On Commutative Systems of Nonselfadjoint Unbounded Linear Operators

V.A. Zolotarev
Department of Mechanics and Mathematics, V.N. Karazin Kharkiv National University
4 Svobody Sq., Kharkiv, 61077, Ukraine
E-mail:Vladimir.A.Zolotarev@univer.kharkov.ua

Received September 8, 2008
For a commutative system of nonselfadjoint unbounded operators A_{1}, A_{2} the concept of colligation and associated open system is given. For these open systems, the consistency conditions are established and the conservation laws are obtained.

Key words: commutative system, nonselfadjoint unbounded linear operator.

Mathematics Subject Classification 2000: 47A48.

The study of nonselfadjoint unbounded operators originates from classic works on the extensions of symmetric operators in Hilbert spaces by G. von Neumann and M.G. Krein. However, only beginning with the work by M.S. Livšic [1] the study of this class of operators gained a proper technique - the characteristic function. Further development of these methods was found in the works by A.V. Kuzhel [2, 3] and A.V. Shtraus [4]. Nonselfadjoint unbounded operators in rigged Hilbert spaces were studied by E.R. Tsekanovski and Yu.L. Shmul'yan [5]. A somewhat different approach to the study of unbounded nonselfadjoint operators, based on the analysis of the space of boundary values, was taken by V.A. Derkach and M.M. Malamud [6] and resulted in the analytical formalism for studying the properties of Weyl functions. The Shrödinger dissipative operator in the context of functional model was analyzed by B.S. Pavlov [7]. As for commutative systems of unbounded nonselfadjoint operators, there have not been appropriate approaches for studying. In the paper the methods of studying this class of operators are presented.

For the commutative systems of nonselfadjoint bounded operators, M.S. Livšic suggested an effective method resulted in the construction of functional and triangular models $[8,9]$. The method is based on the generalization of the notion of colligation of these systems of operators and on the study of the consistency
conditions for open systems. Therefore, it seems natural to give proper constructions for the case of commutative systems of unbounded nonselfadjoint operators as well. The paper is organized as follows. In Section 1 essential facts from the theory of nonselfadjoint unbounded operators are given, in particular, the notion of colligation and associated open system. In Section 2 these results are generalized for the commutative systems of unbounded nonselfadjoint operators.

1. Preliminary Information

I. The pioneer work by M.S. Livšic [1], where nonselfadjoint unbounded operators were studied, marked the beginning of the researches undertaken in this branch of functional analysis which found its further fruitful development in the papers $[2-7]$. The definition below plays an important role and it is an analogue of those given in [10] for the unbounded case.

Definition 1. Let A be a linear operator acting in a separable Hilbert space H such that: a) the domain $\mathfrak{D}(A)$ of an operator A is dense in $H, \overline{\mathfrak{D}(A)}=H$; b) an operator A is dense in H; c) there exists a nonempty domain $\Omega(\subset(\mathbb{C} \backslash \mathbb{R}))$ such that the resolvent $R_{\alpha}=(A-\alpha I)^{-1}$ is regular for all $\alpha \in \Omega$. Consider $E_{ \pm}$, the Hilbert spaces, $\psi_{-}: E_{-} \rightarrow H, \psi_{+}: H \rightarrow E_{+}, K: E_{-} \rightarrow E_{+}, \sigma_{ \pm}:$ $E_{ \pm} \rightarrow E_{ \pm}$, linear bounded operators and selfadjoint operators $\sigma_{ \pm}, \sigma_{ \pm}=\sigma_{ \pm}^{*}$, that are boundedly invertible. A collection

$$
\Delta=\Delta(\alpha)=\left(\sigma_{-}, H \oplus E_{-},\left[\begin{array}{cc}
A & \psi_{-} \tag{1.1}\\
\psi_{+} & K
\end{array}\right], H \oplus E_{+}, \sigma_{+}\right)
$$

is said to be the colligation of an unbounded operator A if there exists $\alpha \in \Omega$ such that

1. $2 \operatorname{Im} \alpha \cdot \psi_{-}^{*} \psi_{-}=K^{*} \sigma_{+} K-\sigma_{-}, 2 \operatorname{Im} \alpha \cdot \psi_{+} \psi_{+}^{*}=K \sigma_{-}^{-1} K^{*}-\sigma_{+}^{-1}$;
2. the operators

$$
\begin{gather*}
\varphi_{+}=\psi_{+}(A-\alpha I): \mathfrak{D}(A) \rightarrow E_{+} \\
\varphi_{-}^{*}=\psi_{-}^{*}\left(A^{*}-\bar{\alpha} I\right): \mathfrak{D}\left(A^{*}\right) \rightarrow E_{-} \tag{1.2}
\end{gather*}
$$

are such that
3. $K^{*} \sigma_{+} \varphi_{+}+\psi_{-}^{*}(A-\bar{\alpha} I)=0, K \sigma_{-}^{-1} \varphi_{-}^{*}+\psi_{+}\left(A^{*}-\alpha I\right)=0$;
4. $2 \operatorname{Im}\langle A h, h\rangle=\left\langle\sigma_{+} \varphi_{+} h, \varphi_{+} h\right\rangle, \forall h \in \mathfrak{D}(A)$,

$$
-2 \operatorname{Im}\left\langle A^{*} \tilde{h}, \tilde{h}\right\rangle=\left\langle\sigma_{-}^{-1} \varphi_{-}^{*} \tilde{h}, \tilde{\varphi}_{-}^{*} \tilde{h}\right\rangle, \forall h \in \mathfrak{D}\left(A^{*}\right)
$$

First of all, show that an arbitrary operator A satisfying the conditions a)-c) of the given definition may always be included in the colligation Δ (1.1). Really, let B_{α} and \tilde{B}_{α} be selfadjoint bounded operators (see $[2,3]$)

$$
\begin{align*}
& B_{\alpha}=i R_{\alpha}-i R_{\alpha}^{*}+2 \operatorname{Im} \alpha \cdot R_{\alpha}^{*} R_{\alpha} \\
& \tilde{B}_{\alpha}=i R_{\alpha}-i R_{\alpha}^{*}+2 \operatorname{Im} \alpha \cdot R_{\alpha} R_{\alpha}^{*} \tag{1.3}
\end{align*}
$$

Consider the subspace

$$
\begin{align*}
& E_{+}=E_{+}(\alpha)=\operatorname{span}\left\{B_{\alpha} h: h \in H\right\}, \\
& E_{-}=E_{-}(\alpha)=\operatorname{span}\left\{\tilde{B}_{\alpha} h: h \in H\right\} . \tag{1.4}
\end{align*}
$$

It is obvious that the bounded operator

$$
\begin{equation*}
T_{\alpha}=I+i 2 \operatorname{Im} \alpha \cdot R_{\alpha} \tag{1.5}
\end{equation*}
$$

maps the subspace E_{+}in E_{-}since $[2,3]$

$$
\begin{equation*}
T_{\alpha} B_{\alpha}=\tilde{B}_{\alpha} T_{\alpha} \tag{1.6}
\end{equation*}
$$

Moreover, it is easy to see that

$$
\begin{gather*}
\langle A h, f\rangle-\langle h, A f\rangle=i\left\langle B_{\alpha}(A-\alpha I) h,(A-\alpha I) f\right\rangle, \forall h, f \in(A), \tag{1.7}\\
\left\langle A^{*} \tilde{h}, \tilde{f}\right\rangle-\left\langle\tilde{h}, A^{*} \tilde{f}\right\rangle=-i\left\langle B_{\alpha}\left(A^{*}-\bar{\alpha} I\right) \tilde{h},\left(A^{*}-\bar{\alpha} I\right) \tilde{f}\right\rangle, \text { forall } \tilde{h}, \tilde{f} \in \mathfrak{D}\left(A^{*}\right) .
\end{gather*}
$$

Now specifying the operators

$$
\begin{equation*}
\psi_{-}^{*}=\sqrt{\left|\tilde{B}_{\alpha}\right|}, \quad \psi_{+}=\sqrt{\left|B_{\alpha}\right|}, \quad \sigma_{-}=\operatorname{sign} B_{\alpha}, \quad \sigma_{+}=\operatorname{sign} B_{\alpha} \tag{1.8}
\end{equation*}
$$

where $\sqrt{|B|}$ and $\operatorname{sign} B$ for a selfadjoint bounded operator are understood in terms of the spectral decomposition B [10], from (1.6) we obtain

$$
\begin{equation*}
T_{\alpha} \sqrt{\left|B_{\alpha}\right|}=\sqrt{\left|\tilde{B}_{\alpha}\right|} T_{\alpha}, \quad T_{\alpha} \cdot \operatorname{sign} B_{\alpha}=\operatorname{sign} \tilde{B}_{\alpha} \cdot T_{\alpha} . \tag{1.9}
\end{equation*}
$$

Setting $K=-\sigma_{+} T_{\alpha}^{*}$, it is easy to verify that the colligation relations (1.2) follow from (1.3), (1.7), and (1.9).

Rem a rk 1.1. If the operators $B_{\alpha}, \tilde{B}_{\alpha}(1.1)$ are boundedly invertible on E_{+}and E_{-}(1.4), then setting

$$
\begin{equation*}
\psi_{-}=\tilde{B}_{\alpha}, \quad \psi_{+}=P_{\alpha}, \quad \sigma_{-}=\tilde{B}_{\alpha}, \quad \sigma_{+}=B_{\alpha}, \quad K=-T_{\alpha}^{*} \tag{1.10}
\end{equation*}
$$

where P_{α} is an orthoprojector on $E_{+}(1.4)$, it is easy to verify that the conditions of colligation (1.2) also take place.
II. Open systems associated with colligations [10] play an important role in the study of nonselfadjoint operators. Let $u_{-}(t)$ be a vector-function from E_{-} defined on $[0, T]$, and h be a vector from H. The open system $F_{\Delta}=\left\{R_{\Delta}, S_{\Delta}\right\}$
associated with the colligation Δ (1.1) is the pair of maps [10], $R_{\Delta}: H \oplus E_{-} \rightarrow H$, $S_{\Delta}: H \oplus E_{-} \rightarrow H \oplus E_{+}$,

$$
F_{\Delta}:\left\{\begin{array}{l}
R_{\Delta}\left(h, u_{-}(t)\right)=h(t) \\
S_{\Delta}\left(h, u_{-}(t)\right)=\left(h_{T}, u_{+}(t)\right),
\end{array}\right.
$$

defined as follows. The operator R_{Δ} is specified by using the Cauchy problem

$$
R_{\Delta}:\left\{\begin{array}{l}
i \frac{d}{d t} h(t)+A y(t)=\alpha \psi_{-} u(t) \tag{1.11}\\
y(t)=h(t)+\psi_{-} u_{-}(t) \in \mathfrak{D}(A) \\
h(0)=h, \quad t \in[0, T]
\end{array}\right.
$$

and the transfer mapping S_{Δ} has the form:

$$
S_{\Delta}:\left\{\begin{array}{l}
u_{+}(t)=K u_{-}(t)-i \varphi_{+} y(t), \tag{1.12}\\
h_{T}=h(T), \quad t \in[0, T]
\end{array}\right.
$$

where $h(t)$ is a solution of (1.11), and $y(t) \in \mathfrak{D}(A)$ is defined by $h(t)$ and $u_{-}(t)$ using formula (1.11).

R e m ark 1.2. If $u_{-}(t) \equiv 0$ in (1.11), then $y(t)=h(t) \in \mathfrak{D}(A)$, and we obtain the Cauchy problem

$$
\left\{\begin{array}{l}
i \frac{d}{d t} h(t)+A h(t)=0, \\
h(0)=h \in \mathfrak{D}(A), \quad t \in[0, T] .
\end{array}\right.
$$

The solvability of this Cauchy problem is equivalent to the existence of the strongly continuous semigroup $Z_{t}=\exp \{i t A\}$, with $h(t)=Z_{t} h$. So, the solutions of the Cauchy problem (1.11) exist if the operator A is an infinitesimal operator of the strongly continuous semigroup Z_{t}. The well-known theorem by Miyader-Feller-Fillips [11] gives the necessary and sufficient conditions for the closed densely defined operator A, when the resolvent $R_{\lambda}=(A-\lambda I)^{-1}$ is regular in the semiplane $\mathbb{C}_{-}(\omega)=\{\lambda \in \mathbb{C}: \omega+\operatorname{Im} \lambda<0\}$, $\omega \in \mathbb{R}(|\omega|<\infty)$, and, moreover, when $\lambda \in \mathbb{C}_{-}(\omega)$, the estimations

$$
\left\|R_{\lambda}^{n}\right\| \leq M|\omega+\operatorname{Im} \lambda|^{-n}, \quad \forall n \in \mathbb{Z}_{+},
$$

take place.
R em ark 1.3. Let $u_{-}(t)$ be differentiable. Then (1.11) yields that $y(t)$ also has the derivative and satisfies the nonhomogenous equation

$$
i \frac{d}{d t} y(t)+A y(t)=\psi_{-}\left(i u_{-}^{\prime}(t)+\alpha u_{-}(t)\right) .
$$

The solution of this equation exists if:

1) the operator A meets the conditions of the Miyader-Feller-Fillips theorem;
2) $y(0)=h+\psi_{-} u_{-}(0) \in \mathfrak{D}(A)$;
3) the function $f(t)=\psi_{-}\left(i u_{-}^{\prime}(t)+\alpha u_{-}(t)\right)$ is twice continuously differentiable, and $f(0) \in \mathfrak{D}(A)$.

So, if the conditions 1)-3) are met, then there always exists $y(t)$, and thus $h(t)$ (1.11) exists also.

Theorem 1.1. The conservation law

$$
\begin{equation*}
\|h\|^{2}+\int_{0}^{T}\left\langle\sigma_{-} u_{-}(t), u_{-}(t)\right\rangle d t=\left\|h_{T}\right\|^{2}+\int_{0}^{T}\left\langle\sigma_{+} u_{+}(t), u_{+}(t)\right\rangle d t \tag{1.13}
\end{equation*}
$$

holds for the open system $F_{\Delta}=\left\{R_{\Delta}, S_{\Delta}\right\}$ (1.11), (1.12) associated with the colligation Δ (1.1).

Proof. Equation (1.11) yields

$$
\begin{gathered}
\frac{d}{d t}\|h(t)\|^{2}=\left\langle i A y(t)-i \alpha \psi_{-} u_{-}(t),, y(t)-\psi_{-} u_{-}(t)\right\rangle+\left\langle y(t)-\psi_{-} u_{-}(t),\right. \\
\left.i A y(t)-i \alpha \psi_{-} u_{-}(t)\right\rangle=-2 \operatorname{Im}\langle A y(t), y(t)\rangle-2 \operatorname{Im} \alpha\left\|\psi_{-} u_{-}(t)\right\|^{2} \\
-\left\langle i(A-\bar{\alpha} I) y(t), \psi_{-} u_{-}(t)\right\rangle-\left\langle\psi_{-} u_{-}(t), i(A-\bar{\alpha} I) y(t)\right\rangle .
\end{gathered}
$$

Using the relations $1-4$ (1.2), we get

$$
\begin{gathered}
\frac{d}{d t}\|h(t)\|^{2}=-\left\langle\sigma_{+} \varphi_{+} y(t), \varphi_{+} y(t)\right\rangle+\left\langle\sigma_{-} u_{-}(t), \sigma_{-} u_{-}(t)\right\rangle-\left\langle J_{+} K u_{-}(t),\right. \\
\left.K u_{-}(t)\right\rangle+\left\langle i \sigma_{+} \varphi_{+} y(t), K u_{-}(t)\right\rangle+\left\langle J_{+} K u_{-}(t), i \varphi_{+} y(t)\right\rangle \\
=\left\langle\sigma_{-} u_{-}(t), u_{-}(t)\right\rangle-\left\langle\sigma_{+}\left[K u_{-}(t)-i \varphi_{+} y(t)\right],\left[K u_{-}(t)-i \varphi_{+} y(t)\right]\right\rangle .
\end{gathered}
$$

As a result, we obtain the following conservation law:

$$
\begin{equation*}
\frac{d}{d t}\|h(t)\|^{2}=\left\langle\sigma_{-} u_{-}(t), u_{-}(t)\right\rangle-\left\langle\sigma_{+} u_{+}(t), u_{+}(t)\right\rangle \tag{1.14}
\end{equation*}
$$

which yields (1.13) after integration.
Consider an open system dual to $F_{\Delta}=\left\{R_{\Delta}, S_{\Delta}\right\}$. Denote by $\tilde{u}_{+}(t)$ a vector function from E_{+}defined on $[0, T](0<T<\infty)$, and by \tilde{h} - a vector from H. A pair of mappings $R_{\Delta}^{+}: H+E_{+} \rightarrow H, S_{\Delta}^{+}: H+E_{+} \rightarrow H+E_{-}$,

$$
F_{\Delta}^{+}:\left\{\begin{array}{l}
R_{\Delta}^{+}\left(\tilde{h}, \tilde{u}_{+}(t)\right)=\tilde{h}(t), \\
S_{\Delta}\left(\tilde{h}, \tilde{u}_{+}(t)\right)=\left(\tilde{h}_{0}, \tilde{u}_{-}(t)\right)
\end{array}\right.
$$

is said to be the dual open system $F_{\Delta}^{+}=\left\{R_{\Delta}^{+}, S_{\Delta}^{+}\right\}$associated with the colligation Δ (1.1). Besides, R_{Δ}^{+}is specified by the Cauchy problem

$$
R_{\Delta}^{+}:\left\{\begin{array}{l}
i \frac{d}{d t} \tilde{h}(t)-A^{*} \tilde{y}(t)=-\bar{\alpha} \psi_{+}^{*} \tilde{u}_{+}(t), \tag{1.15}\\
\tilde{\tilde{y}}(t)=\psi_{+}^{*} \tilde{u}_{+}(t)-\tilde{h}(t) \in \mathfrak{D}\left(A^{*}\right), \\
\tilde{h}(T)=\tilde{h}, \quad t \in[0, T]
\end{array}\right.
$$

and S_{Δ}^{+}is given by

$$
S_{\Delta}^{+}:\left\{\begin{array}{l}
\tilde{u}_{-}(t)=K^{*} \tilde{u}_{+}(t)+i \varphi_{-}^{*} \tilde{y}(t), \tag{1.16}\\
\tilde{h}_{0}=\tilde{h}(0), \quad t \in[0, T]
\end{array}\right.
$$

$\tilde{h}(t)$ and $\tilde{y}(t)$ can be found from (1.15). Similarly to Remarks 1.2 and 1.3 , it is easy to establish the solvability of (1.15) under natural restrictions on the class of operators A^{*} and the class of functions $\tilde{u}_{+}(t)$.

Theorem 1.2. Let $F_{\Delta}^{+}=\left\{R_{\Delta}^{+}, S_{\Delta}^{+}\right\}$be the dual open system (1.15), (1.16) of the colligation Δ (1.1). Then

$$
\begin{equation*}
\|\tilde{h}\|^{2}+\int_{0}^{T}\left\langle\sigma_{+}^{-1} \tilde{u}_{+}(t), \tilde{u}_{+}(t)\right\rangle d t=\left\|\tilde{h}_{0}\right\|^{2}+\int_{0}^{T}\left\langle\sigma_{-}^{-1} \tilde{u}_{-}(t), \tilde{u}_{-}(t)\right\rangle d t \tag{1.17}
\end{equation*}
$$

Proof. Equation (1.15) yields

$$
\begin{gathered}
\frac{d}{d t}\|\tilde{h}(t)\|^{2}=\left\langle-i A^{*} \tilde{y}(t)+i \bar{\alpha} \psi_{+}^{*} \tilde{u}_{+}(t), \psi_{+}^{*} \tilde{u}_{+}(t)-\tilde{y}(t)\right\rangle \\
+\left\langle\psi_{+}^{*} \tilde{u}_{+}(t)-\tilde{y}(t),-i A^{*} \tilde{y}(t)+i \bar{\alpha} \psi_{+}^{*} \tilde{u}_{+}(t)\right\rangle=-2 \operatorname{Im}\left\langle A^{*} \tilde{y}(t), \tilde{y}(t)\right\rangle \\
+2 \operatorname{Im} \alpha\left\|\psi_{-}^{*} \tilde{u}_{+}(t)\right\|^{2}-\left\langle i\left(A^{*}-\alpha I\right) \tilde{y}(t), \psi_{+}^{*} \tilde{u}_{+}(t)\right\rangle-\left\langle\psi_{+}^{*} \tilde{u}_{+}(t), i\left(A^{*}-\alpha I\right) \tilde{y}(t)\right\rangle .
\end{gathered}
$$

Using the second relations of 1-4 (1.2), we have

$$
\begin{gathered}
\frac{d}{d t}\|h(t)\|^{2}=\left\langle\sigma_{-}^{-1} \varphi_{-}^{*} \tilde{y}(t), \varphi_{-}^{*} \tilde{y}(t)\right\rangle+\left\langle\sigma_{-}^{-1} K^{*} \tilde{u}_{+}(t), K^{*} \tilde{u}_{+}(t)\right\rangle \\
-\left\langle\sigma_{+}^{-1} \tilde{u}_{+}(t), \tilde{u}_{+}(t)\right\rangle+\left\langle i \sigma_{-}^{-1} \varphi_{-}^{*} \tilde{y}(t), K^{*} \tilde{u}_{+}(t)\right\rangle+\left\langle\sigma_{-}^{-1} K^{*} \tilde{u}_{+}(t), i \varphi_{-}^{*} \tilde{y}(t)\right\rangle \\
=\left\langle\sigma_{-}^{-1}\left[K^{*} \tilde{u}_{+}(t)+i \varphi_{-}^{*} \tilde{y}(t)\right],\left[K^{*} \tilde{u}_{+}(t)+i \varphi_{-}^{*} \tilde{y}(t)\right]\right\rangle-\left\langle\sigma_{+}^{-1} \tilde{u}_{+}(t), \tilde{u}_{+}(t)\right\rangle .
\end{gathered}
$$

Therefore

$$
\begin{equation*}
\frac{d}{d t}\|\tilde{h}(t)\|^{2}=\left\langle\sigma_{-}^{-1} \tilde{u}_{-}(t), \tilde{u}_{-}(t)\right\rangle-\left\langle\sigma_{+}^{-1} \tilde{u}_{+}(t), \tilde{u}_{+}(t)\right\rangle \tag{1.18}
\end{equation*}
$$

which yields (1.17) after integration.

The following theorem establishes an important correlation between the open systems $F_{\Delta}(1.11),(1.12)$ and $F_{\Delta}^{+}(1.15),(1.16)$.

Theorem 1.3. Let $h(t)$ and $u_{+}(t)$ be defined by $u_{-}(t)$ using the relations (1.11), (1.12) of the open system F_{Δ}, and the vector functions $\tilde{h}(t)$ and $\tilde{u}_{-}(t)$ be constructed by equalities (1.15), (1.16) of the dual open system F_{Δ}^{+}. Then the equality

$$
\begin{equation*}
\left\langle h_{T}, \tilde{h}\right\rangle+\int_{0}^{T}\left\langle u_{+}(t), \tilde{u}_{+}(t)\right\rangle d t=\left\langle h, \tilde{h}_{0}\right\rangle+\int_{0}^{T}\left\langle u_{-}(t), \tilde{u}_{-}(t)\right\rangle d t \tag{1.19}
\end{equation*}
$$

is true.
Proof. From (1.11) and (1.15) it follows that

$$
\begin{gathered}
\frac{d}{d t}\langle h(t), \tilde{h}(t)\rangle=\left\langle i A y(t)-i \alpha \psi_{-} u_{-}(t), \psi_{+}^{*} \tilde{u}_{+}(t)-\tilde{y}(t)\right\rangle \\
+\left\langle y(t)-\psi_{-} u_{-}(t),-i A \tilde{y}(t)+i \bar{\alpha} \psi_{+}^{*} \tilde{u}_{+}(t)\right\rangle=\left\langle i(A-\alpha I) y(t), \psi_{+}^{*} \tilde{u}_{+}(t)\right\rangle \\
+\left\langle\psi_{-} u_{-}(t), i\left(A^{*}-\bar{\alpha} I\right) \tilde{y}(t)\right\rangle .
\end{gathered}
$$

Taking into account 2 (1.2) and (1.12), (1.16), we obtain

$$
\begin{aligned}
& \frac{d}{d t}\langle h(t), \tilde{h}(t)\rangle=\left\langle i \varphi_{+} y(t), \tilde{u}_{+}(t)\right\rangle+\left\langle u_{-}(t), i \varphi_{-}^{*} \tilde{y}(t)\right\rangle \\
& =\left\langle K u_{-}(t)-u_{+}(t), \tilde{u}_{+}(t)\right\rangle+\left\langle u_{-}(t), \tilde{u}_{-}(t)-K^{*} \tilde{u}_{+}(t\rangle\right. \\
& =\left\langle u_{-}(t), \tilde{u}_{-}(t)\right\rangle-\left\langle u_{+}(t), \tilde{u}_{+}(t)\right\rangle
\end{aligned}
$$

and, consequently,

$$
\begin{equation*}
\frac{d}{d t}\langle h(t), \tilde{h}(t)\rangle=\left\langle u_{-}(t), \tilde{u}_{-}(t)\right\rangle-\left\langle u_{+}(t), \tilde{u}_{+}(t)\right\rangle \tag{1.20}
\end{equation*}
$$

Equality (1.19) follows from (1.20) after integration.
III. Let $u_{-}(t)$ in the open system $F_{\Delta}(1.11)$ be the plane wave $u_{-}(t)=$ $e^{i \lambda t} u_{-}(0)$. And let the vector functions $h(t), y(t)$, and $u_{+}(t)$ depend on t in a similar way: $h(t)=e^{i \lambda t} h, y(t)=e^{i \lambda t} y, u_{+}(t)=e^{i \lambda t} u_{+}(0)$, where $h, y \in H$, and $u_{+}(0)$ do not depend on t. Then (1.11), (1.12) yield

$$
\left\{\begin{array}{l}
-\lambda h+A y=\alpha \psi_{-} u_{-}(0), \tag{1.21}\\
h-y=-\psi_{-} u_{-}(0) \\
u_{+}(0)=K u_{-}(0)-i \varphi_{+} y,
\end{array}\right.
$$

where $y \in \mathfrak{D}(A)$.

Thus, if $\lambda \in \Omega$, then

$$
\left\{\begin{array}{l}
y=(\alpha-\lambda)(A-\lambda I)^{-1} \psi_{-} u_{-}(0) \tag{1.22}\\
h=-(A-\alpha I)(A-\lambda I)^{-1} \psi_{-} u_{-}(0) \\
u_{+}(0)=S_{\Delta}(\lambda) u_{-}(0)
\end{array}\right.
$$

where $S_{\Delta}(\lambda)$ is a characteristic function of the colligation $\Delta(1.1)$,

$$
\begin{equation*}
S_{\Delta}(\lambda)=K+i(\lambda-\alpha) \psi_{+}(A-\alpha I)(A-\lambda I)^{-1} \psi_{-} \tag{1.23}
\end{equation*}
$$

The function $S_{\Delta}(\lambda)$ is normalized at the point $\lambda=\alpha, S_{\Delta}(\alpha)=K$. Consider the operator function

$$
\begin{equation*}
T_{\lambda, \alpha}=(A-\alpha I)(A-\lambda I)^{-1}=I+(\lambda-\alpha) R_{\lambda} \tag{1.24}
\end{equation*}
$$

Then $S_{\Delta}(\lambda)$ can be written in the form

$$
\begin{equation*}
S_{\Delta}(\lambda)=K+i(\lambda-\alpha) \psi_{+} T_{\lambda, \alpha} \psi_{-} \tag{1.25}
\end{equation*}
$$

From (1.14) it follows easily (see, for instance, [10]) that

$$
\begin{equation*}
\frac{\sigma_{-}-S_{\Delta}^{*}(w) \sigma_{+} S_{\Delta}(\lambda)}{i(\lambda-\bar{w})}=\psi_{-}^{*} T_{w, \alpha}^{*} T_{\lambda, \alpha} \psi_{-} \tag{1.26}
\end{equation*}
$$

Analogously, if $\tilde{u}_{+}(t)$ in the dual open system $F_{\Delta}^{+}=\left\{R_{\Delta}^{+}, S_{\Delta}^{+}\right\}$(1.15), (1.16) is given by $\tilde{u}_{+}(t)=e^{i \bar{\lambda}(t-T)} \tilde{u}_{+}(T)$, where $\tilde{u}_{+}(T)$ is an independent of t vector from E_{+}, and if $\tilde{h}(t), \tilde{y}(t), \tilde{u}_{-}(t)$ also have the same dependency on $t, \tilde{h}(t)=e^{i \bar{\lambda}(t-T)} \tilde{h}$, $\tilde{y}(t)=e^{i \bar{\lambda}(t-T)} \tilde{y}, \tilde{u}_{-}(t)=e^{i \bar{\lambda}(t-T)} u_{-}(T)$, then (1.15), (1.16) yield

$$
\left\{\begin{array}{l}
\bar{\lambda} \tilde{h}+A^{*} \tilde{y}=\bar{\alpha} \psi_{+}^{*} \tilde{u}_{+}(T) \tag{1.27}\\
\tilde{h}+\tilde{y}=\psi_{+}^{*} \tilde{u}_{+}(T) \\
\tilde{u}_{-}(T)=K^{*} \tilde{u}_{+}(T)+i \varphi_{-}^{*} \tilde{y}
\end{array}\right.
$$

where $\tilde{y} \in \mathfrak{D}\left(A^{*}\right)$. Hence, if $\lambda \in \Omega$, this implies

$$
\left\{\begin{array}{l}
\tilde{y}=(\bar{\alpha}-\bar{\lambda})\left(A^{*}-\bar{\lambda} I\right)^{-1} \psi_{+}^{*} \tilde{u}_{+}(T) \tag{1.28}\\
\tilde{h}=\left(A^{*}-\bar{\alpha} I\right)\left(A^{*}-\bar{\lambda} I\right)^{-1} \psi_{+}^{*} \tilde{u}_{+}(T) \\
\tilde{u}_{-}(T)=S_{\Delta}^{+}(\lambda) \tilde{u}_{+}(T)
\end{array}\right.
$$

where the function $\stackrel{+}{S}_{\Delta}(\lambda)$ is given by

$$
\begin{equation*}
{\stackrel{+}{S_{\Delta}}}^{(\lambda)}=K^{*}-i(\bar{\lambda}-\bar{\alpha}) \psi_{-}^{*}\left(A^{*}-\bar{\alpha} I\right)\left(A^{*}-\bar{\lambda} I\right)^{-1} \psi_{+}^{*} \tag{1.29}
\end{equation*}
$$

It is obvious that the functions $S_{\Delta}(\lambda)(1.25)$ and $\stackrel{+}{S}_{\Delta}(\lambda)$ (1.29) satisfy the relation

$$
\begin{equation*}
\stackrel{+}{S_{\Delta}}(\lambda)=S_{\Delta}^{*}(\lambda) \tag{1.30}
\end{equation*}
$$

Using (1.12), it is easy to show that

$$
\begin{equation*}
\frac{S_{\Delta}(w) \sigma_{-}^{-1} S_{\Delta}^{*}(\lambda)-\sigma_{+}^{-1}}{i(\bar{\lambda}-w)}=\psi_{+} T_{w, \alpha} T_{\lambda, \alpha}^{*} \psi_{+}^{*} \tag{1.31}
\end{equation*}
$$

Finally, (1.18), with (1.29) being taken into account, implies

$$
\begin{equation*}
\frac{S_{\Delta}(\lambda)-S_{\Delta}(w)}{i(\lambda-w)}=\psi_{+} T_{w, \alpha} T_{\lambda, \alpha} \psi_{-} \tag{1.32}
\end{equation*}
$$

IV. Consider the operator function $K(\lambda, w): E_{-} \oplus E_{+} \rightarrow E_{-} \oplus E_{+}$,

$$
K(\lambda, w)=\left[\begin{array}{cc}
\frac{\sigma_{1}-S_{\Delta}^{*}(w) \sigma_{+} S_{\Delta}(\lambda)}{i(\lambda-\bar{w})} & \frac{S_{\Delta}^{*}(\lambda)-S_{\Delta}^{*}(w)}{i(\bar{w}-\bar{\lambda})} \tag{1.33}\\
\frac{S_{\Delta}(\lambda)-S_{\Delta}(w)}{i(\lambda-w)} & \frac{S_{\Delta}(w) \sigma_{-}^{-1} S_{\Delta}^{*}(\lambda)-\sigma_{+}^{-1}}{i(\bar{\lambda}-w)}
\end{array}\right]
$$

assuming that $\lambda, w, \alpha \in \Omega$. The formulae (1.26), (1.31), (1.32) imply that the kernel $K(\lambda, w)$ (1.33) is positively defined [10].

A subspace $H_{1} \subseteq H$ is said to be reducing for a densely defined operator A, if at every point of regularity $\lambda \in \Omega$ of the resolvent $R_{\lambda}=(A-\lambda I)^{-1}$ there takes place $R_{\lambda} P_{1}=P_{1} R_{\lambda}$, where P_{1} is an orthoprojector on H_{1}. For the colligation Δ (1.1), define the subspace

$$
\begin{equation*}
H_{1}=\operatorname{span}\left\{R_{\lambda} \psi_{-} u_{-}+R_{w}^{*} \psi_{+}^{*} u_{+}: u_{ \pm} \in E_{ \pm}, \lambda, w \in \Omega\right\} \tag{1.34}
\end{equation*}
$$

Theorem 1.4. The subspace H_{1} (1.34) reduces the operator A, besides, the contraction of A on $H_{0}=H \ominus H_{1}$ is a selfadjoint operator.

The proof of the statement follows from the colligation relations (1.2) and it is standard [10].

A colligation $\Delta(1.1)$ is said to be simple if $H=H_{1}$ (1.34).
Let two colligations Δ and Δ^{\prime} be given such that $E_{ \pm}=E_{ \pm}^{\prime}, \sigma_{ \pm}=\sigma_{ \pm}^{\prime}, K=K^{\prime}$, and, moreover, $\alpha=\alpha^{\prime} \in \Omega \cap \Omega^{\prime}(\neq \varnothing)$. These colligations are called unitarily equivalent [10] if there exists a unitary operator $U: H \rightarrow H^{\prime}$ such that

$$
\begin{gathered}
U A=A^{\prime} U, \quad U \mathfrak{D}(A)=\mathfrak{D}\left(A^{\prime}\right), \quad U A^{*}=\left(A^{\prime}\right)^{*} U, \quad U \mathfrak{D}\left(A^{\prime}\right)^{*}=\mathfrak{D}\left(\left(A^{\prime}\right)\right) \\
U \psi_{-}=\psi_{-}^{\prime}, \quad \psi_{+}^{\prime} U=\psi_{+}
\end{gathered}
$$

Theorem 1.5. Let Δ and Δ^{\prime} be simple colligations, $E_{ \pm}=E_{ \pm}^{\prime}, \sigma_{ \pm}=\sigma_{ \pm}^{\prime}$ of which are invertible, and $\alpha=\alpha^{\prime} \in \Omega \cap \Omega^{\prime}(\neq \varnothing)$. Then if in some neighborhood $U_{\delta}(\alpha) \subset \Omega \cap \Omega^{\prime}$ of the point α the characteristic functions (1.23) coincide, $S_{\Delta}(\lambda)=S_{\Delta^{\prime}}(\lambda)$, then the colligations Δ and Δ^{\prime} are unitarily equivalent.

The proof of the theorem follows easily from (1.26), (1.31), and (1.32).
Thus, the characteristic function $S_{\Delta}(\lambda)$ (1.23) defines the colligation Δ (1.1) up to the unitary equivalency.
V. Let us describe a class of functions generated by the characteristic functions $S_{\Delta}(\lambda)$ of the colligations Δ (1.1). Consider the following functions from H_{1} (1.34):

$$
\begin{equation*}
F\left(\lambda, u_{-}\right)=T_{\lambda, \alpha} \psi_{-} u_{-}, \quad \tilde{F}\left(\lambda, u_{+}\right)=T_{\lambda, \alpha}^{*} \psi_{+}^{*} u_{+}, \tag{1.35}
\end{equation*}
$$

where $u_{ \pm} \in E_{ \pm}$, and $\lambda, \alpha \in \Omega$.
Theorem 1.6. The operator $T_{w, \lambda}(1.24)(\lambda, w \in \Omega)$ acts on $F\left(\lambda, u_{-}\right)$and $\tilde{F}\left(\lambda, u_{+}\right)$in the following way:

$$
\begin{array}{ll}
\text { 1) } & T_{w, \lambda} F\left(\lambda, u_{-}\right)=F\left(w, u_{-}\right) ; \\
\text {2) } & T_{w, \lambda}^{*} \tilde{F}\left(\lambda, u_{+}\right)=\tilde{F}\left(w, u_{+}\right) ; \\
\text {3) } & T_{w, \bar{\lambda}} \tilde{F}\left(\lambda, u_{+}\right)=-F\left(w, \sigma_{-}^{-1} S_{\Delta}(\lambda) u_{+}\right) ; \tag{1.36}\\
\text {4) } & T_{w, \bar{\lambda}}^{*} F\left(\lambda, u_{+}\right)=-\tilde{F}\left(w, \sigma_{+} S_{\Delta}(\lambda) u_{-}\right) ;
\end{array}
$$

where $S_{\Delta}(\lambda)$ is the characteristic function of (1.25), and $\lambda, w, \alpha \in \Omega$.
Proof. Equations 1), 2) from (1.36) follow from the chain identity $T_{w, \lambda} T_{\lambda, \alpha}=$ $T_{w, \alpha}$. Since

$$
T_{w, \bar{\lambda}} \tilde{F}\left(\lambda, u_{+}\right)=T_{w, \bar{\lambda}} T_{\lambda, \alpha}^{*} \psi_{+}^{*} u_{+}=T_{w, \alpha} T_{\alpha, \bar{\lambda}} T_{\lambda, \alpha}^{*} \psi_{+}^{*} u_{+},
$$

we have to find the expression

$$
\begin{gathered}
T_{\alpha, \bar{\lambda}} T_{\lambda, \alpha}^{*} \psi_{+}^{*} u_{+}=\left(I+(\alpha-\bar{\lambda}) R_{\alpha}\right) T_{\lambda, \alpha}^{*} \psi_{+}^{*} u_{+}=T_{\lambda, \alpha}^{*} \psi_{+}^{*} u_{+} \\
+(\alpha-\bar{\alpha}) R_{\alpha} T_{\lambda, \alpha}^{*} \psi_{+}^{*} u_{+}+(\bar{\alpha}-\bar{\lambda}) R_{\alpha} T_{\lambda, \alpha}^{*} \psi_{+}^{*} u_{+} .
\end{gathered}
$$

Taking into account the equality

$$
R_{\alpha}=-i \psi_{-} \sigma_{-}^{-1} \psi_{-}+R_{\alpha}^{*}+(\alpha-\bar{\alpha}) R_{\alpha} R_{\alpha}^{*}
$$

which follows from 4. (1.2) and (1.7), and using the Hilbert identity $R_{\lambda}=T_{\lambda, \alpha} R_{\alpha}$ for the resolvents R_{λ}, we obtain

$$
T_{\alpha, \bar{\lambda}} T_{\lambda, \alpha}^{*} \psi_{+}^{*} u_{+}=\psi_{+}^{*} u_{+}+(\alpha-\bar{\alpha}) R_{\alpha} \psi_{+}^{*} u_{+}+\psi_{-} \sigma_{-}^{-1}\left[K^{*}-S_{\Delta}^{*}(\lambda)\right] u_{+} .
$$

Finally, since $\psi_{+}^{*}+(\alpha-\bar{\alpha}) R_{\alpha} \psi_{+}^{*} u_{+}+\psi_{+} \sigma_{-}^{-1} K^{*}=0$ (see 2, 3 (1.2)), we obtain that

$$
T_{\alpha, \bar{\lambda}} T_{\lambda, \alpha}^{*} \psi_{+}^{*} u_{+}=-\psi_{-} \sigma_{-}^{-1} S_{\Delta}^{*}(\lambda) u_{+},
$$

which proves 3) from (1.36). The proof of 4) from (1.36) is analogous.
This theorem implies the statement below.
Theorem 1.7. The family of operators $T_{w, z}$ (1.24) ($w, z \in \Omega$) acts on the functions $F\left(\lambda, u_{-}\right)$and $F\left(\lambda, u_{+}\right)$(1.35) in the following way:

1) $T_{w, z} F\left(\lambda, u_{-}\right)=\frac{w-z}{w-\lambda} F\left(w, u_{-}\right)+\frac{\lambda-z}{\lambda-w} F\left(\lambda, u_{-}\right)$;
2) $\quad T_{w, z}^{*} \tilde{F}\left(\lambda, u_{+}\right)=\frac{\bar{w}-\bar{z}}{\bar{w}-\bar{\lambda}} \tilde{F}\left(w, u_{+}\right)+\frac{\bar{\lambda}-\bar{z}}{\bar{\lambda}-\bar{w}} \tilde{F}\left(\lambda, u_{+}\right)$;
3) $T_{w, z} \tilde{F}\left(\lambda, u_{+}\right)=\frac{\bar{\lambda}-z}{\bar{\lambda}-w} \tilde{F}\left(\lambda, u_{+}\right)-\frac{w-z}{w-\bar{\lambda}} F\left(w, \sigma_{-}^{-1} S_{\Delta}^{*}(\lambda) u_{+}\right)$;
4) $T_{w, z}^{*} F\left(\lambda, u_{-}\right)=\frac{\lambda-\bar{z}}{\lambda-\bar{w}} F\left(\lambda, u_{-}\right)-\frac{\bar{w}-\bar{z}}{\bar{w}-\lambda} \tilde{F}\left(w, \sigma_{+} S_{\Delta}(\lambda) u_{-}\right)$;
for all $u_{ \pm} \in E_{ \pm}$and all $\lambda, w, z, \alpha \in \Omega$.
The class $\Omega_{\alpha}\left(\sigma_{-}, \sigma_{+}\right)$. Let $E_{ \pm}$be Hilbert spaces, $\sigma_{ \pm}$be selfadjoint invertible operators in E and $\alpha \in \mathbb{C} \backslash \mathbb{R}$. An operator function $S(\lambda): E_{-} \rightarrow E_{+}$belongs to the class $\Omega_{\alpha}\left(\sigma_{-}, \sigma_{+}\right)$if:
5) the function $S(\lambda)$ is holomorphic in some neighborhood $U_{\delta}(\alpha)=\{\lambda \in \mathbb{C}$: $|\lambda-\alpha|<\delta\}$ of the point α and $S(\alpha) \neq 0$;
6) the kernel $K(\lambda, w)$ (1.33) is Hermitian positive for all $\lambda, w \in U_{\delta}(\alpha)$.

It is obvious that the characteristic function $S_{\Delta}(\lambda)(1.25)$ belongs to the class $\Omega_{\alpha}\left(\sigma_{-}, \sigma_{+}\right)$.

Theorem 1.8. Let an operator function $S(\lambda): E_{-} \rightarrow E_{+}$belong to the class $\Omega_{\alpha}\left(\sigma_{-}, \sigma_{+}\right)$. Then there exists such a colligation Δ (1.1) that its characteristic function $S_{\Delta}(\lambda)$ (1.25) coincides with $S(\lambda), S_{\Delta}(\lambda)=S(\lambda)$, for all $\lambda \in U_{\delta}(\alpha)$.

Proof. Following [10], denote by $e_{\lambda} f$ the " δ-function", the support of which is concentrated at the point $\lambda \in U_{\delta}(\alpha)$ and $e_{\lambda} f$ in this point takes the value $f=\left(u_{-}, u_{+}\right) \in E_{-} \oplus E_{+}$. Consider the manifold L generated by the finite linear combinations $\sum_{1}^{N} e_{\lambda_{k}} f_{k}(N \in \mathbb{N})$. Using $K(\lambda, w)$ (1.33), on L specify the nonnegative bilinear form

$$
\begin{equation*}
\left\langle e_{\lambda} f, e_{w} g\right\rangle_{K} \stackrel{\text { def }}{=}\langle K(\lambda, w) f, g\rangle_{E_{-} \oplus E_{+}} . \tag{1.38}
\end{equation*}
$$

Closing L by the norm generated by form (1.38) and factorizing by the kernel of metric (1.38), we obtain the Hilbert space H_{K} [10].

Proceeding from (1.37), in H_{K} specify the family of operators $T_{w, z}$:

$$
\begin{align*}
T_{w, z} e_{\lambda} f= & e_{w}\left(\frac{w-z}{w-\lambda} u_{-}-\frac{w-z}{w-\bar{\lambda}} \sigma_{-}^{-1} S^{*}(\lambda) u_{+}, 0\right) \\
& +e_{\lambda}\left(\frac{\lambda-z}{\lambda-w} u_{-}, \frac{\bar{\lambda}-z}{\bar{\lambda}-w} u_{+}\right), \tag{1.39}
\end{align*}
$$

where $\lambda, w \in U_{\delta}(\alpha)$, and $f=\left(u_{-}, u_{+}\right)$. It is easy to show that

$$
\begin{align*}
T_{w, z}^{*} e_{\lambda} f= & e_{w}\left(0, \frac{\bar{w}-\bar{z}}{\bar{w}-\bar{\lambda}} u_{+}-\frac{\bar{w}-\bar{z}}{\bar{w}-\lambda} \sigma_{+} S(\lambda) u_{-}\right) \\
& +e_{\lambda}\left(\frac{\lambda-\bar{z}}{\lambda-\bar{w}} u_{-}, \frac{\bar{\lambda}-\bar{z}}{\bar{\lambda}-\bar{w}} u_{+}\right) . \tag{1.40}
\end{align*}
$$

Let

$$
\begin{equation*}
K=S(\lambda), \quad \psi_{-} u_{-}=e_{\alpha} u_{-}, \quad \psi_{+}^{*} u_{+}=e_{\alpha} u_{+} . \tag{1.41}
\end{equation*}
$$

It is obvious that the colligation relations 1 (1.2) are true. Really,

$$
\left\langle\psi_{-} u_{-}, \psi_{-} u_{-}^{\prime}\right\rangle=\left\langle K(\alpha, \alpha) u_{-}, u_{-}^{\prime}\right\rangle=\left\langle\frac{\sigma_{-}-K^{*} \sigma_{+} K}{i(\alpha-\bar{\alpha})} u_{-}, u_{-}^{\prime}\right\rangle,
$$

which proves the first condition in 1. (1.2). Simple calculations show that

$$
\begin{align*}
& \psi_{-}^{*} e_{\lambda} f=\frac{\sigma_{-}-K^{*} \sigma_{+} S(\lambda)}{i(\lambda-\bar{\alpha})} u_{-}+\frac{S^{*}(\lambda)-K^{*}}{i(\bar{\alpha}-\bar{\lambda})} u_{+}, \\
& \psi_{+} e_{\lambda} f=\frac{S(\lambda)-K}{i(\lambda-\alpha)} u_{-}+\frac{K \sigma_{-}^{-1} S^{*}(\lambda)-\sigma_{+}^{-1}}{i(\bar{\lambda}-\alpha)} u_{+} . \tag{1.42}
\end{align*}
$$

Since the first relation in 3 (1.2) can be written as $K^{*} \sigma_{+} \psi_{+}+\psi_{-}^{*} T_{\alpha, \bar{\alpha}}=0$, its proof follows easily from (1.39) and (1.42).

Relations 4 (1.2) are proven in a similar way after being rewritten in terms of $T_{\alpha, \bar{\alpha}}$.

From (1.39), it is easy to calculate how the resolvent $R_{w}=(w-z)^{-1}\left(T_{w, z}-I\right)$ acts on the elements $e_{\lambda} f$, which, in virtue of the relation $A R_{w}=I+w R_{w}$, results in the conclusion that the operator A in H_{K} has the form

$$
\begin{equation*}
A e_{\lambda} f=e_{\lambda}\left(\lambda u_{-}, \bar{\lambda} u_{+}\right), \tag{1.43}
\end{equation*}
$$

where the domain $\mathfrak{D}(A)$ is

$$
\begin{gather*}
\mathfrak{D}(A)=\left\{\sum_{p=1}^{N} e_{\lambda_{p}} f_{p} \in H_{K}: \lambda_{p} \in U_{\delta}(\alpha), f_{p}=\left(u_{-}^{p}, u_{+}^{p}\right) \in E_{-} \oplus E_{+},\right. \tag{1.44}\\
\left.u_{-}^{p}=\sigma_{-}^{-1} S^{*}\left(\lambda_{p}\right) u_{+}^{p}, 1 \leq p \leq N, N \leq \infty\right\} .
\end{gather*}
$$

Construct the colligation

$$
\Delta_{K}=\left(\sigma_{-}, H_{K} \oplus E_{-},\left[\begin{array}{cc}
A & \psi_{-} \tag{1.45}\\
\psi_{+} & K
\end{array}\right], H_{K} \oplus E_{+}, \sigma_{+}\right)
$$

where K, ψ_{-}, ψ_{+}, and A are given by formulae (1.41) and (1.43), (1.44) correspondingly. Finally, show that the characteristic function $S_{\Delta_{K}}(\lambda)$ (1.25) of the colligation $\Delta_{K}(1.45)$ coincides with $S(\lambda)$. Equations (1.39), (1.41) imply

$$
T_{\lambda, \alpha} \psi_{-} u_{-}=T_{\lambda, \alpha} e_{\alpha}\left(u_{-}, 0\right)=e_{\lambda}\left(u_{-}, 0\right) .
$$

Using the structure of the operator ψ_{+}(1.42), we obtain that

$$
\psi_{+} T_{\lambda, \alpha} \psi_{-} u_{-}=\frac{S(\lambda)-K}{i(\lambda-\alpha)} u_{-},
$$

which concludes the proof.
Conservative and not only (passive and others) systems from one variable were studied in [12].

2. Commutative Colligations and Open Systems.
 Systems of Unbounded Operators

I. In a Hilbert space, consider a commutative system of the linear unbounded operators $\left\{A_{1}, A_{2}\right\}$, where the domain $\mathfrak{D}\left(A_{p}\right)$ of each operator A_{p} is dense in H, $\overline{\mathfrak{D}\left(A_{p}\right)}=H, p=1,2$, and the commutativity of the operators A_{1}, A_{2} is understood in terms of interchangeability of resolvents, $\left[R_{1}, R_{2}\right]=0$, where $R_{p}=R_{p}(\alpha)=\left(A_{p}-\alpha I\right)^{-1}, p=1,2$, assuming that α is a point of regularity of resolvents $R_{1}(\lambda), R_{2}(\lambda)$. Obviously, $\left[R_{1}, R_{2}\right]=0$ yields $\left[R_{1}(\lambda), R_{2}(w)\right]=0$ for all λ and w belonging to the joint domain of regularity of $R_{1}(\lambda)$ and $R_{2}(\lambda)$. The following definition plays an important role hereinafter and it is a generalization of Definition 1 (see Sect. 1) for the commutative case.

Definition 2. Let a system of the linear unbounded operators $\left\{A_{1}, A_{2}\right\}$ be given in a Hilbert space H such that: a) the domain $\mathfrak{D}\left(A_{p}\right)$ of the operator A_{p} is dense in $\left.H, \overline{\mathfrak{D}\left(A_{p}\right)}=H, p=1,2 ; b\right)$ every operator A_{p} is closed in H, $p=1,2 ; c)$ there exists a nonempty domain $\Omega \subset \mathbb{C} \backslash \mathbb{R}$ such that the resolvents $R_{p}(\lambda)=\left(A_{p}-\lambda I\right)^{-1}$ are regular for all $\left.\lambda \in \Omega, p=1,2 ; d\right)$ the resolvents R_{1} $\left(=R_{1}(\alpha)\right), R_{2}\left(=R_{2}(\alpha)\right)$ commute at least at one point $\alpha \in \Omega$.

And let the Hilbert spaces $E_{ \pm}$, the linear bounded operators $\psi_{-}: E_{-} \rightarrow H$, $\psi_{+}: H \rightarrow E_{+}$and $\left\{\sigma_{p}^{-}\right\}_{1}^{2},\left\{\tau_{p}^{-}\right\}_{1}^{2},\left\{N_{p}\right\}_{1}^{2}, \Gamma: E_{-} \rightarrow E_{-},\left\{\sigma_{p}^{+}\right\}_{1}^{2},\left\{\tau_{p}^{+}\right\}_{1}^{2},\left\{\tilde{N}_{p}\right\}_{1}^{2}$,
$\tilde{\Gamma}: E_{+} \rightarrow E_{+}$be given, where $\left\{\sigma_{p}^{ \pm}\right\}_{1}^{2}$ and $\left\{\tau_{p}^{ \pm}\right\}_{1}^{2}$ are selfadjoint. The totality

$$
\begin{gather*}
\Delta=\Delta(\alpha)=\left(\left\{\sigma_{p}^{-}\right\}_{1}^{2},\left\{\tau_{p}^{-}\right\}_{1}^{2},\left\{N_{p}\right\}_{1}^{2}, \Gamma, H \oplus E_{-},\left\{\left[\begin{array}{cc}
A_{p} & \psi_{-} \\
\psi_{+} & K
\end{array}\right]\right\}_{1}^{2}\right. \tag{2.1}\\
\left.H \oplus E_{+}, \tilde{\Gamma},\left\{\tilde{N}_{p}\right\}_{1}^{2},\left\{\tau_{p}^{+}\right\}_{1}^{2},\left\{\sigma_{p}^{+}\right\}_{1}^{2}\right)
\end{gather*}
$$

is said to be the commutative colligation if there exists $\alpha \in \Omega$ such that:

1) $2 \operatorname{Im} \alpha \cdot N_{p}^{*} \psi_{-}^{*} \psi_{-} N_{p}=K^{*} \sigma_{p}^{+} K-\sigma_{p}^{-}, 2 \operatorname{Im} \alpha \cdot \tilde{N}_{p} \psi_{+} \psi_{+}^{*} \tilde{N}_{p}^{*}=K \tau_{p}^{-} K^{*}-\tau_{p}^{+}$;
2) the operators

$$
\begin{gathered}
\varphi_{+}^{p}=\psi_{+}\left(A_{p}-\alpha I\right): \mathfrak{D}\left(A_{p}\right) \rightarrow E_{+} \\
\left(\varphi_{-}^{p}\right)^{*}=\psi_{-}^{*}\left(A_{p}^{*}-\bar{\alpha} I\right): \mathfrak{D}\left(A_{p}^{*}\right) \rightarrow E_{-}
\end{gathered}
$$

are such that:
3) $K^{*} \sigma_{p}^{+} \varphi_{+}^{p}+N_{p}^{*} \psi_{-}^{*}\left(A_{p}-\bar{\alpha} I\right)=0, K \tau_{p}^{-}\left(\varphi_{-}^{p}\right)^{*}+\tilde{N}_{p} \psi_{1}\left(A_{p}^{*}-\alpha I\right)=0$;
4) $2 \operatorname{Im}\left\langle A_{p} h_{p}, h_{p}\right\rangle=\left\langle\sigma_{p}^{+} \varphi_{+}^{p} h_{p}, \varphi_{+}^{p} h_{p}\right\rangle$, $\forall h_{p} \in \mathfrak{D}\left(A_{p}\right)$,

$$
\begin{equation*}
-2 \operatorname{Im}\left\langle A_{p}^{*} \tilde{h}_{p}, \tilde{h}_{p}\right\rangle=\left\langle\tau_{p}^{-}\left(\varphi_{-}^{p}\right)^{*} \tilde{h}_{p},\left(\varphi_{-}^{p}\right)^{*} \tilde{h}_{p}\right\rangle, \quad \forall \tilde{h}_{p} \in \mathfrak{D}\left(A_{p}\right) \tag{2.2}
\end{equation*}
$$

where $p=1,2$. And, moreover, the relations:
5) $R_{2} \psi_{-} N_{1}-R_{1} \psi_{-} N_{2}=\psi_{-} \Gamma, \tilde{N}_{1} \psi_{+} R_{2}-\tilde{N}_{2} \psi_{+} R_{1}=\tilde{\Gamma} \tilde{\psi}_{+}$;
6) $\tilde{\Gamma} K-K \Gamma=i\left(\tilde{N}_{1} \psi_{+} \psi_{-} N_{2}-\tilde{N}_{2} \psi_{+} \psi_{-} N_{1}\right)$;
7) $K N_{p}=\tilde{N}_{p} K$, are true, where $R_{p}=R_{p}(\alpha), p=1,2$.

Show that for every operator system $\left\{A_{1}, A_{2}\right\}$ satisfying the suppositions a) - d) there always exist such Hilbert spaces $E_{ \pm}$and corresponding operators $\psi_{ \pm}$, $K,\left\{\sigma_{p}^{ \pm}\right\}_{1}^{2},\left\{\tau_{p}^{ \pm}\right\}_{1}^{2},\left\{N_{p}\right\}_{1}^{2},\left\{\tilde{N}_{p}\right\}_{1}^{2}, \Gamma, \tilde{\Gamma}$, that the relations $1-7$ (2.1) hold. To do this, similarly to (1.5), consider two commuting bounded operators

$$
\begin{equation*}
T_{p}=I+i 2 \operatorname{Im} \alpha \cdot R_{p}, \quad p=1,2 \tag{2.3}
\end{equation*}
$$

and let (see (1.3))

$$
\begin{array}{cc}
B_{p}=i R_{p}-i R_{p}^{*}+2 \operatorname{Im} \alpha \cdot R_{p}^{*} R_{p}, & p=1,2 \tag{2.4}\\
\tilde{B}_{p}=i R_{p}-i R_{p}^{*}+2 \operatorname{Im} \alpha \cdot R_{p} R_{p}^{*} & , p=1,2
\end{array}
$$

It is easy to see that

$$
\begin{equation*}
T_{p} B_{p}=\tilde{B}_{p} T_{p}, \quad p=1,2 \tag{2.5}
\end{equation*}
$$

Analogously as in (1.7),

$$
\begin{equation*}
2 \operatorname{Im}\left\langle A_{p} h_{p}, h_{p}\right\rangle=\left\langle B_{p}\left(A_{p}-\alpha I\right) h_{p},\left(A_{p}-\alpha I\right) h_{p}\right\rangle, \forall h_{p} \in \mathfrak{D}\left(A_{p}\right) \tag{2.6}
\end{equation*}
$$

$$
-2 \operatorname{Im}\left\langle A_{p}^{*} \tilde{h}_{p}, \tilde{h}_{p}\right\rangle=\left\langle\tilde{B}_{p}\left(A_{p}^{*}-\bar{\alpha} I\right) \tilde{h}_{p},\left(A_{p}^{*}-\bar{\alpha} I\right) \tilde{h}_{p}\right\rangle, \forall \tilde{h}_{p} \in \mathfrak{D}\left(A_{p}^{*}\right)
$$

take place, where $p=1,2$. Define the bounded operators in H

$$
\begin{gather*}
\sigma_{p}^{+}=B_{p}, \quad p=1,2, \quad \sigma_{1}^{-}=T_{2} \tilde{B}_{1} T_{2}^{*}, \quad \sigma_{2}^{-}=T_{1} B_{2} T_{1}^{*} \\
N_{1}=\tilde{B}_{1} T_{2}^{*}, \quad N_{2}=\tilde{B}_{2} T_{1}^{*}, \quad \Gamma=\tilde{B}_{1} R_{2}^{*}-\tilde{B}_{2} R_{1}^{*} \\
\tau_{p}^{-}=\tilde{B}_{p}, \quad p=1,2, \quad \tau_{1}^{+}=T_{2}^{*} B_{1} T_{2}, \quad \tau_{2}^{+}=T_{1}^{*} B_{2} T_{1} \tag{2.7}\\
\tilde{N}_{1}=T_{2}^{*} B_{1}, \quad \tilde{N}_{2}=T_{1}^{*} B_{2}, \quad \tilde{\Gamma}=R_{2}^{*} B_{1}-R_{1}^{*} B_{2}
\end{gather*}
$$

Consider the Hilbert spaces

$$
\begin{align*}
& E_{-}=\operatorname{span}\left\{\tilde{B}_{1} H+\tilde{B}_{2} H+N_{1}^{*} H+N_{2}^{*} H\right\}, \\
& E_{+}=\operatorname{span}\left\{B_{1} H+B_{2} H+\tilde{N}_{1} H+\tilde{N}_{2} H\right\}, \tag{2.8}
\end{align*}
$$

and let

$$
\begin{equation*}
K=-T_{1}^{*} T_{2}^{*}, \quad \psi_{-}=P_{-}, \quad \psi_{+}=P_{+}, \tag{2.9}
\end{equation*}
$$

where $P_{ \pm}$are the orthoprojectors on $E_{ \pm}(2.8)$. It is easy to see that the relations 1-4 (2.2) follow from equalities (2.3)-(2.7). Consequently, 7 (2.2) follows from (2.5). By simple calculations we may check the conditions 5,6 . Finally, it is easy to show that the operator K (2.9) maps E_{-}in (2.8).

Remark 2.1. Equations 2, 4 (2.2) imply

$$
\begin{equation*}
B_{p}=\psi_{+}^{*} \sigma_{p}^{+} \psi_{+}, \quad \tilde{B}_{p}=\psi_{-} \tau_{p}^{-} \psi_{-}^{*}, \quad p=1,2, \tag{2.10}
\end{equation*}
$$

by virtue of the density of the domains $\mathfrak{D}\left(A_{p}\right), \mathfrak{D}\left(A_{p}^{*}\right), p=1,2$.
II. Before turning to the open system associated with the commutative colligation $\Delta(2.1)$, which is a two-variable analogue of the system $F_{\Delta}=\left\{R_{\Delta}, S_{\Delta}\right\}$ (1.11), (1.12), write the main equations (1.11), (1.12) in other form. Since (1.11), (1.12) are given by

$$
\left\{\begin{array}{l}
i \partial_{t} h(t)+A y(t)=\alpha \psi_{-} u_{-}(t), \tag{2.11}\\
y(t)=h(t)+\psi_{-} u_{-}(t) \in \mathfrak{D}(A), \\
h(0)=h, \quad t \in[0, T] \\
u_{+}(t)=K u_{-}(t)-i \varphi_{+} y(t),
\end{array}\right.
$$

where $\partial_{t}=\frac{\partial}{\partial t}$, by multiplying the second equality by α and subtracting it from the first one, we obtain

$$
\begin{equation*}
\operatorname{Lh}(t)+\hat{y}(t)=0, \tag{2.12}
\end{equation*}
$$

where the operator L and the function $\hat{y}(t)$ are such that

$$
\begin{equation*}
L=i \partial_{t}+\alpha, \quad y(t)=R_{\alpha} \hat{y}(t) \in \mathfrak{D}(A) . \tag{2.13}
\end{equation*}
$$

Therefore equations (2.11) can be written in the following form:

$$
\left\{\begin{array}{l}
L h(t)+\hat{y}(t)=0, \tag{2.14}\\
R_{\alpha} \hat{y}(t)=h(t)+\psi_{-} u_{-}(t) \in \mathfrak{D}(A), \\
h(0)=h, \quad t \in[0, T] \\
u_{+}(t)=K u_{-}(t)-i \psi_{+} \hat{y}(t) .
\end{array}\right.
$$

The first two equalities yield that $\hat{y}(t)$ is a solution of the equation

$$
\begin{equation*}
L R_{\alpha} \hat{y}(t)+\hat{y}(t)=\psi_{-} L u_{-}(t) \tag{2.15}
\end{equation*}
$$

Applying the operator L to equalities (2.11), we obtain

$$
\left\{\begin{array}{l}
-i \partial_{t} \hat{y}(t)+A L y(t)=\alpha \psi_{-} L u_{-}(t), \tag{2.16}\\
L y(t)=-\hat{y}(t)+\psi_{-} L u_{-}(t) \in \mathfrak{D}(A), \\
L u_{+}(t)=K L u_{-}(t)-i \varphi_{+} L y(t)
\end{array}\right.
$$

Since these equalities coincide with the relations (2.11) after substitutions $h(t) \rightarrow-\hat{y}(t), y(t) \rightarrow L y(t), u_{ \pm}(t) \rightarrow L u_{ \pm}(t)$, by using the conservation law (1.14), we obtain

$$
\begin{equation*}
\partial_{t}\|\hat{y}(t)\|^{2}=\left\langle\sigma_{-} L u_{-}(t), L u_{-}(t)\right\rangle-\left\langle\sigma_{+} L u_{+}(t), L u_{+}(t)\right\rangle . \tag{2.17}
\end{equation*}
$$

III. Denote by $D=\left[0, T_{1}\right] \times\left[0, T_{2}\right]$ the rectangle in $\mathbb{R}_{+}^{2}, 0<T_{p}<\infty$, $p=1,2$, and let $u_{-}(t)$ be a vector function in E_{-}specified when $t=\left(t_{1}, t_{2}\right) \in D$. The system of the relations

$$
R_{\Delta}:\left\{\begin{array}{l}
i \partial_{1} h_{1}(t)+A_{1} y_{1}(t)=\alpha \psi_{-} N_{1} u_{-}(t), \tag{2.18}\\
y_{1}(t)=h_{1}(t)+\psi_{-} N_{1} u_{-}(t) \in \mathfrak{D}\left(A_{1}\right), \\
i \partial_{2} h_{2}(t)+A_{2} y_{2}(t)=\alpha \psi_{-} N_{2} u_{-}(t), \\
y_{2}(t)=h_{2}(t)+\psi_{-} N_{2} u_{-}(t) \in \mathfrak{D}\left(A_{2}\right), \\
h_{1}(0)=h_{1}, \quad h_{2}(0)=h_{2}, \quad t=\left(t_{1}, t_{2}\right) \in D
\end{array}\right.
$$

where $\partial_{p}=\partial / \partial t_{p}, p=1,2$, is said to be the open system $F_{\Delta}=\left\{R_{\Delta}, S_{\Delta}\right\}$ associated with the colligation Δ (2.1). Let the vector functions $y_{1}(t)$ and $y_{2}(t)$ be such that

$$
\begin{equation*}
y_{1}(t)=R_{1} y(t), \quad y_{2}(t)=R_{2} y(t), \tag{2.19}
\end{equation*}
$$

and $y(t)$ be a vector function from H. Thus, the functions $\left\{y_{p}(t)\right\}_{1}^{2}$ have a joint generatrix $y(t)$, moreover, (2.19) implies that

$$
\begin{equation*}
R_{1} y_{2}(t)=R_{2} y_{1}(t) \tag{2.20}
\end{equation*}
$$

As for the initial data h_{1} and h_{2}, we assume that

$$
\begin{equation*}
h_{p}=R_{p} y(0)-\psi_{-} N_{p} u_{-}(0), \quad p=1,2 . \tag{2.21}
\end{equation*}
$$

The mapping S_{Δ} is given by

$$
\begin{equation*}
S_{\Delta}: u_{+}(t)=K u_{-}(t)-i \psi_{+} y(t) \tag{2.22}
\end{equation*}
$$

Similarly to (2.13), consider the differential operators

$$
\begin{equation*}
L_{p}=i \partial_{p}+\alpha, \quad p=1,2 . \tag{2.23}
\end{equation*}
$$

Then the main equations (2.18) can be written in the following form:

$$
\left\{\begin{array}{l}
L_{1} h_{1}(t)+y(t)=0, \tag{2.24}\\
R_{1} y(t)=h_{1}(t)+\psi_{-} N_{1} u_{-}(t) \in \mathfrak{D}\left(A_{1}\right), \\
L_{2} h_{2}(t)+y(t)=0 \\
R_{2} y(t)=h_{2}(t)+\psi_{-} N_{2} u_{-}(t) \in \mathfrak{D}\left(A_{2}\right),
\end{array}\right.
$$

which is similar to (2.14). Consequently, $L_{1} h_{1}(t)=-y(t)=L_{2} h_{2}(t)$. Therefore, taking into account (2.23) and (2.18), we obtain that (cf. (2.15))

$$
\left\{\begin{array}{l}
R_{1} L_{1} y(t)+y(t)=\psi_{-} N_{1} L_{1} u_{-}(t) \tag{2.25}\\
R_{2} L_{2} y(t)+y(t)=\psi_{-} N_{2} L_{2} u_{-}(t), \\
y(0)=y_{0}, \quad t=\left(t_{1}, t_{2}\right) \in D \\
u_{+}(t)=K u_{-}(t)-i \psi_{+} y(t)
\end{array}\right.
$$

So, if the vector function $y(t)$ satisfies the relations (2.25), then the functions $h_{1}(t), h_{2}(t)(2.24)$ as well as $y_{1}(t), y_{2}(t)(2.19)$ can be defined by it.

Theorem 2.1. The system of equations (2.18) is consistent if the vector function $u_{-}(t)$ is a solution of the equation

$$
\begin{equation*}
\left\{N_{1} L_{1}-N_{2} L_{2}+\Gamma L_{1} L_{2}\right\} u_{-}(t)=0, \tag{2.26}
\end{equation*}
$$

given that (2.19), (2.21) hold and L_{p} has the form of (2.23), $p=1,2$.
Proof. The consistency condition follows from (2.25) if one takes into account the commutativity $\left[R_{1} L_{1}, R_{2} L_{2}\right]=0$. Since

$$
L_{1} R_{1} L_{2} R_{2} y(t)=y(t)-\psi_{-} N_{1} L_{1} u_{-}(t)+R_{-} \psi_{-} N_{2} L_{1} L_{2} u_{-}(t)
$$

and similarly

$$
L_{2} R_{2} L_{1} R_{1} y(t)=y(t)-\psi_{-} N_{2} L_{2} u_{-}(t)+R_{2} \psi_{-} N_{1} L_{1} L_{2} u_{-}(t)
$$

then, subtracting these equalities, we obtain

$$
\psi_{-}\left(N_{1} L_{1}-N_{2} L_{2}\right) u_{-}(t)+\left(R_{2} \psi_{-} N_{1}-R_{1} \psi_{-} N_{2}\right) L_{1} L_{2} u_{-}(t)=0 .
$$

Taking into account 5 (2.2), we obtain

$$
\psi_{-}\left\{N_{1} L_{1}-N_{2} L_{2}+\Gamma L_{1} L_{2}\right\} u_{-}(t)=0,
$$

which proves (2.26).
Theorem 2.2. If for the vector function $y(t)$ equation (2.25) takes place, and $u_{-}(t)$ is a solution of (2.26), then $u_{+}(t)$ (2.22) satisfies the equation

$$
\begin{equation*}
\left\{\tilde{N}_{1} L_{1}-\tilde{N}_{2} L_{1}+\tilde{\Gamma} L_{1} L_{2}\right\} u_{+}(t)=0 \tag{2.27}
\end{equation*}
$$

Proof. Calculate

$$
\begin{gathered}
{\left[\tilde{N}_{1} L_{1}-\tilde{N}_{2} L_{2}\right] u_{+}(t)=K\left[N_{1} L_{1}-N_{2} L_{2}\right] u_{-}(t)} \\
-i\left[\tilde{N}_{1} \psi_{+} L_{1}-\tilde{N}_{2} \psi_{+} L_{2}\right] y(t)=-K \Gamma L_{1} L_{2} u_{-}(t) \\
-i \tilde{N} \psi_{+} L_{1}\left(\psi_{-} N_{2} L_{2} u_{-}(t)-L_{2} R_{2} y(t)\right)+i N_{2} \psi_{+} L_{2}\left(\psi_{-} N_{1} L_{1} u_{-}(t)-L_{1} R_{1} y(t)\right) \\
=\left\{-K \Gamma-i \tilde{N}_{1} \psi_{+} \psi_{-} N_{2}+i \tilde{N}_{2} \psi_{+} \psi_{-} N_{1}\right\} L_{1} L_{2} u_{-}(t) \\
+i\left(\tilde{N}_{1} \psi_{+} R_{2}-\tilde{N}_{2} \psi_{+} R_{1}\right) L_{1} L_{2} y(t)=-\tilde{\Gamma} K L_{1} L_{2} u_{-}(t)+i \tilde{\Gamma} \psi_{+} L_{1} L_{2} y(t) \\
=-\tilde{\Gamma} L_{1} L_{2} u_{+}(t),
\end{gathered}
$$

which proves (2.27) in virtue of (2.26), (2.25) and 5, 6 (2.2).
Theorem 2.3. For the open system $F_{\Delta}=\left\{R_{\Delta}, S_{\Delta}\right\}$ (2.18), (2.22) associated with the colligation Δ (2.1), the following conservation laws are true:

$$
\begin{align*}
& \text { 1) } \partial_{p}\left\|h_{p}(t)\right\|^{2}=\left\langle\sigma_{p}^{-} u_{-}(t), u_{-}(t)\right\rangle-\left\langle\sigma_{p}^{+} u_{+}(t), u_{+}(t)\right\rangle, p=1,2 ; \\
& \text { 2) } \partial_{2}\left\{\left\langle\sigma_{1}^{-} L_{1} u_{-}(t), L_{1} u_{-}(t)\right\rangle-\left\langle\sigma_{1}^{+} L_{1} u_{+}(t), L_{1} u_{+}(t)\right\rangle\right\} \tag{2.28}\\
& =\partial_{1}\left\{\left\langle\sigma_{2}^{-} L_{2} u_{-}(t), L_{2} u_{-}(t)\right\rangle-\left\langle\sigma_{2}^{+} L_{2} u_{+}(t), L_{2} u_{+}(t)\right\rangle\right\} .
\end{align*}
$$

Proof. The relations 1) (2.27) are proved in the same way as equality (1.14). Since the conservation laws 1) (2.28) can be written as (see (2.17))

$$
\partial_{p}\|y(t)\|^{2}=\left\langle\sigma_{p}^{-} L_{p} u_{-}(t), L_{p} u_{-}(t)\right\rangle-\left\langle\sigma_{p}^{+} L_{p} u_{+}(t), L_{p} u_{+}(t),\right\rangle, \quad p=1,2,
$$

then, taking into account the equality of mixed derivatives $\partial_{2} \partial_{1}\|y(t)\|^{2}=$ $\partial_{1} \partial_{2}\|y(t)\|^{2}$, we obtain 2) (2.28).
IV. Along with the open system $F_{\Delta}=\left\{R_{\Delta}, S_{\Delta}\right\}$ (2.18), (2.22) characterizing the evolution generated by $\left\{A_{1}, A_{2}\right\}$, consider also the dual situation responding to the dynamics specified by the adjoint operator system $\left\{A_{1}^{*}, A_{2}^{*}\right\}$.

Let a vector function $\tilde{u}_{+}(t)$ in $E_{+}, t=\left(t_{1}, t_{2}\right)$, be specified in the rectangle $D=\left[0, T_{1}\right] \times\left[0, T_{2}\right]$ from $\mathbb{R}_{+}^{2}, 0<T_{p}<\infty, p=1,2$. The equation system

$$
R_{\Delta}^{+}:\left\{\begin{array}{l}
i \partial_{1} \tilde{h}_{1}(t)-A_{1}^{*} \tilde{y}_{1}(t)=-\bar{\alpha} \psi_{+}^{*} \tilde{N}_{1}^{*} \tilde{u}_{+}(t), \tag{2.29}\\
\tilde{y}_{1}(t)=\psi_{+}^{*} \tilde{N}_{1}^{*} \tilde{u}_{+}(t)-\tilde{h}_{1}(t) \in \mathfrak{D}\left(A_{1}^{*}\right) \\
i \partial_{2} \tilde{h}_{2}(t)-A_{2}^{*} \tilde{y}_{2}(t)=-\bar{\alpha} \psi_{+}^{*} \tilde{N}_{2}^{*} \tilde{u}_{+}(t), \\
\tilde{y}_{2}(t)=\psi_{+}^{*} \tilde{N}_{2}^{*} u_{+}(t)-\tilde{h}_{2}(t) \in \mathfrak{D}\left(A_{2}^{*}\right), \\
\tilde{h}_{1}(T)=\tilde{h}_{1}, \quad \tilde{h}_{2}(T)=\tilde{h}_{2}, \quad t=\left(t_{1}, t_{2}\right) \in D
\end{array}\right.
$$

where, as usually, $\partial_{p}=\partial / \partial t_{p}, p=1,2$ and $\tilde{y}_{1}(t), \tilde{y}_{2}(t)$ are such that

$$
\begin{equation*}
\tilde{y}_{1}(t)=R_{1}^{*} \tilde{y}(t), \quad \tilde{y}_{2}(t)=R_{2}^{*} \tilde{y}(t) \tag{2.30}
\end{equation*}
$$

is said to be the dual open system $F_{\Delta}^{+}=\left\{R_{\Delta}^{+}, S_{\Delta}^{+}\right\}$associated with the colligation $\Delta(2.1)$. Thus the vector functions $\left\{\tilde{y}_{p}(t)\right\}_{1}^{2}$ have the joint generatrix $\tilde{y}(t) \in H$, besides,

$$
\begin{equation*}
R_{1}^{*} \tilde{y}_{2}(t)=R_{2}^{*} \tilde{y}_{1}(t) \tag{2.31}
\end{equation*}
$$

The initial data $\tilde{h}_{1}, \tilde{h}_{2}$ of problem (2.28) can be found from the equalities

$$
\begin{equation*}
\tilde{h}_{p}=\psi_{+}^{*} \tilde{N}_{p}^{*} u_{+}(T)-R_{p}^{*} \tilde{y}(T), \quad p=1,2 \tag{2.32}
\end{equation*}
$$

The mapping S_{Δ}^{+}is given by

$$
\begin{equation*}
S_{\Delta}^{+}: \tilde{u}_{-}(t)=K^{*} \tilde{u}_{+}(t)+i \psi_{-}^{*} \tilde{y}(t) \tag{2.33}
\end{equation*}
$$

Consider (see (2.23)) the differential operators

$$
\begin{equation*}
L_{p}^{+}=i \partial_{p}+\bar{\alpha}, \quad p=1,2 \tag{2.34}
\end{equation*}
$$

Similarly to the considerations in Section 3, we obtain that the vector function $\tilde{y}(t)$ satisfies the relations

$$
\left\{\begin{array}{l}
R_{1}^{*} L_{1}^{+} \tilde{y}(t)+\tilde{y}(t)=\psi_{+}^{*} \tilde{N}_{1}^{*} L_{1}^{+} \tilde{u}_{+}(t) \tag{2.35}\\
R_{2}^{*} L_{2}^{*} \tilde{y}(t)+\tilde{y}(t)=\psi_{+}^{*} \tilde{N}_{2}^{*} L_{2}^{+} \tilde{u}_{+}(t) \\
\tilde{y}(T)=\tilde{y}_{T}, \quad t=\left(t_{1}, t_{2}\right) \in D \\
\tilde{u}_{-}(t)=K^{*} \tilde{u}_{+}(t)+i \psi_{-}^{*} \tilde{y}(t)
\end{array}\right.
$$

It is not difficult to obtain the analogues of Theorems 2.1-2.3 using the equalities above.

Theorem 2.4. The system of the equations (2.29) of the dual open system $F_{\Delta}^{+}=\left\{R_{\Delta}^{+}, S_{\Delta}^{+}\right\}$(2.29)-(2.33) corresponding to the commutative colligation Δ (2.1) is consistent if $\tilde{u}_{+}(t)$ satisfies the equation

$$
\begin{equation*}
\left\{\tilde{N}_{1}^{*} L_{1}^{+}-\tilde{N}_{2}^{*} L_{2}^{+}+\tilde{\Gamma}^{*} L_{1}^{+} L_{2}^{+}\right\} \tilde{u}_{+}(t)=0 \tag{2.36}
\end{equation*}
$$

under the condition that (2.30) and (2.32) take place.
The proof of this theorem is similar to that of Theorem 2.1.
Theorem 2.5. Let $\tilde{y}(t)$ be the solution of (2.35), and $\tilde{u}_{+}(t)$ satisfy equation (2.36). Then for the vector functions $\tilde{u}_{-}(t)$ (2.33), we have

$$
\begin{equation*}
\left\{N_{1}^{*} L_{1}^{+}-N_{2}^{*} L_{2}^{+}+\Gamma^{*} L_{1}^{+} L_{2}^{+}\right\} \tilde{u}_{-}(t)=0 \tag{2.37}
\end{equation*}
$$

Theorem 2.6. For the dual open system $F_{\Delta}^{+}=\left\{R_{\Delta}^{+}, S_{\Delta}^{+}\right\}$(2.29)-(2.33), the conservation laws

$$
\begin{array}{ll}
\text { 1) } & \partial_{p}\left\|\tilde{h}_{p}(t)\right\|^{2}=\left\langle\tau_{p}^{-} \tilde{u}_{-}(t), \tilde{u}_{-}(t)\right\rangle-\left\langle\tau_{p}^{+} \tilde{u}_{+}(t), \tilde{u}_{+}(t)\right\rangle, p=1,2 \\
\text { 2) } & \partial_{2}\left\{\left\langle\tau_{1}^{-} L_{1}^{+} \tilde{u}_{-}(t), L_{1}^{+} \tilde{u}_{-}(t)\right\rangle-\left\langle\tau_{1}^{+} L_{1}^{+} \tilde{u}_{+}(t), \tilde{u}_{+}(t)\right\rangle\right\} \tag{2.38}\\
& =\partial_{1}\left\{\left\langle\tau_{2}^{-} L_{2}^{+} \tilde{u}_{-}(t), L_{1}^{+} \tilde{u}_{-}(t)\right\rangle-\left\langle\tau_{2}^{+} L_{2}^{+} \tilde{u}_{+}(t), L_{2}^{+} \tilde{u}_{+}(t)\right\rangle\right\}
\end{array}
$$

hold.
As it will be shown later, relations 2) (2.28) and 2) (2.38) play an important role in the study of the properties of characteristic functions for commutative systems of the linear unbounded operators $\left\{A_{k}\right\}_{1}^{n}$ for any $n \in \mathbb{N}$.

References

[1] M.S. Livs̆ic, On a Certain Class of Linear Operators in Hilbert Space. - Mat. Sb. 19/61 (1946), No. 2, 236-260. (Russian)
[2] A.V. Kuzhel, On the Reduction of Unbounded Nonselfadjoint Operators to Triangular Form. - DAN SSSR 119 (1958), 868-871. (Russian)
[3] A. Kuzhel, Characteristic Functions and Models of Nonselfadjoint Operator. Kluwer Acad. Publ., Dordrecht, London, 1996.
[4] A.V. Shtraus, Characteristic Functions of Linear Operators. - Izv. AN SSSR, Ser. Mat. 24 (1960), No. 1, 43-74. (Russian)
[5] E.R. Tsekanovskiy and Yu.L. Shmul'yan, Questions in the Theory of the Extension of Unbounded Operators in Rigged Hilbert Spaces. - Itogi Nauki. Mat. Analiz. 14 (1977), 59-100. (Russian)
[6] V.A. Derkach and M.M. Malamud, Generated Resolvents and the Boundary Value Problems for Hermitian Operators with Gaps. - J. Funct. Anal. 95 (1991), No. 1, 1-95.
[7] B.S. Pavlov, Spectral Analysis of a Dissipative Shr̈odinger Operator in Terms of a Functional Model. - Itogi Nauki. Sovr. Probl. Mat., Fund. Napravl. VINITI 65 (1991), 95-163. (Russian)
[8] M.S. Livšic, N. Kravitsky, A. Markus, and V. Vinnikov, Theory of Commuting Nonselfadjoint Operators. - Kluwer Acad. Publ., Dordrecht, London, 1995.
[9] V.A. Zolotarev, Time Cones and a Functional Model on a Riemann Surface. Mat. Sb. 181 (1990), No. 7, 965-995. (Russian)
[10] V.A. Zolotarev, Analytic Methods of Spectral Representations of Nonselfadjoint and Nonunitary Operators. MagPress, Kharkov, 2003. (Russian)
[11] Yu.I. Lyubich, Linear Functional Analysis. - Itogi Nauki. Sovr. Probl. Mat., Fund. Napravl. VINITI 19 (1988), 5-305. (Russian)
[12] O.J. Staffans, Well-posed Linear Systems. Cambridge University Press, Cambridge, New York, 2005.

