Antipodal Polygons and Half-Circulant Hadamard Matrices

A.I. Medianik
Mathematical Division, B. Verkin Institute for Low Temperature Physics and Engineering National Academy of Sciences of Ukraine 47 Lenin Ave., Kharkiv, 61103, Ukraine
E-mail:medianik@ilt.kharkov.ua

Received December 9, 2008
As known, the question on the existence of Hadamard matrices of order $m=4 n$, where n is an arbitrary natural number, is equivalent to the question on the possibility to inscribe a regular hypersimplex into the $(4 n-1)$ dimensional cube. We introduced a class of Hadamard matrices of order $4 n$ of half-circulant type in 1997 and a class of antipodal n-gons inscribed into a regular (2n-1)-gon. In 2004 we proved that a half-circulant Hadamard matrix of order $4 n$ exists if and only if there exist antipodal n-gons inscribed into a regular ($2 \mathrm{n}-1$)-gon. On this background there was developed the method of constructing of the Hadamard matrices of order $4 n$, which is universal, i.e., it can be applied to any arbitrary natural number n, including a prime number case, that usually requires the individual approach to the construction of the Hadamard matrix of corresponding order. In the paper, there are obtained the necessary and sufficient algebraic-geometric conditions for the existence of antipodal polygons allowing to justify the inductive approach to be used to the proof of existence theorems for Hadamard matrices of arbitrary order $4 n, n \geq 3$.

Key words: multidimensional cube, regular hypersimplex, Hadamard matrix, circulant matrix, antipodal polygons, necessary and sufficient conditions, mathematical induction, existence theorem.

Mathematics Subject Classification 2000: 05B20, 52B.

1. Introduction

The two convex n-gons inscribed into a regular $(2 n-1)$-gon are said to be antipodal if the total number of their diagonals and sides of the same length is n for all admissible lengths $[1$, p. 48]. A square matrix H, whose every entry is +1 or -1 , is called the Hadamard matrix of order m if $H H^{\prime}=m I$, where
H^{\prime} is a transpose matrix and I is an identity one [2, p. 283]. As known, the question on the existence of Hadamard matrices of order $m=4 n$, where n is an arbitrary natural number, is equivalent to the question on the possibility to inscribe a regular hypersimplex into the $(4 n-1)$-dimensional cube so that its every vertex coincides with one of the vertices of the cube. This was established by H. Coxeter in 1933 (see [3, p. 319]). We introduced a class of Hadamard matrices of half-circulant type [4, p. 459] in the form

$$
H=\left(\begin{array}{cc}
A & B \\
B & -A
\end{array}\right),
$$

where A and B are matrices of order $2 n$ (with bordering entries equal to 1) containing submatrices of order $2 n-1$ which are the right and, respectively, left circulants (see [5, p. 27]). These matrices appeared to be closely connected with the class of antipodal polygons. Namely, it is proved that a half-circulant Hadamard matrix of order $4 n$ exists if and only if there exist antipodal n-gons inscribed into a regular $(2 n-1)$-gon (see [1, Th. 4]). Thus, the solution of the question either on the existence of Hadamard matrices of arbitrary order $4 n$ or on the possibility of inscribing a regular hypersimplex into ($4 n-1$)-dimensional cube depends on the solution of the question on the existence of antipodal n-gons. Moreover, it is possible now to set the proof problem of the existence theorem without constructing the Hadamard matrices of smallest order the existence of which is not proved. Besides, the Hadamard matrix of order 428 was constructed recently in [6] (twenty years later after its predecessor of order 268 [7]).

In the paper, there are obtained the necessary and sufficient algebraic-geometric conditions for the existence of antipodal polygons (Th. 2), which, by virtue of their universality, allow to justify the inductive approach to be used to the proof of existence theorems for Hadamard matrices of arbitrary order $4 n, n \geq 3$ (Sect. 3).

2. Existence Conditions of Antipodal Polygons

Let $z=e^{\frac{2 \pi i}{2 n-1}}, n \geq 3$. Then the vertices of a regular $(2 n-1)$-gon inscribed into a unit circle with the center in the origin of coordinates are given by the monomials $z^{k}, k=0,1,2, \ldots, 2 n-2$. Let every convex n-gon P inscribed into the regular ($2 n-1$)-gon correspond to a generating polynomial $p(z)=\sum_{k=0}^{2 n-2} x_{k} z^{k}$, where $x_{k}=1$ if the vertex with number k belongs to P, and $x_{k}=0$ otherwise. Since P is an n-gon, we have $\sum_{k=0}^{2 n-2} x_{k}=n$. If d_{k} is the number of equal diagonals and sides of the n-gon P visible from the origin at the angle $\frac{2 \pi k}{2 n-1}$, then for the polynomial $p(z)$ the equality

$$
|p|^{2}=n+2 \sum_{k=1}^{n-1} d_{k} \cos \frac{2 \pi k}{2 n-1},
$$

is valid, where $\sum_{k=1}^{n-1} d_{k}=n(n-1) / 2$ (see [1, Lem. 1]). The similar formula is true for the generating polynomial $p^{\prime}(z)=\sum_{k=0}^{2 n-2} x_{k}^{\prime} z^{k}$ of any other n-gon P^{\prime} inscribed into the given regular $(2 n-1)$-gon. If P and P^{\prime} are antipodal, then $d_{k}+d_{k}^{\prime}=n$ for every $k=1,2, \ldots, n-1$ by definition. Therefore, the generating polynomials of antipodal n-gons satisfy the relation $|p|^{2}+\left|p^{\prime}\right|^{2}=n$ (see [1, Th. 3]). Indeed it holds a more general equality where the rotation group of regular $(2 n-1)$-gon is taken into account. In this connection, there arises a question on the existence of an inscribed n-gon P with the number of diagonals $d_{k}, k=1,2, \ldots, n-1$, visible from the origin at the angle $\frac{2 \pi k}{2 n-1}$. It can be reduced to the solving of the following equation system for the coefficients x_{i} of its generating polynomial:

$$
\left\{\begin{array}{ccc}
\sum_{i=0}^{2 n-2} x_{i} & = & n ; \tag{1}\\
2 n-2 & & n ; \\
\sum_{i=0}^{2 n} x_{i}^{2} & = & d_{k} \\
\sum_{i=0}^{2 n-2} x_{i} x_{|i+k|} & = & 1,2, \ldots, n-1, \\
k & = & 1,
\end{array}\right.
$$

where $x_{|i+k|}$ is the least nonnegative residue of $i+k$ modulo $2 n-1$ [1, p. 59]. The realization of the natural condition $\sum_{k=1}^{n-1} d_{k}=C_{n}^{2}$ is also assumed. The solution of system (1) was obtained in "parametric" form (see [1, p. 60]):

$$
\begin{array}{ccc}
x_{0} & = & \frac{1}{\sqrt{2 n-1}}\left(y_{0}+\sqrt{2} \sum_{j=1}^{n-1} y_{j}\right) \\
x_{m} & =\frac{1}{\sqrt{2 n-1}}\left[y_{0}+\sqrt{2} \sum_{j=1}^{n-1}\left(y_{j} \cos \frac{2 \pi m j}{2 n-1}+y_{N-j} \sin \frac{2 \pi m j}{2 n-1}\right)\right] \tag{2}\\
x_{N-m} & = & \frac{1}{\sqrt{2 n-1}}\left[y_{0}+\sqrt{2} \sum_{j=1}^{n-1}\left(y_{j} \cos \frac{2 \pi m j}{2 n-1}-y_{N-j} \sin \frac{2 \pi m j}{2 n-1}\right)\right]
\end{array}
$$

where $N=2 n-1$, and

$$
y_{0}=\frac{n}{\sqrt{2 n-1}}, \quad y_{j}^{2}+y_{N-j}^{2}=\frac{2}{2 n-1}\left(n+2 \sum_{k=1}^{n-1} d_{k} \cos \frac{2 \pi k j}{2 n-1}\right) .
$$

The similar representation is valid for the coefficients x_{i}^{\prime} of the generating polynomial $p^{\prime}(z)$ of P^{\prime}. The antipodal n-gons P and P^{\prime} generated by polynomials $p(z)=\sum_{k=0}^{2 n-2} x_{k} z^{k}$ and $p^{\prime}(z)=\sum_{k=0}^{2 n-2} x_{k}^{\prime} z^{k}$, for which the coefficients are given by (2) and by the similar formula with $y=\left\{y_{0}, y_{1}, \ldots, y_{2 n-2}\right\}$ substituted by $y^{\prime}=\left\{y_{0}^{\prime}, y_{1}^{\prime}, \ldots, y_{2 n-2}^{\prime}\right\}$, exist if and only if the conditions

$$
\begin{equation*}
y_{j}^{2}+y_{N-j}^{2}+y_{j}^{\prime 2}+y_{N-j}^{\prime 2}=\frac{2 n}{2 n-1} \tag{3}
\end{equation*}
$$

are true for all $j=1,2, \ldots, n-1$ (see [1, Lem. 3]).

Let \bar{w}_{0}, \bar{w}_{m} and \bar{w}_{N-m} denote the right sides of equations (2), and let $\bar{w}=$ $\bar{w}_{0}^{3}+\sum_{m=1}^{n-1}\left(\bar{w}_{m}^{3}+\bar{w}_{N-m}^{3}\right)$. Consider now a system of equations with respect to the coordinates of vector y

$$
\begin{equation*}
\frac{\partial \bar{w}}{\partial y_{i}}=3 y_{i}, \quad i=0,1,2, \ldots, 2 n-2 \tag{4}
\end{equation*}
$$

Thus, valid is the following statement: antipodal n-gons P and P^{\prime} and, consequently, a corresponding to them Hadamard matrix of order $4 n$ exist if and only if system (4) has two solutions $y=\left\{y_{0}, y_{1}, \ldots, y_{2 n-2}\right\}$ and $y^{\prime}=\left\{y_{0}^{\prime}, y_{1}^{\prime}, \ldots, y_{2 n-2}^{\prime}\right\}$ such that $y_{0}=y_{0}^{\prime}=\frac{n}{\sqrt{2 n-1}}$, and the rest of the coordinates of vectors y and y^{\prime} satisfy antipodal conditions (3) (see [1, Th. 5]). Moreover, the derivatives of (4) have the form

$$
\begin{align*}
\frac{\partial \bar{w}}{\partial y_{0}}= & \frac{3}{\sqrt{2 n-1}} \sum_{i=0}^{2 n-2} y_{i}^{2}, \\
\frac{\partial \bar{w}}{\partial y_{k}}= & \frac{3 \sqrt{2}}{\sqrt{2 n-1}}\left[\sqrt{2} y_{0} y_{k}+\sum_{j=1}^{n-k-1}\left(y_{j} y_{j+k}+y_{N-j} y_{N-j-k}\right)\right. \\
& \left.+\frac{1}{2} \sum_{r=1-k}^{k-1}\left(y_{[(k+r) / 2]} y_{[(k-r) / 2]}-y_{N-[(k+r) / 2]} y_{N-[(k-r) / 2]}\right)\right], \tag{5}\\
\frac{\partial \bar{w}}{\partial y_{N-k}}= & \frac{3 \sqrt{2}}{\sqrt{2 n-1}}\left[(\sqrt{2}-1) y_{0} y_{N-k}+\sum_{s=n}^{2 n-2}\left(y_{|s+k|^{\prime}}-y_{|s-k|}\right) y_{s}\right],
\end{align*}
$$

where $k=1,2, \ldots, n-1, \quad|s \pm k|^{\prime}=\min (|s \pm k|, N-|s \pm k|), \quad$ and $\quad[(k \pm r) / 2]$ equals $\frac{k \pm r}{2}$ if it is integer, or $\frac{N-(k \pm r)}{2}$ otherwise.

Since \bar{w} is a homogeneous polynomial of third degree by definition, then $\frac{\partial \bar{w}}{y_{0}}, \frac{\partial \bar{w}}{y_{k}}, \frac{\partial \bar{w}}{y_{N-k}}$ are homogeneous polynomials of second degree, moreover, the last ones are homogeneous polynomials of first degree relatively to the variables $y_{1}, y_{2}, \ldots, y_{n-1}$ and $y_{n}, y_{n+1}, \ldots, y_{2 n-2}$. As for the expressions for $\frac{\partial \bar{w}}{y_{k}}$, they contain no summands with $y_{j} y_{s}, \quad 0<j<n, \quad s \geq n$, but they contain quadratic differences $\frac{1}{2}\left(y_{\left[\frac{k}{2}\right]}^{2}-y_{N-\left[\frac{k}{2}\right]}^{2}\right)$ for $r=0$.

By analogy with the homogeneous polynomial $\bar{w}=\bar{w}(y)$, we introduce a polynomial $\bar{w}^{\prime}=\bar{w}_{0}^{\prime 3}+\sum_{m=1}^{n-1}\left(\bar{w}_{m}^{\prime 3}+\bar{w}_{N-m}^{\prime 3}\right)$, where \bar{w}^{\prime} are right sides of equality (2) after substitution of the coordinates of vector $y=\left\{y_{0}, y_{1}, \ldots, y_{2 n-2}\right\}$ by the corresponding coordinates of vector $y^{\prime}=\left\{y_{0}^{\prime}, y_{1}^{\prime}, \ldots, y_{2 n-2}^{\prime}\right\}$. Then the equations, valid for the coordinates of vectors y and y^{\prime} such that antipodal n-gons as well as a half-circulant Hadamard matrix of order $4 n$ exist, can be represented
in the form

$$
\left\{\begin{array}{cl}
\bar{W}_{i}=\frac{\partial \bar{w}}{\partial y_{i}}-3 y_{i}=0, & i=0,1,2, \ldots, 2 n-2, \tag{6}\\
\bar{W}_{i}^{\prime}=\frac{\partial \bar{w}^{\prime}}{\partial y_{i}^{\prime}}-3 y_{i}^{\prime}=0, & i=0,1,2, \ldots, 2 n-2 \\
\bar{W}_{2 n-1}=y_{0}-\frac{n}{\sqrt{2 n-1}}=0, & \bar{W}_{2 n-1}^{\prime}=y_{0}^{\prime}-\frac{n}{\sqrt{2 n-1}}=0, \\
Y_{j}=y_{j}^{2}+y_{N-j}^{2}+y_{j}^{\prime 2}+y_{N-j}^{\prime 2}-\frac{2 n}{2 n-1}=0, \\
j=1,2, \ldots, n-1 .
\end{array}\right.
$$

Thus, by Theorem $5[8]$ for $n \geq 3$ there directly follows
Theorem 1. Antipodal convex n-gons and a half-circulant Hadamard matrix of order $4 n$ exist if and only if there do not exist the polynomials $A_{i}, A_{i}^{\prime}, A_{2 n-1}$, $A_{2 n-1}^{\prime}, B_{j}$ depending on the variables $y_{0}, y_{1}, \ldots, y_{2 n-2}, y_{0}^{\prime}, \ldots, y_{2 n-2}^{\prime}$ such that the left sides of equations (6) satisfy the identity

$$
\sum_{i=0}^{2 n-2}\left(A_{i} \bar{W}_{i}+A_{i}^{\prime} \bar{W}_{i}^{\prime}\right)+A_{2 n-1} \bar{W}_{2 n-1}+A_{2 n-1}^{\prime} \bar{W}_{2 n-1}^{\prime}+\sum_{j=1}^{n-1} B_{j} Y_{j} \equiv 1 .
$$

The obtained results submitted in this section, as shown further, will be used as a background for applying the inductive approach to the proof of the existence theorems for antipodal polygons.

3. Basis of Inductive Approach

First, we have to simplify the system of equations (6). For this we find an expression for the homogeneous polynomial of third degree $\bar{w}\left(y_{0}, y_{1}, \ldots, y_{2 n-2}\right)$. By definition, $\bar{w}(y)$ equals the sum of right sides of (2) raised to the third power for all $m=1,2, \ldots, n-1$, where $\cos \frac{2 \pi m j}{2 n-1}$ and $\sin \frac{2 \pi m j}{2 n-1}, j=1,2, \ldots, n-1$, are used as coefficients. Let us transform its expression by applying the formulas $\cos \alpha \cos \beta=\frac{1}{2}[\cos (\alpha-\beta)+\cos (\alpha+\beta)]$ and $\sin \alpha \sin \beta=\frac{1}{2}[\cos (\alpha-\beta)-\cos (\alpha+\beta)]$, where α and β are expressions of the form $\frac{2 \pi m j}{2 n-1}$, and also an identity

$$
\frac{1}{2}+\sum_{j=1}^{n-1} \cos \frac{2 \pi m j}{2 n-1} \equiv 0
$$

which is valid for all $m \not \equiv 0(\bmod 2 n-1)$ (it follows directly from the more general identity (see problem N16 in [9, p. 88])). Substituting twice the products
of cosines and sines for the sum and the difference, respectively, and changing the summation order, finally we obtain

$$
\begin{aligned}
\bar{w}= & \frac{1}{\sqrt{2 n-1}}\left[y_{0}^{3}+3 y_{0} \sum_{i=1}^{2 n-2} y_{i}^{2}+\frac{1}{\sqrt{2}} \sum_{3 j=N}\left(y_{j}^{3}-3 y_{j} y_{N-j}^{2}\right)\right. \\
& +\frac{3}{\sqrt{2}} \sum_{s=|2 j|^{\prime}}^{s \neq j}\left(y_{j}^{2}-y_{N-j}^{2}\right) y_{s}+3 \sqrt{2} \sum_{j \neq N / 3}^{n-1}(-1)^{|2 j|^{\prime}} y_{j} y_{N-j} y_{N-|2 j|^{\prime}} \\
& +3 \sqrt{2} \sum_{j<s}^{s<N-j-s}\left(\left(y_{j} y_{s}-y_{N-j} y_{N-s}\right) y_{|j+s|^{\prime}}\right. \\
& \left.\left.+(-1)^{j+s+|j+s|^{\prime}}\left(y_{j} y_{N-s}+y_{s} y_{N-j}\right) y_{N-|j+s|^{\prime}}\right)\right]
\end{aligned}
$$

where the value of index j varies from 1 to $n-1$. Moreover, $N=2 n-1$ and the sign of absolute value, in particular $|2 j|^{\prime}$, denotes $\min (2 j, N-2 j)$. Let us represent this polynomial as a polynomial of third degree with respect to y_{0}

$$
\bar{w}=\frac{1}{\sqrt{2 n-1}}\left(y_{0}^{3}+3 y_{0} \sum_{i=1}^{2 n-2} y_{i}^{2}+3 \sqrt{2} w\right)
$$

where w is a kernel of \bar{w} not containing variable y_{0} and having the form

$$
\begin{align*}
w= & \frac{1}{2} \sum_{3 j=N}\left(y_{j}^{3} / 3-y_{j} y_{N-j}^{2}\right)+\sum_{j \neq N / 3}^{n-1}\left[\frac{1}{2}\left(y_{j}^{2}-y_{N-j}^{2}\right) y_{|2 j|^{\prime}}\right. \\
& \left.+(-1)^{|2 j|^{\prime}} y_{j} y_{N-j} y_{N-|2 j|^{\prime}}\right]+\sum_{j<s}^{s<N-j-s}\left[\left(y_{j} y_{s}-y_{N-j} y_{N-s}\right) y_{|j+s|^{\prime}}\right. \\
& \left.+(-1)^{j+s+|j+s|^{\prime}}\left(y_{j} y_{N-s}+y_{s} y_{N-j}\right) y_{N-|j+s|^{\prime}}\right] \tag{7}
\end{align*}
$$

Notice that if N can not be divided by 3 , then the first sum in (7) is absent and therefore the condition $j \neq N / 3$ in the second sum drops out. It should be added that if $j=s$ in the last sum, then it practically coincides with the second sum, and if $j=s=|j+s|^{\prime}$, then it coincides also with the first sum.

As follows from (5), the first equation in (6) under $i=0$ has the form

$$
\frac{3}{\sqrt{2 n-1}} \sum_{j=0}^{2 n-2} y_{j}^{2}-3 y_{0}=0
$$

The first equation of the second group of (6) has a similar form for $i=0$. Substituting into them the known value $y_{0}=y_{0}^{\prime}=\frac{n}{\sqrt{2 n-1}}$ (one of the
necessary conditions for the existence of antipodal n-gons), we obtain

$$
\sum_{i=1}^{2 n-2} y_{i}^{2}-\frac{n(n-1)}{2 n-1}=0, \quad \sum_{i=1}^{2 n-2} y_{i}^{\prime 2}-\frac{n(n-1)}{2 n-1}=0
$$

It is obvious that these two equations and the last $n-1$ equations of system (6) are linearly dependent, since

$$
\sum_{j=1}^{n-1}\left(y_{j}^{2}+y_{N-j}^{2}+y_{j}^{\prime 2}+y_{N-j}^{\prime 2}-\frac{2 n}{2 n-1}\right)=\sum_{i=1}^{2 n-2}\left(y_{i}^{2}+y_{i}^{\prime 2}\right)-\frac{2 n(n-1)}{2 n-1}
$$

Thus, one of the first two equations may not be included into transformed system of equations (6). Without loss of generality, we eliminate the second of them, containing y_{i}^{\prime}, as well as $y_{0}=\frac{n}{\sqrt{2 n-1}}$ and $y_{0}^{\prime}=\frac{n}{\sqrt{2 n-1}}$ from the rest of the equations $\bar{W}_{i}, \bar{W}_{i}^{\prime}, i=1,2, \ldots, 2 n-2$, by using the expressions of (5) for the derivatives of polynomial \bar{w}. Then (6) takes the form

$$
\left\{\begin{align*}
Y_{0} & =-\frac{n(n-1)}{2 n-1}+\sum_{i=1}^{2 n-2} y_{i}^{2}=0 \tag{8}\\
Y_{j} & =-\frac{2 n}{2 n-1}+y_{j}^{2}+y_{N-j}^{2}+y_{j}^{\prime 2}+y_{N-j}^{\prime 2}=0 \\
j & =1,2, \ldots, n-1 ; \\
W_{i} & =\frac{y_{i}}{\sqrt{4 n-2}}+\frac{\partial w}{\partial y_{i}}=0, \quad i=1,2, \ldots, 2 n-2 \\
W_{i}^{\prime} & =\frac{y_{i}^{\prime}}{\sqrt{4 n-2}}+\frac{\partial w^{\prime}}{\partial y_{i}^{\prime}}=0, \quad i=1,2, \ldots, 2 n-2
\end{align*}\right.
$$

where w^{\prime} is obtained from w by substituting $y_{j}^{\prime}, y_{N-j}^{\prime}$ for y_{j}, y_{N-j} and so on. Evidently that the existence of solution of the system of algebraic equations (6) leads to the existence of solution of system (8), and conversely, adding the relations $y_{0}=y_{0}^{\prime}=\frac{n}{\sqrt{2 n-1}}$ to the solution of system (8), we obtain the solution of system (6). Thereby, the following theorem is valid.

Theorem 2. Antipodal convex n-gons exist if and only if there do not exist polynomials $B^{j}\left(y, y^{\prime}\right), j=0,1,2, \ldots, n-1, C^{i}\left(y, y^{\prime}\right)$ and $C^{\prime i}\left(y, y^{\prime}\right)$, $i=1,2, \ldots, 2 n-2$, such that for the left sides of non-homogeneous algebraic equations (8) the following identity is valid:

$$
\begin{equation*}
L=\sum_{j=0}^{n-1} B^{j} Y_{j}+\sum_{i=1}^{2 n-2}\left(C^{i} W_{i}+C^{\prime i} W_{i}^{\prime}\right) \equiv 1 \tag{9}
\end{equation*}
$$

This relation means that after a similar reduction in polynomial L all coefficients, except a constant term, turn into 0 . Thus, a question on the proof of the
existence of antipodal polygons is reduced to a question on the nonexistence of such polynomials of any finite degree m, for which $L\left(y, y^{\prime}\right)$ satisfies identity (9). In this connection, we denote a polynomial in the left side of (9) by L^{m}, where m points out its degree. Since the degree of $Y_{j}\left(y, y^{\prime}\right), W_{i}(y), W_{i}^{\prime}\left(y^{\prime}\right)$ is two, then the degree of polynomials $B^{j}\left(y, y^{\prime}\right), C^{i}\left(y, y^{\prime}\right)$ and $C^{\prime i}\left(y, y^{\prime}\right)$ is $m-2$. Let us denote the coefficients of polynomial $L^{m}\left(y, y^{\prime}\right): K_{0}$ is a constant term, K_{i} is a coefficient at $y_{i}, i=1,2, \ldots, 2 n-2, K_{i^{2} j^{\prime}}$ is a coefficient at $y_{i}^{2} y_{j}^{\prime}$, etc. By L_{w} we denote the following linear combination of the coefficients $L^{m}\left(y, y^{\prime}\right)$:

$$
\begin{align*}
L_{w}= & \sum_{3 j=N}\left(K_{j^{3}}-K_{j(N-j)^{2}}\right)+\sum_{j \neq N / 3}^{n-1}\left[K_{j^{2}|2 j|^{\prime}}-K_{(N-j)^{2}|2 j|^{\prime}}\right. \\
& \left.+(-1)^{|2 j|^{\prime}} K_{j(N-j)\left(N-|2 j|^{\prime}\right)}\right]+\sum_{j<s}^{s<N-j-s}\left[K_{j s|j+s|^{\prime}}-K_{(N-j)(N-s)|j+s|^{\prime}}\right. \\
& +(-1)^{j+s+|j+s|^{\prime}}\left(K_{j(N-s)\left(N-|j+s|^{\prime}\right)}+K_{s(N-j)\left(N-|j+s|^{\prime}\right)}\right] . \tag{10}
\end{align*}
$$

By $L_{w^{\prime}}$ we denote the corresponding linear combination of the coefficients with primes. It is easy to see that L_{w} includes only coefficients of polynomial L^{m} found at its terms coinciding with the monomials of polynomial w and, moreover, having the same signs as w. Since it is a homogeneous polynomial of third degree, then, by Euler rule, $\sum_{i=1}^{2 n-2} y_{j} \frac{\partial w}{\partial y_{i}}=3 w$. Hence, in a homogeneous polynomial of second degree $\frac{\partial w}{\partial y_{i}}$ the coefficient sign of the monomial $y_{p} y_{q}$ coincides with the one of $y_{p} y_{q} y_{i}$ in polynomial w, and therefore, the coefficient sign of $y_{p} y_{q} y_{i}$ (some of these numbers can be equal each other) of polynomial $L_{m}, m \geq 3$, included in the combination L_{w}, coincides with the coefficient sign of $y_{p} y_{q}$ in polynomial $\frac{\partial w}{\partial y_{i}}$ as well as with the coefficient sign of $y_{q} y_{i}$ in polynomial $\frac{\partial w}{\partial y_{p}}$ and the one of $y_{p} y_{i}$ in polynomial $\frac{\partial w}{\partial y_{q}}$. The same can said about the linear combination $L_{w^{\prime}}$. Let us denote by L_{w}^{m} the expression L_{w} of (10) written via the coefficients of polynomial L^{m}.

Lemma 1. If in relation (9) the degree of polynomial L is three, then L_{w}^{3} is expressed via the coefficients of polynomials $C^{i}, i=1,2, \ldots, 2 n-2$, in the following way:

$$
\begin{equation*}
L_{w}^{3}=(2 n-3) \sum_{i=1}^{2 n-2} C_{i}^{i}, \tag{11}
\end{equation*}
$$

where C_{i}^{i} is a coefficient of y_{i} in C^{i}.
Proof. Since in all equations of system (8) the degree is two, then the required expression for L_{w}^{3} a priori may contain only the coefficients of polynomials $B^{j}, j=0,1, \ldots, n-1$, and $C^{i}, i=1,2, \ldots, 2 n-2$, with the first degree
terms but actually it contains only the last coefficients. Non of the coefficients of polynomial B^{j} with the first degree terms is contained in L_{w}^{3}, as the term y_{j}^{2} is contained in the equality Y_{j} together with the term $y_{(N-j)^{2}}$ and by (10), the summands $K_{j^{2}|2 j|^{\prime}}$ and $K_{(N-j)^{2}|2 j|^{\prime}}$ are contained in L_{w} with opposite signs.

As follows from (7), the derivative $\frac{\partial w}{\partial y_{i}}$ for $i=|2 j|^{\prime}$ contains the semidifference $\frac{y_{j}^{2}-y_{N-j}^{2}}{2}$ and the terms of the form $\pm y_{\alpha} y_{\beta}(\alpha \neq \beta)$. If the degree of L is three, then from polynomial $C^{i}, i=1,2, \ldots, 2 n-2$, the summands $C_{i}^{i}=\frac{1}{2} \operatorname{sign}^{2}\left(K_{j^{2} i}\right) C_{i}^{i}+$ $\frac{1}{2} \operatorname{sign}^{2}\left(K_{(N-j)^{2} i}\right) C_{i}^{i}$ and $C_{i}^{i}=\operatorname{sign}^{2}\left(K_{\alpha \beta i}\right) C_{i}^{i}$ (for each admissible pair of indices $\alpha, \beta)$ enter into L_{w}^{3}. Since in the derivative $\frac{\partial w}{\partial y_{i}}$ under $i<n$ there are $2 n-4$ summands with coefficients equal to 1 (as seen from (5)) for $\frac{\partial \bar{w}}{\partial y_{k}}: 2(n-k-1)+$ $2(k-1)=2 n-4$, one summand with the coefficient $+\frac{1}{2}$ and one with the coefficient $-\frac{1}{2}$, then C_{i}^{i} is contained in L_{w}^{3} with the coefficient $2 n-4+2 \cdot \frac{1}{2}=2 n-3$. The same coefficient is for $i=N-|2 j|^{\prime} \geq n$. In this case, as follows from (5), $\frac{\partial \bar{w}}{\partial y_{i}}$ contains $2 n-3$ summands with coefficients equal to ± 1). Moreover, when j runs the values from 1 to $n-1$, then $i=|2 j|^{\prime}$ runs the same values but in other order, and $i=N-|2 j|^{\prime}$ runs all values from n to $2 n-2$. Thus, L_{w}^{3} contains every C_{i}^{i}, $i=1,2, \ldots, 2 n-2$, with the coefficient $2 n-3$, as shown in (11).

The conclusion of the lemma will be proved completely if L_{w}^{3}, after substituting the coefficients of polynomials C^{i} from (9), does not contain any other terms of the form $C_{i}^{t}, t \neq i$. Complement terms can appear only when in some equation W_{t} from (8) there is at least one summand $y_{p} y_{q}$ with the coefficient $\operatorname{sign}\left(K_{p q t}^{w}\right)$, where $K_{p q t}^{w}$ is a coefficient at $y_{p} y_{q} y_{t}$ in the polynomial w, which occurs in another equation W_{i} with the coefficient $\operatorname{sign}\left(K_{p q i}^{w}\right)$, where $K_{p q i}^{w}$ is a coefficient at $y_{p} y_{q} y_{i}$ in w. Furthermore, $p \neq q$ and $p+q \neq N$. Otherwise, the term $y_{p} y_{q}$ could not be contained in two different equations of system (8) and, as follows from the form of polynomial w of (7), both equations W_{t} and W_{i} have the term $y_{N-p} y_{N-q}$ but with the $\operatorname{sign} \operatorname{sign}\left(K_{(N-p)(N-q) i}^{w}\right)$ in the equation W_{i} and with the $\operatorname{sign} \operatorname{sign}\left(K_{(N-p)(N-q) t}^{w}\right)$ in W_{t}.

In the last sum of the polynomial w of (7) replace index s by $s-j$, and $|j+s|^{\prime}$ by $|j+(s-j)|^{\prime}=s$. Taking into account that $j+(s-j)=$ $s<N-s$, we may conclude that this sum contains also the summands ($y_{j} y_{s-j}-$ $\left.y_{N-j} y_{N-(s-j)}\right) y_{s}+\left(y_{j} y_{N-(s-j)}+y_{N-j} y_{s-j}\right) y_{N-s}=\left(y_{j} y_{s}+y_{N-j} y_{N-s}\right) y_{s-j}+$ $\left(y_{j} y_{N-s}-y_{N-j} y_{N-(s-j)}\right) y_{N-(s-j)}$. Hence, the signs of the monomials $y_{p} y_{q}$ and $y_{N-p} y_{N-q}$ are identical in one of the equations W_{t} or W_{i}, and they are opposite in another one. Thus, in L_{w}^{3} the term $C_{i}^{t}(t \neq i)$ as well as C_{t}^{i} is with the coefficient equal to $\operatorname{sign}\left(K_{p q t}^{w}\right) \cdot \operatorname{sign}\left(K_{p q i}^{w}\right)+\operatorname{sign}\left(K_{(N-p)(N-q) t}^{w}\right) \cdot \operatorname{sign}\left(K_{(N-p)(N-q)}^{w} i\right)=0$, i.e., L_{w}^{3} actually does not contain C_{i}^{t}. If a product of the first two co-factors is 1, then, by virtue of the proved above, a product of the last two coefficients is -1 , and conversely. Lemma 1 is proved.

Notice that due to the symmetry of the equations W_{i} and W_{i}^{\prime} in (8), with respect to their variables, a similar relation is valid for $L_{w^{\prime}}^{3}$:

$$
\begin{equation*}
L_{w^{\prime}}^{3}=(2 n-3) \sum_{i=1}^{2 n-2} C_{i^{\prime}}^{\prime i} \tag{12}
\end{equation*}
$$

Lemma 2. A constant term K_{0} of the polynomial $L^{3}\left(y, y^{\prime}\right)$ is a linear combination of its other coefficients, namely,

$$
\begin{equation*}
K_{0}=-\frac{n}{4 n-2} \sum_{i=1}^{2 n-2}\left(K_{i^{2}}+K_{i^{\prime 2}}\right)+\frac{n\left(L_{w}+L_{w^{\prime}}\right)}{(2 n-3)(4 n-2)^{3 / 2}} \tag{13}
\end{equation*}
$$

Proof. Since the left side of relation (9) is a polynomial of third degree, and the left sides of equations (8) are polynomials of second degree by the condition of the lemma, then the polynomials $B^{j}, j=0,1,2, \ldots, n-1$, and $C^{i}, C^{\prime i}$, $i=1,2, \ldots, 2 n-2$, are of first degree. Therefore,

$$
\begin{align*}
B^{j} & =B_{0}^{j}+\sum_{k=1}^{2 n-2}\left(B_{k}^{j} y_{k}+B_{k^{\prime}}^{j} y_{k}^{\prime}\right) \\
C^{i} & =C_{0}^{i}+\sum_{s=1}^{2 n-2}\left(C_{s}^{i} y_{s}+C_{s^{\prime}}^{i} y_{s}^{\prime}\right) \tag{14}\\
C^{\prime i} & =C_{0}^{\prime i}+\sum_{s=1}^{2 n-2}\left(C_{s}^{i} y_{s}+C_{s^{\prime}}^{\prime i} y_{s}^{\prime}\right)
\end{align*}
$$

Substituting these expressions into (9) and taking into account expressions for $Y_{j}, j=0,1, \ldots, n-1, W_{i}$ and $W_{i}^{\prime}, i=1,2, \ldots, 2 n-2$, from (8), we can find

$$
\begin{equation*}
K_{0}=-\frac{n(n-1)}{2 n-1} B_{0}^{0}-\frac{2 n}{2 n-1} \sum_{j=1}^{n-1} B_{0}^{j} \tag{15}
\end{equation*}
$$

Calculate now the coefficients of the polynomial L^{3} of the second powers y_{i}^{2} and $y_{i}^{\prime 2}$. Let $j=1,2, \ldots, n-1$. Then

$$
\begin{aligned}
K_{j^{2}} & =B_{0}^{0}+B_{0}^{j}+\frac{1}{2} C_{0}^{|2 j|^{\prime}}+\frac{C_{j}^{j}}{\sqrt{4 n-2}} \\
K_{(N-j)^{2}} & =B_{0}^{0}+B_{0}^{j}-\frac{1}{2} C_{0}^{|2 j|^{\prime}}+\frac{C_{N-j}^{N-j}}{\sqrt{4 n-2}}, \\
K_{j^{\prime 2}} & =B_{0}^{j}+\frac{1}{2} C_{0}^{\prime|2 j|^{\prime}}+\frac{C_{j^{\prime}}^{\sqrt{4-2}}}{\sqrt{4 n-2}} \\
K_{(N-j)^{\prime 2}} & =B_{0}^{j}-\frac{1}{2} C_{0}^{\left.\prime 2 j\right|^{\prime}}+\frac{C_{(N-j)^{\prime}}^{\prime N-j}}{\sqrt{4 n-2}} .
\end{aligned}
$$

By summing up these equations termwise, we obtain

$$
\sum_{i=1}^{2 n-2}\left(K_{i^{2}}+K_{i^{\prime 2}}\right)=(2 n-2) B_{0}^{0}+4 \sum_{j=1}^{n-1} B_{0}^{j}+\frac{\sum_{i=1}^{2 n-2}\left(C_{i}^{i}+C_{i^{\prime}}^{\prime i}\right)}{\sqrt{4 n-2}} .
$$

Eliminating B_{0}^{0} and B_{0}^{j} from (15) and applying the last equality, we find

$$
K_{0}=-\frac{n}{4 n-2} \sum_{i=1}^{2 n-2}\left(K_{i^{2}}+K_{i^{\prime 2}}\right)+\frac{n}{(4 n-2)^{3 / 2}} \sum_{i=1}^{2 n-2}\left(C_{i}^{i}+C_{i^{\prime}}^{\prime i}\right) .
$$

Using Lemma 1 , for K_{0} we obtain the required linear expression via the coefficients of polynomial $L^{3}\left(y, y^{\prime}\right)$. Lemma 2 is proved.

From the lemma above it follows that in the case when the polynomial L in relation (9) is of third degree, then its constant term is a linear combination of its other coefficients turned into 0 by identity (9), and therefore it must turn into 0 too, what contradicts to the same identity (9). To prove that K_{0} equals null at any degree of polynomial L, it is possible to use the mathematical induction principle. For this it is sufficient to verify a possibility of the inductive passage at least in the case of the third degree polynomial L when its degree becomes increased by one.

Let the degree of polynomial L of (9) be four. Then the polynomials B^{j}, C^{i} and $C^{\prime i}$ of (14) are added the summands of second degree denoted $B_{\{2\}}^{j}, C_{\{2\}}^{i}$ and $C_{\{2\}}^{i}$, respectively. Consequently, the right side of equality (13) obtains the difference $\Delta_{K_{0}}^{2}$ induced by the new summands

$$
\begin{equation*}
\Delta^{2} K_{0}=-\frac{n}{4 n-2} \sum_{i=1}^{2 n-2}\left(\Delta^{2} K_{i^{2}}+\Delta^{2} K_{i^{\prime 2}}\right)+\frac{n\left(\Delta^{2} L_{w}+\Delta^{2} L_{w^{\prime}}\right)}{(2 n-3)(4 n-2)^{3 / 2}} . \tag{16}
\end{equation*}
$$

Substituting new expressions for $B^{j}, C^{i}, C^{\prime i}$ of (9), we get

$$
\begin{gather*}
\Delta^{2} K_{i^{2}}=-\frac{n(n-1)}{2 n-1} B_{i^{2}}^{0}-\frac{2 n}{2 n-1} \sum_{j=1}^{n-1} B_{i^{2}}^{j}, \\
\Delta^{2} K_{i^{\prime 2}}=-\frac{n(n-1)}{2 n-1} B_{i^{\prime 2}}^{0}-\frac{2 n}{2 n-1} \sum_{j=1}^{n-1} B_{i^{\prime}}^{j}, \tag{17}
\end{gather*}
$$

where $B_{i^{2}}^{0}$ and $B_{i^{2}}^{j}$ are coefficients at y_{i}^{2} in the polynomials B^{0} and B^{j}, $j=1,2, \ldots, n-1$, whereas $B_{i^{\prime 2}}^{0}, B_{i^{\prime 2}}^{j}$ are analogous coefficients. To find $\Delta^{2} L_{w}$ we use (10) for L_{w} expressed via the coefficients of polynomial L

$$
\begin{equation*}
\Delta^{2} L_{w}=\left\{\sum_{i=1}^{2 n-2} \frac{y_{i} C_{\{2\}}^{i}}{\sqrt{4 n-2}}\right\}_{L_{w}}=\frac{\sum_{i=1}^{2 n-2} \sum_{i \in I} \operatorname{l\subset L_{w}} \operatorname{sign}\left(K_{I}^{w}\right) C_{I / i}^{i}}{\sqrt{4 n-2}}=\frac{C_{w}}{\sqrt{4 n-2}}, \tag{18}
\end{equation*}
$$

where the braces mean that in product $y_{i} C_{\{2\}}^{i}$ from all possible terms K_{I} of third degree we can take the coefficients only of the terms that are in the polynomial w, and with the same sign as in (10). Notice that the subscript in $C_{I / i}^{i}$ is two-valued obtained by eliminating index i from I. Thus, a linear combination C_{w} in $\Delta^{2} L_{w}$ is obtained from L_{w} by raising one by one the subscripts of every summand and substituting "K" by "C" (if in any summand of L_{w} the index is repeated, then it can be raised only once). An expression similar to (18) can be obtained for $\Delta^{2} L_{w^{\prime}}$.

Substituting expressions (17) and (18) into (16), setting

$$
B=\frac{n-1}{2} \sum_{i=1}^{2 n-2}\left(B_{i^{2}}^{0}+B_{i^{\prime 2}}^{0}\right)+\sum_{i=1}^{2 n-2} \sum_{j=1}^{n-1}\left(B_{i^{2}}^{j}+B_{i^{\prime}}^{j}\right),
$$

we find

$$
\begin{equation*}
\Delta^{2} K_{0}=\frac{n^{2} B}{(2 n-1)^{2}}+\frac{n\left(C_{w}+C_{w^{\prime}}\right)}{(2 n-3)(4 n-2)^{2}} \tag{19}
\end{equation*}
$$

where $C_{w^{\prime}}$ is determined by analogy with C_{w} (see equality (18)).
Representation (13) for the constant term K_{0} given by (15), obtained under supposition that the degree m of the polynomial $L\left(y, y^{\prime}\right)$ is three, when passing to $m=4$ has the following form:

$$
\begin{equation*}
K_{0}=-\frac{n}{4 n-2} \sum_{i=1}^{2 n-2}\left(K_{i^{2}}+K_{i^{\prime 2}}\right)+\frac{n\left(L_{w}+L_{w^{\prime}}\right)}{(2 n-3)(4 n-2)^{3 / 2}}-\Delta^{2} K_{0}, \tag{20}
\end{equation*}
$$

where the first two groups of summands coincide with those of (13) in form, but now they belong to the polynomial $L^{4}\left(y, y^{\prime}\right)$, and $\Delta^{2} K_{0}(19)$ is expressed via the coefficients of additional summands of the second degree of polynomials $B^{j}, C^{i}, C^{\prime i}$ of (14). To find the representation $\Delta^{2} K_{0}$ via the coefficients of the polynomial $L^{4}\left(y, y^{\prime}\right)$ we have to prove the following lemma.

Lemma 3. If the degree of the polynomial L in relation (9) is four, then for its coefficients there are valid the following equalities:

$$
\begin{align*}
& {\left[\left[2 \sum_{i=1}^{2 n-2} K_{i^{4}}+\sum_{s=1}^{n-1}\left(K_{s^{4}}+K_{(N-s)^{4}}+K_{\left.s^{2}(N-s)^{2}\right)}\right)\right]\right.} \\
& -2 \sum_{i=1}^{2 n-2}\left(K_{i^{2} i^{\prime 2}}+K_{i^{2}(N-i)^{\prime 2}}\right)+\frac{4}{n-1} \sum_{p, q=1}^{2 n-2} K_{p^{2} q^{\prime 2}}=\frac{8 B}{n-1}+C, \tag{21}\\
& {\left[\left[2 \sum_{i=1}^{2 n-2} K_{i^{4}}+\sum_{p \leq q} K_{p^{2} q^{2}}\right]\right]-\sum_{i=1}^{2 n-2}\left(K_{i^{2} i^{\prime 2}}+K_{i^{2}(N-i)^{\prime 2}}\right)}
\end{align*}
$$

$$
\begin{equation*}
+\frac{n+1}{n-1} \sum_{p, q=1}^{2 n-2} K_{p^{2} q^{\prime 2}}=\frac{4 n B}{n-1}+C_{w}+C_{w^{\prime}}, \tag{22}
\end{equation*}
$$

where $B=\frac{n-1}{2} \sum_{i=1}^{2 n-2}\left(B_{i^{2}}^{0}+B_{i^{\prime 2}}^{0}\right)+\sum_{i=1}^{2 n-2} \sum_{j=1}^{n-1}\left(B_{i^{2}}^{j}+B_{i^{\prime}}^{j}\right), C=\left[\left[\sum_{s=1}^{n-1}\left(C_{s^{2}}^{\left.2 s\right|^{\prime}}-C_{(N-s)^{2}}^{|2 s|^{\prime}}+\right.\right.\right.$ $\left.\left.(-1)^{|2 s|^{\prime}} C_{s(N-s)}^{N-|2 s|^{\prime}}\right]\right], C_{w}=\sum_{i \in I}^{I \subset L_{w}} \operatorname{sign}\left(K_{I}^{w}\right) C_{I / i}^{i}, C_{w^{\prime}}=\sum_{i \in I}^{I \subset L w} \operatorname{sign}\left(K_{I}^{w}\right) C_{(I / i)^{\prime}}^{\prime \prime}$, and the expression enclosed within double square brackets should be added the same expression with the subscripts $i^{\prime}, s^{\prime},(N-s)^{\prime}, p^{\prime}, q^{\prime}$.

Proof. All coefficients of L in relations (21) and (22) are coefficients at the products of monomials of second degree from $B_{\{2\}}^{j}, C_{\{2\}}^{i}, C_{\{2\}}^{i}$ and monomials of second degree in the left sides of the equations of system (8): $\left\{B_{\{2\}}^{0} \sum_{i=1}^{2 n-2} y_{i}^{2}+\right.$ $\sum_{j=1}^{n-1} B_{\{2\}}^{j}\left(y_{j}^{2}+y_{N-j}^{2}+y_{j}^{\prime 2}+y_{N-j}^{\prime 2}\right)+\sum_{i=1}^{2 n-2}\left(C_{\{2\}}^{i} \frac{\partial w}{\partial y_{i}}+C_{\{2\}}^{\prime i}\right) \frac{\partial w^{\prime}}{\partial y_{i}^{\prime}}$. Notice that not all these products are considered but only those the first co-factors of which have the coefficients $B_{i^{2}}^{j}\left(B_{i^{\prime}}^{j}\right)$, or $C_{\alpha \beta}^{i}\left(C_{\alpha^{\prime} \beta^{\prime}}^{\prime i}\right)$, where α and β are such that there is a monomial of the form $y_{\alpha} y_{\beta} y_{i}$ in w as well as in w^{\prime}. We have for $s<n$:

$$
\begin{align*}
K_{s^{4}}= & B_{s^{2}}^{0}+B_{s^{2}}^{s}+\frac{1}{2} C_{s^{2}}^{\left.2 s\right|^{\prime}}, \\
K_{(N-s)^{4}=}= & B_{(N-s)^{2}}^{0}+B_{(N-s)^{2}}^{s}-\frac{1}{2} C_{(N-s)^{2}}^{|2 s|^{\prime}}, \\
K_{s^{2}(N-s)^{2}}= & B_{s^{2}}^{0}+B_{(N-s)^{2}}^{0}+B_{s^{2}}^{s}+B_{(N-s)^{2}}^{s} \tag{23}\\
& -\frac{1}{2}\left(C_{s^{2}}^{|2 s|^{\prime}}-C_{(N-s)^{2}}^{\left.2 s\right|^{\prime}}\right)+(-1)^{|2 s|^{\prime}} C_{s(N-s)}^{N-|2 s|^{\prime}} .
\end{align*}
$$

By summing up these equalities termwise over s from 1 to $n-1$, we have

$$
\begin{align*}
& \sum_{s=1}^{n-1}\left(K_{s^{4}}+K_{(N-s)^{4}}+K_{s^{2}(N-s)^{2}}\right) \\
= & 2 \sum_{i=1}^{2 n-2} B_{i^{2}}^{0}+2 \sum_{s=1}^{n-1}\left(B_{s^{2}}^{s}+B_{(N-s)^{2}}^{s}\right)+\sum_{s=1}^{n-1}(-1)^{|2 s|^{\prime}} C_{s(N-s)^{N-|2 s|^{\prime}} .} . \tag{24}
\end{align*}
$$

Since there are no summands of the form $y_{i}^{\prime 2}$ in the left side of the first equation of system (8), by analogy we obtain

$$
\begin{align*}
& \sum_{s=1}^{n-1}\left(K_{s^{\prime 4}}+K_{(N-s)^{\prime 4}}+K_{s^{\prime 2}(N-s)^{\prime 2}}\right) \\
= & 2 \sum_{s=1}^{n-1}\left(B_{s^{\prime 2}}^{s}+B_{(N-s)^{\prime 2}}^{s}\right)+\sum_{s=1}^{n-1}(-1)^{|2 s|^{\prime}} C_{s^{\prime}(N-s)^{\prime}}^{\prime N-|2 s|^{\prime}} \tag{25}
\end{align*}
$$

Further we have

$$
\begin{aligned}
K_{s^{2} s^{\prime 2}} & =B_{s^{\prime 2}}^{0}+B_{s^{\prime 2}}^{s}+B_{s^{2}}^{s}+\frac{1}{2}\left(C_{s^{\prime 2}}^{|2 s|^{\prime}}+C_{s^{2}}^{\left.\prime 2 s\right|^{\prime}}\right), \\
K_{(N-s)^{2}(N-s)^{\prime 2}} & =B_{(N-s)^{\prime 2}}^{0}+B_{(N-s)^{\prime 2}}^{s}+B_{(N-s)^{2}}^{s}-\frac{1}{2}\left(C_{(N-s)^{\prime 2}}^{|2 s|^{\prime}}+C_{(N-s)^{\prime}}^{\prime|2 s|^{\prime}}\right), \\
K_{s^{2}(N-s)^{\prime 2}} & =B_{(N-s)^{\prime 2}}^{0}+B_{(N-s)^{\prime 2}}^{s}+B_{s^{2}}^{s}+\frac{1}{2}\left(C_{(N-s)^{\prime 2}}^{2 s s^{\prime}}-C_{s^{2}}^{\left.\prime 2 s\right|^{\prime}}\right), \\
K_{(N-s)^{2} s^{\prime 2}} & =B_{s^{\prime 2}}^{0}+B_{s^{\prime 2}}^{s}+B_{(N-s)^{2}}^{s}-\frac{1}{2}\left(C_{s^{\prime 2}}^{\left.2 s\right|^{\prime}}-C_{(N-s)^{2}}^{\left.\prime 2 s\right|^{\prime}}\right) .
\end{aligned}
$$

By summing up these equalities termwise over s from 1 to $n-1$, we get

$$
\begin{equation*}
\sum_{i=1}^{2 n-2}\left(K_{i^{2} i^{\prime 2}}+K_{i^{2}(N-i)^{\prime 2}}\right)=2 \sum_{i=1}^{2 n-2} B_{i^{\prime 2}}^{0}+2 \sum_{s=1}^{n-1}\left(B_{s^{2}}^{s}+B_{s^{\prime 2}}^{s}+B_{(N-s)^{2}}^{s}+B_{(N-s)^{\prime^{\prime 2}}}^{s}\right) . \tag{26}
\end{equation*}
$$

Substituting the values $K_{s^{4}}$ and $K_{(N-s)^{4}}$ from (23) into the first summand of equation (21) with regard to relations (24-26), we obtain

$$
\begin{gather*}
{\left[\left[2 \sum_{i=1}^{2 n-2} K_{i^{4}}+\sum_{s=1}^{n-1}\left(K_{s^{4}}+K_{(N-s)^{4}}+K_{\left.s^{2}(N-s)^{2}\right)}\right)\right]\right.} \\
-2 \sum_{i=1}^{2 n-2}\left(K_{i^{2} i^{\prime 2}}+K_{i^{2}(N-i)^{\prime 2}}\right)=4 \sum_{i=1}^{2 n-2}\left(B_{i^{2}}^{0}-B_{i^{\prime 2}}^{0}\right)+C . \tag{27}
\end{gather*}
$$

To establish the first conclusion of the lemma we have to find the sum $\sum_{p<q} K_{p^{2} q^{\prime 2}}$, taking into account that under $1 \leq p<q<N$

$$
K_{p^{2} q^{\prime 2}}=B_{q^{\prime 2}}^{0}+B_{q^{\prime 2}}^{|p|^{\prime}}+B_{p^{2}}^{|p|^{\prime}}+\frac{1}{2}\left[(-1)^{p+|p|^{\prime}} C_{q^{\prime 2}}^{|2 p|^{\prime}}+(-1)^{q+|q|^{\prime}} C_{p^{2}}^{|2 q|^{\prime}}\right],
$$

where $|p|^{\prime}=\min (p, N-p),|2 p|^{\prime}=\min (|2 p|, N-|2 p|)$, and $|2 p|$ is the smallest positive residue by modulus $2 n-1$

$$
\begin{equation*}
\sum_{p<q} K_{p^{2} q^{\prime 2}}=(2 n-2) \sum_{i=1}^{2 n-2} B_{i^{\prime 2}}^{0}+2 \sum_{i=1}^{2 n-2} \sum_{j=1}^{n-1}\left(B_{i^{2}}^{j}+B_{i^{\prime}}^{j}\right) . \tag{28}
\end{equation*}
$$

Multiplying this equality by $\frac{4}{n-1}$ and adding termwise to equality (27), we obtain relation (21) of the lemma.

To prove the second conclusion of the lemma, first we have to find $\sum_{p<q}^{p+q \neq N} K_{p^{2} q^{2}}$, where $1 \leq p<q<N$ (the cases of $p=q$ and $p+q=N$ are in (23)). If $p<q<n$ or $n \leq p<q$, then

$$
K_{p^{2} q^{2}}=B_{p^{2}}^{0}+B_{q^{2}}^{0}+B_{q^{2}}^{|p|^{\prime}}+B_{p^{2}}^{|q|^{\prime}}+\frac{1}{2}\left[(-1)^{p+|p|^{\prime}} C_{q^{2}}^{|2 p|^{\prime}}\right.
$$

$$
\begin{equation*}
\left.+(-1)^{q+|q|^{\prime}} C_{p^{2}}^{|2 q|^{\prime}}\right]+\operatorname{sign}\left(K_{p q|q-p|^{\prime}}^{w}\right) C_{p q}^{|q-p|^{\prime}}+\operatorname{sign}\left(K_{p q|q+p|^{\prime}}^{w}\right) C_{p q}^{|q+p|^{\prime}} . \tag{29}
\end{equation*}
$$

Thus, if $p<n \leq q$, then

$$
\begin{align*}
& \quad K_{p^{2} q^{2}}=B_{p^{2}}^{0}+B_{q^{2}}^{0}+B_{q^{2}}^{|p|^{\prime}}+B_{p^{2}}^{|q|^{\prime}}+\frac{1}{2}\left[(-1)^{p+|p|^{\prime}} C_{q^{2}}^{|2 p|^{\prime}}+(-1)^{q+|q|^{\prime}} C_{p^{2}}^{|2 q|^{\prime}}\right] \\
& +\operatorname{sign}\left(K_{p q\left(N-|q-p|^{\prime}\right)}^{w}\right) C_{p q}^{N-|q-p|^{\prime}}+\operatorname{sign}\left(K_{p q\left(N-|q+p|^{\prime}\right)}^{w}\right) C_{p q}^{N-|q+p|^{\prime}} \tag{30}
\end{align*}
$$

There are similar representations for $K_{p^{\prime 2} q^{\prime 2}}$. Using equalities (23, 26, 29, 30), we obtain

$$
\begin{align*}
& {\left[\left[2 \sum_{i=1}^{2 n-2} K_{i^{4}}+\sum_{p \leq q}^{2 n-2} K_{p^{2} q^{2}}\right]\right]-\sum_{i=1}^{2 n-2}\left(K_{i^{2} i^{\prime 2}}+K_{i^{2}(N-i)^{\prime 2}}\right) } \\
= & 2 n \sum_{i=1}^{2 n-2} B_{i^{2}}^{0}-2 \sum_{i=1}^{2 n-2} B_{i^{\prime 2}}^{0}+2 \sum_{i=1}^{2 n-2} \sum_{j=1}^{n-1}\left(B_{i^{2}}^{j}+B_{i^{\prime}}^{j}\right)+C_{w}+C_{w^{\prime}} . \tag{31}
\end{align*}
$$

Multiplying equation (28) by $\frac{n-1}{n+1}$ and adding to (31), we obtain the required relation (22). Lemma 3 is proved.

As one can see, to find an expression for $\Delta^{2} K_{0}$ (19) via the polynomial L^{4}, relations (21) and (22) are insufficient. There should be found a relation between the sum of the differences $C_{w}+C_{w^{\prime}}$ and C, for which we will define a new linear combination $L_{2 w}$ of the coefficients of polynomial L^{4} constructed by the linear combination L_{w}. Namely, if L_{w} contains the coefficients $K_{\alpha \beta i}$ and $K_{i \gamma \delta}$, then $L_{2 w}$ contains the coefficient $K_{\alpha \beta \gamma \delta}$ with the $\operatorname{sign}: \operatorname{sign}\left(K_{\alpha \beta \gamma \delta}\right)=$ $\operatorname{sign}\left(K_{\alpha \beta i}\right) \cdot \operatorname{sign}\left(K_{i \gamma \delta}\right)$. Moreover, by definition, $L_{2 w}$ contains only one term with given indices $\alpha \beta \gamma \delta$ and no one of the form $K_{\alpha^{2} \gamma^{2}}$ or $K_{\alpha \beta(N-\alpha)(N-\beta)}$. The sign of $K_{\alpha \beta \gamma \delta}$ does not depend on permutation of indices $\alpha, \beta, \gamma, \delta$, what can be shown by means of arguments used above (mainly in the proof of Lemma 1). A linear combination $L_{2 w^{\prime}}$ is defined in a similar way.

Lemma 4. For the linear combinations $L_{2 w}$ and $L_{2 w^{\prime}}$ of the coefficients of polynomial $L^{4}\left(y, y^{\prime}\right)$ there is true the equality

$$
\begin{equation*}
L_{2 w}+L_{2 w^{\prime}}=(2 n-5)\left(C_{w}+C_{w^{\prime}}\right)+C \tag{32}
\end{equation*}
$$

where $C_{w}, C_{w^{\prime}}$ and C have the same values as in Lemma 3.
Proof. To prove this lemma, it is not necessary first to find the linear combination L_{w} and then to define the above combination $L_{2 w}$. It is sufficient to use the system of equations (8) having the derivatives $\frac{\partial w}{\partial y_{i}}, i=1,2, \ldots, 2 n-2$. In fact, any monomial $y_{p} y_{q}$ contained in the derivative $\frac{\partial w}{\partial y_{i}}$ has $\operatorname{sign}\left(K_{i p q}^{w}\right)$ which coincides with the sign of the corresponding monomial in the polynomial $w(7)$
(if w does not contain the monomial $y_{i} y_{p} y_{q}$, we suppose $\operatorname{sign}\left(K_{i p q}^{w}\right)=0$). Hence, the form of $L_{2 w}$ expressed via C_{w} and C can be determined by the coefficients of the fourth degree polynomial $\sum_{i=1}^{2 n-2} C_{\{2\}}^{i} \frac{\partial w}{\partial y_{i}}$, where $C_{\{2\}}^{i}$ is a quadratic part of the polynomial C^{i} of (9).

Let $i=|2 j|^{\prime}, j<n$. Then, in the i-equation of system (8) the derivative $\frac{\partial w}{\partial y_{i}}$ contains $2 n-4$ summands with coefficients equal to ± 1 and the semidifference $\frac{1}{2}\left(y_{j}^{2}-y_{N-j}^{2}\right)$. Moreover, there is a monomial $y_{N-p} y_{N-q}$ along with $y_{p} y_{q}, p<q<n$ or $n \leq p<q$, and by definition there is neither summand $K_{p q(N-p)(N-q)}$ nor $K_{j^{2}(N-j)^{2}}$ in $L_{2 w}$. Thus, if $L_{2 w}$ contains the summand $K_{p q r s}$, then it contains $C_{p q}^{i}$ with the $\operatorname{sign} \operatorname{sign}\left(K_{i r s}^{w}\right) \cdot \operatorname{sign}\left(K_{p q r s}\right)=\operatorname{sign}\left(K_{i p q}^{w}\right)$, as by definition $\operatorname{sign}\left(K_{p q r s}\right)=\operatorname{sign}\left(K_{i p q}^{w}\right) \cdot \operatorname{sign}\left(K_{i r s}^{w}\right)$, and the coefficient at $\operatorname{sign}\left(K_{i p q}^{w}\right) C_{p q}^{i}$ is $(2 n-4)-2+2 \cdot \frac{1}{2}=2 n-5$. Besides, $L_{2 w}$ contains $\operatorname{sign}\left(K_{i j^{2}}^{w}\right) C_{j^{2}}^{i}=C_{j^{2}}^{|2 j|^{\prime}}$ and $\operatorname{sign}\left(K_{i(N-j)^{2}}^{w}\right) C_{(N-j)^{2}}^{i}=-C_{(N-j)^{2}}^{|2 j|^{\prime}}$ (see the first two summands of the second sum in (7)) with the coefficient $2 n-4=(2 n-5)+1$. Thus, when $i=|2 j|^{\prime}<n$, $L_{2 w}$ contains

$$
(2 n-5)\left[\sum_{i=1}^{n-1} \sum_{p<q} \operatorname{sign}\left(K_{i p q}^{w}\right) C_{p q}^{i}+\sum_{j=1}^{n-1}\left(C_{j^{2}}^{2 j j^{\prime}}-C_{(N-j)^{2}}^{|2 j|^{\prime}}\right)\right]+\sum_{j=1}^{n-1}\left(C_{j^{2}}^{|2 j|^{\prime}}-C_{(N-j)^{2}}^{|2 j|^{\prime}}\right)
$$

as summands. When $i=N-|2 j|^{\prime} \geq n$, the derivative $\frac{\partial w}{\partial y_{i}}$ contains $2 n-3$ summands with the coefficients ± 1. What is more, it contains the summand $y_{p} y_{q}$, $p<n \leq q$, when $p+q \neq N$, as well as the summand $y_{N-p} y_{N-q}$ and the term $y_{j} y_{N-j}$. Therefore, in $L_{2 w}$ there is a summand $\operatorname{sign}\left(K_{i p q}^{w}\right) C_{p q}^{i}$ with the coefficient $(2 n-4)-2+1=2 n-5$ and a summand $\operatorname{sign}\left(K_{i j(N-j)}^{w}\right) C_{j(N-j)}^{i}=(-1)^{|2 j|^{\prime}} C_{j(N-j)}^{\left.2 j\right|^{\prime}}$ (see the last summand of the second sum in (7)) with the coefficient $2 n-4=$ $(2 n-5)+1$ if $\operatorname{sign}\left(K_{i j(N-j)}^{w}\right) \neq 0$. Thus, when $i \geq n, L_{2 w}$ contains the following summands:

$$
\left.\left.(2 n-5)\left[\sum_{i=n}^{2 n-2} \sum_{p<q} \operatorname{sign}\left(K_{i p q}^{w}\right) C_{p q}^{i}+\sum_{j=1}^{n-1}(-1)^{|2|^{\prime}} C_{j(N-j)}^{|2 j|^{\prime}}\right)\right]+\sum_{j=1}^{n-1}(-1)^{|2 j|^{\prime}} C_{j(N-j)}^{|2 j|^{\prime}}\right) .
$$

Summing up the obtained relations termwise and taking into account that $L_{2 w^{\prime}}$ satisfies similar equalities, we arrive to equality (32). Lemma 4 is proved.

As we can see, by Lemmas 3 and 4 , the expressions $B, C_{w} C_{w^{\prime}}$, contained in the difference $\Delta^{2} K_{0}(19)$, are combinations of the coefficients $L^{4}\left(y, y^{\prime}\right)$ at monomials of fourth degree. Thus, by (20), the constant term K_{0} of the polynomial L^{4} is a linear combination of its other coefficients equal to null by (9), and K_{0} must turn into null too, what contradicts to (9). Hence, a degree of the polynomial $L\left(y, y^{\prime}\right)$ of (9) should be greater than four.

Our method of constructing of half-circulant Hadamard matrices of order $4 n$ (see Basic Lemma in [4]) is universal, i.e., it can be applied to any integer n, and, consequently, universal is the initial equation system (6) for the proposed inductive approach (notice that the well-known method used by J. Williamson [10] works only for odd n). Hence, the obtained above results give an opportunity to use the inductive approach to the proof of the existence of antipodal n-gons for any integer $n \geq 3$ as well as of half-circulant Hadamard matrices of order $4 n$. Thus, there is valid the following theorem.

Therem 3. If for any natural $m \geq 3$ the assumption that a constant term of the polynomial $L^{m}\left(y, y^{\prime}\right)$ defined by (9) is a linear combination of its other coefficients involves the same assertion for the polynomial L^{m+1}, then there exists a half-circulant Hadamard matrix of any order $4 n, n \geq 3$.

Notice that (by analogy with the considered above passage from degree $m=3$ to degree $m+1=4$ of polynomial L) to prove the specified in Theorem 3 properties of the polynomial L of any finite degree $m+1$, it is sufficient to show that the difference $\Delta^{m-1} K_{0}$ obtained by replacing the degree m by $m+1$ of L, can be expressed linearly via the coefficients of L^{m+1} at terms of degree $(m+1)$.

References

[1] A.I. Medianik, Antipodal n-Gons Inscribed into a Regular ($2 n-1$)-Gon and the Half-Circulant Hadamard Matrices of Order 4n. - Mat. Fiz., Anal., Geom. 11 (2004), 45-66. (Russian)
[2] M. Hall, Combinatorial Theory. Mir, Moscow, 1970. (Russian)
[3] W. Ball and H. Coxeter, Mathematical Recreations and Essays. Mir, Moscow, 1986. (Russian)
[4] A.I. Medianik, Regular Simplex Inscribed into a Cube and Hadamard Matrices of Half-Circulant Type. - Mat. Fiz., Anal., Geom. 4 (1997), 458-471. (Russian)
[5] R. Bellman, Introduction to Matrix Analysis. Nauka, Moscow, 1969. (Russian)
[6] H. Khraghani and B. Tayfeh-Rezaie, A Hadamard Matrix of Order 428. J. Combin. Designs 13 (2005), 435-440.
[7] K. Sawade, A Hadamard Matrix of Order 268. - Graphs Combin. 1 (1985), No. 2, 185-187.
[8] A.I. Medianik, On a Regular Hypersimplex Insrribed into the Multidimensional Cube. - J. Math. Phys., Anal., Geom. 2 (2006), 176-185.
[9] G. Polya and G. Szego, Aufgaben und Lehrsatze aus der Analysis. Band II. Nauka, Moscow, 1978. (Russian)
[10] J. Williamson, Hadamard's Determinant Theorem and the Sum of Four Squares. - Duke Math. J. 11 (1944), 65-81.

