Journal of Mathematical Physics, Analysis, Geometry
2009, vol. 5, No. 2, pp. 145-169

On the Spectrum of Riemannian Manifolds
with Attached Thin Handles

A. Khrabustovskyi

Mathematical Division, B. Verkin Institute for Low Temperature Physics and Engineering
National Academy of Sciences of Ukraine
47 Lenin Ave., Kharkiv, 61103, Ukraine

E-mail:andry@ukr.net
Received May 5, 2008

The behavior as € = 0 of the spectrum of the Laplace—Beltrami operator
A¢ is studied on Riemannian manifolds depending on a small parameter ¢.
They consist of a fixed compact manifold with attached handles whose radii
tend to zero as € — 0. We consider two cases: when the number of the
handles is fixed and their lengthes are also fixed and when the number of
the handles tend to infinity and their lengthes tend to zero as € — 0. For
these cases we obtain the operators whose spectrum attracts the spectrum
of A® ase — 0.
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Introduction

The aim of the paper is to study the behavior as € — 0 of the spectrum of
the Laplace—Beltrami operator A® on the Riemannian manifolds M¢ depending
on a small parameter €. We consider two different problems.

In Section 1 we consider a manifold M*® that consists of a fixed two-dimensional
compact Riemannian manifold without boundary €2 and an attached "thin" mani-
fold T'®. The last one consists of several tubes with fixed lengthes and radii ¢ (see
Fig. 1 below). Thus I'® "converges" to some graph I" as ¢ — 0.

Let Aq be the Laplace-Beltrami operator on € and L be the Laplace operator

on I, i.e., L is defined by the operation d% on the edges of I' (s is a natural

parameter on the edge), Dirichlet boundary conditions on the ends of I' and
Kirchhoff conditions on the vertices of I'.  We prove that the spectrum of A®
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converges in some suitable sense to the union of the spectrum of Ag and the
spectrum of L. Also we study the behavior of corresponding eigenvalues.

These results generalize the results by C. Anne [1]. The behavior of spectrum
is studied on a manifold with one attached handle having a fixed length and
a vanishingly small radius in [1]. These results are extended to the case of the
Laplacian acting on differential p-forms in [2]. The convergence of spectra on
manifolds which collapse to a graph was studied in [6].

In Section 2 we consider the manifold M*® whose topological genus increases
as € — 0. It is constructed in the following way. Let €2 be a compact two-
dimensional Riemannian manifold without boundary, and D, i = 1...N(e) =
3Ni(e) be a system of nonintersecting balls ("holes") in © depending on e. Let

)
Q= Q\ |J D;. Suppose that the set {1...N(e)} is divided into subsets that
i=1
consist of three elements. If the indexes 4, 7, k lie on one subset we connect the
"holes" D5, Dj,D,EC by means of a manifold that consists of the tubes G7, G;, G5,

and a truncated sphere B7, (see Fig. 2 below). As a result, we obtain the manifold

M =07 J [G5UG; UG, UBg,].
1,5,k

We suppose that the number of "holes" increases as € — 0, while their radii
tend to 0. It is supposed that the radii of the "holes" are much smaller than the
distances between them. We also suppose that, in contrast to the manifold I'® in
Sect. 1 and in contrast to [1], the metric is such that the lengthes of the tubes
converge to 0.

We obtain the following result: if some conditions on a distribution of the
"holes" and on the metrics on the tubes and the truncated spheres are hold,
then the spectrum of the operator —Af converges in some suitable sense to the
spectrum of the operator £ defined by the formula

Lul(z) = —Aqu(z) + / W (2, ) () — u(y))dy.
Q

Here W (xz,y) is a positive symmetric function. We present an example for which
W (z,y) is calculated explicitly.

The behavior of the spectrum of manifolds with complex microstructure was
studied in [5, 8] for another type of manifolds. We note that the behavior of
spectrum of manifold with the attached one handle, having a vanishingly small
radius and (in contrast to [1]) a vanishingly small length, was studied in [4].

The proof of main results is based on the abstract scheme proposed in [7].

Throughout the paper, we will denote by C' various constants independent
from e.
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1. Riemannian Manifold with Attached "Graph"

1.1. Problem Setting and Main Result

Let © be a two-dimensional compact Riemannian manifold without boundary
and with a metric g. By Agq we denote the corresponding Laplace—Beltrami
operator. Let D5, i =1... N be a system of balls in 2 with the centers z; € Q
and the radii e. We consider the following domain with holes:

N
o =\ | JD;.
=1

To ©° we glue the manifold T'® illustrated on Fig. 1 and constructed as follows.

Let T be a graph in R?. We denote the vertices of this graph by p;, i =1...m
(m > N) and the edges of the same graph by Yi;- Vij connects the vertices p; and
pj. We introduce the symmetric matrix {4;;}]";_; such that 4;; = 1if p; and pj
are connected and A;; = 0 otherwise. We suppose that for the first N vertices
pi, © = 1... N there is only one p; such that A;; = 1. These are the ends of the
graph.

Let z;; be the natural parameter on v;;, z;; € [0,/;;]. We denote by p(z;;) the
point on ;; that corresponds to the natural parameter z;;.

We denote by G7; the cylinder with the axis Yij = {p(2ij) € vij : zij € [0%,1ij—
6°],6° > 0} and with the radius e. The length of G is equal to [f; = l;; — 26°.
We choose the standard cylindrical coordinates on ij

G5 = {(pijs 2i7) : @ij € 10,27, 255 € [0, 155 — 7] } .

Clearly, ¢° can be chosen such that:

1. G;; are pairwise disjoint,

2. 16°] < C-e.
The boundary of ij consists of two circles Sfj and sz Here we suppose that Sfj
is closer to the vertex p;, and Sji is closer to the vertex p;.

For i € {N +1...m}, let B be the sphere of the radius b° = \/£2 + §¢2 with
the center p;. It is clear that Sfj C Bj. Let ij be a part of B that lies inside

the cylinder G7;, and let

B =8\ |J Dy
JiA;;=1

We obtain a two-dimensional manifold (see Fig. 1):

m

m
r=0| U | U s

i=1 [4,j:A=1,i<j i=N+1
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Fig. 1: Manifold I'®.

The boundary of I'* consists of 57,4, j:i=1...N, A =1
Now we suppose that Sfj, i,j:1=1...N, A;; = 1 are diffeomorphic to dD;.
Using this diffeomorphisms, we glue I'* to 2 and obtain a manifold without

boundary
M®=Q°ure®.

We denote by z the points of this manifold. Clearly, M*® can be covered by
a system of charts and suitable local coordinates {x1,x2} can be introduced.

It is supposed that M* is equipped with the metric ¢g° that coincides with the
metric ¢ on Q° and with the Euclidean metrics induced from R? on I'°. By ggﬁ,
we denote the components of the metric tensor in local coordinates.

Let Lo(B) be a Hilbert space of the real-valued functions on B C M¢ with
the scalar product and the norm

()1 = [ @) @), Jull ) = [ (0(2)"a,

B B

where dz = , /detg’, ﬁdxldxg is the volume form.

We denote H® := Lo(M*®), Ho := L2(Q) x Lao(T).
Let A® be a Laplace—Beltrami operator on M. It is well known that the
spectrum of the operator —A® is purely discrete. Let 0 = A7 < A§ < A5 < ... <

AL k—> oo be the eigenvalues of —Af written with account of their multiplic-
—00

ity, uf,u5,u5... be the corresponding eigenvectors normalized by the condition
(U;;,’U,;)'He = 0jj.
In this section we study the behavior of A}, as ¢ — 0.
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Let L : Ly(T') — L2(T") be a Laplace operator on the graph I'" with Dirichlet
boundary conditions, i.e., L is defined by the operation
d*u

[Lu](z) = ~ @ (), © = p(zi;) € 7ij

and by a definitional domain consisting of the functions u € H?(v;;) Vi,  and
such that if we denote by u;; the restriction of u on v;;, then

fori=1,N: wu(x;) =0,
uij(p;) are equivalent for all j : A;; =1,
fori=N+1,m: Quij .\ _
Z ay (pl) - 07

JiAij=1

0
where 5, eans the derivative in the direction outward to ;;. In short, u is
v

a continuous function on I' that satisfies the Dirichlet conditions on the ends
of the graph as well as Kirchhoff conditions in the vertices (for more precise
description of differential operators on the graphs and its properties see, e.g., [6]).

To describe the behavior of eigenfunctions we introduce the operator R :

Ho — HE:
fo(Z),z € Q°F,
[RF1(%) = { fij(zij)e 2% = (215, 045) € G5,
0,% € B,
f=(fo, fijsi,j: Aij = 1) € La(Q2) x Lo(T').

LetE:H0—>H0:
_(~Aq 0
= (0" 1)

and let Ag, A1, As... be the eigenvalues of £ written with account of their multi-
plicity. It is clear that the spectrum of L is the union of the eigenvalues of the
operator —Aq and the eigenvalues of the operator L that are taken with account
of their multiplicity.

Theorem 1.1. For any k=1,2,5. ..

AL = A, € = 0.

Theorem 1.2. Let )\k < >\k+1 = >\k+2 = ... = >\k+m < >\k+m+1 (’i.e.,
the multiplicity of Agy1 is equal to m). Let N(Xgy1) be the eigenspace of the

Journal of Mathematical Physics, Analysis, Geometry, 2009, vol. 5, No. 2 149



A. Khrabustovskyi

eigenvalue N\, 1. Then for any w € N (X\,11) there exists a linear combination u®
of the eigenfunctions ug_ ... ug_ . such that

@ — REwljgs — 0, € — 0. (1.1.1)

1.2. Proof of Theorems 1.1 and 1.2

We prove Theorems 1.1 and 1.2 for the case N = 3,m = 4, i.e., I'® consists of
three tubes G4, G54, G5, and the truncated sphere B] that connects these tubes.
For the general case the theorems are proved in a similar way. We introduce new
notations:

I; =15, 2= zia, @i =i, G; = Gy,
S]a = Sija CZE = 2'64? B®:=Bj, B*:=Bj, i,j=1,2,3,
(ie. 0T = U CF).
i=1,2,3
For simplicity we suppose that the metric g is Fuclidean in some neighbour-
hood of the holes D (and thus ¢° is continuous). For the general case the proof
needs small modifications.
We denote by A® and A the operators inverse to —A*+T and L+1, respectively
(I is an identical operator).
Now we study the behavior of A° as e — 0.

Theorem 1.3. The following conditions are fulfilled:
C1. For any [ € Hy

IR fllze = 1 flloo € — 0. (1.2.1)

C2. The operators A%, Ay are positive, compact, self-adjoint and bounded in
L(H®) uniformly with respect to .
C3. For any [ € Hy

“.AEREf — RE.AUf“'He — 0,e = 0. (1.2.2)

C4. For any sequence f© € H® such that sup ||f%||y= < oo there exists the
subsequence €' and w € Hy such that

| A f€ = Rfwll3= — 0,e =" — 0. (1.2.3)

Proof 1. The condition C1 follows directly from the definition of the
operator R°.
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2. The condition C2 follows easily from the properties of the resolvent, namely
the following estimate is valid

A% () < 1.

3. Let f € H. We denote u* = A°R°f, f* = R°f. To describe the behavior
of u® on QF we introduce the operator I : H'(M¢®) — H'(Q) with the following
properties:

1) I gy + V5T sty < C{ I laee + 1V50 s }, € >0,

2) Ou®(z) = u®(Z) on Q°.

2 Ou Ou
(Here Ve |3 := / $ gos Ju Ou
Me a,f=1

tensor inverse to g°). This operator exists, see, e.g, [3].

Due to C1-C2 we have ||u®|l3e < ||f¢ll2e = || f]l2,- Moreover, using varia-
tional methods, we obtain

B

dz, where g&” are the components of the

O0zo 03

IVEulle < 2017l - 1wl

Using these inequalities and the properties of the operator IIj, we conclude that
IT5u¢ is bounded in H'(Q) uniformly with respect to ¢, and therefore there exists
a subsequence (still denoted by €) such that

IMu® =, Uo € H(Q) weakly in H'(Q) and strongly in Ly(Q). (1.2.4)
e—

To describe the behavior of u® on the tubes G, ¢ = 1,2, 3, we represent u° in
the form

u® (i, zi) = Piuf(z:) + Q5u (i, zi), (1.2.5)
where
2m
1
Prus(z) = 5 /“8(‘10iazi)d‘;0i-
™
0

Let I1¢ : H'(G%) — H'([0,1;]) that is defined by the formula

\/‘;Pig(z’i)a Z; € [587li - 56]7
Fu®(zi) = § VeP{(6%), 2 €[0,0°),
\/gf)f(ll — (58), Zi € (lz — (58,li].
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We have the following estimates:

1;,—0°% 2w 2

2
1
iﬂfug — / i_ /Ug(‘{?i,zi)\/gdcpi dz;
dz; Lo0.0; 0z; 2
Z[OJJ 5e 0
[;—06% 27 5
! 0 € —1 €,,€(12
<o g0 (i) | edioidz < (2m) VIR, (1.2.6)
6 0

I oy < 0 [ (M5 (5°)) + (T (1 = 6))°] + @)~y (1:2.7)

Further,
1;—6° 5
@) <2 (e? [ | )
2
55

2
dz;

Integrating this estimate on z; from 6° to I; — §° one has

E_ £ € E_ £ d E_ £ 2
(muwWSCQMuﬁwﬁyﬁH—mu ) (1.28)
L2[65,li75€}

dz;

and, similarly,

d
(mmm—$WSO(mwwﬁﬁwm+wEmm

2
. (1.2.9)
Lo[d%,l;—6%]

It follows from (1.2.6)-(1.2.9) that IT;u® is bounded in H'([0,/;]), and therefore
for i = 1,2, 3 there exists a subsequence (still denoted by &) such that

IT5u® =, Ui € H'([0,1;]) weakly in H'(]0,;]) and strongly in Ly ([0,1;]).
£—
(1.2.10)

The following lemma says that «° is vanishingly small in B®.

Lemma 1.1. Let u® € H'(M?). Then

117, (e

scGwWMMMm+ﬂWMMmWﬂ+ﬁmdmwmﬁﬂm+mﬂmmw)

Proof. At first we note that u° can be extended to the whole ball B¢ in such
a way that ||Vou®||r, =) < C||Vou®|| 1, (pe) (see [9, p. 118, Ex. 4.10]). Let us fix 4
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from {1,2,3}. We introduce the spherical coordinates ¢ € [0,2x],8 € [0, 7] on B®
such that the points of S have the coordinates ¢ € [0, 27],§ = arcsin(e/b%) =: 6°.
So, we extend u® to B and have

0
8 £
wp.0) = p07) + [ 22y,

o
06
Further,
2w m—0°%
//(ug(go,O))%EQsianOdgo
0 6=
T—0°¢ Sue 9 T—0° 2m
<o | [ (P50 sinpapdo- [ Gyt + [ 00 dp
0c 0 0

(1.2.11)

Since €7 < 6° < Oy, the first term is estimated by 062||V5u5||%2(B5). Now
we estimate the second term. Representing the corresponding integral in the
cylindrical coordinates, one has

wH(,0%) = i) = (i 0) + [ W2,
7
0

Let D and R® be the balls in  with the radii d® and r* (r® > df). Then for
any v € H'(R®\ D?) the following estimate is valid (see [1]):

[ [ 1
lull2, o) < Cd [und ER Wnuu%m\m] L (1212)

Using (1.2.12), we have

2 2T 2 2w 1; 9
) 2%
2 / (u (i, 13))? dpy < O / (05, 0)ds | + / / ( 8“3 ) iz
(A
0 0 0 0

< O el (10 ey + V50 I ) ) + V=07 By

We denote D} = {(p,0) € B*: 0 € [x — 6°,0°]}. It follows from (1.2.11) that
fori=1,2,3:

2
||UE||L2(BE\(D§UD;E))

< C(€2||VEUE||%2(BE) + E||VEUE||%2(G§) + 7| l115|(||VEUE||%2(QE) + ||U8||%2(Q€))>-
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The lemma is proved since |J [B*\ (D; U D;*)] = B".
i=1,2,3

We return to the proof of Theorem 1.3. We denote u := (ug, u1,u2,us). Let
us prove that v = Ay f, what is equal to the fulfilment of the following conditions:

I u;(0) =0,i=1,2,3, (1.2.13)
II. Ul(ll) = U2(l2) = ul(l3), (1214)
I11. (VUO,V’U))HO + (UO,UJ)HO = (fo,’LU)*HO, Yw € HI(Q), (1.2.15)

7

1’
wi(z)w;(2)dz

3 b 3
v,y / (ui(2)) (wi(2)) dz +
=17 i=1
l;

= Z/fi(z)wi(z)dza Vw; € H'[0,1;]. (1.2.16)
=17

=1

0

Let us verify the fulfilment of these conditions.
I. Using the trace theorem, for i = 1, 2,3 we have
u;(0) = lim IT;w*(0) = lim [I5u®(0°) = /e lim (1.2.17)
e—0 e—0 e—0
where @ is the mean value of u® over 0D . It follows from (1.2.12), (1.2.17) that

(1.2.13) is valid.
II. For ¢,57 = 1,2, 3, one has

jui(ls) — 5 (1;)] = limn Va5 — ], (1.2.18)

where 45 is the average value of u® over the circle S}.

We denote v°(%) := u®(%) — U, where U® is the average value of u® over Bf,
and by 0 we denote the average value of v® over the circle S}.

Using the inequality of the type (1.2.12) and Poincare inequality, one has

~E 98 [ ]' >
65> < C [ Intan 2| - [[V*v 17,50y + @HU H%Z(BE):|
06
< Cllntan |- IV=0% (12, (5-)- (1.2.19)
Using (1.2.19), we have
08
@ — 5] = [oF — 95| < [oF] +[55] < O /| Intan | - [VE" ey (1.2:20)
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Since |Intan &| < C, it follows from (1.2.18), (1.2.20) that (1.2.14) is fulfilled.

ITI. Clearly, it is sufficient to prove (1.2.15) for w such that
30>0Vi=1...3: pg(supp(w),x;) >4,

where p, is the distance on €2 generated by the metric g (because the set of these
w is dense in H'(Q)). Then for these w and for sufficiently small e supp(w) C Q°.
Let w®(Z) € La(M®): w®(Z) = w(z) in Q° and w® = 0 in M*® \ Q°. Clearly,
w® € H?(M?) for € being small enough.
We have
0 = tim (V207 Vo0 + (0w = (e )

e—0

e—0
= (Vug, Vw) 3, + (v, w) 3, — (fo, w) 3,

and (1.2.15) is valid.
IV. It is sufficient to prove (1.2.16) for such w; that

= lim ((VH&UE, Vw)r,0) + (TFu®, w) ) — (faw)L2(Q)>

30 >0Vz€[0,0] : wi(z) =0and Vz € [l; —0,1;] : wi(z) = w;(ly),

because the set of these w; is dense in the set of test functions mentioned above.
For sufficiently small £ 6° < §, and therefore these w; satisfy the conditions:
Vz €0,6°]: wi(z) =0 and Vz € [l; — 6%,1;] : wi(z) = wi(l;).

At first, let us estimate the reminder Q°u® on G;. Using Poincare inequality,
we have

1;—0° 2 li—6% 2m

/ /QE E Qozazz dﬁozdzz<0 / /(8Q > dp;idz;

l;—6% 2

=C / /(a“) dpdz; < Ce||Vou|17, G- (1.2.21)

Using the above and the representation (1.2.5), we have

3 bk 1;—6°
Ol u® Qw;
Z / w;i(2;)) wZ 2;)) dzZ Zg%% / / B2 02 dz;dyp;
Lo
2 1; —55 27rl —0F
= hm— / / i i) edzd / / VeQiu 8- Pw Z.dzd ;
<50 2m 0z 0m \ 2 ) At T 0.2 Y

0 o°
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In view of (1.2.21) the second integral tends to zero. Therefore we have

l;
/ (i (2)) (w3 (2)) dz = — Tim (Vs Vo )e,
0

— 27 =0

=

where w® € H'(M?)

wi(z)e V2, & = (2, 0i) € Gy,
w(z) = 40, z € Q°,
wi(li — 58)671/2, T € B®.

In the same way using Lemma 1.1, we obtain

3 % %
].

S| [uttrs - [ e | = o tim (08w - (709 )
0

‘ 27 €0
=1 0

The last two equalities imply the condition (1.2.16).

Thus we prove that u = Ay f.

It is easy to see that (1.2.2) follows from (1.2.4), (1.2.10), (1.2.21), and
Lemma 1.1. The condition C3 is fulfilled.

4. Tt remains to verify the fulfilment of the condition C4. Let f* € H® be
such that sup ||f¢||3e < co. We denote u® = A°f¢. It is clear that the norms
||u5||%2(M€) + ||V8u5||%2(M€) are uniformly bounded with respect to €. In the same
way as in item 3 one can prove that there exists a subsequence (still denoted by ¢)
such that the following limits exist

wo = lim TI5u° € H'(Q) strongly in Ly(Q), (1.2.22)
w; = lim Iu® € H'(0,1;],i = 1,2,3 strongly in Ly[0, 1. (1.2.23)

By means Lemma 1.1 we have
[u 113, 5y — 0, = 0. (1.2.24)

The fulfilment of the condition C4 (with w = (wg, w1, ws,ws)) follows easily
from (1.2.21)(1.2.24).
Theorem 1.3 is proved.

We continue the proves of Theorems 1.1 and 1.2. Let pj > pu§ > p5 > ... >
A k—) 0 be the eigenvalues of A® written with account of their multiplicity
-

oo
and let f7, f5... be the corresponding eigenvectors normalized by the condition
(ff f;)’;{e = 0j;. Let p1 > po > pu3 > ... >y, k—> 0 be the eigenvalues of A.
—00

[
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It is proved in [7] that the conditions C1-C4 imply
pp — pe, €—0, E=1,2,3...

and, moreover, if pg > pr11 = pk+o = ... = Uk+m > Mktm+1, then for any w €
N (pr41) there exists a linear combination f° of the eigenfunctions f; ... fi.,,
such that B
1f¢ — REwl|lye — 0, € — 0.
Since A}, = é -1, = t — 1, uf, = f; (and so N(Ag) = N(u)), it follows

that Theorems 1.1 and 1.2 are proved.

2. Riemannian Manifold of Increasing Genus

2.1. Setting of the Problem and Main Result

Let 2 be a two-dimensional compact Riemannian manifold without boundary
and with a metric g. By Agq we denote the corresponding Laplace—Beltrami
operator. Let D, i = 1...N(e) = 3N;(e) be a system of the balls in © with
centers x; € (2 and radii d°. We consider the following domain with holes:

N(e)
0° =0\ | J D;.
i=1
Let G5,7i=1...N(e), be a set of tubes
Gf = {:% = (Qolazz) i € [07 27(]7'22' € [07 1]}
We suppose that
CZE = {i‘ = (<pz~,zi) € GZE 1z = 0} C 8G;€

is diffeomorphic to dD;. Using this diffeomorphism, we glue G5, i =1... N(¢) to
Q°. By S; we denote the "ends" of G}

SZE = {i‘ = (<pz~,zi) € Gf 1z = 1} C 8Gf

We divide the set {1...N(e)} into subsets, each consisting of three elements.
For any three indexes 4, j,k we introduce the number A;j;, and set A;;, = 1 if
i, J,k belong to the same subset, and we set A;jr = 0 otherwise. If A;jp =1, we
say that the corresponding holes D7, D5, Dy are connected.
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For any i, 7,k : A;jjr = 1 we consider the sphere ijk C R? with the radius b°.
€

d
Let D7, D5, Dy, be the geodesic balls on ijk with the radii b* arcsin <b_5> It is
clear that the radii of the circles 9D5, dD5, 0Dy, are equal to d°. Let

k= Biji\(D; UD; UDy).

One can see that 0D;, 81)]5-, 0D;, are diffeomorphic to S;, S5, Sk, respectively. Us-
ing these diffeomorphisms, we glue By, to G; U Gj U G}. Thus we obtain the
manifold (see Fig. 2)

M® = U U BpuGiuGiuas)

ik Aijr=1
We denote the points of the manifold by z. Clearly, M* can be covered by a system
of charts, and suitable local coordinates {z1,z2} can be introduced. It is supposed
that M¢ is equipped with the metric ¢g° that coincides with the metric g on Q°f
and with the metrics induced from R? on B On G the metric is defined by
the formula for the square of the element of length:

ds® = ¢;dz] + (d°)?dy;, ¢ > 0.

By ggﬁ, we denote the components of metric tensor in local coordinates.

Fig. 2: Manifold M*®.

We denote r; = minpy(z;,25), where py is a distance on €2 generated by

metric g. It is supposed that the following properties are valid:
(i) |Ind?|t <CE5)?, 78 =0(e), 0 < C) < e2N(e) < Oy, & — 0;
(i) ¢ <q¢° —0, ¢ =0, i.e., the lengthes of the cylinders G tend to zero;

€
(iii)  (b°)? (| Ind®| + |Intan & | + ‘2‘?) — 0, € = 0, 0° = arcsin &.
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Let A® be a Laplace-Beltrami operator on M*®. Let 0 = A\] < A5 < A5 < ... <
A% k—> 0o be the eigenvalues of —Af written with account of their multiplicity,
—00

and uj,u5,us ... be the corresponding eigenvectors normalized by the condition
('LLl,’LLJ)'He = d;j.
To describe the behavior of Aj, as € — 0 we introduce the notations:
Ri = {3 € 1" < pyldo)) <rif2h, CF = {3 €0 2 pyliaf) = 1i/2),
S =Gi UGS UGLUBg,, T5, = REURSURL UL,

For 4,7,k : A;j;, = 1, we consider the problem

Ay =0 in TS v=10n6§andv=00néjuéi. (2.1.1)

ijk»

The solution of (2.1.1) we denote by vj;,. It is clear that vj;, = vf ..
For 4,7,k : A;j;, = 1, we denote

zgjk = - /( z]k’v v]zk)d

2
ou 0
(here (Veu,Vv) := Z ggﬁa—aia—g;)’ otherwise we set W =0 (i.e, W5, =
a,f=1

_(V ”kaVE jzk)LQ(ffjk))
We introduce the generalized function

We(z,y) = Y, Wigdle —af)d(y —25) € D'(2 x Q).
i,j,k=1...N(¢)

The limit
(iv) 3 lir% We(z,y) = W(z,y) € Loo(Q2 X Q) - positive symmetric function,
e—

is supposed to exist.
We denote H® := Lo(M*), Ho := La(Q).

Theorem 2.1. For any k=1,2,3...
Ap = A, € =0,

where 0 = Ay < Ao < A3 < ... are the eigenvalues of the operator L : Lo(2) —

[Cu(z) = —Aqu(z) + / W (2, ) () — u(y))dy.

Q
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Theorem 2.2. Let R® : Ho — HE:

f(@), ze,
[BA@ =10, e U Ty,
i,j,k:AiijI

Then the eigenfunctions of —Af converge in the sense (1.1.1) to the eigen-
functions of the operator L.

2.2. Proof of Theorems 2.1 and 2.2

We denote by A® and A the operators inverse to —A®+1I and £+1, respectively.
Analogously as in the previous section, Theorems 2.1 and 2.2 follow from
Theorem 2.3. The conditions C1-CJ are fulfilled.

P roof. The conditions C1-C2 are trivial. Let us check the condition C3.
Let f € H. We denote u® = A°R°f, f* = R°f, up = Aof. Notice that the
following estimates are valid:

o arey S NS Nmagueys IV°0 0T arey < 20F N naqarey - I llparey.  (2:2:1)

It is well known that «® minimizes the functional

Je[uf] = / (IVeul [ + (uf)? — 2f%uf) di (2.2.2)

ME

in the class of functions H'(M?), while ug minimizes the functional

Jolu] = / (IVul? +u? — 2fu) dz +//%W(az,y) (u(z) — u(y))? dedy (2.2.3)
QQ

Q

in the class of functions H'(f2). The converse assertions are also true.

In order to prove that u® converges to ug, we consider the following abstract
scheme.

Let H® be a Hilbert space depending on the parameter £ > 0, (u®, v°)e, [|[u®]|-
be a scalar product and norm in this space, and F® be the continuous linear func-
tionals in H® which are uniformly bounded with respect to . Let H be a Hilbert
space with the scalar product (u,v) and the norm ||ul|, and F be a continuous
linear functional in H.

Consider the following two problems of minimization:

ufl|? + FE[uf] — inf, uf € HE 2.2.4
[ |2 ; ,
|ul|® + Fu] — inf, wu € H. (2.2.5)
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Let u® and ug be the minimizants of the problems (2.2.4) and (2.2.5). The fol-
lowing theorem is proved in [3].

Theorem 2.4. Let M be a dense subset of H, let I1° : H* — H, and P® :
M — HEF be the operators satisfying the following conditions:

(a) [MFwf|| < Cllw?||, Vu* € H?;

(by) TI* Pw — w weakly in H as e — 0,Yw € M;
(b2) lim [|Pfw||e = [|w||, Yw € M;
( e—=0

bs) for any sequence v° € H® such that TI*y* — v weakly as € — 0, for any
w € M one has
lim |(P*w, *)e| < Cllwl[[[v]];
e—=0

(c) for any sequence v¢ € H®, such that II°y* — ~ weakly, as € — 0, one has
lim F*[v°] = F[y].
lim F*[y"] = F[y]

Then

IT*u® — wg weakly in H.
e—0

Notice that Theorem 2.4 holds true if the conditions (bs) and (c) hold only
for such sequences ¢ that the norms ||v¢|| are uniformly bounded with respect
to € because in the proof of Theorem 2.4 the conditions (bs) and (c) are used only
with these sequences.

Now we apply our abstract scheme. Let H® be the Hilbert space H'(M?®) of
the functions on M¢ with the scalar product

(o) = [ [(V°0, 7)o+ o] da,
ME
and let F* be a linear functional defined by the formula
Feluf] = / —2fudi.
ME‘
Let H be the Hilbert space H'(2) with the scalar product
1
(o) = [ (Y, 9) ol do + [ [ W (@ )u(e) — ulp)o(e) = o)) dody,
Q Q Q

and f be a linear functional on it defined by the formula

Flu] = / —2fudz.
Q

Obviously, the functionals F* are uniformly bounded with respect to .
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Now we introduce the operators TI° and P¢ satisfying the conditions (a)-(c)
of Theorem 2.4.
The existence of the operator TI° : H'(M*®) — H'(Q) that has the properties

||VH8ue||%2(Q) + ||H8u8||%2(ﬂ) < C<||Vu5||%2m€) + ““8“%2(96))’ (2.2.6)
IFu® (%) = u® (%), 2 € Q° (2.2.7)

is proved in [9, p. 118, Ex. 4.10]).

Clearly, (a) follows from (2.2.6).

We introduce the operator P¢. Let ¢(r) be a twice continuously differentiable
non-negative function on the half-line [0, 00) equal to 1 for r € [0,1/4] and equal
to 0 for r > 1/2. We set

vie) = (222 iy (o) = (2252,

T

where d5; = exp(—|Ind*|'/?).
Let M = C?(2), M is dense in H'(Q) and let w € M. We define the operator
P¢ by the equality

w(E) + (wf — w(E))gss(®) + ((vfjk(fc) g

[Prw(z) = 05 (F)w + v;;z.j(gz)w;> 05 (%), & € R, gk Agj = 1,

Ui (T)w; + 05 (B)ws + vi (B)wp, T € Ty,
where w; = w(xf).
To see that the conditions (by)—(bs) hold, we use the following estimates of
the solution v, of (2.1.1).

Lemma 2.1 Let Rj, = {Z € Q° : d;, < py(w,x5) < ry/2}. Then for
i,J,k : Ajjr =1 and q € {i,j, k}:

D*(In py (5, 7))

D% (054(8) — dig)| < € |

ijk

, &€ R5, o] =0,1.

The pr oo f of the lemma is carried out in the same way as that of
Lemma 2.4 in [9, p. 44| using the inequality 0 < v, < 1 which follows from the
maximum principle.
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Lemma 2.2 Let u® € H'(M?). Then for any i,j,k : Ajj, = 1

VE®*)

2
= IV, cuasuas)

£

0
£112 £\ 2 e, €12
10 g, < € |09 mtan S 197012 +

1
#0792 (1101 19 ooy + 2210 By )|
(2

1
Jull%: < C [W%EH%M FdVE (I d] - Vo ey + Enuan%mg))] -

)

The proof of this lemma is carried out in the same way as the proof of
Lemma 1.1.

We verify that the condition (bs) holds. We denote R = {& € QF : r£/4 <
pg(Z,x5) <r;/2}. Let w € M. Then

| Pew]||? = / [|Vw|2 + wQ] dz
Qe
2 2 2
b [ [ sl + i
1<j<k:A;jp=1 e
+2wfw§(vajk, Vv;?ik) + 2w§wi(VU§ik, Vv,‘zij) + wawi(vajk, Vv,‘zij) dz + §(e).
(2.2.8)

Here §(¢) are the remaining integrals estimated as follow*:

6(e)| < Cw) > [T5e + B + I + Vi + (d5)?]
Zajyk.Azjkzl

where
1
e _ e & |2 e |12 ~
ijk = / <|V gk +_7,52|Uijk| di,
o 5
REUREUR:
1
e £ € € ~
ijk = / (|V Vil + ;|Uzjk| di,
12
R5;UR5,URS,

2 3~ 2 3~ 2 3~
= / 056 — 12 + / (0554 2dE, Y5, = / o5, P
R Te

R;UR% ijk

*The sum > means that any three indexes {i, j, k} appear only ones in this sum.
i<j<kiAgjp=1
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Using Lemma 2.1 and maximum principle for v} ik We have
Sk < Cllnd®| (14| Inrf]?), (2.2.9)
Sk < ClInd®| M (rf| Invf| + dg| Indg)), (2.2.10)
Gk < C(d)’(1 + |Ind*| ™) + (rf Inrf/Ind")?], (2.2.11)
ik < O D] < C(dVa + (b)), (2.2.12)
Using (i)—(iii), we conclude that
d(e) =0, e = 0. (2.2.13)

We denote V5 = i NACH
FE

ijk

|2dz, where i, j,k : Ajjp=1. Since v ik T Vi T

=W:

vlf:zg =1 for any i7j7k Az]k = 1, we have V& ijk

ijk —
can be rewritten in the form

|Pewl? = Q/ (vuf+u?)ars 30 Wi @h)? - wiehu) )+ 56)

i,J,k=1...N ()

- / <|Vw|2 T “’2>d$ + % > ijk <w($f) - w(x§)>2 +a(e). (2.2.14)
Q

i,J,k=1...N ()

+ Wi,;- Therefore (2.2.8)

It is easy to see that (bg) follows from (iv), (2.2.13) and (2.2.14).

We verify the condition (by). Let w € M. In view of the conditions (a) and
(bz2), the norms ||II° P°w||. are uniformly bounded with respect to €, and in the
same way as in (bz) one can prove that IT1° P°w — w strongly in L?(Q). Thus the
condition (by) also holds.

We verify the condition (bs). Let w € M, and the sequence y* € H® is such
that the norms [|7°||c are uniformly bounded with respect to ¢, and II°*y* — ~
weakly in H as € — 0. Integrating by parts, we have

(Pw,7)e = (~Aaw +w, ) ) +8(6), (22.15)

where §(e) are the remaining integrals. Using Lemma 2.1, in the same way as in
(bg) we obtain the estimate

N(e) 1/2
: e\2| pE EE
tig 3(2) < € lim ¢ | SZD?IREL | I e

Since II** converges weakly to v in H, then II*4* converges strongly to vy in
Ly(©2), and therefore we have

lim |3(e)| < Cllwlizy ey - [Vl (0) < Cllwll - {171 (2.2.16)
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It follows from (2.2.15)—(2.2.16) that (bs) holds.
Further, we verify that the condition (c) holds. Let the sequence v¢ € H® be
such that T1°y* — « weakly in H. Then TI°4* — v strongly in Lo(Q2). We have

|FE[y*] = Fly]| = /f-(Hsvs—v)di + / fydz| — 0,e = 0,
Qe Q\QE

and so the condition (c) holds.

Thus all the conditions of Theorem 2.4 hold. Hence IT°u® — ug weakly in H.
Therefore, by the embedding theorem, IT°u® — wug strongly in L?(€2). Finally, we
have

JA“R® f — REAof I3 = l1u°l|7,upe ) + ITT°u® — uol|7, ey
(UT,,.) (@)

In view of Lemma 2.2, (i-ii) and (2.2.1) ||u6]|%2(ure y = 0,e = 0. Thus C3 is

proved.

And finally, we verify the fulfilment of the condition C4. Let f¢ € HE be
such that sup || %[y < oco. Let u® = A°f°. In view of (2.2.1), [T°u° is weakly
compact in H'(2) and so there exists the subsequence ¢/ and w € H'(Q) such
that IT°u® — w strongly in Lo(£2). This and Lemma 2.2 imply C4.

Theorem 2.3 and therefore Theorems 2.1 and 2.2 are proved.

2.3. Example

We consider an example of the manifold M* and calculate the function W (z, y)
explicitly.
Let € contain the subset K, which is a flat square with the side equal to .

114/3

Let € > 0 and let n® = [—] .
€

We divide K into the squares K5, a = 1...n°? with the side length I/nf.

Within each square K¢ we cut out n°* holes D; with the radius d® = exp (—nEG/lﬁ)

and such that their centers form a periodic lattice with the period —. It is clear
n

that |Ind?|~! = [*(rf)2. The total number of D5 is equal to N(e) = n®5.

For each hole D; we denote the number of square K, containing this hole by
a(i). Since the number of holes within the square K¢ is equal to nt? . n2 we
can assign to each hole D¢ C K& the pair (8(i), (7)), B8(i),v(i) € {1...n°?}. So,
each hole D; is characterized by (a(i), 5(3),v(7))-

If ai) = B(j) = v(k),a(j) = B(k) = v(i),a(k) = B(i) = (j) and only in
this case, then we join the boundaries of the holes Df,Di,Dj by means of the

manifold Ts;, = G5 UG5 UGy U By,
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We set
g; =g |Ind®| -dE]Q, qg>0

and choose such b° that (iii) is valid and
€

98
In <tan E) /Ind® — 0, e - 0, 6° = arcsin "

(for example d° ~ Cb°).

In order to calculate W (z,y) we find a suitable approximation for the solution
€

v, to (2.1.1). Namely, we represent it in the form Vi = @’?jk + W, where
(a5 In |3 — x3| + b5, 7 € R,
Az + Bf, & = (z,¢;) € G5,
a;In |z — 25| + b5, 7 € R,
vi(T) = § Asz + B, 7 = (2, ¢)) € G5,
apIn|z — x|+ by, T € R,
"2+ Bf, & = (u,00) € G5,
\ijw T € ijk.

We chose the constants af, b} ... Ay, By, ijk such that:
1) i)\fjk is a harmonic function in G7 U Rf, G5 U R;, G} U Ry,
s _ Ae o6 _ Ae || e
2) Ui, =1 on Ci,vijk—Oon Cs U Cy,
3) Uyplss = i)\fjk|5]; = U5;kls; = M, where M is a constant,

vy ov;, ov;,

ove. 3 .
4) 8:%k |ss + Bg’k |s]e + 827'? |sz =0, 7i is the outward (or inward) normal*.
As a result, we obtain
2|Ind?|~!
=0 1)) = —2a% = —2a5
a; 3(1+q) ( +0( )) a; Qg
VG V4 aj
A5 = —a; del, Ajz—aj d]’ AL = —aj, pa

(>
b; = 1 —aj In(r;/2), b; = —ajIn(r;/2), b, = —aj In(rg/2),
B = a;Ind® +b;, B; = a;Ind® + b}, B = ajInd® + bj.

*Here the normal derivatives are taken in an arbitrary point of S{. It is easy to see that the
Ovg;
conditions 1)-3) guarantee that —2* are constant on S, as on S and S§). The condition 4)

i
determines the constant M from the condition 3).
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Direct calculations show that

4
€ e|—1 =
||V ZJkHLQ FE = m|lnd | (].‘I'O(].)) —)0, 8—>0, (231)
2T -1 _
(Vo0i, V° ”gzk)L2(fgjk) = _muncﬂ (1+0(1)), e = 0. (2.3.2)
Now we prove that w i gives vanishingly small contribution to WE Since v} ik
minimizes the functlonal Ig[ ] = |[V¥v||2. in the class of functions from Hl(I‘fjk)

equal to 1 on §f and equal to 0 on §]€U§,§, then ||V£vfjk||%2(M€ < |IVEw l]kHL2 (M%)
and therefore

Hvawfjku%2(M€) < 2[(VEwj, VU5 j1) 1y (115 | -

Using the properties of the function ¥}, ik We obtain
. Aj
HV‘waijgE < dnd* \/_ \/_ = 4dmla;w; + ajw; + apwy]
= drlaf(w) —wi) + ak(wk —w;)|, (2.3.3)

where wf, w;, wy, are the average values of Wy, 1N Si+ S5, Sy, respectively.
The followmg estimate is valid

¢
[wi — wj| + wi —wi| < Cy/|Intan <[ - [[V=0ij[loc
gc e gc .
< C4/|Intan E| IV lloe < Cy/|Intan 3|/| In d?| e 0. (2.3.4)

The proof is similar to that of (1.2.20).

It follows from (2.3.3), (2.3.4) and from the form of the coefficients aj, aj, aj,
that
IVewf |5, = (| Ind?|1). (2.3.5)
We have
ik =~ [(ijai’?ik)h(fgjk) + (@?jkaw%k)h(fgjk)
+ (wfjkaﬁjik)h(fzk) + (Wi, w;ik)L2(ffjk)]- (2.3.6)

It follows from (2.3.1), (2.3.2), (2.3.5), (2.3.6) that

We 2T

-1
ijk ™~ —(%k,%k)h(fgjk) ~ 3(1+q) Jrq)|11f1d£| .
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Let w(z,y) € C*°(Q). Then

2w
Wew) = Y —————w(af, )| Ind"| .
1,9,k A =1 3(1+4)

By the construction of the manifold M*, for any three squares K;, K g, K7, there
are only three holes D; | D% D/,"‘;aﬁ7 such that

taBy’ " Japy’
Df&ﬁ” C Ko, DJE'&BV C K, Diaﬂ'r C K5y Aingyjapykasy = 1-
Therefore the sum above can be easily rewritten as follows:
n’(e)
(W) = 5 S (i, 5,0, [
T30+ WiPiagy > Tiagy )1
a,B,y=1
D) n2(5)
T
- 3(1+q) Z (xlaﬁw’xjaﬁw)|K6| |Kﬁ| |K8| _> /// $ y)dedydz
Oé,,B,’)/: KKK
Thus
27l?
W (z, " ’
(@) = xx@ilo) [ s = g X (o)
K

where y g is the characteristic function of K.
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