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The study of nonselfadjoint unbounded operators originates from classic works
on the extensions of symmetric operators in Hilbert spaces by G. von Neumann
and M.G. Krein. However, only beginning with the work by M.S. Livsic [1] the
study of this class of operators gained a proper technique — the characteristic
function. Further development of these methods was found in the works by
A.V. Kuzhel [2, 3] and A.V. Shtraus [4]. Nonselfadjoint unbounded operators
in rigged Hilbert spaces were studied by E.R. Tsekanovski and Yu.L. Shmul’yan
[5]. A somewhat different approach to the study of unbounded nonselfadjoint
operators, based on the analysis of the space of boundary values, was taken by
V.A. Derkach and M.M. Malamud [6] and resulted in the analytical formalism
for studying the properties of Weyl functions. The Shrodinger dissipative opera-
tor in the context of functional model was analyzed by B.S. Pavlov [7]. As for
commutative systems of unbounded nonselfadjoint operators, there have not been
appropriate approaches for studying. In the paper the methods of studying this
class of operators are presented.

For the commutative systems of nonselfadjoint bounded operators, M.S. Livsic
suggested an effective method resulted in the construction of functional and tri-
angular models [8, 9]. The method is based on the generalization of the notion
of colligation of these systems of operators and on the study of the consistency
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conditions for open systems. Therefore, it seems natural to give proper construc-
tions for the case of commutative systems of unbounded nonselfadjoint operators
as well. The paper is organized as follows. In Section 1 essential facts from
the theory of nonselfadjoint unbounded operators are given, in particular, the
notion of colligation and associated open system. In Section 2 these results are
generalized for the commutative systems of unbounded nonselfadjoint operators.

1. Preliminary Information

I. The pioneer work by M.S. Livsic [1], where nonselfadjoint unbounded ope-
rators were studied, marked the beginning of the researches undertaken in this
branch of functional analysis which found its further fruitful development in the
papers [2-7]. The definition below plays an important role and it is an analogue
of those given in [10] for the unbounded case.

Definition 1. Let A be a linear operator acting in a separable Hilbert space H
such that: a) the domain D(A) of an operator A is dense in H, D(A) = H;
b) an operator A is dense in H; c) there exists a nonempty domain Q (C (C\R))
such that the resolvent R, = (A — ol)~! is regular for all a € Q. Consider
FE., the Hilbert spaces, v_ : E_ — H, ¢y : H - E,, K: E_ — FE,, o4 :
Ey — Ey, linear bounded operators and selfadjoint operators o4, o4 = o, that
are boundedly invertible. A collection

A=Ala) = (a_,H@E_, [ ﬁ v } ,H@E+,a+> (1.1)

18 said to be the colligation of an unbounded operator A if there exists o € € such
that

L. 2Ima-y*y_ =Ko K —o_, 2Ima -y 9 = Ko 'K* — 0;1;

2. the operators

oy = (A—al):D(A) - EL,
e =y (A" —al): D (A") - E_ (1.2)
are such that

3. K*oyo, + " (A—al) =0, Ko~'¢* +1, (A* —al) = 0;

4. 2Im(Ah, h) = (014 h, p1h), Vh € D(A),

—2Im <A*ﬁ, ﬁ> = <0:1g0’iﬁ, @iﬁ> , Vh € © (A*).

First of all, show that an arbitrary operator A satisfying the conditions a)—c)
of the given definition may always be included in the colligation A (1.1). Really,
let B, and B, be selfadjoint bounded operators (see [2, 3])

B, =iR, — iR, +2Ima- R} R,,

B, = iR, — iR +2Ima - R, R, (13)
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Consider the subspace

Ei =F (o) =span{Bsh:hec H},

E_=F_(a) =span {Bah the H} . (14)
It is obvious that the bounded operator
To=1+122Ima- R, (1.5)
maps the subspace Ey in E_ since [2, 3]
ToBo = BoT,. (1.6)
Moreover, it is easy to see that
(Ah, f) — (h, Af) =i (Ba(A —al)h, (A —al)f), Vh, f € (A), (1.7)

<A*B, f> _ <B,A*f> = <Ba (A* — GI)h, (A* — al) f> , forallh, f € D (A).

Now specifying the operators

T ql‘Ba , Yy =+/|Bal, o-=signB,, o4 =signB,, (1.8)

where /|B| and sign B for a selfadjoint bounded operator are understood in
terms of the spectral decomposition B [10], from (1.6) we obtain

Tor/Bal = /‘Ba‘Ta, T, - sign By = sign B - Ta. (1.9)

Setting K = —o T, it is easy to verify that the colligation relations (1.2) follow
from (1.3), (1.7), and (1.9).

R em ark 1.1. If the operators Bq, Ba (1.1) are boundedly invertible on
E; and E_ (1.4), then setting

Y- =B, ty=P, o_=B, o04y=DB, K=-T (1.10)

where P, is an orthoprojector on E (1.4), it is easy to verify that the conditions
of colligation (1.2) also take place.

IT. Open systems associated with colligations [10] play an important role in

the study of nonselfadjoint operators. Let u_(t) be a vector-function from E_
defined on [0,7], and h be a vector from H. The open system Fa = {Ra,SA}
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associated with the colligation A (1.1) is the pair of maps [10], Ra : H®E_ — H,
S\ H®E_—- HGEFE,,

. Ra (hvu—(t)) = h(t)v
Fa { Sa (h,u—(t)) = (hr,us (1)),

defined as follows. The operator Ra is specified by using the Cauchy problem

Q%hu)+<Ayu)::a¢_u@%
Ra:q yt) = n(t) + ¢_u_(t) € D(A), (L11)
h(O) =h, te€ [OaT]a

and the transfer mapping Sa has the form:

. U (t) :Ku*(t)_i (t)v
Sa { h; C D, te [0,?]? (1.12)

where h(t) is a solution of (1.11), and y(t) € ©(A) is defined by h(t) and u_(t)
using formula (1.11).

Remark12 Ifu_(t) =0in (1.11), then y(t) = h(t) € D(A), and we
obtain the Cauchy problem

{ i%h(t) + AR(t) = 0,
B0) = h e D(A), te0,T).

The solvability of this Cauchy problem is equivalent to the existence of the
strongly continuous semigroup Z; = exp{itA}, with h(t) = Z;h. So, the so-
lutions of the Cauchy problem (1.11) exist if the operator A is an infinitesimal
operator of the strongly continuous semigroup Z;. The well-known theorem by
Miyader—Feller-Fillips [11] gives the necessary and sufficient conditions for the
closed densely defined operator A, when the resolvent Ry = (A — \I)~! is regular
in the semiplane C_(w) = {A € C: w+ImA < 0}, w € R (Jw| < o0), and,
moreover, when A € C_(w), the estimations

|RY|| < Mlw+ImA\™, VneZy,

take place.

Remark1.3. Let u_(t) be differentiable. Then (1.11) yields that y(t) also
has the derivative and satisfies the nonhomogenous equation

i%y(t) + Ay(t) = - (i () + au_(2)).

The solution of this equation exists if:
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1) the operator A meets the conditions of the Miyader—Feller—Fillips theorem;

2) y(0) = h+¢_u_(0) € D(A);
3) the function f(t) = ¢ (iv’_(t) + au_(t)) is twice continuously differen-

tiable, and f(0) € ©(A).
So, if the conditions 1)-3) are met, then there always exists y(t), and thus

h(t) (1.11) exists also.
Theorem 1.1. The conservation law

T

T
(1.13)

A2 + / (o u(t),u_(t)) dt = [[hr]? + / (0uy (£), s (£)) dt
0

0
holds for the open system Fa = {Ra,Sa} (1.11), (1.12) associated with the

colligation A (1.1).
P r o o f. Equation (1.11) yields

%HW)H2 = (1Ay(t) —iap_u_(t),,y(t) — Y-u_(t)) + (y(t) — P-u_(t),

iAy(t) — iatp_u_(t)) = —2Tm{Ay(t), y(¢)) — 2Tm o [[Y_u_ (1)
— (A — &l)y(t), ¥u_(8)) — (W_u_(t),i(A - al)y(t)) -

Using the relations 1-4 (1.2), we get
d
IO =~ (orpaut). 2oy®) + {o-u_(t).0-u_ (1)) — (T Ku_ (1)

Ku_(t)) + (iospry(t), Ku_ (1)) + (Jo Ku_(t), i y(t))
— (o_u_(t)ou_()) — (o4 [Ku_(t) — i y(D)], [Ku_(t) — iy (1))

As a result, we obtain the following conservation law:
(1.14)

d

ZIhOIF = {o—u(t),u—(1)) = {orus (1), us (1)) ,

which yields (1.13) after integration. ]
Consider an open system dual to Fa = {Ra,Sa}. Denote by @ (t) a vector

function from E. defined on [0,7] (0 < T < o0), and by h — a vector from H.

A pair of mappings RZ cH+E; — H, SZ cH+E, - H+E_|
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is said to be the dual open system F'{ = {R+, SX} associated with the colligation
A (1.1). Besides, RX is specified by the Cauchy problem

R — A1) = i (1)

L5050 =v34() — bt €D (47), (1.15)
WT)=h, tel0,T];
and SJAr is given by
[ B0 = K t) + it (o),
SK‘{ ho— h(0), e (0,T] (1.16)

h(t) and §(t) can be found from (1.15). Similarly to Remarks 1.2 and 1.3, it is
easy to establish the solvability of (1.15) under natural restrictions on the class
of operators A* and the class of functions @ (t).

Theorem 1.2. Let F{ = {RL,SX} be the dual open system (1.15), (1.16)
of the colligation A (1.1). Then

T

T
HBHZ+/<a+1ﬂ+(t),ﬂ+(t)>dt= HEOHZ+/<01a(t),@(t)>dt' (1.17)
0

0

P r o o f. Equation (1.15) yields
d, = ke ok~ . ~ _
FIROI = (=iA"§(t) +iaviay (t), viag ) - 9())

(WL (1) — §(t), —AT(E) +ia (1)) = —2Tm (A%(2), §(1))
+2Im o ||op* ag H — (i (A= ad) §(t), Vi (8)) — (Whiais ()i (A*— o) §(t)) .
Using the second relations of 1-4 (1.2), we have

LRI = (o= a0, 22 5(0)) + (o= K" (1), K" (1))

— (o g (b), g (1) + (o o  g(t), K* g () + (0T K ¥y (2), ig* §(t))
= (02! [K*ap (t) +ip2 ()], [K s (8) + it g(t)]) — (o3 as (1), ar (1))
Therefore

L7 t)”2 = (o7 a_(t), i (t)) — (o7 iy (t), g (1)), (1.18)

which yields (1.17) after integration. ]
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The following theorem establishes an important correlation between the open
systems Fa (1.11), (1.12) and F{ (1.15), (1.16).

Theorem 1.3. Let h(t) and ui(t) be defined by u_(t) using the relations
(1.11), (1.12) of the open system Fa, and the vector functions h(t) and u_(t)
be constructed by equalities (1.15), (1.16) of the dual open system Fx. Then the
equality

T T
hT, +/ ) dt = h,Bo>+/<u_(t),a_(t)>dt (1.19)
0 0

18 true.
Proof From (1.11) and (1.15) it follows that

& (h(e), 7)) = (Ay(r) — iow—u_ (), v, (1) — (1)

+ (y(t) — Y_u_(t), —iAG(t) +iaviay(t)) = (i(A — ad)y(t), ¥ia(t))
+{u(t),i (A" —al)y(t)) -
Taking into account 2 (1.2) and (1.12), (1.16), we obtain

d

= (B h(0)) = iy (®), @ (0) + (u—(8), i 5(0))

and, consequently,

& (o), R0 = fu (1), (1) — {us (0, 54 (0). (1.20)
Equality (1.19) follows from (1.20) after integration. ]

ITI. Let u_(¢) in the open system Fa (1.11) be the plane wave u_(t) =
eMu_(0). And let the vector functions h(t), y(t), and u,(t) depend on ¢ in
a similar way: h(t) = e?'h, y(t) = My, uy(t) = eMu (0), where h, y € H, and
u4(0) do not depend on ¢. Then (1.11), (1.12) yield

A+ Ay = ap_u_(0),
h—y=—1¢_u_(0), (1.21)
u4(0) = Ku—(0) —ip4y,

where y € D(A).
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Thus, if A € 2, then
y = (@ — (A - A" M_u_(0),
= —(A—al)(A—\)""_u_(0), (1.22)
s (0) = Sa(Mu-(0),
where Sa(A) is a characteristic function of the colligation A (1.1),

SA(N) = K 4+ i\ —a) (A —al)(A— X)) (1.23)

The function Sa(A) is normalized at the point A = a, Sa(a) = K. Consider the
operator function

Tho=(A—al)(A=X)"' =1+ (A—a)R,. (1.24)
Then Sa(A) can be written in the form
SAN) = K +i(A — o) Ty 0. (1.25)
From (1.14) it follows easily (see, for instance, [10]) that

o_ — SA(w)orSa(N)
(A —w)

e b SR (1.26)

Analogously, if @ (t) in the dual open system F{ = {R£,SX} (1.15), (1.16)
is given by 4. (t) = eM=T)q, (T), where @4 (T) is an independent of ¢ vector from
E., and if h(t), §(t), i_(t) also have the same dependency on t, h(t) = eAt=T)h,

g(t) = eX=Ng 4 (t) = ATy _(T), then (1.15), (1.16) yield
A+ A*j = iy (T),

B+ 5 = (D), (1.27)
i (T) = K*us (T) +ip* .

S

where § € © (A*). Hence, if A € Q, this implies

= (@=2) (4" = A1) wag(),

(A% — al) (A" — XI) " gt (1), (1.28)
+

i(T) =S (it (T),

y
h

+
where the function Sa () is given by

S (\) = K* —i (A —a)¢* (A" —al) (A* = XI) " (1.29)
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Jr
It is obvious that the functions Sa(A) (1.25) and Sa (M) (1.29) satisfy the relation

+
Sa (A) = SA(N). (1.30)
Using (1.12), it is easy to show that

Sa(w)o=tSA(N)

-1

— 04 * *

_ =y T o T3 o 1.31
i ()\ — w) '¢+ AT, '¢+ ( )

Finally, (1.18), with (1.29) being taken into account, implies

SA(A) — Sa(w)

i\ —w

= ¢+Tw,aTA,a¢f~ (1.32)

IV. Consider the operator function K(\,w): E_ @ Ey — E_ & Ey,

o1 — Sp(w)oySa(N) SA(A) = SA(w)
B O =) i@ -\
KX wy =" g )= Saw)  Sawo'si(n) —o7t |+ 133
i —w) 0w

assuming that A\, w, a € Q. The formulae (1.26), (1.31), (1.32) imply that the
kernel K(\, w) (1.33) is positively defined [10].

A subspace H; C H is said to be reducing for a densely defined operator A,
if at every point of regularity A € Q of the resolvent Ry = (A — \I)~! there takes
place RyP; = P; Ry, where P; is an orthoprojector on H;. For the colligation A
(1.1), define the subspace

H, = span{R,\@Z),u, +RyYiuy tutr € EL, A\ w e Q} (1.34)

Theorem 1.4. The subspace Hy (1.34) reduces the operator A, besides, the
contraction of A on Hy = H & H; is a selfadjoint operator.

The proof of the statement follows from the colligation relations (1.2) and it
is standard [10].

A colligation A (1.1) is said to be simple if H = H; (1.34).

Let two colligations A and A’ be given such that Ey = F , 04 =0/, K = K',
and, moreover, a = o' € QN Q' (# &). These colligations are called unitarily
equivalent [10] if there exists a unitary operator U: H — H' such that

UA=AU, UDA)=2(4), U4 =(A)'U UDA) =2((4)),

Up_ =9/, ¢\U =1,
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Theorem 1.5. Let A and A’ be simple colligations, Ex = E'., o4 = o/,
of which are invertible, and o = o' € QN Q' (# &). Then if in some neighbor-
hood Us(cr) C QN Q' of the point o the characteristic functions (1.23) coincide,
SA(A) = Sar(N), then the colligations A and A’ are unitarily equivalent.

The proof of the theorem follows easily from (1.26), (1.31), and (1.32).

Thus, the characteristic function Sa(A) (1.23) defines the colligation A (1.1)
up to the unitary equivalency.

V. Let us describe a class of functions generated by the characteristic func-
tions Sa () of the colligations A (1.1). Consider the following functions from H;
(1.34): .

F(\u-)= T>\7a¢,u,, F(Auy) = T;:’a?/)j_qu, (1.35)

where u4 € E4, and A\, a € Q.

_ Theorem 1.6. The operator Ty x (1.24) (A, w € ) acts on F (A, u—) and
F (A, uy) in the following way:

1) TunF () =F (w0 );
2) TiF (\us) = F(w,us)

3) Tw,S\F ()‘7U+) = _Ijj (waa—lsA()‘)u+) ) (136)
4) T:;’;\F Muy) =—F (w,04SA(MNu—),

where SA(A) is the characteristic function of (1.25), and X\, w, a € Q.

Proof. Equations1),2) from (1.36) follow from the chain identity T3, \T) o =
T, Since

Ty 53 F (AN ug) =Ty 5T5 o s = TuaTy 53T oV Uy,
we have to find the expression
Ta,xT;,aqu—UJr = (I + (a - 5‘) RO!) T;,aqzz)j—UJr = T;,aqzz)j—UJr

+ (Oé — 6&) RaT;\k7a¢j_U+ + (d - 5\) RaTiaqu)iUJr'

Taking into account the equality
Ry = —iy_o_"Y_ + R+ (a — @) Ro Ry,

which follows from 4. (1.2) and (1.7), and using the Hilbert identity Ry = T\ o Rq
for the resolvents R, we obtain

T 3Ty = Wi + (o — ) Rty + 6 o=" [K* — SA(V)] uy.
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Finally, since 9% + (o — &) Ro¥p%uy + 10" K* = 0 (see 2, 3 (1.2)), we obtain
that
Ty Thatius = —-0Z ' SA(Nuy,
which proves 3) from (1.36). The proof of 4) from (1.36) is analogous. ]
This theorem implies the statement below.

Theorem 1.7. The family of operators Ty, . (1.24) (w, z € Q) acts on the
functions F'(A,u_) and F (A uy) (1.35) in the following way:

w— z A—2z
1) Ty.F(\u_)= we ))F(w,u,) + )\—wF()"U)’
2) Tp.F(Nup)= ——F (wup) + S F (A uy):;
_ e AT (1.37)
3) TuzF (\us) = T F(\us) - ——F (w, 02 SA(Nuy) ;
A—Z W— 2 ~
4) T:),ZF ()\,’U,_) = N wF(Aau—) - D — )\F(W,U+SA()\)U_);

for all ux € Ex and all A\, w, z, a € ().

The class Q, (0—,04). Let Ex be Hilbert spaces, o1 be selfadjoint invertible
operators in E and o € C\ R. An operator function S(\): E_ — E belongs to
the class Qo (0, 04) if:

1) the function S(X) is holomorphic in some neighborhood Us(a) = {\ € C:
A —a| <3} of the point o and S(a) # 0;

2) the kernel K(\,w) (1.33) is Hermitian positive for all A, w € Us(a).

It is obvious that the characteristic function Sa(\) (1.25) belongs to the class
Qo (0-*7 O-Jr)'

Theorem 1.8. Let an operator function S(\): E_ — E belong to the class
Qo (0-,04). Then there exists such a colligation A (1.1) that its characteristic
function SA(N) (1.25) coincides with S(X), SA(X) = S(A), for all A € Us(w).

P r o o f. Following [10], denote by eyf the “0-function”, the support of
which is concentrated at the point A € Us(a) and ey f in this point takes the
value f = (u_,u4) € E_ @ E. Consider the manifold L generated by the finite

N

linear combinations Zekkfk (N € N). Using K (A w) (1.33), on L specify the

1
nonnegative bilinear form

(exfrewd) ik L (KO w)f,9)p_ap, - (1.38)

Closing L by the norm generated by form (1.38) and factorizing by the kernel of
metric (1.38), we obtain the Hilbert space Hg [10].
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Proceeding from (1.37), in Hg specify the family of operators Ty, ,:

Tw.exf = ew woz, Y- fails*()\)qu,O
’ w=A L w=A (1.39)
n A—z A—2z )
EA U S

where \, w € Us(«), and f = (u_,uy). It is easy to show that

Teexf = ew (0, ——2uy — —— =, §(A)u_
’ w—A w—=A (1.40)
+e )\_zu )\_Zu '
A —a a—w )
Let
K=58\), vY_u_=-equ_, vYluy=equy. (1.41)

It is obvious that the colligation relations 1 (1.2) are true. Really,

—y U_

(pou_ ) = (K(a,a)u_,u ) = <ﬂ / >

i(a—a)
which proves the first condition in 1. (1.2). Simple calculations show that

J_—K*O'+S()\)u S*()\)—K*u
iZ—a) O ia-a)
S\ — K KoZ'S*(\) — o}t

vrenf = h“— T e

Yrexf =

(1.42)

Since the first relation in 3 (1.2) can be written as K*o ¢ +¢*T, 4 = 0, its
proof follows easily from (1.39) and (1.42).

Relations 4 (1.2) are proven in a similar way after being rewritten in terms of
Toa.

From (1.39), it is easy to calculate how the resolvent R, = (w—z)"1 (T}, . — I)
acts on the elements ey f, which, in virtue of the relation AR,, = I +wR,,, results
in the conclusion that the operator A in Hg has the form

Aeyf = ey ()\u,,j\qu) , (1.43)
where the domain D(A) is

N
D(A) = {Z@\pfp € Hg : X\p € Us(a), fp = (uﬁ,uﬁ) cE_o®E,,
p=1 (1.44)

A, S ()\p)uﬁ,l <p<N,N< oo}
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Construct the colligation

Ag = <0'_,HKEBE_, |: 4 - :| ,HK@E+,O'+>, (145)
vy K

where K, ¢_, 14, and A are given by formulae (1.41) and (1.43), (1.44) corre-
spondingly. Finally, show that the characteristic function Sa, (A) (1.25) of the
colligation Ag (1.45) coincides with S(A). Equations (1.39), (1.41) imply

Tra¥—u_ =Ty qeq (u—,0) = ey (u_,0).

Using the structure of the operator ¥4 (1.42), we obtain that

Q;Z)JrT)\,oﬂbfuf =

which concludes the proof. [

Conservative and not only (passive and others) systems from one variable
were studied in [12].

2. Commutative Colligations and Open Systems.
Systems of Unbounded Operators

I. In a Hilbert space, consider a commutative system of the linear unbounded
operators {Aj, Aa}, where the domain ®© (A4,) of each operator A, is dense in H,

D (Ap) = H, p = 1,2, and the commutativity of the operators A;, Ay is un-
derstood in terms of interchangeability of resolvents, [R;, Rg] =0, where
R, = Ry(a) = (Ap — ozI)_l, p = 1,2, assuming that « is a point of regularity of
resolvents Ri(A), Ra(X). Obviously, [R1, Ra] = 0 yields [R1(\), R2(w)] = 0 for all
A and w belonging to the joint domain of regularity of R;(\) and Ra(\). The fol-
lowing definition plays an important role hereinafter and it is a generalization of
Definition 1 (see Sect. 1) for the commutative case.

Definition 2. Let a system of the linear unbounded operators {Ay, As} be
given in a Hilbert space H such that: a) the domain ® (Ap) of the operator A,
is dense in H, ®(A,) = H, p = 1,2; b) every operator A, is closed in H,
p = 1,2; c) there exists a nonempty domain Q@ C C\R such that the resolvents
R,(\) = (A, — )\I)_l are regular for all A € Q, p = 1,2; d) the resolvents Ry
(= Ri(a)), Re (= Ra(v)) commute at least at one point a € ).

And let the Hilbert spaces EL, the linear bounded operators ¢_ : E_ — H,

~ 12
Vo H— Be and {0y} {11 INH T B- = B {0 )] {1 { W)

Journal of Mathematical Physics, Analysis, Geometry, 2009, vol. 5, No. 3 287



V.A. Lolotarev

I: E, — E. be given, where {a;t}f and {Tpi}i are selfadjoint. The totality

A:Am):({a;}fa{fg}fa{Np}?r’H@E’{wf lﬂ}j (2.1)

- 2
Ho PR MY (7))

is said to be the commutative colligation if there exists o € (2 such that:
1) 2Ima- NyyZyp N, = K*O';_K—O'p_, 2Ima- Ny i Ny = K7, K* —T;—;
2) the operators

Ph =y (Ap —al) : D (4)) — By,
() =v* (A4 —al) D (A)) — BE-

are such that: 3
3) K*o,f ol + Nyy* (Ap —al) =0, K7, (¢7)" + Npy (A3 — o) = 0;
4) 2Im (Aphy, hy) = (o @' by, @B hy ), Yhy, € D (A,)

—21m ( Ak, by ) = (7 (¢2) By (&) By » Vhy €D (4)), (2.2)
where p = 1,2. And, moreover, the relations: .
5) Rop_ N1 — R1yp_ Ny = 9_T', N1tpy Ry — Notpy Ry = I'py;
6) [ — KT =i (N Ny = Nothy o Vi ) 5
7) KN, = NPK, are true, where R, = Ry(a), p = 1,2.

Show that for every operator system {A;,As} satisfying the suppositions
a)—d) there always exist such Hilbert spaces F1 and corresponding operators v,

- 2 -
K, {o¥)2, {75V {N,)2, {Np}l, I, T, that the relations 1-7 (2.1) hold. To do

this, similarly to (1.5), consider two commuting bounded operators
T,=1+2Ima-R,, p=1,2, (2.3)
and let (see (1.3))

B, =R, — iR, +2Ima- RiR,, p=1,2,

Bp:iRp—iR;—i—QIma-RpR; ,p=1,2. (24)
It is easy to see that )
T,B, = B,T,, p=1,2. (2.5)
Analogously as in (1.7),
2Im (Aphp, hp) = (By (Ap — al) hy, (Ap — o) hy) ,Vhy € D (Ap) (2.6)
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21 ( Ashy, by ) = (B, (45 — ) by, (A5 — aI) by ), Vhy € D (4)
take place, where p = 1, 2. Define the bounded operators in H

of =By, p=1,2 o] =TaBTy, o, =T1BT7,

Ny = BiT}, Ny = ByT¢, T =BiR;— ByR?, @7
T, =By, p=12 1 =T3B T, 7 =T{BT, ‘
Ny =TsB), Ny=T;By, T =R}B;— R;B,.
Consider the Hilbert spaces
E_ = span {BlH—i—BgH—i—NI*H—i—N;H}, .
5 ~ 2.8
E, = span {Blﬂ + BoH + N H + NQH} ,
and let
K=-T7Ty, _-=P., =Py, (29)

where Py are the orthoprojectors on Ey (2.8). It is easy to see that the relations
1-4 (2.2) follow from equalities (2.3)—(2.7). Consequently, 7 (2.2) follows from
(2.5). By simple calculations we may check the conditions 5, 6. Finally, it is easy
to show that the operator K (2.9) maps E_ in (2.8).

Rem ark21. Equations 2, 4 (2.2) imply
By =¢iofdy, By=v_m, 0%, p=12 (2.10)

by virtue of the density of the domains © (4,), © (A;), p=1,2.

I1. Before turning to the open system associated with the commutative col-
ligation A (2.1), which is a two-variable analogue of the system Fa = {Ra,Sa}
(1.11), (1.12), write the main equations (1.11), (1.12) in other form. Since (1.11),
(1.12) are given by

i04h(t) + Ay(t) = arp_u_(1),
y(t) = h(t) + Y_u_(t) € D(A),
h0)=h, tel0,T],

uy(t) = Ku_(t) —ip1y(t),

(2.11)

0
where 0; = 2 by multiplying the second equality by a and subtracting it from

the first one, we obtain
Lh(t) 4+ y(t) =0, (2.12)
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where the operator L and the function g(¢) are such that
L=1id+a, y(t)= Ra.i(t) € D(A). (2.13)
Therefore equations (2.11) can be written in the following form:

Lh(t) + §(t) = 0,

Raii(t) = h(t) +v—u_(t) € D(A),
h0)=h, tel0,T],

wi () = Ku_(t) — itb, 4(2).

The first two equalities yield that g(¢) is a solution of the equation

LRuj(t) + () = ¥ Lu_(t). (2.15)
Applying the operator L to equalities (2.11), we obtain

—iD(t) + ALy(t) = avp_Lu_ (1)
Ly(t) = —y(t) + v_Lu_(t) € D(A), (2.16)
Luy(t) = KLu_(t) —ipy Ly(t).

Since these equalities coincide with the relations (2.11) after substitutions
h(t) — —y(t), y(t) — Ly(t), us(t) — Lus(t), by using the conservation law
(1.14), we obtain

O l3(0)|1> = (o Lu_(t), Lu_(8)) — (o Lus (8), Luy (6)) . (2.17)

(2.14)

III. Denote by D = [0,T1] x [0,T5] the rectangle in R%, 0 < T, < oo,
p=1,2, and let u_(t) be a vector function in E_ specified when ¢t = (t1,t2) € D.
The system of the relations

i@lhl(t) + Alyl( ) = atp_Nju_ (t)
y1(t) = ha(t) +-Niu_(t) € D (A1),

R : iaghQ(t) + Azyg( ) = atp_Nou_ (t) (2.18)
Y2(t) = ha(t) + -Nau_(2) E D (A2),
h1(0) = hy, h2(0) = hg, = (t1,t2) €

where 0, = 0/0ty, p = 1, 2, is said to be the open system Fan = {Ra,Sa}
associated with the colligation A (2.1). Let the vector functions y(t) and yo(t)
be such that

yi(t) = Ray(t), y2(t) = Ray(t), (2.19)

and y(t) be a vector function from H. Thus, the functions {yp(t)}f have a joint
generatrix y(t), moreover, (2.19) implies that

Rlyg(t) = ngl(t). (2.20)
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As for the initial data h; and ho, we assume that
hy = Bypy(0) — - Npu—(0), p=1,2. (2.21)
The mapping Sa is given by
Sa i us(t) = Ku_(t) — i1y (0). (2.22)
Similarly to (2.13), consider the differential operators
L,=i0,+a, p=12 (2.23)
Then the main equations (2.18) can be written in the following form:

Lihyi(t) +y(t) =0,
Ryy(t) = ha(t) + -Niu_(t) € D (A1),
Loho(t) + y(t) = 0,
Roy(t) = ha(t) + ¢—Nou_(t) € D (Az),

(2.24)

which is similar to (2.14). Consequently, Lih1(t) = —y(t) = Laha(t). Therefore,
taking into account (2.23) and (2.18), we obtain that (cf. (2.15))

RiLyy(t) +y(t) = - Ni1Lju_(1),
RaLay(t) + y(t) = - NaLou_(t),
y(0) =yo, t=(t1,t2) €D,
ug(t) = Ku_(t) — ipyy(t).

So, if the vector function y(t) satisfies the relations (2.25), then the functions
hi(t), hao(t) (2.24) as well as y1(t), y2(t) (2.19) can be defined by it.

(2.25)

Theorem 2.1. The system of equations (2.18) is consistent if the vector
function u_(t) is a solution of the equation

{NlLl — NoLo + FLlLQ} u_(t) =0, (226)

giwen that (2.19), (2.21) hold and L, has the form of (2.23), p=1,2.

P r o o f. The consistency condition follows from (2.25) if one takes into
account the commutativity [RqL1, ReLs] = 0. Since

LlRngng(t) == y(t) - @Z),NlLlu, (t) + Rfﬂ),NQLlLQU, (t)
and similarly

LoRy L1 Ryy(t) = y(t) — —NoLou_(t) + Ratp_ N1 L1 Lau_(t),
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then, subtracting these equalities, we obtain
Y_ (N1Ly — NaLo)u_(t) + (Rot)— N1 — R19p_No) L1 Lou_(t) = 0.
Taking into account 5 (2.2), we obtain
_{N1Ly — NoLy +TL1Lo}u_(t) =0,

which proves (2.26). |

Theorem 2.2. If for the vector function y(t) equation (2.25) takes place,
and u_(t) is a solution of (2.26), then uy(t) (2.22) satisfies the equation

{]\71L1 — NoLy + leLg} us(t) = 0. (2.27)

P r o o f. Calculate

|:N1L1 NQLQ] U+( ) K [NlLl NQLQ] U,(t)

—i [N1¢+L1 - NQWLQ} y(t) = —KT Ly Lou_(t)
—~iNty Ly (Y- NoLou_(t) — LaRoy(t)) + iNotpy Lo (- N1 Lyu_(t) — L1 Ryy(t))
- {—Kr Ny Ny + iN2¢+w_N1} LiLou_(t)
i (N1¢+R2 . N2¢+R1) LiLoy(t) = ~TK Ly Lou_(t) + il Ly Loy(#)

== _fL1L2u+(t),
which proves (2.27) in virtue of (2.26), (2.25) and 5, 6 (2.2). ]

Theorem 2.3. For the open system Fa = {Ra,Sa} (2.18), (2.22) associated
with the colligation A (2.1), the following conservation laws are true:

1) 8, k()] —<0u()u()> (o3 U+() +(t), p=12
2) 0y {{o7 Liu_( Llu () — (o Liug(t), Lius(2)) } (2.28)
:81{<02 L2u (t > <02 L2U+ ) LQU+( )>}

P r o o f. The relations 1) (2.27) are proved in the same way as equality
(1.14). Since the conservation laws 1) (2.28) can be written as (see (2.17))

Dplly®)|* = (o Lpu—(t), Lyu—(t)) — (o5 Lyt (t), Lyus (t),) . p=1,2,

then, taking into account the equality of mixed derivatives 0201 y(t)||? =

0102|ly()||?, we obtain 2) (2.28). ]
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IV. Along with the open system Fa = {Ra,Sa} (2.18), (2.22) characterizing
the evolution generated by {A1, A2}, consider also the dual situation responding
to the dynamics specified by the adjoint operator system {A}, A3}.

Let a vector function 4 (t) in Ey, t = (t1,t2), be specified in the rectangle
D =[0,T1] x [0, T3] from R%, 0 < T}, < 0o, p = 1, 2. The equation system

01 () — A7 () = wiwa),
J(t) = VENT U (t) — ha(t) € D (A7),
RY: iaghg( ) — A552(t) = —a¢+N2u+( ), (2.29)

§2(t) = YL Nsup(t) — ha(t) € D (43),
hl( )—hl, hg( ):hg, t:(tl,tQ)ED,

where, as usually, 0, = 9/0t,, p = 1,2 and 3 (t), 2(t) are such that

9i(t) = Ryg(t),  9a(t) = Ryy(t) (2.30)

is said to be the dual open system FX = {RX, SJAF} associated with the colligation

A (2.1). Thus the vector functions {gjp(t)}? have the joint generatrix g(t) € H,
besides,

Ry7j2(t) = R (). (2.31)
The initial data hy, ke of problem (2.28) can be found from the equalities

hy = Niu (T) — Ryg(T), p=1,2. (2.32)
The mapping SX is given by
SXa-(t) = K* g (t) + i g(t). (2.33)
Consider (see (2.23)) the differential operators
L =id,+a, p=12 (2.34)

Similarly to the considerations in Section 3, we obtain that the vector function
J(t) satisfies the relations

R*Lf?)( )+?)( )= MJWL+ ( )
y(T) = yr, t— (t17t2) € D
() = K0y (1) + i (1),

It is not difficult to obtain the analogues of Theorems 2.1-2.3 using the equa-
lities above.
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Theorem 2.4. The system of the equations (2.29) of the dual open system
F{ = {RL,SX} (2.29)-(2.33) corresponding to the commutative colligation A
(2.1) is consistent if iy (t) satisfies the equation

{MfLT = NsLg + DL{Lf f () = 0 (2.36)

under the condition that (2.30) and (2.32) take place.
The proof of this theorem is similar to that of Theorem 2.1.

Theorem 2.5. Let 3(t) be the solution of (2.35), and uy(t) satisfy equation
(2.36). Then for the vector functions u_(t) (2.33), we have

{NYL} — NsL +T*L{L3}a_(t) = 0. (2.37)

Theorem 2.6. For the dual open system F{ = {RX,SX} (2.29)-(2.33),
the conservation laws

1) 3puﬁp(t)H2—<r~_(t),a_ ) .
2) 9y {(ry Ly (1), Lf - (1)) — (7 Ly (), (1)) } (2.38)
Ut

hold.

As it will be shown later, relations 2) (2.28) and 2) (2.38) play an important
role in the study of the properties of characteristic functions for commutative
systems of the linear unbounded operators {Ay}| for any n € N.
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