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A perturbation of the Poisson equation by a biharmonic operator with
a small multiplier € is considered. The asymptotic behavior of the solution of
the Dirichlet problem for this equation as & — 0 is studied. The gradient of

the solution is proved to converge to the gradient of the solution to Poisson
equation in Ly () ase — 0. The difference of the gradients is also estimated.
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1. Problem Statement and Main Result

Let © be a bounded domain in R?* with a sufficiently smooth boundary.
Consider the following boundary-value problem:

(1.1)

eA%u, — Au, = F in (Q,
ue =0, ‘?;ﬁj =0 on 09.
Here v is the outer normal to 92 at the point z, F € L, (Q) (p > £), and e > 0

is a small parameter. As known, there exists a unique solution of this problem u, €
W; (Q) (see, e.g., [1]). We are interested in the asymptotic behavior of solution
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of this problem when ¢ — 0. Similar questions for more general equations were
studied by M. Vishik and L. Lyusternik in [2|, where the asymptotic expansion
with respect to the powers of € was constructed. The method proposed in the
paper was widely used at that time. However, all the known results appeared
to be not sufficient to our work. We use our result to construct the regularized
solutions of Navier—Stokes—Vlasov-Poisson boundary value problem [3].

To formulate the main result we consider the following boundary-value prob-
lem:

Au = F in Q,
{ (1.2)

u = 0 on 09,
where F' is the same function as in (1.1). There exists a unique solution to this

problem u € W7 () (see, e.g., [1]).
The main result of the paper is the following

Theorem 1. Let u. and u be the solutions of problems (1.1), (1.2), respec-
tively. Then

lim [ |Vue (z) — Vu(z)|dr =0
e—0
Q

uniformly with respect to all functions F such that ||F||LP(Q) <C.

This theorem is proved in Sections 2 and 3.

2. [Estimates of the Green Functions
Let G (z,y) and Gy (z,y) be the Green functions of problems (1.1) and (1.2),
respectively.

Lemma 1. The following estimates for normal derivatives of the Green func-
tion Go (z,y) hold:

0G
T;(xay)‘éma yEQ, 1‘689,
oG C
k 0 2
‘DTW(QI??J)‘ SW, y € Q, z €09,

where k = (ky, ko) is a multiindes, k; € 7, ky + ke > 1, |k| = ky + ko, D is
a deriative at the point x € 0Q in tangent directions to 9, d (y) is a distance
from the point y € Q to 0, 0 < a < 1, Cy and Cy are constants that depend on

the minimal radius of curvature of 022, k, and a only.
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Proof. Asis well known, the Green function Gy (z,y) has the form

1

Go (z,y) = irle—y|

go (m,y), (2-1)

where the regular function gg (z,y) is a solution of the following boundary-value
problem with respect to the variable z € Q (y € Q is a parameter):

Ago =01in Q,
{ o 90 (2.2)
go = Trlz—y| on .
Let us represent gg (z,y) as a simple layer potential
1 [o(&y)
= — dSe. 2.3
o0

The simple layer potential satisfies the Laplace equation in R3\Q, tends to
zero when |z| — oo, and it is a continuous function in z in R3. Therefore, by
(2.2), it equals to the function m in R®\Q. Then its normal derivative in
R3\Q is given by (%) = a%m.

Hence, taking into account the properties of the simple layer potential, we
obtain the integral equation for the density o (z,y)

1 1 [cosf(z,v) 1o 1

— ) —— [ ————5%0 (§,y)dSe = —— ——, 24

0@~ g [T oGS =~ e
o0

where 0 (z,v) is the angle between the outer normal to 92 at the point x € 9

and the vector z — €.

This equation corresponds to the representation of the solution to the exter-
nal Neumann boundary-value problem in the form of simple layer potential and,
therefore, it has a unique solution in the class C (99) (see, e.g., [4]). Applying
the iteration method, we obtain the estimate
(2.5)

o (z,y)| < ——.
|z — |

On the other hand, from (2.1) it is clear that
Gy 19 1 (o
ov ), 4w dvy |z —y| o/,

. . . . dg Og _
and according to the properties of the simple layer potential (‘9_”0>z — (—0)6 =

ov
o (z,y). Consequently, % = —o(x,y). So, the first estimate of Lemma 1 is

proved.
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To establish the second estimate we use the Schauder estimates (see, e.g., [5])

90l < C (1890] + 00l a0

where |gl;, o a0 is the norm of g in C*(9Q), k > 2,0 < a < 1. The constant C
depends on k&, «, and 9. The second estimate follows easily from (2.2). Lemma 1
is proved.

Lemma 2. The following estimate holds:
1+« + )
(y) Ved(y)

[ VG @) - Vo wp)lar <0 | - (2.6)
Q

where d(y) is the distance from the point y to 92, 0 < a < 1, and the constant C
depends on ) and o only.

P roof. Itiseasy to verify that the function

1 _lz—yl
Fg(x,y):m(l—e ﬁ>,6>0, (27)

is a fundamental solution of the equation (1.1) in R3.

As is well known, the Green function G. (z,y) can be represented in the form
G: (z,y) = T (x,y) — g (z,y), where g. (z,y) is a regular function, which is
a solution of the following boundary-value problem:

A%g, — Ag. =0in Q
€ gE 89&‘ m 9 (28)
g: =T, = =T, on 0Q.
According to (2.2) and (2.8),
_le—y|
G- (2:) = Go (3,9) = — 7 — v. (&) (2.9
e s - Z, = — — Ue ) ) .
#y) = Gol#y) =~ — y
where the function v, (2,y) = g (z,v) — go (z,y) is a solution of
eA%v, — Av. =0 in Q,
_lz—y]
e Ve
Ve = _m|mzx(s,r) = 772 (357—) on 09, (210)

_lz—yl

dve _ | 0G el e Ve _ 1
= 8—110 ~ m)) |:r::1:(s,T) =T (877_) on Jf).
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Here we use a local coordinate system such that (s,7,t) are coordinates in
a neighborhood of x = z (s,7,0) € 0N, where t is the distance from the point
to 99, and (s, 7) are coordinates on 9f).

Let us introduce a class of functions

ow
W = {w € W5 (Q): wlon =ns 5-lon = 775}-
By [6], ve (%, y) minimizes the functional

Je (w) = / {6 (Aw)? + |Vw|2} dz.

Q

Then .
Je (ve) < Je (we) Yw. € W. (2.11)

To estimate J; (v:) let us construct a representative of the class W in the form

t
we (o) = (12 (s.7) + 00! (5,7) o (72). (2.12)
where ¢ (t) is a smooth function such that ¢ (¢) = 1 for t < /2, ¢ (t) = 0 for
t>1, 0(t) € C?(0,00).
Suppose that y € Q5 C Q, with Qs being a subdomain of €2,

Qs ={z € Q:dist (z,00) > 0}, (2.13)

where 4 satisfies the condition § > rag > /e > 0, and ryq is the minimal radius
of curvature of the surface 0€).

Then, using (2.12), the explicit expressions for the functions n2, n! (see (2.10)),
and Lemma 1, we obtain the estimate

Jg(wg)sc<ﬂ+ ﬁ>,

8d2 d2+o

where d = d(y) is the distance from y to 99, and the constant C depends on 9
and «, 0 < a < 1. Therefore, it follows from (2.11) that

2d
e Ve NG
/|V'UE|2d$ < Je ('UE) <C ( ed? + d2+2a> :

Q

Using this estimate and taking into account (2.9), we obtain (2.6). Lemma 2 is
proved.
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3. Proof of Theorem 1

We begin with the following lemma.

Lemma 3. Let Q be a bounded domain in R® with a boundary of the class
C?**t and . be a solution to the following boundary-value problem:

3.1
g =0, %2 =0 on 00, (3:1)

{8A2(p5 — Ap. = F in Q,

where € > 0, F € Ly, (Q) (p > %) with a support Sp C Q. Then

oot
A

/|V§05|dﬂf S C“F“Lp(ﬂ) (meSSF) B ,
Q

where C is a constant that does not depend on e.

P roof. The solution of the problem (3.1) minimizes the functional

F.(p) :/{6(Atpg)2+|V<p5|2—2FXF<pE}dx
Q

[e]

in the class of functions ¢, of W () for e > 0 and of W} (Q) for e = 0. Here by
Xr = xr (z) we denote the characteristic function of the set Sg.

Since F. (0) = 0, then we have F. (¢.) < 0.

This leads to the inequality

[ {e@er + vt ds <2 [ 1P @) b @) . @] da.
Q

Q

Applying the Holder inequality with p, g = 5;—%, and r =6 (% + % + 1= 1) to
the right-hand side of this bound, we get

[ @00 41901} do < 21F 1 0 Imesxrls o 02 o
Q

5 1
< C|Flp, ) (mesSp)e 7 [Vl 1, q) - (3.2)

Here the norm of . € W is estimated according to the embedding of W3 () in
Lg ().
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From (3.2) we conclude that

c:\uw
'ﬁ\'—‘

IVeellpy ) < ClIF L, q) (mesSp) ¢
Now this bound and the Cauchy—Schwarz inequality

1/2
/ V.| dr < / Vel2ds| |0
Q Q

yield the statement of Lemma 3.

We are now in position to complete the proof of Theorem 1.

Denote by Q5 a subdomain of © defined in (2.13).

Let us represent the function F (z) as a sum of three components F (z) =
Fy (z) + F> (z) + F3 (x), where

Fy (z) € C1(Q), suppFy (z) C 96, 1E1 L, ) < 1Fl L0

By () : | Fall, 0 < 0 1P, 0

F5(z)=F(x )X5 (2), where xs (z ( ) is a characteristic function of the set \Qs.
The solutions of problems (1.1) and (1.2) can be represented as u. = u1. +
Uge + U3e, U = U1 + uo + ug, respectively. Then we have

/|Vu5 Vu|dx</|Vu15 Vu1|dx+/|Vqu|dx

/|qu| dz + / (Vs | dz + / Vs da. (3.3)
Using Lemma 2, we estimate the first integral as follows:

/|Vu15 — Vuq|dz < / VG (z,y) — VG (z,y)] |F1 (z)| dz
Q Q

<0(5fa ‘ \/5>|| Pl o) (3.4

To estimate the remaining integrals we use Lemma 3. Thus, we have:

S

5_1 5_
[ 1Vuscldo < Ol 0 19061575 < COIF I 1060EF: (39

[N
=

5_1
[ IVuscldo < CUP, o) 1\05fF > < C 1Pl 05
Q

(3.6)
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6.
We set § =0 (e) = £ M5~ 676a7) Then, according to (3.3)-(3.6), we obtain

/ |Vue — Vu|dz < Ce” “FHLP(Q) )
Q

— 5p—6
where v = I(TTp—6+6ap) "

Since ||F||Lp(Q) < (C and p > g, then

/|VuE—Vu|dx =0
Q

as € = 0.
Theorem 1 is proved.
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