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The boundary value problem is considered for the linear two-dimensional
integro-differential loaded third order equation of composite type with non-
local terms in the boundary conditions. The principal part of the equation
is a derivative of the two-dimensional Laplace equation with respect to the
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1. Introduction

It is well known that in the case of ordinary differential operators, the La-
grange formula is the main tool [1] to solve the boundary value problems. But
when the operator is generated by the boundary value problem for partial equa-
tions, Green’s second formula [2, 3] becomes basic. For each concrete case [3–6],
some potentials (with unknown densities) that are the solutions of the considered
problems are derived proceeding from boundary conditions.

The form of the kernel of the potential is determined by Green’s formula men-
tioned above. The study of the properties of the constructed potentials enables
to define the unknown densities of some integral equations. By studying the pro-
perties of simple and double layers, it was possible to investigate the solutions of
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Dirichlet and Neumann problems. Despite of being known, limit theorems both
for normal derivatives of double layer potentials and tangential derivatives of
simple and double layers [2] for some reasons were not often applied to boundary
value problems.

To solve the boundary value problems with oblique derivatives, a jump for-
mula obtained in [6–8] is usually used.

Notice that the problem under consideration is new. In the classic papers,
boundary value problems are mainly considered for even-order elliptic equations.
On the other hand, the mathematical model of the nuclear reactor in some cases
is described by the integro-differential equation of first order with the boundary
condition given on a part of the boundary [3]. As A.V. Bitsadze noted at one
of the Steklov seminars, in connection with the Tricomi problems, the whole
boundary should be present in the boundary condition. Therefore, the boundary
condition given in [3] is not appropriate. If we replace the boundary condition
given in [3] by the Dirichlet condition (given on the whole boundary), the obtained
problem will have no solution.

The boundary conditions given here (nonlocal conditions) correspond to the
first-order derivative.

The applied method is a continuation and generalization of the potential
theory. The solution is sought in the form of Green’s discrete second formula.
Therefore, in our case we always have jumps.

If the potential of the simple layer is continuous, then we have jumps because
of the double layer potential. If the double layer is continuous, then we have
a jump because of the simple layer potential. In the case of the problem with
non-local conditions, both potentials have jumps.

In the classic papers, in the case of inclined derivatives, if the inclination
is tangential, then we do not have a jump, i.e., we get the Fredholm integral
equation of first kind.

In our case such difficulties do not arise. Therefore, we can consider a problem
with oblique derivatives of arbitrary form.

Notice that in our case the whole boundary is a support for each boundary
condition.

Finally, we consider an example corresponding to the stated problem. Here
the problem is discretized in a certain sense, the system of 39 algebraic equations
with 39 variables is solved, and the errors of the obtained solution are shown.
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2. Problem Statement

Let D be a bounded convex in the direction of x2 plane domain with a
Lyapunov-type boundary Γ [3]. When the domain D is orthogonally projected on
the axis x1 (parallel to x2), the boundary Γ is divided into the parts Γ1 and Γ2.
The equations of these lines are denoted by x2 = γk (x1) , k = 1, 2; x1 ∈ [a1, b1].

Consider the boundary value problem

lu ≡ ∂3u (x)
∂x3

2

+
∂3u (x)
∂x2

1∂x2
+

2∑

k=0

a2k (x)
∂2u (x)

∂xk
1∂x2−k

2

+
2∑

k=1

a1k (x)
∂u (x)
∂xk

+ a0 (x) u (x)

+
2∑

m=0

2∑

n=1

∫ b1

a1

K2mn (x, η1)
∂2u (η)

∂ηm
1 ∂η2−m

2

∣∣∣∣
η2=γn(η1)

dη1

+
2∑

m=1

2∑

n=1

∫ b1

a1

K1mn (x, η1)
∂u (η)
∂ηm

∣∣∣∣
η2=γn(η1)

dη1

+
2∑

n=1

∫ b1

a1

K0n (x, η1) u (η1, γn (η1)) dη1 = f (x) , x ∈ D ⊂ R2, (1)

lku ≡ ∂2u (x)
∂x2

2

∣∣∣∣
x2=γk(x1)

−
2∑

p=1

2∑

j=1

αkjp (x1)
∂u (x)
∂xj

∣∣∣∣
x2=γp(x1)

−
2∑

p=1

αkp (x1)u (x1, γp (x1))−
2∑

p=1

2∑

j=1

∫ b1

a1

αkjp (x1, η1)
∂u (η)
∂ηj

∣∣∣∣
η2=γp(η1)

dη1

−
2∑

p=1

∫ b1

a1

αkp (x1, η1) u (η1, γp (η1)) dη1 = fk (x1) , k = 1, 2; x1 ∈ [a1, b1] ,

(2)

l3u ≡ ∂2u (x)
∂x2

1

∣∣∣∣
x2=γ2(x1)

−
2∑

p=1

2∑

j=1

α3jp (x1)
∂u (x)
∂xj

∣∣∣∣
x2=γp(x1)

−
2∑

p=1

α3p (x1)u (x1, γp (x1)) +
2∑

p=1

2∑

j=1

∫ b1

a1

α3jp (x1, η1)
∂u (η)
∂ηj

∣∣∣∣
η2=γp(η1)

dη1

−
2∑

p=1

∫ b1

a1

α3p (x1, η1) u (η1, γp (η1)) dη1 = f3 (x1) , x1 ∈ [a1, b1] , (3)
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where all data of equation (1) and boundary conditions (2), (3) are assumed to
be continuous functions.

If we consider the sufficiently smooth data of boundary value problem (1)–(3),
then this problem reduces to the Fredholm integral equation of the second kind
with respect to the function u (x). Otherwise, we get the system of the Fredholm
integral equations of the second kind with respect to the unknown function u (x)
and its derivatives. The kernels of these equations or of the obtained system have
no singularities.

3. Fundamental Solutions and Their Basic Properties

Applying the Fourier transformations [2, 3] for the principal part of equation
(1), namely, for the first two terms, we get the fundamental solution in the form

U (x− ξ) =
1

4π2

∫

R2

ei(α,x−ξ)

α2

(
α2

1 + α2
2

)dα, (4)

where x− ξ = (x1 − ξ1, x2 − ξ2), and (α, x− ξ) = α1 (x1 − ξ1) + α2 (x2 − ξ2), R2

is a real plane.
Then, by means of Hormander’s ladder method [9], for the integral (4) we

obtain

U (x− ξ) =
x2 − ξ2

2π

[
ln

√
|x1 − ξ1|2 + (x2 − ξ2)

2 − 1
]

+
|x1 − ξ1|

2π
arctg

x2 − ξ2

|x1 − ξ1| .
(5)

Differentiating (4) or (5), one can easily get

∂3U (x− ξ)
∂x3

2

+
∂3U (x− ξ)

∂x2
1∂x2

= δ (x− ξ) , (6)

where
∂U (x− ξ)

∂x1
=

e (x1 − ξ1)
π

arctg
x2 − ξ2

|x1 − ξ1| , (7)

∂U (x− ξ)
∂x2

=
1
2π

ln
√
|x1 − ξ1|2 + (x2 − ξ2)

2 , (8)

∂2U (x− ξ)
∂x2

1

= e (x2 − ξ2) δ (x1 − ξ1)− 1
2π

x2 − ξ2

|x1 − ξ1|2 + (x2 − ξ2)
2 , (9)

∆xU (x− ξ) = e (x2 − ξ2) δ (x1 − ξ1) . (10)

Here e (t) is the symmetric Heaviside function, δ (x− ξ) = δ (x1 − ξ1) δ (x2 − ξ2)
is a two-dimensional Dirac delta function [2, 3].
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4. Basic Relations

Using fundamental solution (5), its property (6) and considering equations (1),
we get Green’s second formula [2–6]. From these formulas we get representations
for any solution of equation (1) and expressions for the boundary values of this
solution

∫

Γ

∂2u (x)
∂x2

2

U (x− ξ) cos (ν, x2) dx +
∫

Γ

∂2u (x)
∂x2

1

U (x− ξ) cos (ν, x2) dx

−
∫

Γ

∂u (x)
∂x2

∂U (x− ξ)
∂x2

cos (ν, x2) dx−
∫

Γ

∂u (x)
∂x1

∂U (x− ξ)
∂x2

cos (ν, x1) dx

+
∫

Γ
u (x)

∂2U (x− ξ)
∂x1∂x2

cos (ν, x1) dx +
∫

Γ
u (x)

∂2U (x− ξ)
∂x2

2

cos (ν, x2) dx

+
∫

D
l0u · U (x− ξ) dx−

∫

D
f (x) U (x− ξ) dx =





u (ξ) , ξ ∈ D,

1
2
u (ξ) , ξ ∈ Γ,

(11)

where

l0u ≡
2∑

k=0

a2k (x)
∂2u (x)

∂xk
1∂x2−k

2

+
2∑

k=1

a1k (x)
∂u (x)
∂xk

+ a0 (x) u (x)

+
2∑

m=0

2∑

n=1

∫ b1

a1

K2mn (x, η1)
∂2u (η)

∂ηm
1 ∂η2−m

2

∣∣∣∣
η2=γn(η1)

dη1

+
2∑

m=1

2∑

n=1

∫ b1

a1

K1mn (x, η1)
∂u (η)
∂ηm

∣∣∣∣
η2=γn(η1)

dη1+
2∑

n=1

∫ b1

a1

K0n (x, η1) u (η1, γn (η1)) dη1 .

(12)
Then applying the schemes used in [10–14], we obtain the remaining basic

relations that give representations for the derivative of the unknown function
and the boundary values of these derivatives

−
∫

Γ

∂2u (x)
∂x2

2

∂U (x− ξ)
∂x2

cos (ν, x2) dx−
∫

Γ

∂2u (x)
∂x1∂x2

∂U (x− ξ)
∂x2

cos (ν, x1) dx

+
∫

Γ

∂u (x)
∂x2

∂2U (x− ξ)
∂x2

2

cos (ν, x2) dx +
∫

Γ

∂u (x)
∂x2

∂2U (x− ξ)
∂x1∂x2

cos (ν, x1) dx

−
∫

D
l0u · ∂U (x− ξ)

∂x2
dx +

∫

D
f (x)

∂U (x− ξ)
∂x2

dx =





∂u (ξ)
∂ξ2

, ξ ∈ D,

1
2

∂u (ξ)
∂ξ2

, ξ ∈ Γ,

(13)
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−
∫

Γ

∂2u (x)
∂x2

2

∂U (x− ξ)
∂x1

cos (ν, x2) dx−
∫

Γ

∂2u (x)
∂x2

1

∂U (x− ξ)
∂x1

cos (ν, x2) dx

+
∫

Γ

∂u (x)
∂x2

∂2U (x− ξ)
∂x1∂x2

cos (ν, x2) dx +
∫

Γ

∂u (x)
∂x1

∂2U (x− ξ)
∂x1∂x2

cos (ν, x1) dx

−
∫

Γ

∂u (x)
∂x2

∂2U (x− ξ)
∂x2

2

cos (ν, x1) dx−
∫

Γ

∂u (x)
∂x1

∂2U (x− ξ)
∂x2

2

cos (ν, x1) dx

−
∫

D
l0u · ∂U (x− ξ)

∂x1
dx +

∫

D
f (x)

∂U (x− ξ)
∂x1

dx =





∂u (ξ)
∂ξ1

, ξ ∈ D,

1
2

∂u (ξ)
∂ξ1

, ξ ∈ Γ,

(14)

∫

Γ

∂2u (x)
∂x2

2

∂2U (x− ξ)
∂x2

1

cos (ν, x2) dx +
∫

Γ

∂2u (x)
∂x2

1

∂2U (x− ξ)
∂x2

1

cos (ν, x2) dx

−
∫

Γ

∂2u (x)
∂x2

2

∂2U (x− ξ)
∂x1∂x2

cos (ν, x1) dx +
∫

Γ

∂2u (x)
∂x1∂x2

∂2U (x− ξ)
∂x1∂x2

cos (ν, x2) dx

−
∫

Γ

∂2u (x)
∂x1∂x2

∂2U (x− ξ)
∂x2

2

cos (ν, x1) dx +
∫

Γ

∂2u (x)
∂x2

1

∂2U (x− ξ)
∂x2

2

cos (ν, x2) dx

+
∫

D
l0u · ∂2U (x− ξ)

∂x2
1

dx−
∫

D
f (x)

∂2U (x− ξ)
∂x2

1

dx =





∂2u (ξ)
∂ξ2

1

, ξ ∈ D,

1
2

∂2u (ξ)
∂ξ2

1

, ξ ∈ Γ.

(15)
Notice that in the remaining two expressions (see also [9–11]) the derivatives
higher than third order in the domain D (both for u (x) and for U (x− ξ)) and
the derivatives higher than second order on the boundary Γ do not appear in the
integrand, i.e.,

∫

Γ

∂2u (x)
∂x2

2

∂U2 (x− ξ)
∂x2

2

cos (ν, x2) dx +
∫

Γ

∂2u (x)
∂x1∂x2

∂2U (x− ξ)
∂x2

2

cos (ν, x1) dx

−
∫

Γ

∂2u (x)
∂x1∂x2

∂2U (x− ξ)
∂x1∂x2

cos (ν, x2) dx +
∫

Γ

∂2u (x)
∂x2

2

∂2U (x− ξ)
∂x1∂x2

cos (ν, x1) dx

+
∫

D
l0u · ∂2U (x− ξ)

∂x2
2

dx−
∫

D
f (x)

∂2U (x− ξ)
∂x2

2

dx =





∂2u (ξ)
∂ξ2

2

, ξ ∈ D,

1
2

∂2u (ξ)
∂ξ2

2

, ξ ∈ Γ,

(16)
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∫

Γ

∂2u (x)
∂x2

2

∂2U (x− ξ)
∂x1∂x2

cos (ν, x2) dx +
∫

Γ

∂2u (x)
∂x1∂x2

∂2U (x− ξ)
∂x1∂x2

cos (ν, x1) dx

−
∫

Γ

∂2u (x)
∂x2

2

∂2U (x− ξ)
∂x2

2

cos (ν, x1) dx +
∫

Γ

∂2u (x)
∂x1∂x2

∂2U (x− ξ)
∂x2

2

cos (ν, x2) dx

+
∫

D
l0u · ∂2U (x− ξ)

∂x1∂x2
dx−

∫

D
f (x)

∂2U (x− ξ)
∂x1∂x2

dx =





∂2u (ξ)
∂ξ1∂ξ2

, ξ ∈ D,

1
2

∂2u (ξ)
∂ξ1∂ξ2

, ξ ∈ Γ.

(17)
Thus we establish the following

Theorem 1. If D ⊂ R2 is a bounded convex domain with Lyapunov boundary
Γ, the data of equation (1), a2k (x) , k = 0, 2, x ∈ D; a1k (x) , k = 1, 2, x ∈
D; a0 (x) , x ∈ D; K2mn (x, η1) , m = 0, 2, n = 1, 2, x ∈ D, η1 ∈ (a1, b1) ;
K1mn (x, η1) , m = 1, 2, n = 1, 2, x ∈ D, η1 ∈ (a1, b1) ; Kon (x, η1) , x ∈ D,
η1 ∈ (a1, b1), f (x) , x ∈ D are continuous functions, then every solution of
equation (1) determined in the domain D satisfies basic relations (11), (13)–(17).

5. Necessary conditions

Considering the second expressions of basic relations (11), (13)–(17) and pass-
ing from the integrals over the boundary Γ to those over its parts Γk (k = 1, 2) ,
one obtains

u (ξ1, γk (ξ1)) = 2
∫
Γ

∂2u(x)
∂x2

2
U(x1 − ξ1, x2 − γk(ξ1)) cos(ν, x2)dx

+2
∫
Γ

∂2u(x)
∂x2

1
U(x1 − ξ1, x2 − γk(ξ1)) cos(ν, x2)dx

− 2
∫
Γ

∂u(x)
∂x2

∂U(x−ξ)
∂x2

∣∣∣∣
ξ2=γk(ξ1)

cos(ν, x2)dx− 2
∫
Γ

∂u(x)
∂x1

∂U(x−ξ)
∂x2

∣∣∣∣
ξ2=γk(ξ1)

cos(ν, x1)dx

+2
∫
Γ

u(x)∂2u(x−ξ)
∂x1∂x2

∣∣∣∣
ξ2=γk(ξ1)

cos(ν, x1)dx + 2
∫
Γ

u(x)∂2U(x−ξ)
∂x2

2

∣∣∣∣
ξ2=γk(ξ1)

cos(ν, x2)dx

+2
∫
D

l0uU(x1 − ξ1, x2 − γk(ξ1))dx

−2
∫
D

f(x)U(x1 − ξ1, x2 − γk(ξ1))dx, k = 1, 2, ξ1 ∈ [a1, b1],

(18)

Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 125



A. Delshad Gharehgheshlaghi and N. Aliyev

∂u(ξ)
∂ξ1

∣∣∣
ξ2=γk(ξ1)

= − 2
∫
Γ

∂2u(x)
∂x2

2

∂U(x−ξ)
∂x1

∣∣∣∣
ξ2=γk(ξ1)

cos(ν, x2)dx

−2
∫
Γ

∂2u(x)
∂x2

1

∂U(x−ξ)
∂x1

∣∣∣∣
ξ2=γk(ξ1)

cos(ν, x2)dx + 2
∫
Γ

∂u(x)
∂x2

∂2U(x−ξ)
∂x1∂x2

∣∣∣∣
ξ2=γk(ξ1)

cos(ν, x2)dx

+2
∫
Γ

∂u(x)
∂x1

∂2U(x−ξ)
∂x1∂x2

∣∣∣∣
ξ2=γk(ξ1)

cos(ν, x1)dx− 2
∫
Γ

∂u(x)
∂x2

∂2U(x−ξ)
∂x2

2

∣∣∣∣
ξ2=γk(ξ1)

cos(ν, x1)dx

− 2
∫
Γ

∂u(x)
∂x1

∂2U(x−ξ)
∂x2

2

∣∣∣∣
ξ2=γk(ξ1)

cos(ν, x1)dx− 2
∫
D

l0u
∂U(x−ξ)

∂x1
dx

+2
∫
D

f(x)∂U(x−ξ)
∂x1

dx, k = 1, 2, ξ1 ∈ [a1, b1]

(19)
and

∂u(ξ)
∂ξ2

∣∣∣
ξ2=γk(ξ1)

= −2
∫
Γ

∂2u(x)
∂x2

2

∂U(x−ξ)
∂x2

∣∣∣∣
ξ2=γk(ξ1)

cos(ν, x2)dx

−2
∫
Γ

∂2u(x)
∂x1∂x2

∂U(x−ξ)
∂x2

∣∣∣∣
ξ2=γk(ξ1)

cos(ν, x1)dx +
∫
Γ

∂u(x)
∂x2

∂U2(x−ξ)
∂x2

2

∣∣∣∣
ξ2=γk(ξ1)

cos(ν, x2)dx

+ 2
∫
Γ

∂u(x)
∂x2

∂U2(x−ξ)
∂x1∂x2

∣∣∣∣
ξ2=γk(ξ1)

cos(ν, x1)dx− 2
∫
D

l0u
∂U(x−ξ)

∂x2

∣∣∣∣
ξ2=γk(ξ1)

dx

+ 2
∫
D

f(x)∂U(x−ξ)
∂x2

∣∣∣∣
ξ2=γk(ξ1)

dx, k = 1, 2, ξ1 ∈ [a1, b1],

(20)
where ξ2 = γk (ξ1) , k = 1, 2, are the equations of Γk, and the “dots” denote the
sums of nonsingular terms.

As it is seen from the fundamental solution (5), for the boundary values of
the second derivative we have

∂2U (x− ξ)
∂x2

2

∣∣∣∣x2=γp(x1)
ξ2=γp(ξ1)

=
1
2π

γ′p (σp (x1, ξ1))

(x1 − ξ1)
[
1 + γ′2p (σp)

] , p = 1, 2; (21)

∂2U (x− ξ)
∂x1∂x2

∣∣∣∣x2=γp(x1)
ξ2=γp(ξ1)

=
1
2π

1
(x1 − ξ1)

[
1 + γ′2p (σp)

] , p = 1, 2; (22)

∂2U (x− ξ)
∂x2

1

∣∣∣∣x2=γp(x1)
ξ2=γp(ξ1)

= − 1
2π

γ′p (σp)

(x1 − ξ1)
[
1 + γ′2p (σp)

] , p = 1, 2; (23)

∂2U (x− ξ)
∂x2

1

∣∣∣∣x2=γp(x1)
ξ2=γq(ξ1)

= δ (x1 − ξ1) e (γp (x1)− γq (ξ1)) , p, q = 1, 2; p 6= q,

(24)
where σp (x1, ξ1) is located between x1 and ξ1.
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∂u2(ξ)
∂ξ2

2

∣∣∣
ξ2=γk(ξ1)

= −2
b1∫
a1

∂2u(x)
∂x2

2

∣∣∣
x2=γ1(x1)

∂2U(x−ξ)
∂x2

2

∣∣∣
x2=γ1(x1)
ξ2=γk(ξ1)

dx1

+2
b1∫
a1

∂2u(x)
∂x2

2

∣∣∣
x2=γ2(x1)

∂2U(x−ξ)
∂x2

2

∣∣∣
x2=γ2(x1)
ξ2=γk(ξ1)

dx1

+2
b1∫
a1

∂2u(x)
∂x1∂x2

∣∣∣
x2=γ1(x1)

∂2U(x−ξ)
∂x2

2

∣∣∣
x2=γ1(x1)
ξ2=γk(ξ1)

γ′1(x1)dx1

−2
b1∫
a1

∂2u(x)
∂x1∂x2

∣∣∣
x2=γ2(x1)

∂2U(x−ξ)
∂x2

2

∣∣∣
x2=γ2(x1)
ξ2=γk(ξ1)

γ′2(x1)dx1

+2
b1∫
a1

∂2u(x)
∂x1∂x2

∣∣∣
x2=γ1(x1)

∂2U(x−ξ)
∂x1∂x2

∣∣∣
x2=γ1(x1)
ξ2=γk(ξ1)

dx1

−2
b1∫
a1

∂2u(x)
∂x1∂x2

∣∣∣
x2=γ2(x1)

∂2U(x−ξ)
∂x1∂x2

∣∣∣
x2=γ2(x1)
ξ2=γk(ξ1)

dx1

+2
b1∫
a1

∂2u(x)
∂x2

2

∣∣∣
x2=γ1(x1)

∂2U(x−ξ)
∂x1∂x2

∣∣∣
x2=γ1(x1)
ξ2=γk(ξ1)

γ′1(x1)dx1

−2
b1∫
a1

∂2u(x)
∂x2

2

∣∣∣
x2=γ2(x1)

∂2U(x−ξ)
∂x1∂x2

∣∣∣
x2=γ2(x1)
ξ2=γk(ξ1)

γ′2(x1)dx1

+2
∫
D

l0u
∂2U(x−ξ)

∂x2
2

dx + 2
∫
D

f(x)∂2U(x−ξ)
∂x2

2
dx

= (−1)k−1

π

b1∫
a1

∂2u(x)
∂x1∂x2

∣∣∣
x2=γk(x1)

dx1
x1−ξ1

+ · · · , k = 1, 2.

(25)

∂2u(ξ)
∂ξ2

1

∣∣∣
ξ2=γk(ξ1)

= −2
b1∫
a1

∂2u(x)
∂x2

2

∣∣∣
x2=γ1(x1)

∂2U(x−ξ)
∂x2

1

∣∣∣
x2=γ1(x1)
ξ2=γk(ξ1)

dx1

+2
b1∫
a1

∂2u(x)
∂x2

2

∣∣∣
x2=γ2(x1)

∂2U(x−ξ)
∂x2

1

∣∣∣
x2=γ2(x1)
ξ2=γk(ξ1)

dx1

−2
b1∫
a1

∂2u(x)
∂x2

1

∣∣∣
x2=γ1(x1)

∂2U(x−ξ)
∂x2

1

∣∣∣
x2=γ1(x1)
ξ2=γk(ξ1)

dx1

+2
b1∫
a1

∂2u(x)
∂x2

1

∣∣∣
x2=γ2(x1)

∂2U(x−ξ)
∂x2

1

∣∣∣
x2=γ2(x1)
ξ2=γk(ξ1)

dx1

−2
b1∫
a1

∂2u(x)
∂x2

2

∣∣∣
x2=γ1(x1)

∂2U(x−ξ)
∂x1∂x2

∣∣∣
x2=γ1(x1)
ξ2=γk(ξ1)

γ′1(x1)dx1

+2
b1∫
a1

∂2u(x)
∂x2

2

∣∣∣
x2=γ2(x1)

∂2U(x−ξ)
∂x1∂x2

∣∣∣
x2=γ2(x1)
ξ2=γk(ξ1)

γ′2(x1)dx1

−2
b1∫
a1

∂2u(x)
∂x1∂x2

∣∣∣
x2=γ1(x1)

∂2U(x−ξ)
∂x1∂x2

∣∣∣
x2=γ1(x1)
ξ2=γk(ξ1)

dx1
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+2
b1∫
a1

∂2u(x)
∂x1∂x2

∣∣∣
x2=γ2(x1)

∂2U(x−ξ)
∂x1∂x2

∣∣∣
x2=γ2(x1)
ξ2=γk(ξ1)

dx1

−2
b1∫
a1

∂2u(x)
∂x1∂x2

∣∣∣
x2=γ1(x1)

∂2U(x−ξ)
∂x1∂x2

∣∣∣
x2=γ1(x1)
ξ2=γk(ξ1)

γ′1(x1)dx1

+2
b1∫
a1

∂2u(x)
∂x1∂x2

∣∣∣
x2=γ2(x1)

∂2U(x−ξ)
∂x2

2

∣∣∣
x2=γ2(x1)
ξ2=γk(ξ1)

γ′2(x1)dx1

−2
b1∫
a1

∂2u(x)
∂x2

1

∣∣∣
x2=γ1(x1)

∂2U(x−ξ)
∂x2

2

∣∣∣
x2=γ1(x1)
ξ2=γk(ξ1)

dx1

+2
b1∫
a1

∂2u(x)
∂x2

1

∣∣∣
x2=γ2(x1)

∂2U(x−ξ)
∂x2

2

∣∣∣
x2=γ2(x1)
ξ2=γk(ξ1)

dx1

+2
∫
D

l0u
∂2U(x−ξ)

∂x2
1

dx− 2
∫
D

f(x)∂2U(x−ξ)
∂x2

1
dx, k = 1, 2, ξ1 ∈ [a1, b1].

(26)

Then the remaining necessary conditions take the form

∂2u(ξ)
∂ξ2

1

∣∣∣
ξ2=γ1(ξ1)

− ∂2u(ξ)
∂ξ2

1

∣∣∣
ξ2=γ2(ξ1)

− ∂2u(ξ)
∂ξ2

2

∣∣∣
ξ2=γ2(ξ1)

= − 1
π

∫ b1
a1

∂2u(x)
∂x1∂x2

∣∣∣
x2=γ1(x1)

dx1
x1−ξ1

+ . . .

(27)

∂2u(ξ)
∂ξ2

1

∣∣∣
ξ2=γ2(ξ1)

− ∂2u(ξ)
∂ξ2

1

∣∣∣
ξ2=γ1(ξ1)

− ∂2u(ξ)
∂ξ2

2

∣∣∣
ξ2=γ1(ξ1)

= 1
π

∫ b1
a1

∂2u(x)
∂x1∂x2

∣∣∣
x2=γ2(x1)

dx1
x1−ξ1

+ . . .

(28)

∂2u(ξ)
∂ξ1∂ξ2

∣∣∣
ξ2=γk(ξ1)

= −2
b1∫
a1

∂2u(x)
∂x2

2

∣∣∣
x2=γ1(x1)

∂2U(x−ξ)
∂x1∂x2

∣∣∣
x2=γ1(x1)
ξ2=γk(ξ1)

dx1

+2
b1∫
a1

∂2u(x)
∂x2

2

∣∣∣
x2=γ2(x1)

∂2U(x−ξ)
∂x1∂x2

∣∣∣
x2=γ2(x1)
ξ2=γk(ξ1)

dx1

+2
b1∫
a1

∂2u(x)
∂x1∂x2

∣∣∣
x2=γ1(x1)

∂2U(x−ξ)
∂x1∂x2

∣∣∣
x2=γ1(x1)
ξ2=γk(ξ1)

γ′1(x1)dx1

−2
b1∫
a1

∂2u(x)
∂x1∂x2

∣∣∣
x2=γ2(x1)

∂2U(x−ξ)
∂x1∂x2

∣∣∣
x2=γ2(x1)
ξ2=γk(ξ1)

γ′2(x1)dx1

−2
b1∫
a1

∂2u(x)
∂x2

2

∣∣∣
x2=γ1(x1)

∂2U(x−ξ)
∂x2

2

∣∣∣
x2=γ1(x1)
ξ2=γk(ξ1)

γ′1(x1)dx1
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+2
b1∫
a1

∂2u(x)
∂x2

2

∣∣∣
x2=γ2(x1)

∂2U(x−ξ)
∂x2

2

∣∣∣
x2=γ2(x1)
ξ2=γk(ξ1)

γ′2(x1)dx1

−2
b1∫
a1

∂2u(x)
∂x1∂x2

∣∣∣
x2=γ1(x1)

∂2U(x−ξ)
∂x2

2

∣∣∣
x2=γ1(x1)
ξ2=γk(ξ1)

dx1

+2
b1∫
a1

∂2u(x)
∂x1∂x2

∣∣∣
x2=γ2(x1)

∂2U(x−ξ)
∂x2

2

∣∣∣
x2=γ2(x1)
ξ2=γk(ξ1)

dx1

+2
∫
D

l0u
∂2U(x−ξ)
∂x1∂x2

dx− 2
∫
D

f(x)∂2U(x−ξ)
∂x1∂x2

dx

= (−1)k

π

b1∫
a1

∂2u(x)
∂x2

2

∣∣∣
x2=γk(x1)

dx1
x1−ξ1

+ · · · , k = 1, 2, ξ1 ∈ [a1, b1].

(29)

Thus we obtained the following statements.

Theorem 2. Under the conditions of Theorem 1 every solution of equation
(1) satisfies the necessary regular conditions (18)–(20).

Theorem 3. Under the conditions of Theorem 1 every solution of equation
(1) satisfies the necessary singular conditions (25)–(29).

6. Fredholm Property

Considering the necessary singular conditions (29) and taking into account
the boundary conditions (2), we get

∂2u (ξ)
∂ξ1∂ξ2

∣∣∣∣
ξ2=γk(ξ1)

=
(−1)k

π

∫ b1

a1

dx1

x1 − ξ1



fk (x1) +

2∑

p=1

2∑

j=1

αkjp (x1)
∂u (x)
∂xj

∣∣∣∣
x2=γp(x1)

+
2∑

p=1

αkp (x1)u (x1, γp (x1)) +
2∑

p=1

2∑

j=1

∫ b1

a1

αkjp (x1, η1)
∂u (η)
∂ηj

∣∣∣∣
η2=γp(η1)

+
2∑

p=1

∫ b1

a1

αkp (x1, η1) u (η1, γp (η1)) dη1



 . (30)

The first term in the right-hand side is easily regularized if

fk (x) ∈ C(1) [a1, b1] , fk (a1) = fk (b1) = 0, k = 1, 2, (31)

as shown in [15].
Concerning the second and the third terms in the right-hand side of (30), they

are regularized by using (18)–(20).
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After substituting (18)–(20) into (30), it suffices to replace the regular inte-
grals in (18)–(20) by the singular integrals from (30). For the last two terms in
the right-hand side of (30) it suffices to replace the integrals contained in it.

Finally, consider the necessary condition (27). Its right-hand side contains

singular integrals, and we substitute
∂2u (x)
∂x1∂x2

∣∣∣∣
x2=γ1(x1)

by its regular expression

obtained by means of (30). Then in the left-hand side of expression (27), instead

of
∂2u (ξ)

∂ξ2
1

∣∣∣∣
ξ2=γ2(ξ1)

and
∂2u (ξ)

∂ξ2
2

∣∣∣∣
ξ2=γ2(ξ1)

we use their expressions from the bound-

ary conditions (2) and (3). Thus we get the regular relation for
∂2u (ξ)

∂ξ2
1

∣∣∣∣
ξ2=γ1(ξ1)

as well.
Thus we proved.

Theorem 4. Under the conditions of Theorem 1, (31) and if αkjp (x1), k =
1, 3, j = 1, 2, p = 1, 2; αkp (x1), k = 1, 3, p = 1, 2, x1 ∈ [a1, b1] ; αkjp (x1, η1),
k = 1, 3, j = 1, 2, p = 1, 2; x1 ∈ [a1, b1] , η1 ∈ [a1, b1] ; αkp (x1, η1), k = 1, 3,
p = 1, 2; x1 ∈ [a1, b1] , η1 ∈ [a1, b1] and f3 (x1), x1 ∈ [a1, b1] are continuous
functions, then for the boundary values of u (x) and its derivatives up to the
second order we get a normal system of the second order integral equations whose
Fredholm kernel formulas do not contain singularities (i.e., the singularity in the
trace formula is weak).

If all boundary values up to the second order are determined by the above
mentioned system of integral equations, then after substitution these boundary
values into the left-hand side of (11), (13)–(17), we obtain for the unknown
function u (x) and its derivatives up to the second order, inclusively for ξ ∈ D,
the system of the Fredholm integral equations of the second kind with regular
kernels.

Theorem is proved.

Theorem 5. Under the conditions of Theorem 4, the stated boundary value
problem is reduced to the system of the Fredholm integral equations of the second
kind whose Fredholm kernel does not contain singular integrals.

A boundary value problem for the second order equation of composite type
was studied in [16–21].

Various special cases of boundary value problems for the composite type equa-
tions of third order were considered in [22–24].
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7. Example

Consider the domain D in the upper half-plane enclosed by the abscissa axis
(x2 = 0) and the parabola (x2 = 1− x2

1),

D =
{
x = (x1, x2), x2 ∈ (0, 1− x2

1), x1 ∈ (−1, 1)
}

.

Consider the boundary value problem with the solution u(x) = x1(x2
2 − x2

1)

∂3u(x)
∂x3

2

+
∂3u(x)
∂x2

1∂x2
= 0, x ∈ D, (32)

under the boundary conditions

∂2u(x)
∂x2

2

∣∣∣∣
x2=0

= 2x1, (33)

∂2u(x)
∂x2

2

∣∣∣∣
x2=1−x2

1

= 2x1, (34)

and
∂2u(x)

∂x2
1

∣∣∣∣
x2=1−x2

1

= −6x1. (35)

Notice that for discretization we use the following pattern. If discretization is
performed at the point m,n, then it is necessary to know the values of this
function on the four layers

(m,n− 1); (m− 1, n), (m,n), (m + 1, n);
(m− 1, n + 1), (m, n + 1), (m + 1, n + 1); (m,n + 2).

(36)

Then equation (32) yields the following discrete equations at the point (m,n):

ym+1,n+1 − ym+1,n + ym,n+2 − 5ym,n+1 + 5ym,n

− ym,n−1 + ym−1,n+1 − ym−1,n = 0,
(37)

where, m = −3, 3 , n = 1; m = −2, 2 , n = 2.
Similarly, the equations obtained from the boundary condition (33) are in the

form (notice that here h = 1
4 , x1 = 1

4m)

ym,n+1 − 2ym,n + ym,n−1 =
1
32

m, (38)

where, m = −4, 4 , n = 1.
Equations (38) are obtained from the boundary condition (34) with m =

−3, n = 2;m = −2, 2, n = 3;m = 3, n = 2.
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Finally, the algebraic equations are obtained from the boundary condition
(35)

ym+1,n − 2ym,n + ym−1,n = − 3
32

m. (39)

Here

m = −3, n = 0, 2;m = 3, n = 0, 2;m = −1, 1, n = 4;m = −2, 2, n = 3

are obtained. So, we get a system of 39 variables and 39 linear algebraic equations.
Since, u(x) = x1(x2

2 − x2
1), then,

ym,n = y(mh, nh) = mh(n2h2 −m2h2) = mh3(n2 −m2) =
m

64
(n2 −m2). (40)

In the considered example we give the exact values at the knot points of the
domain, the approximate values of the solution of the system of linear algebraic
equations, and finally their absolute error in the table below.

It should be noted that here e = |y(Exact)− y(App)|.

Table
ym,n Exact App Err

y−4,0 1 0.1107 0.8893

y−3,0 0.4218 0.1141 0.3077

y−2,0 0.125 -0.0076 0.1326

y−1,0 0.0126 -0.1461 0.1617

y0,0 0 -0.0511 0.0511

y1,0 -0.0156 -0.0497 0.0341

y2,0 -0.125 -0.1422 0.0172

y3,0 -0.4218 -0.1166 0.3052

y4,0 -1 0.0072 1.0072

y−4,1 0.9375 0.0684 0.8691

y−3,1 0.375 0.0677 0.3073

y−2,1 0.0937 0.0045 0.0892

y−1,1 0 -0.0852 0.0852

y0,1 0 -0.0271 0.0271

y1,1 0 -0.0002 0.0002

y2,1 -0.0937 -0.0023 0.9347

y3,1 -0.375 -0.0357 0.3393

y4,1 -0.9375 0.0399 0.9774

y−4,2 0.75 0.0256 0.7244

y−3,2 0.2343 0.0113 0.223

y−2,2 0 0.0099 0.0099

y−1,2 -0.0468 0.0084 0.0552

y0,2 0 0.1650 0.1550

y1,2 0.0468 0.0852 0.3828
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y2,2 0 0.0367 0.0367

y3,2 -0.2343 0.0488 0.2831

y4,2 -0.75 0.0922 0.8422

y−3,3 0 0.1964 0.1964

y−2,3 -0.1562 0.1192 0.2754

y−1,3 -0.125 0.1045 0.2295

y0,3 0 0.1597 0.1597

y1,3 0.125 0.2773 0.1523

y2,3 0.1562 -0.0343 0.1905

y3,3 0 -0.0225 0.0225

y−2,4 -0.375 0.0831 0.4581

y1,4 -0.2343 0.2823 0.5176

y0,4 0 -0.4307 0.4307

y1,4 0.2343 -0.2748 0.5088

y2,4 0.375 0.0061 0.3689

As it is seen from the table, for the given test the errors are as given in the
table. It should also be noted that the maximal error is 1.0072 and the minimal
error is 0.0002. Subsequently this problem will be reduced to the integral equation
and solved approximately, and the error will be found. Finally, the errors obtained
in this way will be compared.
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