true.
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b) For arbitrary C1, C2, v1, v2 the statement

8" > 0; 9Æ > 0; 8D1;D2; d : 0 < D1;D2; d < Æ;
9�o > 0; 8�1; �2 > �o

� < "

(52)

is valid.

P r o o f. Requirement (49) under the mentioned conditions imposed on

functions Ci(t) ensures the ful�llment of suppositions of Th. 2. Further, by virtue

of (49) and (50) or (51), or with

d! 0 (53)

(the last condition is the only new fact in (52) in comparison with (34)), the

nonzero terms retained in (37) or (38), will be only

Di sup
t2R1

jC 0

i(t)j; Di sup
t2R1

jCi(t)j; i = 1; 2: (54)

These two supremums due to the smoothness of functions Ci(t) are �nite. So, we
have (34) and (52) for situations a), b) of Corollary 2, respectively. The corollary

is proved.

There also exist two possible variants when the exponent in (35) contains not

two summands but only one. Now we will describe these variants representing

the following statements.

Theorem 3. Let the conditions of Theorem 2 be valid, but now instead of

(35) and (36) it is supposed that

'i(t; x) =  i(t; x) expf��i(vi � uit)
2g; i = 1; 2; (55)

ni � 1; i = 1; 2; (56)

and the functions  i, i = 1; 2, are such that the products of the values (24) (with

 i instead of 'i) on the factors expf2�iuixg, i = 1; 2, are bounded with respect to

t; x on R4. Then the inequality (18) holds true, where for ni > 1

lim
�i!+1;i=1;2

�
0

=
2X
t=1

�i sup
(t;x)2R4

�����i(x)�@ i@t + vi
@ i

@x

�

+ 1 2�1(x)�2(x)�d
2�jjv1 � v2j

��+ 2�d2�1�2jv1 � v2j
� sup

(t;x)2R4

[�1(x)�2(x) 1(t; x) 2(t; x)] = N (57)
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with �i(x), i = 1; 2, which correspond to the �rst and second cases from (20), and

for ni = 1

lim
�i!+1;i=1;2

�
0

= N + 2

2X
i=1

�ij(uoi; vi)j sup
(t;x)2R4

f�i(x) i(x)g: (58)

P r o o f. By di�erentiating (55), we obtain

@'i

@t
= exp

�
��i(vi � uit)

2
	
�
�
@ i

@t
+ 2�i i

�
(vi; ui)� tu2i

��
; (59)

@'i

@x
=
@ i

@x
exp

�
��i(vi � uit)

2
	
: (60)

Thus, remembering (23), from (21) and the conditions of Th. 3 we will have the

value �
0

for (18)

�
0

= sup
(t;x)2R4

2X
i�j=1;i 6=j

24 Z
R3

����@ i@t + 2�i i
�
(ui; vi)� tu2i

�

+

�
up
�i

+ vi � uit

�
@ i

@x
+  1 2�je

2�jujx
d2p
�

Z
R3

Fije
�w2

dw

������
��ie2�iuix��3=2e�u

2

du+  1 2

�
d

�

�2

�1�2e
2x(�1u1+�2u2) �

Z
R6

e�w
2
�u2Fijdwdu

35 ;
(61)

where Fij again has the form (22) but now (42)�(44) will be somewhat compli-

cated:

�
0

= ��3=2 sup
(t;x)2R4

2X
i=1

�ie
2�iuix

Z
R3

�����@ i@t +Ai +Bi

����+Ai

�
e�u

2

du; (62)

Ai =  1 2
d2p
�
�je

2�jujx

Z
R3

e�w
2

Fijdw; i 6= j; (63)

Bi =
@ i

@x

�
up
�i

+ vi � uit

�
+ 2�i i

�
(ui; vi)� tu2i

�
: (64)
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It is easy to see that (45) is preserved, but in (46) the factor �j(x) arises and it

is equal to 1 if nj > 1 and to expf2uojxg if nj = 1. As for (47), only the value

(48) will be changed

Hi =

�
0; ni > 1
(uoi; vi); ni = 1:

(65)

That is why the limiting transition in (62) leads to the expressions (57), (58).

The theorem is proved.

Corollary 3. Let the conditions of Theorem 3 be ful�lled and the functions

 i be of the form:

 i =
Di

(1 + t2)�i
Ci ([x� vi]) ; i = 1; 2; (66)

if

(vi; ui) = 0; i = 1; 2; (67)

and

 i =
Di

(1 + t2)�i
Ci (x) ; i = 1; 2; (68)

for arbitrary v1; v2, where (14) is valid and the functions Ci belong to P (R3).
Then the statements a), b) of Cor. 2 remain true.

P r o o f. The expressions (68) under the indicated conditions evidently

are in concord with the requirements of Th. 3. Let us check whether the same

statement is true for the functions of the form (66) if (67) is ful�lled. Decompose

an arbitrary vector x 2 R3 by the orthogonal (because of (67)) basis

ui; vi; [ui � vi]; (69)

i.e.,

x = x1ui + x2vi + x3[ui � vi]; (70)

then

 ie
2�iuix =

Di

(1 + t2)�i
Ci([x� vi])e

2�iuix

=
Di

(1 + t2)�i
Ci(x1[ui � vi]� x3[vi � [ui � vi]])e

2�ix1u
2

i

=
Di

(1 + t2)�i
Ci(x1[ui � vi]� x3uiv

2
i )e

2�ix1u
2

i ; (71)

but with the increasing of x1 when the exponent in (71) also increases, the ar-

gument of the function Ci obviously increases too without any connection with

the behaviour of x3 (the component x2 is not present in (71) at all) because of
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the perpendicularity of the components of this argument. Thus, the function Ci
either will vanish (if it is �nite) or will compensate the increasing exponent in

a view of supposition of its fast decrease. So, the expression (71) in whole turns

out to be a bounded one, whose behaviour with x3 !1 is evident. The product

of (71) by t is also bounded because of (14). The derivative @ i

@t
behaves itself

completely in the same way (see (33)). Further, from (66) we will �nd
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h
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; i = 1; 2; (72)

i.e., the values ����@ i@x

���� e2�iuix; t

�
ui
@ i

@x

�
e2�iuix (73)

are bounded by the same reasons as (71), because C
0

i([x � vi]) is �nite or fast-

decreasing, too. Therefore, for the expressions (66), (68) all conditions of Th. 3

are ful�lled. Consequently, (57) or (58) holds true. If (67) is valid, then the

second summand in (58) vanishes, i.e., it is essential only when ni = 1 and (68)

is ful�lled. But in the cases a), b) of Cor. 2 the only nonzero expression in (57)

remains

�i(x)

�
@ i

@t
+ vi

@ i

@x

�
: (74)

And in (58) an "additional" summand to the value N may remain. However, as

it can be seen from (72), under the supposition (66) we have

vi
@ i

@x
= 0; i = 1; 2; (75)

and for (68)

vi
@ i

@x
=

Di

(1 + t2)�i

�
vi; C

0

i(x)
�
; i = 1; 2; (76)

that is, for all possible cases the expressions (57), (58) up to some constant factors

reduce to the values of type (19), where there are either functions Ci themselves

or their derivatives C
0

i , i = 1; 2. This fact, obviously, yields to (34) and (52) in

the same way as in the proofs of previous corollaries.

R e m a r k 1. The expressions (66) and (68) are similar but they do not

reduce to each other. Really, Ci([x � vi]) describes a function on x, which is

constant along the vector vi, i.e. (because of (67)) in a direction perpendicular to

the direction of acceleration and packing of i-th �ow, i = 1; 2, and �nite or fast-

decrease particularly along the vector ui that is, at the direction of the increasing

of factor �i(x)). However, (68) corresponds to some "clot" of a gas concentrated

on a bounded in R3 support, and the factors depending on t, which are common
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for (66) and (68), mean that the interaction between two �ows is weakened with

t! �1 but not too quickly.

Theorem 4. Let us suppose that instead of (35) or (55) the following equality

is ful�lled:

'i(t; x) =  i(t; x) expf�2�iuixg; (77)

and the requirements (15), (16), (36) are valid with

ki �
1

2
; i = 1; 2; (78)

besides the smooth, nonnegative functions  i ensure boundness on R4 of the same

expressions as in the conditions of Th. 3, but with substitution of the factor

expf�i(vi � uit)
2g for expf2�iuixg, i = 1; 2. Then the inequality (18) holds

true once more, where:
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P r o o f. It is evident that in our situation the analogues of formulae (59)�(61)

will be the following:
@'i
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=
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expf�2�iuixg; (83)
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Thus, instead of (62)�(64) we will have:
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The limit of exponents presented in�
0

depends on the behaviour of the parameters

ni, ki as follows:

lim
�i!+1;i=1;2
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(89)

Therefore, with passing the limit the analogous exponent in Ai (with index j 6= i)

always has a �nite limit �j(t), i.e., Ai in whole tends to zero because of (15), (16)

which yield (30). Finally, since vi ! 0; i = 1; 2, in (47) there will be maintained

only the second summand:

lim
�i!+1;i=1;2

Bi = 2 iHi; (90)
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where

Hi =

24 0; if ni >
1
2
; ki � 1

2
;

tu2oi � (u; uoi); if ni =
1
2
; ki >

1
2
;

tu2oi � (u; uoi)� (uoi; voi); if ni = ki =
1
2
:

(91)

Taking into account all these facts, the equality (86) leads to (79)�(82).

The theorem is proved.

Corollary 4. Let all conditions of Theorem 4 be ful�lled. Then the statement

(34) holds true if the functions  i have the form

 i(t; x) = DiCi(t)Ei(x); i = 1; 2; (92)

where Di > 0; Ci(t) 2 P (R1) and Ei(x) � 0 are smooth and bounded together

with E
0

i(x) functions on x 2 R3.

P r o o f. The functions of the form of (92) by the conditions imposed here

ensure the boundless of all expressions mentioned in Th. 4. Moreover, directly

from (79)�(82) it can be seen that the supremums entering into these formulas

are �nite for any possible values of the constants ni, ki � 1
2
, i = 1; 2, and the

presence of factors Di, i = 1; 2, in (92) leads to (34).

R e m a r k 2. It would be of interest to try to minimize the expressions (81),

(82) by solving the following di�erential equation (for each i = 1; 2):

@ i

@t
+ 2 itu

2
oi = 0: (93)

However, it can be easily seen that its solution

 i = e�t
2u2oiEi(x); (94)

with Ei(x) being the same as in Cor. 4, in spite of ensuring the existence of both

supremums in (81) and under the additional condition (67) also in (82), does

not satisfy the conditions of Th. 4, because it cannot guarantee the boundness of

indicated there expressions before the limiting transition �i ! +1, i = 1; 2.
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