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The modified Korteveg—de Vries equation on the line is considered. The
initial function is a discontinuous and piece-wise constant step function, i.e.
q(z,0) = ¢, for x > 0 and ¢(z,0) = ¢ for < 0, where ¢, ¢, are real
numbers which satisfy ¢; > ¢, > 0. The goal of this paper is to study the
asymptotic behavior of the solution of the initial-value problem as ¢t — oo.
Using the steepest descent method we deform the original oscillatory matrix
Riemann—Hilbert problem to explicitly solvable model forms and show that
the solution of the initial-value problem has different asymptotic behavior
in different regions of the zt plane. In the regions r < —6c7t + 12¢t and
x > 4cft + 2¢%t the main term of asymptotics of the solution is equal to
c and ¢, respectively. In the region (—6¢? + 12¢2)t < x < (4c? + 2c2)t
the asymptotics of the solution takes the form of a modulated hyper-elliptic
wave generated by an algebraic curve of genus 2.
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1. Introduction

The inverse scattering transform method (IST) [1-3] used for initial-value
problems for nonlinear integrable equations is proved to be very successful. It
allows to obtain a large number of very interesting results in various areas of
mathematics and physics. The IST method was further developed by P. Deift and
X. Zhou [4-6]. They proposed to use the steepest descent method for solving the
oscillatory matrix Riemann—-Hilbert problems. This method appeared to give
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a nice possibility to study asymptotic behavior of the solutions of initial-value
problems as well as many other problems of the theory of completely integrable
nonlinear equations (sf. [7-26]), random matrix models, orthogonal polynomials
and integrable statistical mechanics [27-29] without a priori assumptions.

The initial value problems for nonlinear integrable equations with step-like
initial functions have a very long history. More about these problems can be
found in [2, 30-46], and also in the references therein. Most results were obtained
for the initial-value problems associated with self-adjoint Lax operators. First the
step-like problems with non self-adjoint Lax operators were considered by Bikbaev
[40, 41] and later by Novokshenov [43]. In their papers, the main attention was
paid to the studying of the complex Whitham deformations, which allowed them
to describe the long-time asymptotic behavior of the solution. However, for the
present time, asymptotic formulas as well as their justifications seem to be not
sufficiently clear and rigorous. Most recently an implementation of the rigorous
RH scheme to the focusing nonlinear Schrédinger equation with non self-adjoint
Lax operator was presented in [47-49].

In the short note [40], the initial-value problem

Gt + 66 + Gz =0 (1.1)

Cr, T — 400,

q(z,0) = qo(z) — { (1.2)

c, T— —00

was considered. In [40], the solution of the problem is described by a modulated
two-gap solution of the mKdV equation that corresponds to the long-time dy-
namics of the compression wave when —6¢7t + 12c2t < x < 4cit + 2c?t that has
not been proved up to now. The goal of this paper is to justify this statement
in a transparent form by using a suitable matrix Riemann—Hilbert problem and
corresponding steepest descent method. The central point of the paper is to
describe in an explicit form the so-called g-function mechanism which allows to
deform the original oscillatory matrix Riemann—Hilbert problem to the solvable
model forms. We emphasize that our formula for a hyper-elliptic wave is written
in an explicit form via theta functions.

2. Jost Solutions of Lax Equations

To study the initial value problem (1.1)—(1.2) we use the Lax representation of
the mKdV equation [2, 3] in the form of the over-determined system of differential
equations

O, + iko3® = Q(x,t)®, (2.1)

O, + 4ik3o3® = Q(x,t, k)®, (2.2)
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where ® = ®(z,¢, k) is a 2 x 2 matrix-valued function,

03 = (é _01), Q1) = (_q&t) "("ﬁ;t)),

Q(.’E,t, k)
= 4]{32Q($,t, k) - 22]43(Q2(.'E,t, k) + Qx($,t, k))03 + 2@3($,t, k;) - Qxx($,t, k)’

and k € C. Equations (2.1) and (2.2) are compatible if and only if the func-
tion q(z,t) satisfies the mKdV equation (1.1). To apply the inverse scattering
transform to the problem (1.1)—(1.2) we have to define the matrix valued Jost
solutions of the Lax equations. We define them as the solutions of the compatible
equations (2.1) and (2.2) satisfying the asymptotic conditions

O, (z,t,k) = Er(z,t,k)+0(1), z—+oo, Imk=0, (2.3)
Oy(x,t, k) = Ej(x,t,k)+0(1), x— —o0, Imk=0. (2.4)
Here Ej(x,t, k), E.(x,t,k) are the solutions of the linear differential equations
E, + ikosE = Q.E,
Ey + 4ik303E = Q.(k)E,

where ¢ = ¢; and ¢ = ¢, respectively, and the constant matrix coefficients Q.
and Q.(k) are as follows:

@=(0 0) Qulb) = 1kQ. - 2kl + 22

We choose the solutions Ej(z,t, k), E,(x,t, k) in the form

1 1
r k r k) —
1 (k) s, (k) . (k) 2. (K)
Elr(x t k) S e—ia:Xl’r(k:)ag—ithm(k)Ug
s s Uy 2 1 ) s
T k - r k
. (k) s, (k) (k) + (k)
where
k—ic,
Xip(k) = \[K2+ ¢}, . Qupk) =202k =G ) X1 (k) , sa.(k) = { kﬂciv .
(2.5)

The branches of the roots are fixed by the conditions X, (1) > 0, sg,(c0) = 1.
Then the functions Xj, (k) and s, (k) are analytic in C\[ic, —ic], where ¢ = ¢
or ¢ = ¢,, respectively.
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Solutions (2.3), (2.4) can be represented in the forms

q)l(x7t7k> = El(xatak) + / Kl(l’,y,t)El(y,t, k)dy7 Imk = 07 (26)

O, (z,t, k) = Ep(x,t, k) +/Kr x,y,t)E.(y,t, k)dy, Imk =0, (2.7)

where the kernels K ,(x,y, t) are sufficiently smooth and decrease to zero rapidly
as x +y — too. Omitting the details of the proof of these representations, we
formulate below the properties of the solutions.
The matrices ®;(x, t, k) and @, (x,t, k), defined by (2.6), (2.7) and their columns
®yj(x,t, k) and @,(x,t, k), j = 1,2, have the following properties:
1) determinants are equal to the identity matrix:
det @, ,(x,t, k) = 1;

2) analyticity:
O, (x,t, k) is analytic in k € D, := C_ \ [0, —ic,],
ro(x,t, k) is analytic in k € D,y := C \ [0, ic,],
@)y (z,t, k) is analytic in k € Dy := C4 \ [0, ¢,
Dip(x,t, k) is analytic in k € Dy := C_ \ [—ic, 0];
3) continuity:
D, (z,t, k) is continuous for k € D, U (—ic,, ic,)— U (—icy, icy) 4,
®,9(x,t, k) is continuous for k € D,y U (—ic,,ic,)— U (—icy,icy )4,
&y (z,t, k) is continuous for k € Dy U (—icy,ic)— U (—icy, icy)+,
®jo(xz,t, k) is continuous for k € Dy U (—icy,ic)— U (—icy, icy)+,
where (—icyy,ic )~ and (—icy,, ic, )+ are the left- and the right-hand sides
of the interval (—ic;,,ic;,);

4) symmetries:

Pog(w,t, k) = P11 (,t, k),  Pao(z,t,—k) = P11, t, k),
Pio(w,t, k) = —Poy(z,t, k), Pr2(z,t,—k) = —DPa1(z,t, k),
(bjl(xat,*E> :(I)jl(.fﬂ,t,k), j,l:ﬁ7

where ®(z,t, k) denotes ®;(z,t, k) or ®,(z,t,k);

5) large k asymptotics:

D, (2, t, k)e+ikx+4ik3t 1
q);(l‘,ta k)e—ikx—4ik3t =1+0 %) k— oo, Imk<O,
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@11(3?, t, k)e+ik:p+4ik3t 1
By, t, k) tho—dik’t TO\g) koo Imk=0;

6) jump:

O_(z,t,k) = D (2,t,k) ( ? é :
where ®(x,t, k) and ¢ denote ®;(z,t, k) and ¢; or ®,(z,t, k) and ¢, respec-
tively, and ®4(x,t, k) are the non-tangential boundary values of matrix
®(x,t, k) from the left (—) and from the right (4) of the downward-oriented

interval (—ic,ic).

k € (ic, —ic),

The matrices ®;(z,t,k) and ®,(x,t, k) are solutions of equations (2.1) and
(2.2). Hence they are linear dependent, i.e.,there exists the independent of x,¢
matrix

T(k) = & (2, t,k)®)(x,t, k), kER, (2.8)

which is defined for those k for which Im X, (k) = 0. Some elements of this matrix
have an extended domain of definition. Indeed, using (2.8), we can find

T11(k) = det(P®jq, Pro),
T51 (k) = det(®,1, Ppq),
Ti2(k) = det(Pjo, Pro),
TQQ(]C) = det(@ﬂ, (I)lg)

Then the above properties of the solutions @, (z, ¢, k) and ®;(z,t, k) imply:

e Ty1(k) is analytic in k& € C4\[0,i¢;] and has a continuous extension to
(0,ie1)_ U0, icr)

o Ty (k) is analytic in k € C_\[0,i¢;] and has a continuous extension to
(—Y:Cl, O)* U(_iclv 0)4’)

e 15 (k) is continuous in k € (—o0,0) J(0, —ic;)— J(—icy, 0)4 J(0, +00);
e Ti5(k) is continuous in k € (—o0,0) |J(0,i¢;)— (ic;, 0)+ J(0, +00),

where, as before, the signs — and + denote the left- and the right-hand sides of
the intervals;

o Too(k) =Ti1(k), Teo(—k)=Ti1(k),

o Tio(k) = —To1(k), Tio(—k) = T (k),

o Tin(—k) = Ti(k), j,k=1,2.
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Denote

Define the reflection coeflicient

_ K
r(k) = k)’
It has the property
r(—k) = r(k).

The columns of the matrices ®; and ®, satisfy the following jump conditions:

((I)ll)—(xvt7 k;) ((I)ll)-i-(xvt’ k)

" (k) arlk) f1k)®ra(z,t k), k€ (icr,ic);
8) (<I>12),(ai,t, k) _ ((I)ZQ)Jr(f’t’ ul = fo(k)®r1(z,t, k), k€ (—ic,, —ic),
a—(k) a4 (k)
where
fi(k) = : ke (0,ic),  folk)=—fi(k), ke (—ic,0).

a-(k)ay(k)’

3. The Basic Riemann—Hilbert Problem

The scattering relation (2.8) between the matrix-valued functions ®;(z,t, k)
and ®,(z,t,k) and jump conditions 6, 7, 8 can be rewritten in terms of the
Riemann—Hilbert problem. To do this, define the matrix-valued function

i1 (@, k) e —ith(k€) ,
< CL(]C) € 7(I)T2(‘T7t7k)e , k€ (C-‘!-\[O?ZCIL

Mt k) =

(q)rl(x,t, k)ett0(k8) We_iw(k’s)) , k€ C_\[—ic, 0],
a(k)

(3.1)
where z = 126t and 0(k,€) = 4k3 + 12k¢ (€ = x/12t). Below we restrict our
consideration to the simplest shock problem where the initial function is discon-
tinuous and piece-wise constant (pure step function):

qo(z) = { v =0, (3.2)

cy, x < 0.
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Then
_1 1 1 1 k) -1
a(k) = B <%(k) + %(k)) , b(k) = 3 (’f(k) - %(k)) , (k) = 211 (3.3)
are analytic in k € C\ ([—ic;, —ic,| U [icy, ic]), since the function (k) := Zi((i))

(see (2.5)) is analytic in this domain. The transition coefficient a = (k) is bounded
in k € C4\[icy, icy] because the function a(k) equals zero nowhere, and hence the
set of eigenvalues of the linear problem (2.1) is empty. We have that fi(k) =
fa(k), and so we define f(k) := f1(k) = fa(k). We also have

f(k)=r_(k) —ry(k), ke (—ic,—ic,)U (icy,ic). (3.4)

ic,

S
—zcrl

= lcl

Fig. 1. Oriented contour X.

Let us define the oriented contour ¥ = R U (i¢;, —ic;) as in Fig. 1. Then the
matrix (3.1) solves the next Riemann-Hilbert problem:

e the matrix-valued function M (&, t, k) is analytic in the domain C \ 3

o M(&,t, k) is bounded in the neighborhood of the branching points ic, ic,,
—icy, —ic, and at the origin (k = 0);

b M—(§7ta k) = M+(€7t7k)‘](€vt’ k)’ ke \ {0}7
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where
J(E k) = ( _r(k)elzite(k,s) T(lk zf_:(:)(fj) > k€ R\{0}, (3.5)
= ( f(k>621it9(k,§) (1) > ; k€ (icy,ic), (3.6)
_ ( ! f(k:)e—lzitew,s) ) | k€ (—icy, —ic), (3.7)
- ( f(k)izgsg(’“’@ ie—i‘ii;kf) ) ’ k€ (0,ic), (3.8)

—ir(k flk e 2itb(k.€) .
= ( i€2it6((k’>€) ( )ZT(IC) ) ke (0, _ZCT); (39)

o M(&t,k)=T+O0(k™"), k— oo,

where r(k) = —r(k) = —r(—k) is given in (3.3), and f(k) in (3.4).

If the initial function is arbitrary step-like, then a(k) may have zeroes in
the domain of analyticity. In this case the matrix M (,¢, k) is meromorphic and
residue relations between the columns of the matrix M (¢, ¢, k) must be added.

In what follows we suppose that the solution ¢(x,t) of the shock problem
(1.1)-(1.2) with the pure step initial function (3.2) does exist. The above Rie-
mann-Hilbert problem gives ¢(x,t) in the form

q(z,t) =21 klim E[M(x/12t,t,k)]12, (3.10)

where [M(x/12t,t, k)]12 is the appropriate entry of the matrix M (z/12t,t, k).

4. Long-Time Asymptotic Analysis
of the Riemann—Hilbert Problem

The jump matrices J(&,t, k) in (3.5)—(3.9) depend on exp{=£2itf(k,&)}. The
phase function 6(k, &) and the signature table of its imaginary part play a very
important role. For a vanishing initial function the phase function 6(k, £) allows
to use successfully the steepest descent method for oscillatory RH problem [5]
when the conjugation contour X coincides with the real axis R. For a non-
vanishing initial function, the phase function 0(k, &) does not allow to carry out
the asymptotic analysis of the RH problem because the contour > contains the
segment [ic;, —ic;] which imposes extra (bad) properties of the phase function
(indeed, 2it0(k.€) grows exponentially). Therefore, we have to change the phase
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function 6(k, &) with a new one. In what follows we will use the phase function
g(k, &) which takes different forms in different regions.

A. Construction of the phase function

2 2 2
T

1. Regions ¢ < —%l + c?, and ¢ > a + R The asymptotic analysis used
for studying the asymptotic behavior in these regions is similar to those given
in [23, 25, 26]. Therefore we only mention that the suitable phase functions are
given by the formulas

2 2
g(k€) = 126X, (k) + 22k — D)X (), §> L+,

2
9(k,€) = 126X, (K) + 2287 — )Xo, (K), €< T+

where X (k) = vk% 4+ ¢? is holomorphic outside the segment [ic, —ic]. We obtain
the following

Theorem 4.1. Fort — co and x > (4¢} + 2¢2)t the solution of the problem
(1.1)(1.2) with the initial pure step function (3.2) takes the form

g(x,t) = ¢, + O(e™ ),
where C' > 0 is some positive constant.

Theorem 4.2. Fort — oo and x < (—6c} +12c2)t the solution of the problem
(1.1)(1.2) with the initial pure step function (3.2) takes the form

q(z,t) = + O(t_l/z).

In what follows we will deal only with the

a 2

2. Region —— < -+
egion 2+cr<§ 3+6

region we use the function g(k, &) with the following properties:
(1) g(k,¢) is analytic in the domain k € C\[ic;, —icy];
(2) 3 lim (g(k.&) — 6(k.E) = g0(6) € C:
(3) theset {k: Im g(k,&) = 0} divides the complex plane into four connected
open sets and contains necessarily the set R U [ic;, id] U [ic,, —ic,| U [—id, —ic],
where d = d(&) € [ic,ic,] is some function of &.

We look for such a function in the form

(=6ci+12c3)t <z < (4012+2c%)t> . In this

k
gt g = [PELETDE o= Jor v e+ @+ ).

w(k, §)

i
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where function w(k, £) is positive on the positive part of the real axis and analytic
in k € C\ ([ic, id]) U [icy, —ic,] U [—id, —i¢]). Here unknown numbers d and p
have to be determined as the functions of £&. The integration contour is chosen to
have no intersection with the segment [ic;, —ic;]. It is easy to see that g(k,§) € R
if k£ lies on the left- or right-hand side of the segment [ic;,id]. To satisfy the

requirement g(k,&) € R, if k lies on the left- or right-hand side of [ic,, —ic,| U
id
[—id, —ic;], we have to choose such numbers p and d that / dg(k,&) = 0 and
e, icr
/ dg(k,&) = 0. Due to the symmetry of dg(k, §) under the change of variable
—id
k — —k, we can see that the last two requirements are equivalent to each other
and can be written as follows:

d

/ yy! — )V -y (4.1)
L@ - - )

This formula defines p = u(d) as a strictly increasing function on the segment

[er, ¢, and
[ +2¢2
/"(Cr) =Cr, N(Cl) = ZT (4'2)

Indeed, by expressing p in d through formula (4.1) and then by taking the
first derivative of 12(d), we find

d d d d
/ o) (y)dy / p(y)ha(y)dy — / p(y) 1 (9)ha(y)dy / p(y)dy

where we denote

PY) = —— )
V(& =) (@ = )52 - )
hl (y) = y27
ha(y) = d* — y* .
Let us note that all the three functions p(.), hi(.), hao(.) are positive on the

segment [c;, d|, moreover, hj(.) is increasing on the segment and ha(.) is decreasing
on the segment. Therefore we can use
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Lemma 4.1. Let p(.), hi(.), ha(.) be positive functions on the segment
[a,b] C R such that the integrals of their combinations p(y), p(y)hi(y), p(y)ha(y),
p(y)hi(y)ha(y) are convergent in proper or improper sense. Let also assume that
h1 is the increasing function on the segment, and ho is decreasing function. Then

d d d

d
/ p(y)h1(y)dy / p(y)ha(y)dy — / p(y)hi(y)ha(y)dy / p(y)dy > 0.

cr Cr cr Cr

We will prove this lemma in the Appendix.
Now we want to satisfy the requirement (2) klim (9(k,&)—0(k,&)) € C, which
—00

is fulfilled if dg(k, £)—df(k, &) = O(k~2)dk, as k — oo, is fulfilled. Since df(k, &) =
12(k* + &)dk and dg(k, &) = [12k* — 6(c] + ¢ — d* — 2p4%) + O(k™2)] dk as k —
o0, we need

c? + 2 5  d?
Y

5 X (4.3)

£+
Equations (4.2) yield that p?(d) + — —
2 2 2
2 G

_%l + ¢z, 3 + 06’"} when d varies over the segment [c,, ¢]. So, from (4.3) we

varies over the segment

c? 2 2
get that for any £ € —EZ +c2, ?l + é
such that (4.1) and (4.3) are fulfilled. Equality (4.3) implies that d = d(§) is
a continuous function. Thus, the function g(k, ) is completely defined and it has
the property
(20)  lim (g(k, &) ~ 0(k,)) = 0

which folfgws from the existence of the limit and the relations below:

there exists a single d = d(€) € [er, ]

g(k7§) - a(kag) € iR ) ke (icl,—i—ioo) ;

gk, ) —0(k, ) eR, keR.

Besides,
(4) g-(k, &) +9+(k, &) =0, ke (ic,id) U (icy, —icy) U (—id, —icy);
(5) g*(k‘ag) - ng(kag) = Bg(g) ’ ke (Zd7 iCT) U (_ich _Zd) 3 where

icy —icy

By(©) =2 [ ok =2 [ dgu(k.©)>0. (4.4)

id —id

The signature table of the imaginary part of the function g(k, &) is given in Fig. 2.
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[y / ’
. lCl _ K
‘ - 1 4
. 1 Y
. 1 ’
X H K
(N ld 1 0
S A ¢
. JRe k
+ =’ Sam= +
lcr 1
.................. e ——————
1
.o
- lCr
4-.~~ ¢’.§~
" . Y \‘
s -id H .
G .
’ 1 Y
’ : K
’ . + .
/ ic \
! ! '

Fig. 2. The signature table of Im g(k, &).

3. Changing of the phase function. As the phase function 6(k, &) is not
suitable now, the Riemann—Hilbert problem for the matrix M (&, ¢, k) has to be
considered with a new phase function g(k,&). Let us define the new matrix-
function

MO(Et, k) = M(Et, k)G (E k),

where G (¢, t, k) = et0(k&)=0(:))73  Then the function MM (€, ¢, k) solves the
RH problem

MY (et k) = MU (&t k) JOE k), ke Xy =3, MOE k) — I, k— oo,

where

1 k —2itg(k,£)
J(l)(§7t7 k) = ( _T(k)emtg(k,g) T(l f’?”(k)P > ) ke R\{O}a (45)

eit(g—(k,€)—g+(k.€)) 0 L
= ( f(k)ettlo—(k&) 9+ (k8))  o=itlg—(k&)=g+ (kL)) ) » kelieia),  (46)
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etg-(k8) =g+ (10))  f(k)e=Ho-(kE+g+ (kL)) . .
= < 0 o it(g— (k,6)—g1 (k) > ke (—ie, i), (47)
. ir(k)eit(g* (kvf)_g+(kvf)) ie_it(g*(k7§)+g+(k7£)) .
= < PO (KO0 (48 _ p(p)e—itlo-(k&-gs(e) ) K € (0sicr), (4.8)
—ir(k)et9- (k& =g+ (k) f (k) 9~ (kE)+9+ (kL) ‘
= ( it~ 9+ (8)  p(p)e-itlo- (kg (ke) | > F € (0, =ier). (4.9)
4. Transferring of the jump contour from the real line. Define a decom-
position of the k-complex plane into domains 2, j = 1,2, 3,4 as shown in Fig. 3.
J

Fig. 3. The contour Xs.

Here the contour L; lies in the part of the complex plane, where Img(k, £) > 0, and
Ly lies in the part of the complex plane, where Img(k, &) < 0. The transformation
below transfers the jump contour from the real line

M@ (&, k) = MW(E,t,k)GP (€1, k),

where
GO, 1, k) = L N kea (4.10)
5 _r(k)e%tg(k,ﬁ) 1)° ’
_ <1 r(k)e > L keQ,, (4.11)
0 1
=1, ke (9 UQ)°. (4.12)
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G® — transformation leads to the RH-problem
MOt k) =MD (€t k) IDE k), ke, MOEtk)—>1I, k—oo,

where .
I tk) = (62) V(RGP (€ 1),

Taking into account the definition of G(?) (4.10)-(4.12), J (4.5)-(4.9) and the
property a?(k) — b*(k) = 1, we get

JA (&t k) = TV (&L, k), k€ (icy,id) U (—id, —icy),
— ¢itlg- (k&) =g+ (k&))os _ eith(f)%7 k € (icy,id) U (—id, —icy),
_ (0 0 itle- (k&) e (k&))os _ (O 0 s
(i 0)6 = o) ke (—icy,icy),
= G(Q)(€7ta k)a ke L17
-1
= (¢?)  (g.t.k), ke L.

5. Next transformation. The function f(k) has the analytic continuation

P 1
f(k) = A b0R) from the intervals (icy, ic,) U(—ic,, —ic;). Thus we can factorize
the jump matrix J® (£, ¢, k) on the intervals (icy, id) U (—id, —ic;) as follows:
T 1 k)
F2(k —2itg4 (k,€)
e (1 2k 8)e 0
0 1

—F2(k, 5)6—2#97(&6)
x(l 7 (k) )F"3<k,5>, ke (iayid),  (4.13)
0 1

1 0 ,
= F; % (k, ) 62it9+(’€:€) . <(z) é)
F2(k, &) f1 (k)
1 0
X —e%tg*(jf’f) | FE ) k€ (—ic, —id). (4.14)
F2(k, &) f- (k)
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Direct calculations show that the above is possible if:
e F(k, &) is analytic outside the segment [ic;, —ic];
e F(k,§) does not vanish in the complex plane with the cut along [ic;, —ic];
o F(k,¢&) satisfies the jump relations

—i'f(k), k € (ic,id),

i
—_— k € (—id, —iq),
1, k € (icy, —icy),

Fy(k, ) F-(k,§) =

Fi(k,&) = F_(k, 6™ | ke (id,ic,) U (—ic,, —id),
where A(¢) is some function of &, which has to be determined;
e I(k,&) is bounded at the infinity;
e F(k,&)a(k) is bounded in a small neighborhood of the point ic;;
o F(k,&)at(k) is bounded in a small neighborhood of the point —ic;;
e F(k,¢) is bounded in small neighborhoods of the points +id, +ic,, 0.
To solve this conjugation problem we use the function

wk) = \/ (k2 + ) (K2 + d2) (k2 + c2).

Let us note that

, 1
—if(k) = RO

The jump relations on F' can be rewritten in the form:

[logF(k,ﬁ)} _ |:10gF(k,§):| . _IOg( ( ) ( )) ke (iC id)
w(k, &) |, w(k, €) - wy (K, €) ’ n
log F(k,&)]  [logF(k,&)] _ log(a—(k)as(k)) id, —ic
[ w(k,€) L [ w(k,€) ] wihg 0 FEET)

[logF(kwf)L_ [IOgF(’“f)] _ O diie) U (—icy, —id).

w(k, ) w(k, &) w(k,&)

The function

id —icy
—oxpd WE) [—log(as(s)a_(s)ds) | Jw(k) [ log(a(s)a—(s)ds)
Fk, &) = p{ 2mi / (s — k)w(s) } p{ 2mi / (s —k)wi(s) }

icy —id
. icr ) —id
X exp ZA(gjr‘;V(k) { (s — ijw(s) P ZA(;:;V(I{)_/ (s — C]SW(S)
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satisfies the first, the second and the third properties. To make F'(k, &) bounded
at the infinity we have to expand F'(k,§) in series when k — oco. Since for the
integer n

id —ic,

—s"log (ay(s)a_(s))ds _ .y [ 5"log(as(s)a(s))ds
/ w5 = /d wa (s ’
icr ng —id ng
sds _ e [ 5705
id/ W) Y / W)

then the behavior of log F'(k,£) at the infinity is described by the asymptotic
formula

id icr

log F(k, €) = 2k QLM / slog (‘ijfzf‘g)(s)”s - _ﬁg@ / wfj,sf) +0(1).
icy id
So, we put
1 stog ar(s)atss) (7 sas |
_ slog(at+(s)a—(s)ds sds
A = Z, W (5.6 i[w@@ | 1)

It is easy to check that A(§) € R. Thus the function F'(k,&) satisfies all the
requirements.
Using factorizations (4.13) and (4.14) and the transformation

MO (gt k) = MO (&1, k)G (k)

where
, Fz(k’g)ef%tg(k,&)
GOt k) = F75(k, €) F(k) : ke s U,
0 1
1 0
=P | et ) bR
F2(k, &) f(k)
=F773 k¢(Q5UQGUQ7UQS)7

we obtain the RH problem

MOt k) = MP(E k) IDE k), ke, MOELk) -1, k— oo
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Fig. 4. The contour X3.

-1
The jump matrix J® (€, ¢, k) = (Gf)) JO(E 1 RGP (€, k) is

1 0
G (¢t k) = (_T(k)F 2 €)208) 1) , kely,
(1 (R, e 2otk
- (0 1 ) 3 ke L2 )
) F2(]<J 52 —2itg(k,§)
(€t k) = (k) ; keLr,
0 1
(1 _F2( §) e~ 2itg kﬁ))
= f(k?) ) ke L5 )
0
1 0
JOE k) = ( e?to(8) 1) : keLs,
F2(k, &) f (k)
1 0
= ( _621'759(’“:5) 1) 7 kelLg,
F2(k, &) f (k)
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TO(&,t, k) = B FiAE)os k € (id,ic,) U (—ic,, —id) ,
= (? 8) : k € (icy,id) U (icy, —icy) U (—id, —icy).

6. Model problem. Now we consider a model problem Mmod) (&t k) =
MmN (&t k) Jmod (¢ ¢ k), Mmod (¢t k) — I as k — oo, where

(eith(§)+iA(€) 0

0 e—ith(g)—iA(§)> , ke (idyic,) U (—ic,, —id),

J(mod) (5’ ¢, k‘) _

0
( ! ) k € (icy,id) U (icy, —ic,) U (—id, —icy).

1 0
(4.16)
To solve the model problem (4.16), we introduce the Riemann surface X, which
is given by
w(k) = (K + ¢ ) (k* + d*) (k* + c2).

We will use a realization of this algebraic curve as the two-sheet Riemann surface.
The upper and lower sheets of the surface are two complex planes merged along
the cuts [ic;,id], [ic,, —ic,] and [—id, —ic¢;]. On the upper sheet of this surface
w(1) > 0. The basis {a1, b1, az, ba} of cycles of this Riemann surface is as follows.
The a-cycle starts from the right-hand side of the cut [ic;, id] on the upper sheet,
goes to the right-hand side of the cut [ic,, —ic;], proceeds to the lower sheet and
then returns to the starting point. The b;-cycle is a closed counter clock-wise
oriented simple loop around the cut [ic;,id]. The ag-cycle starts from the right-
hand side of the cut [id, —id], [ic,, —ic,] on the upper sheet, goes to the right-hand
side of the cut [—id, —i¢], proceeds to the lower sheet and then returns to the
starting point. The bs-cycle is a closed counter clock-wise oriented simple loop
around the segment [ic;, —ic,]. The basis

. dw1
dw = (dWQ>

of the normalized holomorphic differentials on X has the form

-1 -1

Ckdk kdk - dk dk
dor =T / wiky | TN / wik) |

a a
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-1 -1
. kdk kdk . dk dk
) (/ w<k>> ) (/ w<k>> |

Then

/dw, =2midy, B=BE)=||By= /dw, = (gz %) ,

a; bj

where
31::/dwl, Bg::/dwg,andBl<B2<0,
b1 bl

and theta function
1 2
O(z) = O(2B(£) = Y exp 5 (BE)m,m) + (z,m) ¢, 2€C,
meZ2
has the property

@@+QMn+B@ﬂ%:®@Mm{—;G%QLD—@J%, nez2ler

Now we introduce the Abel map on X

P
A: X — C?/(2miZ? + B()Z*) ,  A(P)= /dw (4.17)
and the functions ¢(k, &), ¥ (k, &) : {the first sheet of the X} — C
O(A(k) — A(D;) — K — (itBy(§) +iA(8)) (1, DT)

(Pj(kag) = G)(A(k) — A(D]) > K) 7
j=1,2.
(k&) = O(—A(k) — A(D;) — K — (itBy (&) +iA(€)) (1,1)T)
T O(—A(k) — A(D;) — K) :
(4.18)

Here D; = Py 4+ P, is the divisor consisting of two points on the lower sheet,

. cicrd | qed
L= c+c —d at 2 ! e+ —d

Dy = 7D lies on the upper sheet, and A(D;) = —A(Dz). The vector K is the
Riemann constant of the surface X, By(§) and A(§) are defined in (4.4) and
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(4.15). The integration contour in (4.17) is taken from the upper sheet and it
does not intersect the interval (—icy,ic;). The functions (4.18) have the following
properties:

‘pj-l-(k? f) = wj—(ka 5)7

Vi (k, &) = @ (k,§),
0j—(k,&) = pji(k, &£)eBaOHAE),

k € (icy,id) U (icy, —ic,) U (—id, —icy).

ke (id,ic,) U (—icy, —id).
V- (k, &) = Y4 (k, e " PalOIA),

Define a function

k+id
k) = (k&) = i wl i
V(k) =~(k,€) \/ k—id k‘—i—ZCr k+ic’

which is analytic outside the union of segments [ic;, id] U [ic,, —ic,] U [—id, —ic]
and satisfies the jump conditions

V- (k7§) = Z"}/+(k,§), ke [iclvid] U [icﬁ _ic’l‘] U [_Zdv —Z‘Cl]‘

Then the solution of the model problem (4.16) can be written as follows:

MVt k) MG (&t k)
Mmed (e ¢ k) = :
MG & k) MOV (€t k)

mo 1 1 k
Ml(l d)(§7t7 k) 5 ( (ka"g) ) ;il(oof{))
mod 1 ¢1 k §
'648) 2 (7 > ©1(00,8)’
mod f,t,k‘ % ('}/ > 90 k g
mod 1 ¢2 k f

Then, by the formula (3.10),

Gmod(x,t) := hm 2zk( M (mod) (12t t k:) )21

O(A(00) + A(D1) — K — (itBy(€) +iA(€))(1, 1))
O(A(0) + A(D1) — K)
O(=A(x) + A(D1) — K)
O(—A(o0) + A(Dy) — K — (itBy(§) +iA(8))(1, )T) -

= (Cl - d(é) + Cr)

X
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Theorem 4.3. Lett — oo. Then in the region (12¢2—6¢7)t < x < (4c? +2c2)t
the solution of the problem (1.1)—(1.2) with initial pure step function takes the
form of a modulated hyper-elliptic wave

O(A(00) + A(D1) — K — (itBy(€) +iA(€))(1, 1))
O(A(c0) + A(Dy) — K)
O(—A(c0) + A(Dy) — K)

X O(—A(c0) + A(D1) — K — (itBg(&) +iA(€))(1, 07 + O(t71/2).

qz,t) = (e — d(§) + ¢r)

5. Appendix

Lemma. Let p(.), hi(.), ha(.) be positive functions on the segment [a,b] C R
such that the integrals of their products p, p(y)hi(y), p(y)ha(y), p(y)hi(y)ha(y)
are convergent in proper or improper sense. Let also hi be an increasing function
on the segment, and ho be a decreasing function. Then

d d d d
/p(y)hl(y)dy/p(y)h2(y)dy—/p(y)hl(y)hz(y)dy/p(y)dy > 0.

P r oo f If all integrals are proper, then we can approximate them by
partial sums. By substituting them into the input inequality instead of integrals,
we obtain the inequality

N N N N

1

e > p(yn)h1(Yn) D p(ym)h2(ym) — N2 >~ p(yn)ha (yn)ha(yn) Y ply
n=1 m=1 n=1 m=1

Let us multiply both sides on N? and multiply the expressions in parenthesis
> W) (W) pWm)ha(ym) = D p(Yn)p(Ym) P (yn)ha(yn) > 0.
n, m n, m

We can see that the terms of series, when n = m, disappear. Thus we obtain

> pWn)p(Wm) (7 (yn)ha(Ym) + b1 (Ym) b2 (yn))

n<m

= () pWm) (h1(yn) 2 (Yn) + h1 (ym) 2 (Ym)) = 0.

nm
Then the above is equivalent to
> p(n)pWm) (h1(yn) = b1 (ym)) (ha(ym) — ha(yn)) > 0,
n<m

which is evidently true.
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If the integrals are improper, then we can approximate them by proper ones

for which the lemma is proven.
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