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Introduction

Let M™ be an affine n-dimensional manifold with connection V. Denote
by R*""* a standard affine space with flat connection D. According to [7], an
immersion f : (M™, V) — (R"** D) is said to be affine if along f there exists a
k-dimensional transversal differentiable distribution @ such that the affine Gauss
decomposition

Dx f(Y) = fi(VxY) + h(X, Y),

where f.(VxY) € TM"™ and h(X, Y) € @, holds. The component h(X, Y)
is called the affine fundamental form. The affine fundamental form defines a
mapping

h:T,M" xT,M" — Q,.

The rank of this mapping is called the rank of the affine fundamental form at
x € M™ or the pointwise codimension of the affine immersion.
If £ € @, then the affine Weingarten decomposition

Dx& = —fu(SeX) + V&,

where f,(S¢X) € TM™ and V)L(i € @, holds. This decomposition defines the
shape operator S¢ and the transversal connection AV
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Denote by &1, ... & the linearly independent vector fields in @ (a transversal
affine frame). Then

DXf*(Y) - f*(vXY) + ha(Xv Y)§a7 (1)

Dxé&a = _f*(SaX) + Tg(X)fg. (2)

The null space or kernel N of the affine fundamental form at x € M is defined

by
k

N =kerh, := () ker g,
a=1
where ker h§ ={X € T,M : h*(X,Y) =0for allY € T, M}. The nullity index of
the affine fundamental form at a point x is defined by u,; = dim N,. Neither N,
nor pointwise codimension depends on a choice of transversal distribution (see
(8))-

The null space or kernel of the shape operator S, is defined by

k
S; =ker S, := ﬂ (ker So)z,

a=1

where (ker Sy), = {X € Tu M : S, X = 0}.

The subspaces { Ny }zepmn form a smooth distribution on M™ called the nullity
distribution of the affine fundamental form. The subspaces {S;}zeyn form a
smooth distribution which we call the nullity distribution of the shape operator.

The following Hartman-Nirenberg theorem is well known for hypersurfaces in
Euclidean space [4].

Let f : M™ — E™! be a complete connected C?-smooth orientable hyper-
surface. If f is of constant zero curvature, then it is an (n — 1)-dimensional
cylinder.

The generalization of this theorem to higher codimensions and various Rie-
mannian spaces has a long history. The case of submanifold with nullity distribu-
tion in generic Riemannian manifold was considered by A. Borisenko [1]. In spite
of evident affine nature of the Hartmann-Nirenberg theorem, a progress in its
generalization to higher codimensions is not much impressive probably because
the nullity distributions of the second fundamental form and the shape operator
are different in general.

Complete affine hypersurfaces with flat connections in the standard affine
R"*! were studied by K. Nomizu and U. Pinkall [6] (see also [7]). They classified
immersions as

(i) a hyperplane (h = 0);
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(ii) a graph (S = 0);
(iii) an affine cylinder with (n — 1)-dimensional rulings (h # 0, S # 0).

In the last case they proved that dimim S = 1 and the nullity of the affine fun-
damental form coincide with the nullity of the shape operator, dimS = dim N =
n — 1. The nullity distribution N is integrable and the nullity foliation FN is
totally geodesic in R*1.
B. Opozda [8] proved that cylinders are the only affine hypersurfaces of 1-co-
dimensional nullity which admit a non-flat locally symmetric induced connection.
S.S. Chern and N.H. Kuiper [3] proved that the nullity index satisfies u > n—k
in the case of immersion f : M™ — E"** (k < n) of constant zero curvature.
In full similarity to a hypersurface treatment, in the case of multi-codimen-
sional affine immersion f : R"* — R™¥ it is easy to see that
(i) if h =0, then f is a totally geodesic immersion, and f(R") is an n-dimen-
sional affine subspace;
(ii) if S =0, then f(R") is a graph.
In the cases of S # 0 and h # 0, we obtain the following estimations.
Theorem 1. Let f: (M",V) — (R"* D) be an affine immersion of codi-
mension k < n with mazimal pointwise codimension and flat connection V. Then

(1) dimker S > n — k;

(2) kerh C ker S;

(3) dimim S < k;

(4) if dimim S = k then dimker S =n — k and ker h = ker S.

In Euclidean case (u = const # 0), it is known that the nullity distribution
is integrable and totally geodesic [5, 1], the normal space is stationary along the
leaves [1]. In affine case we obtain the similar result.

Theorem 2. Let f: (M",V) — (R"* D) be an affine immersion such that
dim ker h = const # 0, dimker .S = const # 0. Then

(1) the nullity distribution S of the shape operator is integrable on M™;

(2) the nullity distribution N of the affine fundamental form is integrable, the
leaves are totally geodesic in Rk,

(3) there exists a transversal distribution which is stationary along the leaves
of the foliation FN';

(4) if (M™,V) is complete, then each leaf of the foliation FN is complete.
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Corollary 2 Let f : R* — R"* (k < n) be an affine immersion with
dimim S = k. Then the submanifold f(R™) is foliated by the (n— k)-dimensional
affine subspaces. The transversal distribution is stationary along the subspaces.

A maximality of dimim S is essential. Otherwise (see Example 1) an affine
immersion with flat connection could have a nontrivial S and a trivial kernel of
the affine fundamental form but not the rectilinear rulings. Unlike hypersurfaces,
there exist affine immersions f : R® — R"™* (k > 2) such that the immersed
submanifold is foliated by the (n — k)-dimensional affine subspaces, is of maximal
pointwise codimension (dimim S = k), but is not a cylinder (see Example 2).

1. Preliminaries

Let f : (M™ V) — (R"* D) be an affine immersion. The following basic
equations are well known (see [6], [7]):
the affine Gauss equation

R(X, Y)Z =h*(Y, Z)SaX — h* (X, Z)5.Y; (3)
the affine Codazzi equations for h
(Vxh®)(Y, Z) + r§(X)P(Y, Z) = (Vyh®)(X, Z) + §(VRA(X, Z);  (4)
the affine Codazzi equations for S
(VxSa)Y — 72(X)S5Y = (VySa)X — 75 (Y)SsX; (5)
the affine Ricci equations

W(X, SaY) = hP(Y, SoX)=X(r5(Y)) + 7L (X)72(Y)

«

~Y(r(X)) = (V)7(X) = (X, Y]). (6)

(e e

The components of transversal connection, the affine fundamental form and
the shape operator depend on a choice of transversal distribution and transversal
frame.

Lemma 1. Let M™ be a submani]ﬁold m I@”*k with transversal distribution
Q =span{&i,..., &}. Let Q =span{&,..., &} be a transformation of Q by

o = D04+ Za, (7)

where Z,, are tangent vector fields on M"™, and ® = [<1>§]kxk 18 a nondegenerate
matriz with smooth entries. Then the components of the affine fundamental form,
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the induced connection, the shape operators and the transversal connection forms
change as follows:

h(X, Y) = [ 5r7(X, ) (8)

VxY =VxY — [@ 1507 (X, YV)Z, (9)

SaX = 8S5X —VxZ, +72(X)Z5 (10)

T(X) = [@75{7] (X)) + 1h7(X, Za) + X(93)} (11)

Proof. From (1) and (7) we derive
DxY =VxY +h*(X, Y)é = VxY + h*(X, V)&, =
VxY 4+ h*(X, Y) (55 + Z,).
Thus, we obtain (8) and (9).
Using (2) and (7), we have
Dxéa = Dx(®(&s + Za) =
X(@0)85 + @0(—SpX +73(X)&)) + Vx Za + W(X, Za)éy =
VixZa = ®o8X +{@a75(X) + W(X, Za) + X(93)},.
On the other hand,
Do = —=5aX + 70(X)§s = —SaX + 7] (X){®}¢; + Z5} =
— X + 7A(X) 25 + (XD,
Comparing the tangential and transversal components, we have (10) and (11). m

From (8), the rank of the affine fundamental form h(X, Y) : T,(M) x
T.(M) — @, does not depend on a choice of transversal distribution, and the
following definition of the pointwise codimension of affine immersion is well- de-
fined.

Definition 1. The rank of the affine fundamental form is called the pointwise
codimension of affine immersion.

In fact, a pointwise codimension of affine immersion is nothing else but a
dimension of the first normal space and it is the same as in the Euclidean case.

Let {e1, ea,..., en} be a tangent affine frame on M". Introduce the matrix
RY(X, e1) hY(X, e2) ... WYX, en)
H(X) = hQ(X‘, e1) hQ(X., e2) hQ(X.a €n) (12)
hk()(:7 e1) hk(X;, e2) hk(X‘, en) / 1un
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By (8), the change of transversal distribution by (7) implies
H(X)=o'H(X). (13)

The maximal rank of H(X) is equal to the pointwise codimension of affine im-
mersion.

Let the affine immersion f : (M™, V) — (R"** D) be given. To what extent
is a transversal distribution defined?

Lemma 2. Let f: (M™, V) — (R*"™* D) be an affine immersion. Then the
transversal distribution Q is determined uniquely up to the subdistribution Q\ Q1,
where (Q1 contains the image of the affine fundamental form.

Proof Assume that the rank of the affine fundamental form is equal to
g. Let Q(z) be some transversal distribution. Denote by Q1(z) a subdistribution
of Q(z) which contains the image of h, at each z € M™. Then dimQ;(x) = q.
Take a basis of Q(z) in such a way that the first ¢ vectors form a basis of Q1(x).
Then h*(X, Y)=0 (a=q+Lk).

By (9), the induced connection will not change under the transformation (7)

if

(@ 3R7 (X, V) Za = 0.
Let {e1, ea,...,e,} be an affine tangent frame on M™. Then Z, = z’e;, and we
have

I
o

(@500 (X, Y)Zes

2@ SRN(X, YY) = 0
(X, Y)
(X, Y)

(24, 2h,...z)- @' | BUX, V) | = 0 forall X, Y.  (14)
0

0

Since h*(X, V) =0 (a = ¢+ 1,k), the last k — g rows of H(X) consist of
zeroes. Let X be such that the rank H(X) = ¢. In a capacity of Y, take those
€y - - ¢, for which the corresponding columns in H(X) are linearly indepen-
dent. Then (14) produces a homogeneous system of ¢ linear equations in ¢ vari-
ables 2%, 24, ..., zé with nondegenerate matrix. This system has only the trivial
solution. The other variables z;;,..., 2, can be taken arbitrarily.
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If ¢ = k, then the transversal distribution is determined uniquely.
Suppose ¢ < k. Take the transversal frame as above. The transformation

Wixg *

ga:(pg€ﬁ+za7 ®k><k:< >7Z(XEO(C¥:17Q)7
(k—q)

0 Qg

where ¥ and €2 are some non-degenerate matrices, does not change the affine
connection and maps @1 onto Q1. Therefore, the transversal distribution is
determined uniquely up to the subdistribution Q(z) \ Q1 (). ]

Corollary 1. If a pointwise codimension of affine immersion is mazximal, then
im S and ker .S do not depend on a choice of transversal frame.

The proof follows from (10).
Denote by R+ (X,Y )¢ a curvature tensor of transversal connection. The Ricci
equation (6) can be written as

RH(X,Y)€ = h(X, S¢Y) — h(Y, S X),

and hence if X,Y € (ker h Uker S), then R-(X,Y )¢ = 0. Therefore, there exists
a basis of transversal distribution such that

9(X)=0 for a,=1,k and X € (kerhUkerS). (15)

2. Proofs of Theorems

In the case of multicodimensional affine immersion with flat connection, using
the same arguments as in the case of hypersurface [6, 7], one can easily prove that
(a) if h = 0, then f is a totally geodesic immersion, and f(R") is an n-dimensional
affine subspace; (b) if S =0, then f(R™) is a graph immersion. The second case
is presented separately as the following assertion.

Lemma 3. Let f: (M", V) — (R" D) be an affine immersion such that
S =0. Then f is affinely equivalent to the graph immersion of some smooth map
F:M"—RF je.,

f@t,. .., ut)y = (..., W, Fl@t, ..., u),. .. Fk(ul,..., u™)).

Rem ark. Inthe case when the shape operator is zero, the Gauss equation
(3) implies that V is a flat connection.

Another example of the submanifold with flat connection provides an affine
cylinder with (n — r)-dimensional rulings, i.e., a submanifold in R™** generated
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by a family of parallel (n—r)-dimensional affine subspaces which is parameterized
by points of an r-dimensional submanifold (the so-called base of a cylinder).

Similarly to the Euclidean case (see [1], [2]), a pointwise rank of the affine
fundamental form is defined by

r(z) = gggy(x,é),

where 7(z,§) is a rank of the affine fundamental form with respect to & € Q.

Proof of the Theorem 1. Let f : (M™, V) — (R"** D) (k < n) be an affine
immersion with maximal pointwise codimension and pointwise rank r (r < n) of
the affine fundamental form. Since V is a flat connection, the Gauss equation (3)
implies

h(Y, Z)S.X = h*(X, Z)S,Y. (16)

Since the pointwise rank of the affine fundamental form is equal to r, we
have dimkerh = n —r > 0. Choose the tangent frame such that kerh =
span{e,{1,..., en}.

Suppose r < k. Substituting Y = e; (j = r + 1,n) into the Gauss equation
(16), we get

h*(X,Z)Sqe; =0

for all X,Z. As the rank of the affine fundamental form is equal to k, for the
arbitrary fixed a = g there exists X and Z such that

(X, Z) =1, h*(X,Z) =0 a#aq.

Hence, Soe; = 0. Thus, kerh C ker S and dimkerS >n —r >n — k.
In the case r > k, we have

RY (X, e1) hYX, e) ... hY(X,e) O ... O

h2(X, e1) h*(X, es) ... h*X,e) O 0
) | M) w ) (X, e

hk(X, el) hk(X, 62) hk(X, eT) 0O ... 0

We can assume that ej is such that rg H(e;) = k. Applying a transformation
£y = @Qgﬁ (det Prxx # 0) and, if necessary, renumbering the vectors of the
tangent frame, we can reduce the matrix H(e;) to the form

10 0 hl(er, ery1) ... hl(er, &) O ... 0O
0 1 0 h%(e1, ery1) ... h%(er, er) O ... 0
H(el): . ) . . . . . . :
0 0 ... 1 h¥eq, epp1) ... hF(er, e) O ... 0
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There exists X such that h%(e;, X) = 0 for all @ = 1,k. Indeed, we get the
following system of equations on X:

xr1 + $k+1h1(61, 6k+1) + ...+ Jcrhl(el, er) = 0
Ty + wpp1h(er, epgp1) + ...+ xh(er, e) = 0
oy 4+ rp 1 hF(er, epp1) + ...+ xhF(er, e) = 0.

This system has the r — k linearly independent solutions which can be taken as
the vectors of a new affine frame €; for j = k+ 1,r. In new frame

k
éi=e (i=1k, r+1,n), éj:—Zhs(el, ejles+e; (j=k+1,r).

s=1

The entries of H(é;) take the form

ha(él, él) = 5?, ha(él, éj) =0, i=1k, ] = k+1,n, a=1,k.
Briefly, we can write
Hkxn(él) = ( Erxk ka(n—k) )

By substituting X = é;, Y = €;, Z = é; into the Gauss equation (16), we
obtain
h*(é;, €1)Sa€; = h*(&;, €1)Sa€;j. (17)

For i =1,k, j =k + 1,n we have
0-Sa€ =65 - Sa€;

Sa€j=0j=k+1n, a=1k.

Thus, span{€x11,..., é,} C kerS. Therefore, dimker S > n — k and ker h C
ker S. (Observe that in fact we obtained a more exact inequality, namely dim ker S >
n — min{r, k}.)

From (17), for i,j = 1, k we get
Sjéi = ha(éi, éj)Saél. (18)

Therefore, dimim S < k and im S = span{S;€éy,...,Sié1}. The third statement
of the theorem is proved.

If dimim S = k, then Siéy,...,Sié; are linearly independent and form a
basis of the image of S. From (18), for j =1, i = 1,k we obtain

S1€; = S;é1 75 0.
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Therefore, & ¢ kerS for all i = 1,k. Hence, span{€y;1,..., é,} = ker S and
dimker S =n — k.
Consider (16) for j = k+ 1,n and i = 1,n. Then

h(é1, &;)Sabi = h%(&i, &;)Sat,

and we see that
0= h*(&, €;)Sqéi1.

Since Siéi,...,Ské1 are linearly independent, then h*(é;, €;) = 0 for all j =
k+1,n and ¢ = 1,n. Thus, span{égi1,..., €,} = kerh, kerS = kerh. The
theorem is proved. [

The affine manifold (M",V) is called complete if every V-geodesic extends
infinitely with respect to its affine parameter. A foliation £ on the affine manifold
(M™,V) is called complete if each leaf L, € L is complete with respect to V.
The transformation law (9) shows that the connection induced on each leaf does
not depend on a choice of transversal distribution @) and, as a consequence, the
completeness of £ does not depend on a choice of Q).

Proof of the Theorem 2. (1) Suppose X, Y € S. Then the Codazzi
equations (5) imply

Vx(5.Y) = Sa(VxY) = Vy(SaX) — Sa(VyX).
Owing to the above, we obtain
Sa(VxY) = S,(VyX) =0, Su(VxY —VyX)=0.

Thus, S ([X, Y]) = 0 for all a = 1,k and for all X € T,(M"). Therefore,
[X, Y] € S, and the distribution S is integrable.

(2) Tt is enough to prove that N is totally geodesic, i.e., for any vector fields
Y and Z in N, Vy Z also belongs to V.

Let Y, Z € N. Then the Codazzi equations (4) imply

Vx(h*(Y, Z)) = h*(VxY, Z) — h*(Y, VxZ) +15(X)WP (Y, Z) =
Vy(h“(X, Z)) - h*(Vy X, Z) — h*(X, VyZ)+ 1§ (Y)W’ (X, Z).

We have h®(X,VyZ) = 0 for all a = 1,k and for all X € T,(M"). Thus,
VyZ € N. Hence, [Y, Z] = VyZ — VzY € N, and the distribution N is
integrable and totally geodesic in M™. Since Y, Z € N, then Dy Z = Vy Z, and
the leaves are totally geodesic in R" 1%,

(3) Let L, be a leaf of the nullity foliation FN. For X € L, we have S, X =0
as kerh C ker S. By (15), we can find a basis of transversal distribution such
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that 75 (X) = 0. The Weingarten decomposition (2) implies Dx§, = 0 for all «
and X € L,.

(4) Let 29 € M™ and X € N. Let z(t) be a geodesic from z¢ € Ly, in the
direction of X and ¢ be its affine parameter. Suppose L, is not complete. Then
there is b > 0 such that X (b) ¢ N and X (¢) € N for all ¢ € [0, b).

Take an affine (Fermi) geodesic coordinate system in some neighborhood of
this geodesic such that the affine tangent frame Uy, ..., U,_1, U, of this coordi-
nate system possesses the properties [9]:

U, := X = 2/(t) along z(t),
Up—p41(0), .., Un(0) € ker hy,
Vu,Uj |y = I} (x(t)Ux = 0. (19)

Taking into account (19), we have

X (h*(Ui, Uj)) = (Vxh®) (Ui, Uj)+
h(VxUi, U;) 4+ h*(Us, VxUj) = (Vxh®)(Us, Uj). (20)

By (15), we can find a transversal frame such that
E(Y)=0 o, =1k Y eN. (21)

From the Codazzi equations (4), taking into account that X € N, and relations
(19),(21) and (20), we get

X (h*(Ui, Uy) = (Vu,h)(X, U;) =
U(h*(X, Uj)) — h®(Vy, X, U;) — (X, Vy,U;) = 0. (22)

Therefore, h*(U;, Uj) = const = h*(U;(0), U;(0)). Hence, dimkerhyp) =

dimker hy ) and {Up—pt1(b), ..., Un(b)} is a basis of kerh,p). As a conse-
quence, X (b) € N, which is a contradiction.
The theorem is proved. [

Corollary 2. Let f : R* — R"* (k < n) be an affine immersion with
dimim S = k. Then the submanifold f(R™) is foliated by the (n— k)-dimensional
affine subspaces. The transversal distribution is stationary along the subspaces.
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1. Examples

The following example shows the importance of the maximality of dimim S
for the existence of rectilinear generators.

Example 1. The submanifold F3 in R®, given by

x T 0
y Yy 0
r(x,y,z) = CoS 2 = 0 + | cosz |,
sin z 0 sin z
x? +e¥ z? +e¥ 0

is a submanifold with flat connection, non-maximal dimension of the shape op-
erator image, it does not contain rectilinear rulings and is not a graph.

Indeed, put
er =7, ={1, 0, 0, 0, 2z},

e2 :=7, ={0, 1, 0, 0, e},
={0, 0, —sinz, cosz, 0}.
Take a transversal distribution spanned on

& =10, 0, cosz, sinz, 0}, & =40, 0, 0, 0, 1}.

We have
fgw - {07 07 0’ 0’ 2} = 2527 f:/v/y = (_)7 Fg/vlz = (_)7
ng - {O’ O’ O’ 0’ ey} = 6952’ f?;/z = (_)7 77,;/2 = _61-

As Ve,e; = 0, the connection is flat.
For X = zle; + z%ey + x3es, we have

0 0o —a°
H(X) = ( 2et e¥a? 0 ) ’

In this case the pointwise codimension ¢ = 2, the pointwise rank » = 3, and
ker h = 0.

It is easy to check that ker S = {e1, ea}, Si(e3) = —es3, Sa(e3) = 0, i.e. the
image of the shape operator is one-dimensional. The submanifold obtained is a
product of a graph and a curve.
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Example 2. A submanifold f: R? — RS, given by

e Tcosy — ze Tsiny
e *siny + ze *cosy
7(x,y,z) = | e Ycosx+ ze Ysinz |,
e Ysinx — ze Ycosx
z

is a ruled one with ker §' = ker h, but is not a cylinder.

We have
—e Tcosy + ze Tsiny —e Tsiny — ze T cosy
—e *siny — ze"* cosy e *cosy —ze *siny
= | —eYsinz+zeVeosz [, 7, =| —eVYcosx—ze Vsinx
e Ycosx+ ze Ysinw —e Ysinx + ze Y cosx
0 0
—e Tsiny
e *cosy
7= e Ysinzx
—e Ycosx
1
Take a transversal distribution spanned on
e *cosy e Tsiny
e *siny —e Fcosy
&L= —eYcosx |, &= e Ysinx
—e Ysinz —e Ycosx
0 0

Put ey = 7, eg =7, e3 =7,. Then

e *Fcosy —ze Tsiny
e Tsiny 4+ ze” T cosy
—/! — _ .
Dejeg =7y, = —e Ycosx —ze Ysinx =& — z€9.
—e Ysinx + ze Ycosx

0

In a similar way,

—/ —/
2T, — T
I —/! X Y
Deyey =75, = 26 + &2, Dejes =7y, = —5——,
z7+1
—/ —/
r. + 27 _
= _ = x Yy =
D€262 —Tyy— _£1+Z£27 D€2€3_Tyz - 22+1 y D€363 =Ty = 0.
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So we have
Veiej =0 i,j = 1, 2, V€3€3 = 0,

z 1
V61€3 = Vegel = Z2 n 161 - me%

1 z
VQ2€3 = v63€2 = 2'27_}_161 + m@Q.

The connection is flat. Indeed,

R(eiaej)ek‘:() (lvjak: 172)7

R(el, 62)63 = v€1v62€3 — v62v€1€3 — V[Qh 62]63 =

1 z z 1
Ver <22+161+ 22—1—162> ~Ver <z2—|-161 - 22+162> =0

R(e1,e3)es =
z 1
22 4+ 14 22 4 14

22 41— 222 z z 1
— e1 — e — ey | —
(22412 ' 2Z41\2+1 " 241°

Ve Veges — Veg Ve ez — V[el, e3]3 = —Ves( ) =

2 . 1 L, B
(22—1—1)262 2rI\2+1 T 21 T

(z2—1—z2+1)€ (z =224 2)
(22 + 1)2 1 (22 +1)2

62:0.

The components of the affine fundamental form are

z 0 —z 1 0
=2 -1 0],m= 1 2z 0
0 0 0 0 00

For X = z'e; + 2%es + x3e3, we have

( xt 4 22?2 zxl — 22 O>

H(X) = —zzl + 2% 2l 4222 0

which is equivalent (concerning the rank) to
ol + 22?2 ozt -2 0 or zt -2 0
(142222 (1+2H)2t 0 22 2t 0 )
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Hence, the pointwise codimension ¢ = rg H(X) = 2, the pointwise rank r = 2,
and ker h = {es}.
Using the Weingarten decomposition,

—e T cosy
—e *siny 1
De &1 = (&), = e Ysinz =————e1+ 5 ——ex— &1 + &2,
—e Ycosx o 7 +1
0

—e Tsiny

e *cosy
Degéi = (&1)y = | e Veosz | =

e Ysinx

0
D61§2 - D€2€17 D€2§2 = _D61§17 Degfl = 07 D63€2 - 07

1 z
— 6_
241 2y

= - & =&,

we find )
z
Sl(el) - _32(62) - 22 + le1 B 22 + 1627
z
Si(ez) = Saler) = - et T e Si(es) = Sa(e3) = 0.

Therefore, ker h = ker S = {e3} and the submanifold is a ruled submanifold, but
not a cylinder.

Remark that in contrast to hypersurfaces, in affine case the class of complete,
connected regular flat submanifolds is much wider.

Acknowledgement. I express my deep thanks to prof. A.A. Borisenko for
posing the problem and to A.L. Yampolsky for helpful discussions.

References

[1] A.A. Borisenko, Extrinsic Geometry of Strongly Parabolic Multidimensional Sub-
manifolds. — Russ. Math. Surv. 22 (1997), 1141-1190.

[2] A.A. Borisenko, Intrinsic and Extrinsic Geometry of Multidimensional Submani-
folds. Moscow Publishing house ”Examen”, 2003. (Russian)

[3] S.S. Chern and N.H. Kuiper, Some Theorems on the Isometric Imbedding of Com-
pact Riemann Manifolds in Euclidean Space. — Ann. Math. 56 (1952), 422-430.

[4] P. Hartman and L. Nirenberg, On Spherical Image Maps Whose Jacobians do not
Change Sign. — Amer. J. Math. 81 (1959), 901-920.

104 Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 1



On Affine Immersions with Flat Connections

[5] R. Maltz, The Nullity Spaces of Curvature-Like Tensors. — J. Diff. Geom. 7 (1972),
519-523.

[6] K. Nomizu and U. Pinkall, On the Geometry of Affine Immersions. — Mathematisce
Zeitschrift 195 (1987), 165-178.

[7] K. Nomizu and T. Sasaki, Affine Differential Geometry. — Cambridge University
Press, Cambridge, 1994.

[8] B. Opozda, A Characterization of Affine Cylinders. — Monatsh. Math. 121 (1996),
113-124.

[9] P. Rashevski, Riemannian Geometry and Tensor Analysis. Moskow, Nauka, 1967.
(Russian)

Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 1 105



