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There is given an example of probability distribution, not having Gaus-
sian components, such that for any two independent identically distributed
random variables £ and 7 with this distribution and for all a # 0, b # 0 the
distribution of the linear form af + by has Gaussian components.
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A.M. Kagan posed the question, Do there exist two independent random
variables ¢ and n such that the distribution of each of them does not have Gaus-
sian components, but the distribution of the linear form a{ 4+ bn has Gaussian
components for any real numbers a # 0 and b # 07”. Let us formulate this ques-
tion in terms of characteristic functions. Recall that the characteristic function
of a random variable ¢ with distribution P is the function defined for ¢t € R by

the formula -

we(t) = E[eitg] = / " P(dx) .

The characteristic function ¢ is called a divisor of the characteristic function ¢
if there exists a characteristic function o such that

@(t) = p1(t)pa(t)

for any ¢t € R. The characteristic function ¢ is called indecomposable if it is not
equal to the function €' (a € R) and if each divisor of ¢ is equal to o(t)e*
or €t where b,c € R. The characteristic function of the form e*"tzﬂ'at, where
o > 0 and a € R, is said to be Gaussian. The factor e’ is not essential in
the problem under consideration. Therefore we can say that the characteristic
function ¢ has a Gaussian divisor if go(t)e‘”t2 is a characteristic function for some
positive number o.
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In terms of characteristic functions A. M. Kagan’s question can be stated as,
"Do there exist two characteristic functions f(¢) and g(¢), not having Gaussian
divisors, such that the characteristic function f(at)g(bt) has a Gaussian divisor
for all numbers a # 0 and b # 0?7”. The aim of the paper is to give a positive
answer to this question.

Theorem. The characteristic function f(t) = (1 — t2)e™**/2 does not have
Gaussian divisors, but the characteristic function f(at)f(bt) has Gaussian divi-
sors for any monzero a and b.

Remark 1. This theorem was proved for a = b. It is well known (see
[1, Ch. 3, §§3 and 4]) that the characteristic function f(¢) = (1 —t2)e~*"/2 of the
probability density (\/%)_13;26_’32/ 2 is indecomposable, but the characteristic
function f2(¢) has the Gaussian divisor e~"/4. Notice that the general case
a # 0, b # 0 is not an immediate corollary of the particular case a = b.

Remark 2. Interms of random variables the theorem means that if £ and
n are the independent and identically distributed random variables with probability
density (vV2r) " ta2e=""/2 (and characteristic function (1 — t2)e™"/2 ), then the
distribution of the linear form a€+bn has Gaussian components for all a # 0 and
b # 0, although the distributions of & and n do not have Gaussian components.

To prove the theorem we need the following lemma.

Lemma. For every v > 0 the following three functions

—~242 _~242 _~242
801,7(t) =e 7t /2> (PZ,'y(t) =P 7" /27 803,7(t) = tle™ /2
are Fourier transforms of the functions
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Equality (1) for k = 1 is a direct consequence of the equality
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Multiplying by ¢? both sides of equality (1) for k¥ = 1 and integrating twice by
parts, we get equality (1) for k& = 2. Analogously, equality (1) for k = 3 follows
from equality (1) for k = 2. [

Proof of the theorem. Since the characteristic function (1 — ¢2)e~"/2

is even, we may suppose that a > 0 and b > 0. The characteristic function
F(t) = (1—12)e~**/2 is indecomposable, hence it does not have Gaussian divisors.
Our aim is to prove that the characteristic function

flat) f(bt) = (1 — a*t*)(1 — b*t*) exp (—(a® + b°)t*/2)

has Gaussian divisors for all @ > 0 and b > 0. Therefore, for every a > 0 and
b > 0 we have to find 72, 0 < v2 < a® + b%, such that

oy (t) = (1— (a® 4+ b*)t? + a2b2t4) exp (—72152/2) (2)

is a characteristic function. It is sufficient to prove that if 42 € (0,a? + b?) and
7?2 is sufficiently close to a® + b%, then the function ¢ (t) is a Fourier transform
of a probability density p,(x). It follows from the lemma that the function ¢, (t)

(see (2)) is a Fourier transform of the function

22

1 _=2
py(7) = p1y(2) — (a2 + 52)17277(33) + a2b2p3,7(x) = \/ﬂfye 2% Qy (),
where
1 22 1 22 xt
12 (L T 2,2(5 L X X
Q (x)=1—(a®+b )(72 74) + a2 (3v4 65 +78). (3)

We will prove that the polynomial @, (z) is positive for all z € R if a positive

number +2 is less than a? +b? and sufficiently close to a?4b>. We put a = r cos 6,

b=rsind (r >0,0< 6 < 7/2). Then a® + b?> = r?, and we can rewrite (3) as

follows:

Q. (x) = (1 B Lz n 3 7“45111220) (T‘z 3 T4sin229>x2 1 74 sin? 20334‘
7?4 gt 72 ~° 4 o

We denote & := sin?26. Then 0 < § < 1, and we can represent Q. (z) in the form

r2 3.t r2 3 iy a2 1tz
)+ (5 -35)

— (1= 4250 L LA NI Ly
Q4 (x) ( 72"'4,),4 12 T 904 72+4’y4’y4

2 2
Let us denote s := T—z and y := % Therefore, s > 1 and y > 0. The polynomial
Y
Q- (x) can be rewritten as follows:

4

Q~(x) = (1 — s+ %582) + (s - gés2>y +05%y? =1 2, 5(y) .

Journal of Mathematical Physics, Analysis, Geometry, 2010, vol. 6, No. 3 293



A. Il’inskii

We prove that the inequality min{s s(y) : y > 0} > 0 is valid for every ¢ € (0,1)
if s > 1 and s is sufficiently close to 1. Since the coefficients of the polynomial
#,.5(y) depend continuously on s, it remains to verify that min{s s(y) : y >
0} > 0 for every 6 € (0,1). Let us consider the polynomial

_s(y) _ 3 13 2

vsly) = B =T (5= Dy
and show that min{ys(y) : y > 0} > 0 for every § € (0,1). If 0 < § < 2/3, then
Ys(y) = 3/4forally > 0. If 2/3 < § < 1, then ¢5(y) has a minimum at the point

ys = % (% — %) > (0. Therefore,

. 3 3 1\2 3 3 1\2 11
?ﬁél%(w—%(%)—r(r%) >7-(G-32) =%

Hence min{s¢ 5(y) : y > 0} > 631 for every § € (0,1). The theorem is proved. m

Remark 3. A simpler example can be given if in A.M. Kagan’s question
not require the random variables ¢ and 7 to be independent. Let us consider the
characteristic function of two variables

f(t,s) = (€7t2/2 + 6752/2)/2

which is the characteristic function of the mixture with weights 1/2 of standard
Gaussian distributions concentrated on the coordinate axes {y = 0} and {z = 0}.
Let (£,7m) be a random vector with this distribution. We assert that the charac-
teristic functions f(¢,0) and f(0,s) of the coordinates £ and 7 of random vector
(&,m) do not have Gaussian divisors, but the characteristic function f(at,bt) of
the linear form a& 4 bn has Gaussian divisors for all a # 0 and b # 0. Indeed, the
distribution with the characteristic function f(t,0) = (e~**/2 +1)/2 is a mixture
with weights 1/2 of standard Gaussian distribution and the degenerate distribu-
tion concentrated at the point 0. Since this distribution has an atom, it does
not have absolutely continuous components, so it does not have Gaussian com-
ponents. However the characteristic function f(at,bt) = (e=@"*/2 4 ¢=b*1*/2) /2
has Gaussian divisors for any a # 0 and b # 0.

I am thankful to G.M. Feldman who attracted my attention to A.M. Kagan’s
question.
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