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The study of nonselfadjoint unbounded operators originates from classic works
on the extensions of symmetric operators in Hilbert spaces by G. von Neumann
and M.G. Krein. However, only beginning with the work by M.S. Livs̆ic [1] the
study of this class of operators gained a proper technique — the characteristic
function. Further development of these methods was found in the works by
A.V. Kuzhel [2, 3] and A.V. Shtraus [4]. Nonselfadjoint unbounded operators
in rigged Hilbert spaces were studied by E.R. Tsekanovski and Yu.L. Shmul’yan
[5]. A somewhat different approach to the study of unbounded nonselfadjoint
operators, based on the analysis of the space of boundary values, was taken by
V.A. Derkach and M.M. Malamud [6] and resulted in the analytical formalism
for studying the properties of Weyl functions. The Shrödinger dissipative opera-
tor in the context of functional model was analyzed by B.S. Pavlov [7]. As for
commutative systems of unbounded nonselfadjoint operators, there have not been
appropriate approaches for studying. In the paper the methods of studying this
class of operators are presented.

For the commutative systems of nonselfadjoint bounded operators, M.S. Livs̆ic
suggested an effective method resulted in the construction of functional and tri-
angular models [8, 9]. The method is based on the generalization of the notion
of colligation of these systems of operators and on the study of the consistency
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conditions for open systems. Therefore, it seems natural to give proper construc-
tions for the case of commutative systems of unbounded nonselfadjoint operators
as well. The paper is organized as follows. In Section 1 essential facts from
the theory of nonselfadjoint unbounded operators are given, in particular, the
notion of colligation and associated open system. In Section 2 these results are
generalized for the commutative systems of unbounded nonselfadjoint operators.

1. Preliminary Information

I. The pioneer work by M.S. Livs̆ic [1], where nonselfadjoint unbounded ope-
rators were studied, marked the beginning of the researches undertaken in this
branch of functional analysis which found its further fruitful development in the
papers [2–7]. The definition below plays an important role and it is an analogue
of those given in [10] for the unbounded case.

Definition 1. Let A be a linear operator acting in a separable Hilbert space H
such that: a) the domain D(A) of an operator A is dense in H, D(A) = H;
b) an operator A is dense in H; c) there exists a nonempty domain Ω (⊂ (C\R))
such that the resolvent Rα = (A − αI)−1 is regular for all α ∈ Ω. Consider
E±, the Hilbert spaces, ψ− : E− → H, ψ+ : H → E+, K : E− → E+, σ± :
E± → E±, linear bounded operators and selfadjoint operators σ±, σ± = σ∗±, that
are boundedly invertible. A collection

∆ = ∆(α) =
(
σ−,H ⊕ E−,

[
A ψ−
ψ+ K

]
,H ⊕ E+, σ+

)
(1.1)

is said to be the colligation of an unbounded operator A if there exists α ∈ Ω such
that

1. 2 Imα · ψ∗−ψ− = K∗σ+K − σ−, 2 Imα · ψ+ψ
∗
+ = Kσ−1

− K∗ − σ−1
+ ;

2. the operators

ϕ+ = ψ+(A− αI) : D(A)→ E+,

ϕ∗
− = ψ∗

− (A
∗ − ᾱI) : D (A∗)→ E− (1.2)

are such that
3. K∗σ+ϕ+ + ψ∗−(A− ᾱI) = 0, Kσ−1

− ϕ∗− + ψ+ (A∗ − αI) = 0;
4. 2 Im〈Ah, h〉 = 〈σ+ϕ+h, ϕ+h〉, ∀h ∈ D(A),

−2 Im
〈
A∗h̃, h̃

〉
=
〈
σ−1
− ϕ∗−h̃, ϕ̃∗−h̃

〉
, ∀h ∈ D (A∗) .

First of all, show that an arbitrary operator A satisfying the conditions a)–c)
of the given definition may always be included in the colligation ∆ (1.1). Really,
let Bα and B̃α be selfadjoint bounded operators (see [2, 3])

Bα = iRα − iR∗
α + 2 Imα · R∗

αRα,

B̃α = iRα − iR∗
α + 2 Imα · RαR

∗
α.

(1.3)
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Consider the subspace

E+ = E+(α) = span {Bαh : h ∈ H} ,
E− = E−(α) = span

{
B̃αh : h ∈ H

}
.

(1.4)

It is obvious that the bounded operator

Tα = I + i2 Imα ·Rα (1.5)

maps the subspace E+ in E− since [2, 3]

TαBα = B̃αTα. (1.6)

Moreover, it is easy to see that

〈Ah, f〉 − 〈h,Af〉 = i 〈Bα(A− αI)h, (A − αI)f〉 , ∀h, f ∈ (A), (1.7)〈
A∗h̃, f̃

〉
−
〈
h̃, A∗f̃

〉
= −i

〈
Bα (A∗ − ᾱI) h̃, (A∗ − ᾱI) f̃

〉
, forallh̃, f̃ ∈ D (A∗) .

Now specifying the operators

ψ∗
− =

√∣∣∣B̃α

∣∣∣, ψ+ =
√

|Bα|, σ− = signBα, σ+ = signBα, (1.8)

where
√|B| and signB for a selfadjoint bounded operator are understood in

terms of the spectral decomposition B [10], from (1.6) we obtain

Tα

√
|Bα| =

√∣∣∣B̃α

∣∣∣Tα, Tα · signBα = sign B̃α · Tα. (1.9)

Setting K = −σ+T
∗
α, it is easy to verify that the colligation relations (1.2) follow

from (1.3), (1.7), and (1.9).
R e m a r k 1.1. If the operators Bα, B̃α (1.1) are boundedly invertible on

E+ and E− (1.4), then setting

ψ− = B̃α, ψ+ = Pα, σ− = B̃α, σ+ = Bα, K = −T ∗
α, (1.10)

where Pα is an orthoprojector on E+ (1.4), it is easy to verify that the conditions
of colligation (1.2) also take place.

II. Open systems associated with colligations [10] play an important role in
the study of nonselfadjoint operators. Let u−(t) be a vector-function from E−
defined on [0, T ], and h be a vector from H. The open system F∆ = {R∆, S∆}
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associated with the colligation ∆ (1.1) is the pair of maps [10], R∆ : H⊕E− → H,
S∆ : H ⊕ E− → H ⊕ E+,

F∆ :
{
R∆ (h, u−(t)) = h(t),
S∆ (h, u−(t)) = (hT , u+(t)) ,

defined as follows. The operator R∆ is specified by using the Cauchy problem

R∆ :




i
d

dt
h(t) +Ay(t) = αψ−u(t),

y(t) = h(t) + ψ−u−(t) ∈ D(A),
h(0) = h, t ∈ [0, T ],

(1.11)

and the transfer mapping S∆ has the form:

S∆ :
{
u+(t) = Ku−(t)− iϕ+y(t),
hT = h(T ), t ∈ [0, T ], (1.12)

where h(t) is a solution of (1.11), and y(t) ∈ D(A) is defined by h(t) and u−(t)
using formula (1.11).

R e m a r k 1.2. If u−(t) ≡ 0 in (1.11), then y(t) = h(t) ∈ D(A), and we
obtain the Cauchy problem{

i
d

dt
h(t) +Ah(t) = 0,

h(0) = h ∈ D(A), t ∈ [0, T ].
The solvability of this Cauchy problem is equivalent to the existence of the
strongly continuous semigroup Zt = exp{itA}, with h(t) = Zth. So, the so-
lutions of the Cauchy problem (1.11) exist if the operator A is an infinitesimal
operator of the strongly continuous semigroup Zt. The well-known theorem by
Miyader–Feller–Fillips [11] gives the necessary and sufficient conditions for the
closed densely defined operator A, when the resolvent Rλ = (A−λI)−1 is regular
in the semiplane C−(ω) = {λ ∈ C : ω + Imλ < 0}, ω ∈ R (|ω| < ∞), and,
moreover, when λ ∈ C−(ω), the estimations

‖Rn
λ‖ ≤M |ω + Imλ|−n, ∀n ∈ Z+,

take place.
R e m a r k 1.3. Let u−(t) be differentiable. Then (1.11) yields that y(t) also

has the derivative and satisfies the nonhomogenous equation

i
d

dt
y(t) +Ay(t) = ψ−

(
iu′−(t) + αu−(t)

)
.

The solution of this equation exists if:
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1) the operator A meets the conditions of the Miyader–Feller–Fillips theorem;
2) y(0) = h+ ψ−u−(0) ∈ D(A);
3) the function f(t) = ψ−

(
iu′−(t) + αu−(t)

)
is twice continuously differen-

tiable, and f(0) ∈ D(A).
So, if the conditions 1)–3) are met, then there always exists y(t), and thus

h(t) (1.11) exists also.

Theorem 1.1. The conservation law

‖h‖2 +

T∫
0

〈σ−u−(t), u−(t)〉 dt = ‖hT ‖2 +

T∫
0

〈σ+u+(t), u+(t)〉 dt (1.13)

holds for the open system F∆ = {R∆, S∆} (1.11), (1.12) associated with the
colligation ∆ (1.1).

P r o o f. Equation (1.11) yields

d

dt
‖h(t)‖2 = 〈iAy(t)− iαψ−u−(t), , y(t) − ψ−u−(t)〉+ 〈y(t)− ψ−u−(t),

iAy(t)− iαψ−u−(t)〉 = −2 Im〈Ay(t), y(t)〉 − 2 Imα ‖ψ−u−(t)‖2

−〈i(A− ᾱI)y(t), ψ−u−(t)〉 − 〈ψ−u−(t), i(A − ᾱI)y(t)〉 .
Using the relations 1–4 (1.2), we get

d

dt
‖h(t)‖2 = −〈σ+ϕ+y(t), ϕ+y(t)〉+ 〈σ−u−(t), σ−u−(t)〉 − 〈J+Ku−(t),

Ku−(t)〉 + 〈iσ+ϕ+y(t),Ku−(t)〉+ 〈J+Ku−(t), iϕ+y(t)〉
= 〈σ−u−(t), u−(t)〉 − 〈σ+ [Ku−(t)− iϕ+y(t)] , [Ku−(t)− iϕ+y(t)]〉 .

As a result, we obtain the following conservation law:

d

dt
‖h(t)‖2 = 〈σ−u−(t), u−(t)〉 − 〈σ+u+(t), u+(t)〉 , (1.14)

which yields (1.13) after integration.
Consider an open system dual to F∆ = {R∆, S∆}. Denote by ũ+(t) a vector

function from E+ defined on [0, T ] (0 < T < ∞), and by h̃ — a vector from H.
A pair of mappings R+

∆ : H + E+ → H, S+
∆ : H + E+ → H + E−,

F+
∆ :




R+
∆

(
h̃, ũ+(t)

)
= h̃(t),

S∆

(
h̃, ũ+(t)

)
=
(
h̃0, ũ−(t)

)
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is said to be the dual open system F+
∆ =

{
R+

∆, S
+
∆

}
associated with the colligation

∆ (1.1). Besides, R+
∆ is specified by the Cauchy problem

R+
∆ :




i
d

dt
h̃(t)−A∗ỹ(t) = −ᾱψ∗

+ũ+(t),

ỹ(t) = ψ∗
+ũ+(t)− h̃(t) ∈ D (A∗) ,

h̃(T ) = h̃, t ∈ [0, T ];
(1.15)

and S+
∆ is given by

S+
∆ :

{
ũ−(t) = K∗ũ+(t) + iϕ∗−ỹ(t),
h̃0 = h̃(0), t ∈ [0, T ], (1.16)

h̃(t) and ỹ(t) can be found from (1.15). Similarly to Remarks 1.2 and 1.3, it is
easy to establish the solvability of (1.15) under natural restrictions on the class
of operators A∗ and the class of functions ũ+(t).

Theorem 1.2. Let F+
∆ =

{
R+

∆, S
+
∆

}
be the dual open system (1.15), (1.16)

of the colligation ∆ (1.1). Then

‖h̃‖2 +

T∫
0

〈
σ−1

+ ũ+(t), ũ+(t)
〉
dt =

∥∥∥h̃0

∥∥∥2
+

T∫
0

〈
σ−1
− ũ−(t), ũ−(t)

〉
dt. (1.17)

P r o o f. Equation (1.15) yields

d

dt
‖h̃(t)‖2 =

〈−iA∗ỹ(t) + iᾱψ∗
+ũ+(t), ψ∗

+ũ+(t)− ỹ(t)
〉

+
〈
ψ∗

+ũ+(t)− ỹ(t),−iA∗ỹ(t) + iᾱψ∗
+ũ+(t)

〉
= −2 Im 〈A∗ỹ(t), ỹ(t)〉

+2 Imα
∥∥ψ∗

−ũ+(t)
∥∥2− 〈

i (A∗− αI) ỹ(t), ψ∗
+ũ+(t)

〉−〈ψ∗
+ũ+(t), i (A∗− αI) ỹ(t)

〉
.

Using the second relations of 1–4 (1.2), we have

d

dt
‖h(t)‖2 =

〈
σ−1
− ϕ∗

−ỹ(t), ϕ
∗
−ỹ(t)

〉
+
〈
σ−1
− K∗ũ+(t),K∗ũ+(t)

〉
− 〈σ−1

+ ũ+(t), ũ+(t)
〉
+
〈
iσ−1

− ϕ∗
−ỹ(t),K

∗ũ+(t)
〉
+
〈
σ−1
− K∗ũ+(t), iϕ∗

−ỹ(t)
〉

=
〈
σ−1
−
[
K∗ũ+(t) + iϕ∗

−ỹ(t)
]
,
[
K∗ũ+(t) + iϕ∗

−ỹ(t)
]〉− 〈

σ−1
+ ũ+(t), ũ+(t)

〉
.

Therefore

d

dt

∥∥∥h̃(t)∥∥∥2
=
〈
σ−1
− ũ−(t), ũ−(t)

〉− 〈
σ−1

+ ũ+(t), ũ+(t)
〉
, (1.18)

which yields (1.17) after integration.
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The following theorem establishes an important correlation between the open
systems F∆ (1.11), (1.12) and F+

∆ (1.15), (1.16).

Theorem 1.3. Let h(t) and u+(t) be defined by u−(t) using the relations
(1.11), (1.12) of the open system F∆, and the vector functions h̃(t) and ũ−(t)
be constructed by equalities (1.15), (1.16) of the dual open system F+

∆ . Then the
equality

〈
hT , h̃

〉
+

T∫
0

〈u+(t), ũ+(t)〉 dt =
〈
h, h̃0

〉
+

T∫
0

〈u−(t), ũ−(t)〉 dt (1.19)

is true.
P r o o f. From (1.11) and (1.15) it follows that

d

dt

〈
h(t), h̃(t)

〉
=
〈
iAy(t)− iαψ−u−(t), ψ∗

+ũ+(t)− ỹ(t)
〉

+
〈
y(t)− ψ−u−(t),−iAỹ(t) + iᾱψ∗

+ũ+(t)
〉
=
〈
i(A− αI)y(t), ψ∗

+ũ+(t)
〉

+ 〈ψ−u−(t), i (A∗ − ᾱI) ỹ(t)〉 .
Taking into account 2 (1.2) and (1.12), (1.16), we obtain

d

dt

〈
h(t), h̃(t)

〉
= 〈iϕ+y(t), ũ+(t)〉+

〈
u−(t), iϕ∗

−ỹ(t)
〉

= 〈Ku−(t)− u+(t), ũ+(t)〉+ 〈u−(t), ũ−(t)−K∗ũ+(t〉
= 〈u−(t), ũ−(t)〉 − 〈u+(t), ũ+(t)〉

and, consequently,

d

dt

〈
h(t), h̃(t)

〉
= 〈u−(t), ũ−(t)〉 − 〈u+(t), ũ+(t)〉 . (1.20)

Equality (1.19) follows from (1.20) after integration.

III. Let u−(t) in the open system F∆ (1.11) be the plane wave u−(t) =
eiλtu−(0). And let the vector functions h(t), y(t), and u+(t) depend on t in
a similar way: h(t) = eiλth, y(t) = eiλty, u+(t) = eiλtu+(0), where h, y ∈ H, and
u+(0) do not depend on t. Then (1.11), (1.12) yield


−λh+Ay = αψ−u−(0),
h− y = −ψ−u−(0),
u+(0) = Ku−(0) − iϕ+y,

(1.21)

where y ∈ D(A).
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Thus, if λ ∈ Ω, then


y = (α− λ)(A− λI)−1ψ−u−(0),
h = −(A− αI)(A− λI)−1ψ−u−(0),
u+(0) = S∆(λ)u−(0),

(1.22)

where S∆(λ) is a characteristic function of the colligation ∆ (1.1),

S∆(λ) = K + i(λ− α)ψ+(A− αI)(A − λI)−1ψ−. (1.23)

The function S∆(λ) is normalized at the point λ = α, S∆(α) = K. Consider the
operator function

Tλ,α = (A− αI)(A− λI)−1 = I + (λ− α)Rλ. (1.24)

Then S∆(λ) can be written in the form

S∆(λ) = K + i(λ− α)ψ+Tλ,αψ−. (1.25)

From (1.14) it follows easily (see, for instance, [10]) that

σ− − S∗
∆(w)σ+S∆(λ)
i(λ− w̄)

= ψ∗
−T

∗
w,αTλ,αψ−. (1.26)

Analogously, if ũ+(t) in the dual open system F+
∆ =

{
R+

∆, S
+
∆

}
(1.15), (1.16)

is given by ũ+(t) = eiλ̄(t−T )ũ+(T ), where ũ+(T ) is an independent of t vector from
E+, and if h̃(t), ỹ(t), ũ−(t) also have the same dependency on t, h̃(t) = eiλ̄(t−T )h̃,
ỹ(t) = eiλ̄(t−T )ỹ, ũ−(t) = eiλ̄(t−T )u−(T ), then (1.15), (1.16) yield


λ̄h̃+A∗ỹ = ᾱψ∗

+ũ+(T ),
h̃+ ỹ = ψ∗

+ũ+(T ),
ũ−(T ) = K∗ũ+(T ) + iϕ∗−ỹ,

(1.27)

where ỹ ∈ D (A∗). Hence, if λ ∈ Ω, this implies



ỹ =
(
ᾱ− λ̄

) (
A∗ − λ̄I

)−1
ψ∗

+ũ+(T ),
h̃ = (A∗ − ᾱI)

(
A∗ − λ̄I

)−1
ψ∗

+ũ+(T ),

ũ−(T ) =
+
S∆ (λ)ũ+(T ),

(1.28)

where the function
+
S∆ (λ) is given by

+
S∆ (λ) = K∗ − i

(
λ̄− ᾱ

)
ψ∗
− (A

∗ − ᾱI)
(
A∗ − λ̄I

)−1
ψ∗

+. (1.29)
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It is obvious that the functions S∆(λ) (1.25) and
+
S∆ (λ) (1.29) satisfy the relation

+
S∆ (λ) = S∗

∆(λ). (1.30)

Using (1.12), it is easy to show that

S∆(w)σ−1
− S∗

∆(λ)− σ−1
+

i
(
λ̄− w

) = ψ+Tw,αT
∗
λ,αψ

∗
+. (1.31)

Finally, (1.18), with (1.29) being taken into account, implies

S∆(λ)− S∆(w)
i(λ− w)

= ψ+Tw,αTλ,αψ−. (1.32)

IV. Consider the operator function K(λ,w) : E− ⊕E+ → E− ⊕ E+,

K(λ,w) =



σ1 − S∗

∆(w)σ+S∆(λ)
i (λ− w̄)

S∗
∆(λ)− S∗

∆(w)
i
(
w̄ − λ̄

)
S∆(λ)− S∆(w)

i(λ− w)
S∆(w)σ−1

− S∗
∆(λ)− σ−1

+

i
(
λ̄− w

)


 , (1.33)

assuming that λ, w, α ∈ Ω. The formulae (1.26), (1.31), (1.32) imply that the
kernel K(λ,w) (1.33) is positively defined [10].

A subspace H1 ⊆ H is said to be reducing for a densely defined operator A,
if at every point of regularity λ ∈ Ω of the resolvent Rλ = (A−λI)−1 there takes
place RλP1 = P1Rλ, where P1 is an orthoprojector on H1. For the colligation ∆
(1.1), define the subspace

H1 = span
{
Rλψ−u− +R∗

wψ
∗
+u+ : u± ∈ E±, λ, w ∈ Ω} . (1.34)

Theorem 1.4. The subspace H1 (1.34) reduces the operator A, besides, the
contraction of A on H0 = H �H1 is a selfadjoint operator.

The proof of the statement follows from the colligation relations (1.2) and it
is standard [10].

A colligation ∆ (1.1) is said to be simple if H = H1 (1.34).
Let two colligations ∆ and ∆′ be given such that E± = E′±, σ± = σ′±, K = K ′,

and, moreover, α = α′ ∈ Ω ∩ Ω′ (�= ∅). These colligations are called unitarily
equivalent [10] if there exists a unitary operator U : H → H ′ such that

UA = A′U, UD(A) = D
(
A′) , UA∗ =

(
A′)∗ U, UD

(
A′)∗ = D

((
A′)) ,

Uψ− = ψ′
−, ψ′

+U = ψ+.

Journal of Mathematical Physics, Analysis, Geometry, 2009, vol. 5, No. 3 283



V.A. Zolotarev

Theorem 1.5. Let ∆ and ∆′ be simple colligations, E± = E′±, σ± = σ′±
of which are invertible, and α = α′ ∈ Ω ∩ Ω′ (�= ∅). Then if in some neighbor-
hood Uδ(α) ⊂ Ω ∩ Ω′ of the point α the characteristic functions (1.23) coincide,
S∆(λ) = S∆′(λ), then the colligations ∆ and ∆′ are unitarily equivalent.

The proof of the theorem follows easily from (1.26), (1.31), and (1.32).
Thus, the characteristic function S∆(λ) (1.23) defines the colligation ∆ (1.1)

up to the unitary equivalency.

V. Let us describe a class of functions generated by the characteristic func-
tions S∆(λ) of the colligations ∆ (1.1). Consider the following functions from H1

(1.34):
F (λ, u−) = Tλ,αψ−u−, F̃ (λ, u+) = T ∗

λ,αψ
∗
+u+, (1.35)

where u± ∈ E±, and λ, α ∈ Ω.
Theorem 1.6. The operator Tw,λ (1.24) (λ, w ∈ Ω) acts on F (λ, u−) and

F̃ (λ, u+) in the following way:

1) Tw,λF (λ, u−) = F (w, u−) ;
2) T ∗

w,λF̃ (λ, u+) = F̃ (w, u+) ;
3) Tw,λ̄F̃ (λ, u+) = −F (w, σ−1

− S∆(λ)u+

)
;

4) T ∗
w,λ̄

F (λ, u+) = −F̃ (w, σ+S∆(λ)u−) ,

(1.36)

where S∆(λ) is the characteristic function of (1.25), and λ, w, α ∈ Ω.
P r o o f. Equations 1), 2) from (1.36) follow from the chain identity Tw,λTλ,α =

Tw,α. Since

Tw,λ̄F̃ (λ, u+) = Tw,λ̄T
∗
λ,αψ

∗
+u+ = Tw,αTα,λ̄T

∗
λ,αψ

∗
+u+,

we have to find the expression

Tα,λ̄T
∗
λ,αψ

∗
+u+ =

(
I +

(
α− λ̄

)
Rα

)
T ∗

λ,αψ
∗
+u+ = T ∗

λ,αψ
∗
+u+

+(α− ᾱ)RαT
∗
λ,αψ

∗
+u+ +

(
ᾱ− λ̄

)
RαT

∗
λ,αψ

∗
+u+.

Taking into account the equality

Rα = −iψ−σ−1
− ψ− +R∗

α + (α− ᾱ)RαR
∗
α,

which follows from 4. (1.2) and (1.7), and using the Hilbert identity Rλ = Tλ,αRα

for the resolvents Rλ, we obtain

Tα,λ̄T
∗
λ,αψ

∗
+u+ = ψ∗

+u+ + (α− ᾱ)Rαψ
∗
+u+ + ψ−σ−1

− [K∗ − S∗
∆(λ)] u+.
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Finally, since ψ∗
+ + (α− ᾱ)Rαψ

∗
+u+ + ψ+σ

−1
− K∗ = 0 (see 2, 3 (1.2)), we obtain

that
Tα,λ̄T

∗
λ,αψ

∗
+u+ = −ψ−σ−1

− S∗
∆(λ)u+,

which proves 3) from (1.36). The proof of 4) from (1.36) is analogous.
This theorem implies the statement below.

Theorem 1.7. The family of operators Tw,z (1.24) (w, z ∈ Ω) acts on the
functions F (λ, u−) and F (λ, u+) (1.35) in the following way:

1) Tw,zF (λ, u−) =
w − z

w − λ
F (w, u−) +

λ− z

λ−w
F (λ, u−) ;

2) T ∗
w,zF̃ (λ, u+) =

w̄ − z̄

w̄ − λ̄
F̃ (w, u+) +

λ̄− z̄

λ̄− w̄
F̃ (λ, u+) ;

3) Tw,zF̃ (λ, u+) =
λ̄− z

λ̄− w
F̃ (λ, u+)− w − z

w − λ̄
F
(
w, σ−1

− S∗
∆(λ)u+

)
;

4) T ∗
w,zF (λ, u−) =

λ− z̄

λ− w̄
F (λ, u−)− w̄ − z̄

w̄ − λ
F̃ (w, σ+S∆(λ)u−) ;

(1.37)

for all u± ∈ E± and all λ, w, z, α ∈ Ω.

The class Ωα (σ−, σ+). Let E± be Hilbert spaces, σ± be selfadjoint invertible
operators in E and α ∈ C \ R. An operator function S(λ): E− → E+ belongs to
the class Ωα (σ−, σ+) if:

1) the function S(λ) is holomorphic in some neighborhood Uδ(α) = {λ ∈ C :
|λ− α| < δ} of the point α and S(α) �= 0;

2) the kernel K(λ,w) (1.33) is Hermitian positive for all λ, w ∈ Uδ(α).
It is obvious that the characteristic function S∆(λ) (1.25) belongs to the class

Ωα (σ−, σ+).

Theorem 1.8. Let an operator function S(λ): E− → E+ belong to the class
Ωα (σ−, σ+). Then there exists such a colligation ∆ (1.1) that its characteristic
function S∆(λ) (1.25) coincides with S(λ), S∆(λ) = S(λ), for all λ ∈ Uδ(α).

P r o o f. Following [10], denote by eλf the “δ-function”, the support of
which is concentrated at the point λ ∈ Uδ(α) and eλf in this point takes the
value f = (u−, u+) ∈ E− ⊕ E+. Consider the manifold L generated by the finite

linear combinations
N∑
1

eλk
fk (N ∈ N). Using K(λ,w) (1.33), on L specify the

nonnegative bilinear form

〈eλf, ewg〉K def= 〈K(λ,w)f, g〉E−⊕E+ . (1.38)

Closing L by the norm generated by form (1.38) and factorizing by the kernel of
metric (1.38), we obtain the Hilbert space HK [10].
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Proceeding from (1.37), in HK specify the family of operators Tw,z:

Tw,zeλf = ew

(
w − z

w − λ
u− − w − z

w − λ̄
σ−1
− S∗(λ)u+, 0

)

+eλ

(
λ− z

λ− w
u−,

λ̄− z

λ̄− w
u+

)
,

(1.39)

where λ, w ∈ Uδ(α), and f = (u−, u+). It is easy to show that

T ∗
w,zeλf = ew

(
0,
w̄ − z̄

w̄ − λ̄
u+ − w̄ − z̄

w̄ − λ
σ+S(λ)u−

)

+eλ

(
λ− z̄

λ− w̄
u−,

λ̄− z̄

λ̄− w̄
u+

)
.

(1.40)

Let
K = S(λ), ψ−u− = eαu−, ψ∗

+u+ = eαu+. (1.41)

It is obvious that the colligation relations 1 (1.2) are true. Really,

〈
ψ−u−, ψ−u′−

〉
=
〈
K(α,α)u−, u′−

〉
=
〈
σ− −K∗σ+K

i (α− ᾱ)
u−, u′−

〉
,

which proves the first condition in 1. (1.2). Simple calculations show that

ψ∗−eλf =
σ− −K∗σ+S(λ)

i(λ− ᾱ)
u− +

S∗(λ)−K∗

i
(
ᾱ− λ̄

) u+,

ψ+eλf =
S(λ)−K

i(λ− α)
u− +

Kσ−1
− S∗(λ)− σ−1

+

i
(
λ̄− α

) u+.

(1.42)

Since the first relation in 3 (1.2) can be written as K∗σ+ψ+ + ψ∗−Tα,ᾱ = 0, its
proof follows easily from (1.39) and (1.42).

Relations 4 (1.2) are proven in a similar way after being rewritten in terms of
Tα,ᾱ.

From (1.39), it is easy to calculate how the resolvent Rw = (w−z)−1 (Tw,z − I)
acts on the elements eλf , which, in virtue of the relation ARw = I+wRw, results
in the conclusion that the operator A in HK has the form

Aeλf = eλ

(
λu−, λ̄u+

)
, (1.43)

where the domain D(A) is

D(A) =
{ N∑

p=1

eλpfp ∈ HK : λp ∈ Uδ(α), fp =
(
up
−, u

p
+

) ∈ E− ⊕ E+,

up
− = σ−1

− S∗ (λp) u
p
+, 1 ≤ p ≤ N,N ≤ ∞

}
.

(1.44)
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Construct the colligation

∆K =
(
σ−,HK ⊕ E−,

[
A ψ−
ψ+ K

]
,HK ⊕ E+, σ+

)
, (1.45)

where K, ψ−, ψ+, and A are given by formulae (1.41) and (1.43), (1.44) corre-
spondingly. Finally, show that the characteristic function S∆K

(λ) (1.25) of the
colligation ∆K (1.45) coincides with S(λ). Equations (1.39), (1.41) imply

Tλ,αψ−u− = Tλ,αeα (u−, 0) = eλ (u−, 0) .

Using the structure of the operator ψ+ (1.42), we obtain that

ψ+Tλ,αψ−u− =
S(λ)−K

i(λ− α)
u−,

which concludes the proof.
Conservative and not only (passive and others) systems from one variable

were studied in [12].

2. Commutative Colligations and Open Systems.
Systems of Unbounded Operators

I. In a Hilbert space, consider a commutative system of the linear unbounded
operators {A1, A2}, where the domain D (Ap) of each operator Ap is dense in H,
D (Ap) = H, p = 1, 2, and the commutativity of the operators A1, A2 is un-
derstood in terms of interchangeability of resolvents, [R1, R2] = 0, where
Rp = Rp(α) = (Ap − αI)−1, p = 1, 2, assuming that α is a point of regularity of
resolvents R1(λ), R2(λ). Obviously, [R1, R2] = 0 yields [R1(λ), R2(w)] = 0 for all
λ and w belonging to the joint domain of regularity of R1(λ) and R2(λ). The fol-
lowing definition plays an important role hereinafter and it is a generalization of
Definition 1 (see Sect. 1) for the commutative case.

Definition 2. Let a system of the linear unbounded operators {A1, A2} be
given in a Hilbert space H such that: a) the domain D (Ap) of the operator Ap

is dense in H, D (Ap) = H, p = 1, 2; b) every operator Ap is closed in H,
p = 1, 2; c) there exists a nonempty domain Ω ⊂ C\R such that the resolvents
Rp(λ) = (Ap − λI)−1 are regular for all λ ∈ Ω, p = 1, 2; d) the resolvents R1

(= R1(α)), R2 (= R2(α)) commute at least at one point α ∈ Ω.
And let the Hilbert spaces E±, the linear bounded operators ψ− : E− → H,

ψ+ : H → E+ and
{
σ−p
}2

1
,
{
τ−p
}2

1
, {Np}2

1, Γ : E− → E−,
{
σ+

p

}2

1
,
{
τ+
p

}2

1
,
{
Ñp

}2

1
,
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Γ̃ : E+ → E+ be given, where
{
σ±p
}2

1
and

{
τ±p
}2

1
are selfadjoint. The totality

∆ = ∆(α) =

({
σ−p
}2

1
,
{
τ−p
}2

1
, {Np}2

1 ,Γ,H ⊕ E−,
{[

Ap ψ−
ψ+ K

]}2

1

,

H ⊕ E+, Γ̃,
{
Ñp

}2

1
,
{
τ+
p

}2

1
,
{
σ+

p

}2

1

) (2.1)

is said to be the commutative colligation if there exists α ∈ Ω such that:
1) 2 Imα ·N∗

pψ
∗−ψ−Np = K∗σ+

p K − σ−p , 2 Imα · Ñpψ+ψ
∗
+Ñ

∗
p = Kτ−p K∗ − τ+

p ;
2) the operators

ϕp
+ = ψ+ (Ap − αI) : D (Ap)→ E+,(

ϕp
−
)∗ = ψ∗

−
(
A∗

p − ᾱI
)
: D

(
A∗

p

)→ E−

are such that:
3) K∗σ+

p ϕ
p
+ +N∗

pψ
∗− (Ap − ᾱI) = 0, Kτ−p

(
ϕp
−
)∗ + Ñpψ1

(
A∗

p − αI
)
= 0;

4) 2 Im 〈Aphp, hp〉 =
〈
σ+

p ϕ
p
+hp, ϕ

p
+hp

〉
, ∀hp ∈ D (Ap) ,

−2 Im
〈
A∗

ph̃p, h̃p

〉
=
〈
τ−p

(
ϕp
−
)∗
h̃p,

(
ϕp
−
)∗
h̃p

〉
, ∀h̃p ∈ D (Ap) , (2.2)

where p = 1, 2. And, moreover, the relations:
5) R2ψ−N1 −R1ψ−N2 = ψ−Γ, Ñ1ψ+R2 − Ñ2ψ+R1 = Γ̃ψ̃+;
6) Γ̃K −KΓ = i

(
Ñ1ψ+ψ−N2 − Ñ2ψ+ψ−N1

)
;

7) KNp = ÑpK, are true, where Rp = Rp(α), p = 1, 2.

Show that for every operator system {A1, A2} satisfying the suppositions
a)–d) there always exist such Hilbert spaces E± and corresponding operators ψ±,

K,
{
σ±p
}2

1
,
{
τ±p
}2

1
, {Np}2

1,
{
Ñp

}2

1
, Γ, Γ̃, that the relations 1–7 (2.1) hold. To do

this, similarly to (1.5), consider two commuting bounded operators

Tp = I + i2 Imα ·Rp, p = 1, 2, (2.3)

and let (see (1.3))

Bp = iRp − iR∗
p + 2 Imα ·R∗

pRp, p = 1, 2,
B̃p = iRp − iR∗

p + 2 Imα · RpR
∗
p , p = 1, 2.

(2.4)

It is easy to see that
TpBp = B̃pTp, p = 1, 2. (2.5)

Analogously as in (1.7),

2 Im 〈Aphp, hp〉 = 〈Bp (Ap − αI)hp, (Ap − αI)hp〉 ,∀hp ∈ D (Ap) , (2.6)
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−2 Im
〈
A∗

ph̃p, h̃p

〉
=
〈
B̃p

(
A∗

p − ᾱI
)
h̃p,

(
A∗

p − ᾱI
)
h̃p

〉
,∀h̃p ∈ D

(
A∗

p

)
take place, where p = 1, 2. Define the bounded operators in H

σ+
p = Bp, p = 1, 2, σ−1 = T2B̃1T

∗
2 , σ−2 = T1B2T

∗
1 ,

N1 = B̃1T
∗
2 , N2 = B̃2T

∗
1 , Γ = B̃1R

∗
2 − B̃2R

∗
1,

τ−p = B̃p, p = 1, 2, τ+
1 = T ∗

2B1T2, τ+
2 = T ∗

1B2T1,
(2.7)

Ñ1 = T ∗
2B1, Ñ2 = T ∗

1B2, Γ̃ = R∗
2B1 −R∗

1B2.

Consider the Hilbert spaces

E− = span
{
B̃1H + B̃2H +N∗

1H +N∗
2H

}
,

E+ = span
{
B1H +B2H + Ñ1H + Ñ2H

}
,

(2.8)

and let
K = −T ∗

1T
∗
2 , ψ− = P−, ψ+ = P+, (2.9)

where P± are the orthoprojectors on E± (2.8). It is easy to see that the relations
1–4 (2.2) follow from equalities (2.3)–(2.7). Consequently, 7 (2.2) follows from
(2.5). By simple calculations we may check the conditions 5, 6. Finally, it is easy
to show that the operator K (2.9) maps E− in (2.8).

R e m a r k 2.1. Equations 2, 4 (2.2) imply

Bp = ψ∗
+σ

+
p ψ+, B̃p = ψ−τ−p ψ

∗
−, p = 1, 2, (2.10)

by virtue of the density of the domains D (Ap), D
(
A∗

p

)
, p = 1, 2.

II. Before turning to the open system associated with the commutative col-
ligation ∆ (2.1), which is a two-variable analogue of the system F∆ = {R∆, S∆}
(1.11), (1.12), write the main equations (1.11), (1.12) in other form. Since (1.11),
(1.12) are given by 


i∂th(t) +Ay(t) = αψ−u−(t),
y(t) = h(t) + ψ−u−(t) ∈ D(A),
h(0) = h, t ∈ [0, T ],
u+(t) = Ku−(t)− iϕ+y(t),

(2.11)

where ∂t =
∂

∂t
, by multiplying the second equality by α and subtracting it from

the first one, we obtain
Lh(t) + ŷ(t) = 0, (2.12)
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where the operator L and the function ŷ(t) are such that

L = i∂t + α, y(t) = Rαŷ(t) ∈ D(A). (2.13)

Therefore equations (2.11) can be written in the following form:


Lh(t) + ŷ(t) = 0,
Rαŷ(t) = h(t) + ψ−u−(t) ∈ D(A),
h(0) = h, t ∈ [0, T ],
u+(t) = Ku−(t)− iψ+ŷ(t).

(2.14)

The first two equalities yield that ŷ(t) is a solution of the equation

LRαŷ(t) + ŷ(t) = ψ−Lu−(t). (2.15)

Applying the operator L to equalities (2.11), we obtain


−i∂tŷ(t) +ALy(t) = αψ−Lu−(t),
Ly(t) = −ŷ(t) + ψ−Lu−(t) ∈ D(A),
Lu+(t) = KLu−(t)− iϕ+Ly(t).

(2.16)

Since these equalities coincide with the relations (2.11) after substitutions
h(t) → −ŷ(t), y(t) → Ly(t), u±(t) → Lu±(t), by using the conservation law
(1.14), we obtain

∂t ‖ŷ(t)‖2 = 〈σ−Lu−(t), Lu−(t)〉 − 〈σ+Lu+(t), Lu+(t)〉 . (2.17)

III. Denote by D = [0, T1] × [0, T2] the rectangle in R
2
+, 0 < Tp < ∞,

p = 1, 2, and let u−(t) be a vector function in E− specified when t = (t1, t2) ∈ D.
The system of the relations

R∆ :




i∂1h1(t) +A1y1(t) = αψ−N1u−(t),
y1(t) = h1(t) + ψ−N1u−(t) ∈ D (A1) ,
i∂2h2(t) +A2y2(t) = αψ−N2u−(t),
y2(t) = h2(t) + ψ−N2u−(t) ∈ D (A2) ,
h1(0) = h1, h2(0) = h2, t = (t1, t2) ∈ D,

(2.18)

where ∂p = ∂/∂tp, p = 1, 2, is said to be the open system F∆ = {R∆, S∆}
associated with the colligation ∆ (2.1). Let the vector functions y1(t) and y2(t)
be such that

y1(t) = R1y(t), y2(t) = R2y(t), (2.19)

and y(t) be a vector function from H. Thus, the functions {yp(t)}2
1 have a joint

generatrix y(t), moreover, (2.19) implies that

R1y2(t) = R2y1(t). (2.20)
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As for the initial data h1 and h2, we assume that

hp = Rpy(0) − ψ−Npu−(0), p = 1, 2. (2.21)

The mapping S∆ is given by

S∆ : u+(t) = Ku−(t)− iψ+y(t). (2.22)

Similarly to (2.13), consider the differential operators

Lp = i∂p + α, p = 1, 2. (2.23)

Then the main equations (2.18) can be written in the following form:


L1h1(t) + y(t) = 0,
R1y(t) = h1(t) + ψ−N1u−(t) ∈ D (A1) ,
L2h2(t) + y(t) = 0,
R2y(t) = h2(t) + ψ−N2u−(t) ∈ D (A2) ,

(2.24)

which is similar to (2.14). Consequently, L1h1(t) = −y(t) = L2h2(t). Therefore,
taking into account (2.23) and (2.18), we obtain that (cf. (2.15))


R1L1y(t) + y(t) = ψ−N1L1u−(t),
R2L2y(t) + y(t) = ψ−N2L2u−(t),
y(0) = y0, t = (t1, t2) ∈ D,
u+(t) = Ku−(t)− iψ+y(t).

(2.25)

So, if the vector function y(t) satisfies the relations (2.25), then the functions
h1(t), h2(t) (2.24) as well as y1(t), y2(t) (2.19) can be defined by it.

Theorem 2.1. The system of equations (2.18) is consistent if the vector
function u−(t) is a solution of the equation

{N1L1 −N2L2 + ΓL1L2}u−(t) = 0, (2.26)

given that (2.19), (2.21) hold and Lp has the form of (2.23), p = 1, 2.
P r o o f. The consistency condition follows from (2.25) if one takes into

account the commutativity [R1L1, R2L2] = 0. Since

L1R1L2R2y(t) = y(t)− ψ−N1L1u−(t) +R−ψ−N2L1L2u−(t)

and similarly

L2R2L1R1y(t) = y(t)− ψ−N2L2u−(t) +R2ψ−N1L1L2u−(t),
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then, subtracting these equalities, we obtain

ψ− (N1L1 −N2L2) u−(t) + (R2ψ−N1 −R1ψ−N2)L1L2u−(t) = 0.

Taking into account 5 (2.2), we obtain

ψ− {N1L1 −N2L2 + ΓL1L2}u−(t) = 0,
which proves (2.26).

Theorem 2.2. If for the vector function y(t) equation (2.25) takes place,
and u−(t) is a solution of (2.26), then u+(t) (2.22) satisfies the equation{

Ñ1L1 − Ñ2L1 + Γ̃L1L2

}
u+(t) = 0. (2.27)

P r o o f. Calculate[
Ñ1L1 − Ñ2L2

]
u+(t) = K [N1L1 −N2L2] u−(t)

−i
[
Ñ1ψ+L1 − Ñ2ψ+L2

]
y(t) = −KΓL1L2u−(t)

−iÑψ+L1 (ψ−N2L2u−(t)− L2R2y(t)) + iN2ψ+L2 (ψ−N1L1u−(t)− L1R1y(t))

=
{
−KΓ− iÑ1ψ+ψ−N2 + iÑ2ψ+ψ−N1

}
L1L2u−(t)

+i
(
Ñ1ψ+R2 − Ñ2ψ+R1

)
L1L2y(t) = −Γ̃KL1L2u−(t) + iΓ̃ψ+L1L2y(t)

= −Γ̃L1L2u+(t),

which proves (2.27) in virtue of (2.26), (2.25) and 5, 6 (2.2).

Theorem 2.3. For the open system F∆ = {R∆, S∆} (2.18), (2.22) associated
with the colligation ∆ (2.1), the following conservation laws are true:

1) ∂p ‖hp(t)‖2 =
〈
σ−p u−(t), u−(t)

〉− 〈
σ+

p u+(t), u+(t)
〉
, p = 1, 2;

2) ∂2

{〈
σ−1 L1u−(t), L1u−(t)

〉− 〈
σ+

1 L1u+(t), L1u+(t)
〉}

= ∂1

{〈
σ−2 L2u−(t), L2u−(t)

〉− 〈
σ+

2 L2u+(t), L2u+(t)
〉}
.

(2.28)

P r o o f. The relations 1) (2.27) are proved in the same way as equality
(1.14). Since the conservation laws 1) (2.28) can be written as (see (2.17))

∂p‖y(t)‖2 =
〈
σ−p Lpu−(t), Lpu−(t)

〉− 〈
σ+

p Lpu+(t), Lpu+(t),
〉
, p = 1, 2,

then, taking into account the equality of mixed derivatives ∂2∂1‖y(t)‖2 =
∂1∂2‖y(t)‖2, we obtain 2) (2.28).
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IV. Along with the open system F∆ = {R∆, S∆} (2.18), (2.22) characterizing
the evolution generated by {A1, A2}, consider also the dual situation responding
to the dynamics specified by the adjoint operator system {A∗

1, A
∗
2}.

Let a vector function ũ+(t) in E+, t = (t1, t2), be specified in the rectangle
D = [0, T1]× [0, T2] from R

2
+, 0 < Tp <∞, p = 1, 2. The equation system

R+
∆ :




i∂1h̃1(t)−A∗
1ỹ1(t) = −ᾱψ∗

+Ñ
∗
1 ũ+(t),

ỹ1(t) = ψ∗
+Ñ

∗
1 ũ+(t)− h̃1(t) ∈ D (A∗

1) ,
i∂2h̃2(t)−A∗

2ỹ2(t) = −ᾱψ∗
+Ñ

∗
2 ũ+(t),

ỹ2(t) = ψ∗
+Ñ

∗
2u+(t)− h̃2(t) ∈ D (A∗

2) ,
h̃1(T ) = h̃1, h̃2(T ) = h̃2, t = (t1, t2) ∈ D,

(2.29)

where, as usually, ∂p = ∂/∂tp, p = 1, 2 and ỹ1(t), ỹ2(t) are such that

ỹ1(t) = R∗
1ỹ(t), ỹ2(t) = R∗

2ỹ(t) (2.30)

is said to be the dual open system F+
∆ =

{
R+

∆, S
+
∆

}
associated with the colligation

∆ (2.1). Thus the vector functions {ỹp(t)}2
1 have the joint generatrix ỹ(t) ∈ H,

besides,
R∗

1ỹ2(t) = R∗
2ỹ1(t). (2.31)

The initial data h̃1, h̃2 of problem (2.28) can be found from the equalities

h̃p = ψ∗
+Ñ

∗
pu+(T )−R∗

pỹ(T ), p = 1, 2. (2.32)

The mapping S+
∆ is given by

S+
∆ : ũ−(t) = K∗ũ+(t) + iψ∗

−ỹ(t). (2.33)

Consider (see (2.23)) the differential operators

L+
p = i∂p + ᾱ, p = 1, 2. (2.34)

Similarly to the considerations in Section 3, we obtain that the vector function
ỹ(t) satisfies the relations


R∗

1L
+
1 ỹ(t) + ỹ(t) = ψ∗

+Ñ
∗
1L

+
1 ũ+(t),

R∗
2L

∗
2ỹ(t) + ỹ(t) = ψ∗

+Ñ
∗
2L

+
2 ũ+(t),

ỹ(T ) = ỹT , t = (t1, t2) ∈ D,
ũ−(t) = K∗ũ+(t) + iψ∗−ỹ(t).

(2.35)

It is not difficult to obtain the analogues of Theorems 2.1–2.3 using the equa-
lities above.
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Theorem 2.4. The system of the equations (2.29) of the dual open system
F+

∆ =
{
R+

∆, S
+
∆

}
(2.29)–(2.33) corresponding to the commutative colligation ∆

(2.1) is consistent if ũ+(t) satisfies the equation{
Ñ∗

1L
+
1 − Ñ∗

2L
+
2 + Γ̃

∗L+
1 L

+
2

}
ũ+(t) = 0 (2.36)

under the condition that (2.30) and (2.32) take place.
The proof of this theorem is similar to that of Theorem 2.1.

Theorem 2.5. Let ỹ(t) be the solution of (2.35), and ũ+(t) satisfy equation
(2.36). Then for the vector functions ũ−(t) (2.33), we have{

N∗
1L

+
1 −N∗

2L
+
2 + Γ

∗L+
1 L

+
2

}
ũ−(t) = 0. (2.37)

Theorem 2.6. For the dual open system F+
∆ =

{
R+

∆, S
+
∆

}
(2.29)–(2.33),

the conservation laws

1) ∂p

∥∥∥h̃p(t)
∥∥∥2
=
〈
τ−p ũ−(t), ũ−(t)

〉− 〈
τ+
p ũ+(t), ũ+(t)

〉
, p = 1, 2;

2) ∂2

{〈
τ−1 L

+
1 ũ−(t), L

+
1 ũ−(t)

〉− 〈
τ+
1 L

+
1 ũ+(t), ũ+(t)

〉}
= ∂1

{〈
τ−2 L

+
2 ũ−(t), L

+
1 ũ−(t)

〉− 〈
τ+
2 L

+
2 ũ+(t), L+

2 ũ+(t)
〉} (2.38)

hold.
As it will be shown later, relations 2) (2.28) and 2) (2.38) play an important

role in the study of the properties of characteristic functions for commutative
systems of the linear unbounded operators {Ak}n

1 for any n ∈ N.
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