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1. Introduction

In the paper we study a class of random matrix ensembles known as unitary
matrix models. These models are defined by the probability law

P (U) dpn (U) = Z,, y exp {—nTrV (#) } dpy, (U), (1.1)

where U = {Uj;}};_; is an n x n unitary matrix, p, (U) is the Haar measure
on the group U(n), Z,2 is the normalization constant and V : [-1,1] — R™ is
a continuous function called the potential of the model. Denote ¢ the eigen-
values of unitary matrix U. The joint probability density of A;, corresponding to
(1.1), is given by (see [1])

4 12 "
i _ ek exp{ —n Z Vi(cosAj) p. (1.2
j=1

e

1
b= ]
1<j<k<n
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To simplify notations, below we will write V' (x) instead of V (cos ). Normalized
Counting Measure of eigenvalues (NCM) is given by

N, (A) = n~t {A}”’ eA,l:1,...,n}, A C [~ 7). (1.3)

The random matrix theory deals with several asymptotic regimes of the eigen-
value distribution. The global regime is centered around weak convergence of
NCM (1.3). Global regime for unitary matrix models was studied in [2]. We will
use the main result of [2]:

Theorem 1.1. Assume that the potential V of the model (1.1) is a C? (—7, )
function. Then:

e there exists a measure N € My ([—m,n|) with a compact support o such
that NCM N,, converges in probability to N;

e N has a bounded density p;

e denote p, := pgn) the first marginal density, then for any ¢ € H' (—7,7)

[omm an= [ oo ar| < ol |63 n 2w,

(1.4)
where |||, denotes Ly norm on [—m, 7]

One of the main topics of local regime is a universality of local eigenvalue
statistics. Let

™ (A, N) = /pn ALy A At An) AN .. dhy (L5)
be the [-th marginal density of p,,.
Definition 1.1. We call by the bulk of the spectrum the set
{Aeo:p(A) >0}, (1.6)
where p is defined in Theorem 1.1.

The main result of the paper is the proof of universality conjecture in the
bulk of spectrum

. -1 (n) z1 ! _ R l
iy (0] 27 (34 s Ak ) = den S (= )
(1.7)
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where .
S () = 22T (1.8)

T

By (1.7), the limiting local distributions of eigenvalues do not depend on potential
V in (1.1), modulo some weak condition (see Theorem 1.2). The conjecture of
universality of all correlation functions was suggested by F.J. Dyson (see [3]) in
the early 60s who proved (1.7)—(1.8) for V (z) = 0. First rigorous proofs for
Hermitian matrix models with nonquadratic V' appeared only in the 90s. The
case of general V which is locally C® function was studied in [4]. The case of
real analytic potential V' was studied in [5], where the asymptotics of orthogonal
polynomials were obtained. For unitary matrix models the bulk universality was
proved for V' =0 (see [3]) and in the case of a linear V (see [6]).

To prove the main result we need some properties of the polynomials or-
thogonal with respect to varying weight on the unit circle. Consider a sys-
tem of functions {ei“}zozo and use for them the Gram—-Schmidt procedure in
Lo ([—7r,7r] ,e*"V()‘)). For any n we get the system of functions {P,gn) ()\)}ZO .
which are orthogonal and normalized in Lo ([—7r,7r] ,e*"V()‘)). Since V is even,
it is easy to see that all coefficients of these functions are real. Denote

) (x) = P (A) e VN2, (1.9)

Then we obtain the orthogonal in Lo(—m, 7) functions

/wk (\) dX = 0. (1.10)
The reproducing kernel of the system (1.9) is given by

ZW’ M (). (1.11)

From (1.10) we obtain that the reproducing kernel satisfies the relation

/ K O\ 0) K (v, 1) dv = K (A1) (1.12)

and from the Cauchy inequality we have

K )] < Koy (0 N) Ko (). (1.13)
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We also use below the determinant form of the marginal densities (1.5) (see [1])

n n—1)!
o O = P Dt 1, (g, M0y (1.14)
In particular,
pr () =n" K (AN (1.15)
2
(n) . K (AN A) Ky (1) — [ K (A, )]

The main result of the paper is

Theorem 1.2. Assume that V (\) is a C? (—7, ) function, and there exists
an interval
(a,b) C o such that

sup [V (\)| <Cy, p(N) > Co, A E (a,b). (1.17)
AE(a,d)

Then for any d > 0 and \g € [a +d,b— d] for K,, defined in (1.11) we have

' _ X
nh—>Holo [Kn ()\07)‘0)] IK” ()\0+ K. ()\0 )\0)’)\0 * K ()Z‘/O )‘0))

_ ila—3)/20(20) SI0T (& — Y) (1.18)
m(x —y)

uniformly in (z,y), varying on a compact set of R2.

Remark 1.3. It is easy to see that the universality conjecture (1.7) follows
from Theorem 1.2 by (1.14).

The method of the proof is a version of the one used in [4]. An important
part of the proof is a uniform convergence of p, to p in a neighborhood of Ag:

Theorem 1.4. Under the assumptions of Theorem 1.2 for any d > 0 there
exists C' (d) > 0 such that for any X\ € [a+ d,b — d]

on () = p(N)] < C (d)n=2/". (1.19)
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2. Proof of Basic Results
Proof of Theorem 1.4. We will use some facts from the integral transfor-
mations theory (see [7]).

Definition 2.1. Assume that g (\) is a continuous function on the interval
[—m, w]. Then its Germglotz transformation is given by

™

ei)\ eiz
Flg) () = / T d, (2.1)

eiA _ etz

where z € C\R.

The inverse transformation is given by

900 = 5= lm RFlg)(2). (22)

For z = pu+in, n # 0, we set
™

ei)\ eiz
) = [ S o) ax (2.3)

N _ etz

—T

Bellow we will derive a ”square” equation for f,,. Denote

* oiX | el
L.(2) = [ VOV G5 () an (2.4)

—T

Integrating by parts in (2.4), from (1.5) we obtain

In (Z) = Z—/V,()\l)mn €>\] —6>\k exp —nZV()\j) Hd)\j

_ 1 _avn)_d[€ e i\ X -

= nZn/e 1 o\ e 11 e — ek | exp —nZ;V()\j) 1—IldA]
J J= J=

The integrated term equals 0, because all functions here are 27 -periodic. After
differentiation we have the sum of n terms under integral sign. Denote

1 d [N 4 e® 2 - -

Jj<k

N i
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d

d

Y

1 eM 4 e N in?
I, (2) = ) . | | e —e
nst, | et —e? -
2<j<k<n

ez)q . €Z>\k

XH 2exp —nzn:V()\j) ﬁd)\j, m=2n.
j=1

k#m j=1

From symmetry with respect to A\; we obtain that all I,, (z), except I(z), are

equal, hence
Tn(2) =1y (2) + (n—1) Iz (2).

1 d ei)\l + eiz

(o L[ 4 (e te”
0 (2) n / d\ <6u1 _ezz) pn (A1) d\

—T

T ™

2 i iz i [ 4 ez i

= mpn (A1) d\ = ~on /(m) pn (A1) dA1 + o
“r -7

To transform I, we use the symmetry of p(2n) ( pgn) (A, A2) = pgn) (A2, A1) ).

d
/ei)‘1 +e¥? d—)\l ¢

ei)q — eiz |6i>‘1 B ei)‘Q |2

. |2
A1 ez)\g

I(z) = P (A1, Ag) dArdAs

S|

SN _ @iz gih _ gida P2

(A1, A2) dA1d)g

3| .

" A Ag) dArdA
2n V%) ( 1 2) 1 2
i 2 (e e2) ¢ o
~ o ' W - AL, Ag) dAdA
2n / (ez)\l _ ezz) (el)\g . e’z) Do ( 1, 2) 1d Ao

7 7 e 4 g% gih2 4 iz (n)
~ 9 on / oM _ iz gide _ giz P2 (A1, A2) dArdAs.

eiNl _ iz gida _ giz

eiAl _ piA2

Therefore, from (1.5) and (1.14) we obtain

(e“‘l . eiA2)2 o247

T,(2) =~ ——12(2)— — | |K 2 :
n(2) 2 2f” (2) n?2 /‘ n (A1, A2)] (eiM — ez‘z)Q (eir2 — eiz)2 dArdAz
(2.5)
On the other hand, denoting
T oA o i / ,
Qn () = P ——r (V') = V' (1)) pn (N) dX, (2.6)
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for z = p+in, from (2.3) we get

In (2) = Qu (2) + V' (1) fn (2) . (2.7)
Finally, from (2.5) and (2.7) we obtain the "square” equation
F22) = 2V (1) fu(2) — 20Qn (2) ~ 1 = G (). (28)

with
(ez‘,\1 o 6@')\2)2 o202

G (2) = [ 1K i 2a) T e o )

To proceed further we have to prove the following properties of the reproducing
kernel K,,.

5 dAido.

Lemma 2.1. Let K,, (A, ) be defined by (1.11). Then under the conditions
of Theorem 1.2 for any 6 >0

J (=) 1 o du' <3 [wi”_’l W[ +

wWwoll e

ix _ inl? 2 N I S AN
N — e K ) dp < ([ ] + [ )| @10)
. .12 9
/e”‘—ew | K (A, p1)|” dNdp < 2, (2.11)

[ oo pof

’e”‘—ei“’>5

Wl e

| K (A, o) * dAdp < 2072, (2.13)

|eir—eir|>6

It is easy to see that [e” — €| > C'|n| if |n| < 1 for some C' > 0. Hence,
from (2.11) and (2.8) we derive

F2(2) = 20V (1) f (2) = 20Qn (2) = 1 = O (0~ | (2.14)

Lemma 2.2. Under the conditions of Theorem 1.2 for any d > 0 and X\ €
[a+d,b—d]

(V) < C, (2.15)
'dp:M(A)‘ < < NQ) (A)(2 + (zbfl’i)l (A)(2> + Cs. (2.16)
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From the conditions of Theorem 1.2, we obtain that V" (\) is bounded on the
interval [a,b]. Hence, for u € [a + d,b — d] and sufficiently small 1 we have

’Qn( +'L77) Qn ‘<| -n 1‘/“60\_61“’/’( )’pn( )d)\

ez)\ — el ‘

A pn (A) dA

<Cn

SEE + NEE
Ayt <d/2 ‘(A—M) +n ‘ Dyt >d/2 ‘()\—M) +n ‘ A — pl
<Cnln'n+Cnd ™2 < Cnln~'n. (2.17)

z)\ 4 ezu
Besides, applying (1.4), for ¢ (\) = W (VI(A) = V(1)) we get
Qu(1) = Q) +0 (nm'n). (2.18)
where i
i\ Im
Q= [ S5 () =V () p ) (219)

-7

Combining (2.17) and (2.18), we find

Qn(u+in) =Q(u) +O (nIn~'n) +O (7”fl/2 In'/2 n) . (2.20)
From (2.20) and (2.14) for z = p + in~*? we have
£ (2) = 20V (1) fu (2) = 20Q () — 1 = O(n ™). (2:21)

Lemma 2.3.

1 . 9
= o \20Q () + 1 (V' (1)* (2.22)
Lemma 2.3 and the equation (2.21) imply that for z = p + in~4/?
1 _ —2/9) -1
SR (2) = p (1) + 0 (n7°) p~ (n). (2.23)
Lemma 2.4. Ford>0,k=n—1,n and p € [a+d,b— d]
/ M”’ ‘ d\ < On~14, (2.24)
[A—p|<n—1/4
2
(¢,§"> (A)( < On™/8, | — A < VA, (2.25)
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Taking into account (2.23), to prove Theorem 1.4 it is enough to show that
1
2—?)?fn (2) = pn () +O (niQ/g). We use an evident relation
T

e + et sinhn d A—p n
- — = = —2arct t —_— th (—) .
§Re”‘ —e®  coshn—cos(A—p) dX arctatt ( an ( 2 > O\ >

1 e + et?
Combining the relation — /?Rfd)\ = 1 with (2.15), we obtain
27 eir — ei#

3 ) = pn )

= (2m)~" ' < / + / T / > cosh 7 iiIclf)lsn()\ — )

lu=Al<nt/2 nl/2<|p=N|<d/2  [p—A|2d/2

X (pn (A) = pn (1)) dA

sinh
<C / — P (p (s ) — pa () ds| + C7? + O,

coshn —cos s

|s|<n'/2

Using (2.16) and (2.24), we get finally

1
‘%fn (2) = pn (u)‘ <C / |9}, (w+ )| ds + Cn*/? < /2.
|s|<nt/2

Theorem 1.4 is proved. u

Now we pass to the proof of Theorem 1.2. We will use the following repre-
sentation of K, which can be derived from the well-known identities of random
matrix theory (see [1])

n—1

1 1 n n — —-n N
K () = ST () oM (p) = Qp he VIV G2
j=0
n . . 4 . . 12
% /H (el)\ . e’LAj) (efz,u, _ 672)\]') e*nV()\j)d)\j H ‘el)\j . el)\k (226)
J=2 2<j<k<n

(n)

92 .
‘ , and ;7 is the coefficient in front of e in the

n—1
where @2 = n! H "yl(")
§=0

function Pl(n) .
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Remark 25 Consider the determinant (see (1.2))
det {eik)\j}n_l _ i) SN2 Jo {ei(kf(nfl)/Q))\j}n_l '
k,j=0 k,j=0

Taking the complex conjugate, we obtain

- n_ . ) . yn—1
det { it }mio — e =D T N/2 ot {e—z(k—(n—l)ﬂ)/\J }k o
n—1

_ (_1\[n/2] ,—i(n—1)> X;/2 i(k—(n—1)/2)\;

=(-1) e I det{e j}k,j o

Thus, from (2.26) we get that the function e_i(”_l)(’\_“)/QKn A, ) is real valued.
I

Now denote

~ 1 T A ~
Ko (,y) = 2K Mo+ 2 00+ 2), Ko (ay) = O DED2E, (@),

n
(2.27)
From the above we have that IC,,(z,y) is a real-valued and symmetric function.
We get from (1.11)—(1.13)

/ Ko (2,2) K (2,9) d2 = K (2,9) [ (2,92 < Ko (2,2) Ko (3,9), (2.28)

Ky (x,x) = Pn ()‘0 + .CU/?’L) < 07 VCTZ (x,y)\ < C? for ‘x’ ) ’y‘ < 7’Ld0/2 (229)

Differentiating in (2.26) K, (z,y) with respect to x for A = Ao+ /n, u = po+y/n,
we get

0 & _ _loing n—1 vV
ax’C" (CC,y) - 2V ()‘)’Cn (CC,y)+ Qn,Q €
ie - i iAj —i —iX; N ide]?
x/mn(e)‘—e)‘ﬂ)<e ) )‘J)d)\j H ‘e)‘ﬂ—e)"c
j=2 2<j<k<n
1 -~
= 3V () K (21)

254 Journal of Mathematical Physics, Analysis, Geometry, 2009, vol. 5, No. 3
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™

i e 4 2
N i\ (Kn ()\27 )\2) Kn ()\7 ,u) - Kn ()‘7 )‘2) Kn ()‘27 M)) d)\2

2—,,227 Cih _ oin
N i(Zr:?l)K” (A 1) = —%V’ (\) K (2, 9)
n % 7 cot (“’;;) (;En (2,2) Ky (2,y) — Kn (z,2) Ky (z,y)) dz
+ i(n2; 1)’@1 (2,9) - (2:30)

Lemma 2.6. Denote

D\ =V"(A\) +v.p. / cot %pn (A +s) ds.

Then for any d > 0 we have uniformly in [a + d,b — d]

ID(V)| < Cn~Y4nn.

The definition of C,, (2.27), the above Lemma, and the bound (2.29) yield

%Kn (z,y) = P2 / cot ( 5 ) Ky (z,2) Ky (2,y) dz + O(n Inn).

—nm
(2.31)
Below we take |z|,|y| < £ = Inn. Then from the inequality |z| < nm we get

T Z‘ < 3w /4. The function x cot z is bounded on [0, 37 /4], thus
n

1

r—z

For |z|,|y| < £ we can restrict integration in (2.31) by the domain |z| < 2L,
substituting O(n~/4Inn) by O (£~1). This follows from the bound

1 Tr—=z
o / cot ( 5 ) K (z,2) Kp (2,y) dz
2L<|z|<nT

<cr! / o (2, 2)] 1Ko (2,9)] dz < CL.
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Note that ) )
x -2
%cot%—;:O(n Inn), forz=0(nn).

Hence, from the above estimates and (2.31) we get

%’C" (x,y) =v.p. / Kn (:c,zz)_lC; (2:y) dz+0(L£7). (2.32)

|z|<2LC

The following lemma shows that /C,, behaves almost like a difference kernel.

Lemma 2.7. For any d > 0 we have uniformly in Ao € [a+ d,b—d] and
|2, [yl < nd/4

9 9 -1/8 -2
< — .
oo (@) + 5 K (%y)‘ < C(ﬂ + e —y[n ) : (2.33)
K (2,9) = Ko (0,y =) < Claf (n7 5 4 o —y/n72). (2:3)

Remark 2.8. Note that the last inequality with Ao+ x1/n instead of Ao, and
xg — x1 instead of x and y, leads to the bound that is valid for any |z1 2| < ndy/8

K (22, 22) — Ky (21, 21)| < Cn7Y8 |y — 4] (2.35)

Lemma 2.9. For any |z|,|y| < L

0 0 2
'axK” (x,y)‘ <C, / 'axIC” (x,y)| de<C (2.36)

lel<L

Denote

/CfL(x) = ICn(x, 0)1\x\§£ + K:n(ﬁ, 0)(1 + L — $)15<x§£+1 (2.37)
+ Kn(_ﬁa 0)(1 + L+ x)1—£—1§$<—ﬁa

and observe that for y = 0 and for any |z| < £/3, similarly to (2.32), we can
restrict the integration in (2.32) to |z| < 2£/3 with a mistake O(£~1). This and
Lemma 2.7 give us the equation

%/c;(x) - / ’CZ(Z)Kf(x =2 4 4 rala) + O(LY), (2.38)
<223

256 Journal of Mathematical Physics, Analysis, Geometry, 2009, vol. 5, No. 3
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where

(@) = / Kn(z,0)(Kp(z, zi - Kn(0,2 — z))dz,
I2|<2£/3

and by Lemma 2.7, for |z| < £/3 we have

ra(z) = O(n"Y8logn).
Now, using the estimates similar to (2.32), we can restrict the integration in (2.38)
to the real axis. From Lemma 2.9 and the relations (2.28), (2.29) we get

2

d
/|1C¢;(x)|2dg;g/|/cn(x,o)|2dx+c'g c, /'%/C;;(x) de < C. (2.39)

Consider the Fourier transform
Rio) = [ Ka@er s
where the integral is defined in the L?(R) sense, and write K} (x) as
Kofe) = 2m) " [ Ratpe > dp. (2.40)

From (1.19) we have
| Rato)n = 2mp00) + o), (2.41)

and from (2.39) and the Parseval equation we obtain
/p2|’€3;(p)l2dp <C. (2.42)

From the definition of K,,(z,y) we get that the kernel is positive definite

L

/ Kl 9) f(@)F ()dzdy >0, [ € Lo(R),

—L

therefore from (2.34) we have for any function f € Ly(R)

[ By = ~Cllf a0 P log 4 0L ). (243)
From the Parseval equation and (2.34) there follows

/ K2(p) — K (—p)Pdp < 2 / G (2) — K (=) 2w < Cn=PlogPn.  (2.44)
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By the definition of singular integrals

/ Fn@Rn@ =2 0 i [ aakr ()K= Rz +i2)". (2.45)

z e—+0

In accordance with the relation
/eipZ%(z +ie) "'z = mie Plsgn p

and the Parseval equation, we can write the r.h.s. of (2.38) as
— lim /dpdp K (p )]C*( )e*ipxsign(p_p/)efslpfp’\

47r e—+0
p
= —/dpe T (p /I/C\*( Ndp'
0

——/dpe zp:t’C*

Note that both integrals are absolutely convergent because I/C\j; € L'(R) by (2.42).
Now, using the Schwarz inequality and (2.42), we can estimate the second com-
ponent

(K (0) = Ky (=p))dp'. (2.46)

o0 L2
[®ath) - Ra-aw| < | [ Ko!) - Re-as
0 0
~ ~ ~ 1/2
[ e < ([ e - Ri-par) o
p|>L£>

Thus, from (2.44)—(2.46) we have uniformly in |z| < £/3

. p
/K:TL(Z)K:TL(‘Qj — Z)dz _ de* —zpac/ dp + O(ﬁ )
0

z 27r

This allows us to transform (2.38) into the following asymptotic relation that is
valid for |z| < L£/3:

//c* (/p/E Ny —p> —ipz gy — O(£Y). (2.47)
0
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Consider the functions ,
~ [Ruwar (2.48)
0

Since pKr(p) € L2(R), the sequence {F,(p)} consists of functions that are uni-
formly bounded and equicontinuous on R. Thus {F},(p)} is a compact family with
respect to uniform convergence. Hence, the limit F' of any subsequence {F), }
possesses the properties:

F' is bounded and continuous;

(a
(

b) F(p) = —F(=p) (see (2.44));

d) F(+00) — F(=00) = 2mp(Ao) (see (2.41));

(e) the following equation is valid for any smooth function g with the compact
support (see (2.47)):

)

)
(c) F(p) < F(p'), if p < p (see (2.43));
(d)

)

/ (F'(p) — p)g(p)dF(p) = 0. (2.49)

The last property implies that F'(p) = p or F(p) = const, hence it follows from
(a)—(c) that
F(p) = pLipj<p, + posign(p) 1ip|>p,,

where pg = mp(Ag) from (d). We conclude that (2.49) is uniquely solvable, thus
the sequence {F),} converges uniformly on any compact to the above F. This
and (2.48) imply the weak convergence of the sequence {K}} to the function
p(X0) S (p(Xo) x), where S(x) is defined in (1.8). But weak convergence combined
with (2.29) and (2.36) implies the uniform convergence of {K!} to K£* on any
interval. Thus we have uniformly in (x,y), varying on a compact set of R?,

nhigo Kn(xv y) =p ()‘0) S (P ()‘0) (x - y)) :

Recalling all definitions, we conclude that Theorem 1.2 is proved.

Auxiliary Results for Theorem 1.2

Proof of Lemma 2.1. Denote

iy = / Ay () 9™ () dx (2.50)

—T
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Note that from the orthogonality (2.66) we have r(n]? =0 for j > k+ 1. Thus,

k7
A k+1
eyt () =Y el (V). (2.51)
§j=0

A

Multiplication on e** is isometric in Ly [—7, 7], therefore

k+1
0

j=

A = [ o], =1

2

Finally we are ready to prove (2.9)

™

(=) i )

—T

m n—1 n—1
— K, (W) — / e 3 9 ()l () S 9™ () ™ (1) dp
g m=0 =0
n—1 _
= Ky (WA = D0 ™ ) e (V)
I,m=0

=M )t (V). (252)

(n)

n—1n

Now, using the Cauchy inequality and the bound

T < 1, we get (2.9).
Similarly, it is easy to obtain the relation
™

/

—T

ez)\ _ et

2 . n n n
K O )2 dp = 2R {e“ni%,nwé’l e <A>} ,

which implies (2.10). The bounds (2.11),(2.12),(2.13) are evident consequences
of (2.10). The lemma is proved. ]

Proof of Lemma 2.2. Observe that
dpa (V) dpa (M +1)

dA dt

t=0

Changing variables in (1.5) A\; = p; +t, in view of periodicity of all functions in
the consideration, we have the representation for p, (A +t)

1 4 o
pn(Att)=—- / eV T e — it |’ et
j=2

n 2<j<k<n

T
e — el dp;.
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After differentiating with respect to ¢, for t = 0 we get

™

dpg;)\) = —nV’ ()\) pgn) ()\) —n (n o 1) /V/ (N) pgn) ()\’ ,u) du

—T

™

——wuu@wm—/vwnkuwaumm—muxMQw.@&)

-7

Since V' (\) is an odd function, and K, (A, \) is an even function, we obtain
/V' (N K (M AN)dX=0.
Thus, from (2.53) we get
/ / ! 2
g = [ (V) =V () 1 O (2.54)

We split this integral in two parts corresponding to the domains [ — A| < d/2
and |u— A| > d/2. In the second integral we use (2.12). It follows from (1.17)
that in the first integral we can rewrite V' () as

V() = V' () = (s = ) V" (3) + 0 (lu = AP)

= (ei“ — ei)‘) % +0 ((ei“ — ei)‘)2> )

and using (2.9) and (2.10), we get (2.16). To prove (2.15) we use the following
well-known inequality.

Proposition 2.10. For any function u : [a1,b1] — C with v’ € Ly(ay,b1) we
have
lullo <[], + (b1 —a2) ™ ully (2.55)

where || - ||1, || - || are the L1 and uniform norms on the interval [ay,b1].

This inequality can be obtained easily from the relation

b1 bl
1 1
A) = A) — d dp.
w) = 5o (@O =) dt g [) d
al al
Using (2.55) for u = p,, and the interval [a + d, b — d], we get (2.15). [
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Proof of Lemma 2.3. From (1.4) and (2.21) we have for nonreal z

2 (2) =21V (p) f (2) = 2iQ (2) — 1 =0, (2.56)

where f (2) is the Germglotz transformation of the limiting density p (\). By (2.19)
and (2.2), @ (i + 0) is an imaginary valued, bounded, continuous function. And
from (2.2) we obtain

p(u)Z%?Rf(uHO)-

Computing imaginary and real parts in (2.56), we get the relations

Sf(u+i0) =V’ (n), (2.57)
RS (1 +0) = \/20Q () + 1 — (V7 ()7, (2.58)
from which we obtain (2.22). ]

Proof of Lemma 2.4. To prove (2.24) with K = n — 1 we introduce the
probability density

epd S V) . (259)

j=1

1 . .
D, ()\17“")\71_1):__ H ‘el)\j _ez)\k
Zn W

Denote

n—1

n—2
_ _ 1 n 2
J=0

Thus we get )
)] =1 (0w ) = o V). (2.61)

Analogously to the equation (2.8), we can obtain the "square” equation

1 7Tei’\ et 1
UG [ SV e ar =g 0. (26

—T

for the Germglotz transformation f,; (z) of the function p,, (A). Denote

z)\ + ezz

A, (Z) :n(fn (Z) _f; (Z)) /6 — elz

—T

2
" ()‘ d. (2.63)
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Subtracting (2.62) from (2.8), we obtain for z = p + in~ /4

. .
i ez)\ 4 et?

380 (2) (fn (2) + i (2)) = —/mvl M)

—T

n—1

WO o),

280 () () + fir (2) = 207 (1)

T oiX | giz
— [ SEE VW=V W)

—T

™ [ _
s W[ o =oq).

Note that Rf,, (z) > 0 for Iz > 0 therefore

- c
R (o in”1) < Rfn (1 +in—1/1)

Analogously to (2.23), we can obtain for z = pu + in~ /4

1 _ -1/8) -1
SR (2) = p (1) + O (n7%) 57 ().
hence Rf,, (z) > C5 for sufficiently large n, where C5 is defined in (1.17). Thus,
RA, (M + in_1/4> <C.
Note that
e 4 e sinhn

R— — = >C
et — et coshn —cos(u—AN)

U
7+ (n = A)

2

for n? + (u — \)? < 1. Thus,

2
[ o e f

[A—p|<n=1/4 A—p|<n=1/4

< Cn71/4§RAn (u + inil/‘l) < Con V4,

2
o )
24 (= A

dA

A similar bound can be obtained for wq(zn) (M) by using the densities:

p:’r()\l""’/\nﬂ):% H eV () H

n,2 1<j<n+1 1<j<k<n+1

2

i _ ide|”

e

+ _n+l + 1 - (n)
o) =" /pn(A,Ag,...,x\nﬂ)d)\g...d)\nJrl—EZO‘wj \)
p=

‘ 2
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2
Analogously, we will have ‘1#7(1") ()\)‘ = n(p}t (N) —pn(N). Thus, the esti-
mate (2.24) is proved. Now we proceed to prove (2.25) for k = n. We use
the inequality

Proposition 2.11. For any C* function u : [a1,b;] — C
2 - 2
lullce < 2 ully [Ju']], + (br = a2) ™" [lull;, (2.64)
where || - ||2, ]| - oo are the Lo and uniform norms on the interval [a1,bq].

This inequality is a simple consequence of the relation

by b1
O = [0~ ) dut [0 () dn

Consider the interval A = [A—n~Y4 X4+ n"1/4] and the function ¥ (\) =
¢£ln) (A\). From the inequality we have

1
2
[ O <20 @llya [958 + 57" 19]5.4 (2.65)
where [|||5 o is L2 norm on the interval A. It is easy to see that
[llg,a < N1Pllg [ rm =1

Denote P (\) = P\ (\) and w (\) = eV N/2 then ¢ (\) = P (\)w (\). Now
we estimate [[¢)'[ly .

“¢/“2,[—ﬂ,7r} - HP,W + Pw/HQ,[—ﬂﬂr} < HP,WHQ,[—W,T(] + HPW/HZ[—N,W} ’

HPWIHZ[—N,W} - g HPV’WHZ[—N,W} <Cn HPWHQ’[ Cn,

—m] T

[Pl = [P OPO 0 ar=— [ POYPTT ()

Using the orthogonality

/ e (A M dA =0, for m <k, (2.66)
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we obtain
/ P(A)P"(Nw? () d\ = / P (M)A (—in)? e ™ w? (X) dA

= —in / P (\) P (MNw? (N) d),
where 'yr(l") is defined in (2.26). Thus,

771-’7-‘-] 9

[Pl . =n / POVPON (V! (V) +1)w? (V) dr < On |[Plu,,

and we obtain that || P'wl|y|_, -y < Cn. Combining all above bounds, we conclude
that HW”Z[_FJ} < Cn. Now, using (2.65) and (2.24), we obtain (2.25) for k = n.
For kK = n — 1 the proof is the same. [

Proof of Lemma 2.6. Similarly to (2.21) forn = n=3/% and p € [a + d, b — d]
for f,, defined in (2.3), we obtain
1S (p+in) = V' ()] < Cn =38 1nn. (2.67)

™

Moreover, we estimate M = f, (u + in) + v.p. /cot %pn(u + s)ds. Note that

—T

Sef’\ + e’:Z _ sin (A — p) '
et — ei? coshn — cos (A — p)

Hence,

sin s

s
M =v.p. t-— ———— d
vp/(co 2 coshn—coss)p"(u+8) ’

h _
- / ln<%>p;(u+s)dS—I—O(n)—Il—i—Ig—l—Ig—i-O(n),

|s|<d/2
where I; is the integral over |s| < n=2, I is the integral over n=2 < |s| < n~ /4
and I3 is the integral over n~%/* < |s| < d/2. We estimate every term:

(2.25) _
L < on’/® / In (h”—> ds < Cn=9$1nn,
1 —coss
|s|<n—2

(2.24)
|Io] < Clnn / o, (1 + s)| ds < Cn~Y4n,

n72§‘5‘§n1/4
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+

2 2
‘ ?/)7(:1)1 (n+ 8)‘ ) ds < Cn~1/4,

W (o s)

(2.16)
;] < Cn~H4 / (

|s|<d/2
Combining the above bounds with (2.67), we obtain that the lemma is proved. m
Proof of Lemma 2.7. To simplify notations we denote for ¢ € [0, 1]

—t
i (2.68)

Ar = Ao+

i

T —tx
Ay = Ao +
n

Then, similarly to (2.30) and (2.54), we obtain

T+Xo
d 1 1
CKnOa ) =2 | Kn(Oas \) K (A Ay) (§V’ (o) + 5V () =V (A)) d.

dt
—m+Ao
(2.69)

To get our estimates, we split this integral in two parts |[A — Xo| < d/2 and
|X — Xo| > d/2. By the assumption of the lemma, A;, A\, are in [a + d/2,b — d/2],

thus in the first integral we can write

1 1
V) 5V () = 5V ()
) ) (g ) ) V" (A ) )2 ) 2

_ (ez)\ o ezkx) V( )+(ezA o €Z>\y) ( y)+O ez)\ o ezkx + ez>\ _ esz

2iethe 2ietMy

) ) v ()\ ) ) ) vl ()\ )
_ i\ Az z i\ iy Y
N (e —C ) Diee (e -~ ) 2ietMy
2
+0 ( eiN _ gide| [gih _ gty 4 |z 224\ > '
n

Similarly to (2.52), we obtain

[ Ko ) Ko () (6% = ) dx = =2, ) ) w7, ().

Hence,
Ko (e ) Ko (0 ) (€2 =€) 0 = =racant?) ) 9323 () = T
[A—Ao|<d/2
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where
1] = / Ko (e A) K (A 0y) (eiA —ei)‘“) A
[A=Ao|>d/2
1/2
<C / 1K Az, N2 dX / |Kn (A, )7 dX
|A=Xo|>d/2 IA=Xo|>d/2
(2.12) (n) 2 (n) 2 (n) 2 (n) 2
<C [zz)nl )|+ [ O] [l )|+ [ (Ayﬂ-

The same bounds are valid for the term with the e**v instead of e**=. To estimate

other terms, we use the Schwarz inequality

(Kn s A) K (A, Ay) (ei)‘ - eMw) (eM - ei)‘y> X

[A=Xo|<d/2

< | JImon e

(2.11) [

1/2
2
d)\}

o 0[]

"\ i ‘Kn (A ) (eM - ei)‘y>

2
+

2

2
+ ?/)7(:1)1 ()\y)‘ +

<C || Q)|+ [98 (0)

[Kn (Azs A) K (A Ay)| dA < n(pn (M) + pn (Ay)) < Cn
[A=Xo|<d/2
In the second integral we use the boundedness of V' (\), the Cauchy inequality
1K My \) Ky (A A)] < K (M, NP+ [K (A, Ay) 7 and - (2.12). Thus,
d
_Kn )\xa)\

N 2 . 2 " 2 . 2 Jz—y
<l |[u2 0+ ot o+ [ 0 + ol o]+ 224
(2.70)
Now, using (2.25), we obtain
d 7/8 -1
- < _
‘dtKn()\x,)\y) < Clzf (n +lz—yln ) (2.71)
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Finally, observing that

0 0 -1 _—i(n—1)(z— nd
5 n (@9) + 5K (,) = — ()™ L R (A

. 1
,Cn (CC, y)_’Cn (O, y— CC) _ efz(nfl)(ﬂffy)/Qn,E (Kn ()\x, Ay)|t:0 — Kn ()\x, Ay)|t:1) s

and using (2.71), we conclude that the lemma is proved. ]

Proof of Lemma 2.9. First, show that for any |z| < ndy/2 we have the
bound

1
n 9 n t) t - n 9 t 2
/IC (z,z) Ky (x + xt;k ) —|KCn (z, 2+ 1) it < C. (2.72)
21
Denote

Qo = [~7+Xo, T+ Ao, Q= Q/Qy, (2.73)

A—A 1

QE—{AGQM sin 0 Ssin2—}—[>\o—1/n,)\o+1/n],
n

and consider the quantity

v (i

J=2

in%1/2
I /2n , (2.74)
S11 ()\] — )\0) /2

where the symbol < ... > denotes the average with respect to p, (Ao, A2, ..., An).
We will estimate W from above. To do this we use the relation

. 1
Sin % - (ei()\+1/n) _ eil"') (ei()‘fl/n) _ eil"')

9 M — A (ei)\ _ eiu)2

)

(1.2) and the Schwarz inequality. We get that W? is not larger than the product
of two integrals I, and I_, where

Iizzgl / e~V (M) H ‘ei)\j_ei)\k

2

i1 2<j<k<n
" A 2
X exp —nz V(X)) H tRoEl/n) _ ik d;.
j=2 j=2
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Moreover, the expression n (V (Ao) —V (Ao £ 1/n)) is bounded in view of (1.17).
Hence, from (1.15) we obtain

W < Cpi/* (Mo +1/n) pi/* (Ao — 1/n) < C. (2.75)

On the other hand, W can be represented as follows:

W= <H (#1 (Aj) + ¢2 ()‘j))> , (2.76)
j=2
where )
1 _
(s g~ 25
n
$1(A) = 7 oo Lo (2.77)
sin? — sin?
2n 2
- 1
sin? % sin? o
$p(N) = |1-——F— | 1o+ [1-— _’“AO Loy (2.78)
Sil’l2 _— Sil’l2 - -
2n 2

Since 0 < ¢2(A) < 1 and ¢1 (A) > 0, it follows from (2.76) that W can be
estimated bellow as

Wz m-1) [ o) <5<A2A)exp{zm¢m)}> A
Qo J=3

Note that (6 (A2 — \)) = pgn) (Mo, A). Therefore the Jensen inequality implies

-1
x exp { (n— 2) / g (X) p{™ (Ao, A, X) dN [pgﬂ (AO,A)} A,
Qo
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where pggn) is defined in (1.5). Using (1.14) for [ = 2,3, we have

p§” (M. AX) = = pn (V) 2" (30, 2)

2% (Kn ()\07 )‘) Kn ()‘7 )‘/) Kn ()‘/7 )\0))
n(n—1)(n—2)

K (Mo 20) 1K NP+ K (M) [Kn (Ao, V)P
n(n—1)(n—2)

(2.79)

By the Cauchy inequality,

2Ky (Ao, A) K (A X) Ky (N, o) |
< 2K1% Moy M) K2 (0N A) [ K (A X) Ky (X 20)]
< Kn ()‘07 )‘0) |Kn ()\7 )\,) |2 + KTL ()‘7 )‘) ‘Kn ()‘07 )\/) ‘2 )

we obtain that the second term in (2.79) is nonpositive, hence
n n n
p§” (Mo A N) £ = (X) 25 (N0, M)
Taking into account that In ¢y (\') < 0, finally we get
(n—1) /¢1 )\0, A) dX - exp n/ ( )lnqbg( )d)\’ . (2.80)
Qo

Now we will show that the second multiplier in (2.80) is bounded from below

n/pn ()\’) In @9 ()\’) ax'

Qo
/ * / + / P (Ao +8/n)Inda (Ao + s/n) ds

s|<1 1<|s|<ndp /2 ndo/2<|s|<nm
in?s/ (2 in?1/(2
> C /m 1—w>ds+ / In 1—%)%
sin“ 1/ (2n) sin® s/ (2n)
s|<1 1<]s|<ndo /2

sin? n
+1In (1—#5;) / pn (Mo +s/n)ds >C (I + L)+ 0 (n71).

|s|<nm
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1 1/n
— 1 i -1
I :/ln cos (s/n) — cos (1/n) ds— —n | — sin ¢ t—1/n gt > —C
1—cos(1/n) sm(t—i—l/n)2si t—1/n
2
L (eosm) &
cos (1/n) —cost sin“1/2n
I = 1 dt = (ndy/2 -1)In (11— ———
2 n/ n< 1 —cost > (ndo/ )n( sin2d0/2>
1/n
do/2 )
t—1/n 1
—n(l—cosl/n)/cott/Q I 1/n t+1/ndt
1/n 2sin 5 S
do/2
>-C—Cn™t / I
t(t+1/n)
1/n
Thus, from (2.75) and (2.80) we obtain
/qbl )\0, A) dx > —C. (2.81)
. . 1 sin?1/2n
Then, using (1.14), (2.27), (2.15), (2.77), and the inequality — < C——5——, we
t2 sin®t/2n

obtain (2.72) for x = 0 from (2.81). Substituting Ao by Ao + x/n, we get (2.72)
for any |z| < ndp/2.

Now we are ready to prove (2.36). Denote C),, = sup
of (2.32)

%/Cn (ﬂc,y)‘ In view

K (z,2) Ky (2,9)

zZ—XT

Cn < || wv.p. +

dz| +o(1)
|z—z|<1  |z—z|>1
< | (zy)|+ L2 (2, y)| +o(1).

Using the Schwarz inequality and (2.28) with (2.29), we can estimate I5 as follows:
|1y (2, )] < K}/ (2, 2) KC/? (y,y) < C.
To estimate I; denote

ﬁ; :sup{t >0: |$ _y| <t= ’Cn (CC,y) > pn(AO)/2}7
ty =min {5,1}. (2.82)
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We will prove that the sequence t; is bounded from below by some nonzero
constant. Represent I in the form

Kn (x,x—i—t)lCn (x—i—t,y) - Ky (Ilf,.ﬁlf) Kn (x,y)

I (z,y) = v.p. / " dt
It[<t;;
K K t
4 / n (2,2 + )t n (@ + ’y)dt:I{—l—If.
t <[t|<1

Using (2.29), we have |I{| < C|Int}|. On the other hand, from (1.11) and the
Cauchy inequality we obtain for any x,y, z

K (2,2) = K (9:2) % < (K (2,2) + Ko (3 ) = 2K (2,9)) Ko (2,2)
= ((K}/Q (r,2) K2 (0,9) +2(KY2 (0,2 K2 (3,9) — K y))) Ko (2,2).
(2.83)

From (2.35) we get that the first term of (2.83) is bounded by Cn=4 |z — y|?.
The second term we rewrite as

Ko (x,2) Kn (y,y) — K7 (2,y)

172 172 :
Kl (2,2) Kl (9,9) + Ko (2,9)

KLY (2, 2) KXY (y,y) — Kn (2,y) =

Thus, for |z —y| < t! we get

K (2,2) = Ko (5, 2)> < € (714 |2 =y + Ky (,) Ko (3,9) = Ko () )

(2.84)
Hence, using (2.84), (2.72) and the Schwarz inequality, we obtain
‘IHSC / ‘Kn(xvx"i't)_K:n(xvx)"":"K:n(x"i_tay)_lcn(xvy)‘dt
[tl<ty,
<C(t)"*.
Finally, from the above estimates we have
C,<C (yln £ | + (t;;)m) . (2.85)

Note that if the sequence ¢}, is not bounded from below, then we have

C<pn(N)/2<|Kp(x+1t,x)— Ky (z,2)] < Cuty, < Cty Int;, + Cty,
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and we get a contradiction. Thus t;, > d* for some n-independent d* > 0.
Therefore, from (2.85) we obtain the first inequality of (2.36).
To prove the second inequality of (2.36), we observe that by (2.33) we have

2

/ EIC (z,y) 2 dx = / 3IC (z,y)| dx+o(1)
8:1'/' n 7?/ - 8y n 7y *
|z|<L |z|<L
. d
Then we rewrite the analog of (2.32) for 6—len (z,y) as
0 K (,2) Kn (2,9 _

z—yl<ds  |z<2L
= -[1 (-T,y) + -[2 (-T,y) +0 ([’71) :

To complete the proof, it is enough to estimate 11272. Since in I; the domain of
integration is symmetric with respect to y, we can write

I (z,y) = / (Ko (2, 2) = Ko (2,9)) K (2,9)

Yy—z
|z—y|<d*
N / (Kn (2,9) = Kn (y,9)) Kn (2, ) I,
Yy—z
|z—y|<d*

Now, using the Schwarz inequality and (2.28), we obtain

- 2
(z —y)
|z—y|<d*
2
)
lz—y|<d*

Integrating the above inequality with respect to x and using (2.28) with (2.29),
we get

/Uf(fv,y)\dazgc / |/Cn(z,y)_;cn(y7y)|2dz

N

2 —
lz—y|<d* (=)
—|—C ,Cn (Z,Z) +’Cn (yay)2_2lcn (Z7y) dz.
(z—y)
|z—y|<d*
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Using the bounds (2.83) in the second integral and (2.84) in the first one, in view
of (2.72) we obtain the bound for I?. To estimate Iz, we write

Kn(y,2) K (2,2") K (2, y
/ !.722 (%?/)‘ dr < / 1—ysas Lz —y>ar ( (3 — yg E )_ ) ( ) dzdz
2,22
Ko (v, 2) [ |Kuy.2)]"
<C / L yisa Ly >ar <‘ pr Bl dzdz' < C.

|z],|2"|<2£L

Above bounds for I; and I prove the second inequality of (2.36). Thus, Lemma 2.9
is proved. [

for

1]
2]
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