Journal of Mathematical Physics, Analysis, Geometry 2012, vol. 8, No. 2, pp. 135–143

On Ideal Amenability of Banach Algebras

A Jabbari

Young Researchers Club, Ardabil Branch Islamic Azad University, Ardabil, Iran E-mail: jabbari_al@yahoo.com

Received February 7, 2011

Let \mathfrak{A} be a Banach algebra. The Banach algebra \mathfrak{A} is said to be ideally amenable if every continuous derivation from \mathfrak{A} into \mathcal{I}^* is inner, where \mathcal{I} is a two-sided ideal of \mathfrak{A} . In this paper, we consider the ideal amenability of Banach algebras, and try to give some new results on the ideal amenability of Banach algebras and commutative Banach algebras.

Key words: amenability, Banach algebra, convolution algebra, ideal amenability, Lipschitz algebra.

Mathematics Subject Classification 2000: 46H25 (primary); 46H20 (secondary).

1. Introduction

Let \mathfrak{A} be a Banach algebra. Let X be a Banach \mathfrak{A} -bimodule such that X is a Banach space and an \mathfrak{A} -bimodule, where the module operations

$$(a, x) \mapsto a.x$$
 and $(a, x) \mapsto x.a$

from $\mathfrak{A} \times X$ into X are jointly continuous. We can define the right and the left actions of \mathfrak{A} on the dual space X^* of X via

$$\langle x, \lambda.a \rangle = \langle a.x, \lambda \rangle$$
 and $\langle x, a.\lambda \rangle = \langle x.a, \lambda \rangle$

for all $a \in \mathfrak{A}, x \in X$ and $\lambda \in X^*$. Similarly, the second dual X^{**} of X becomes a Banach \mathfrak{A} -bimodule (for more details see [1]). Thus, in particular, \mathcal{I} is a Banach \mathfrak{A} -bimodule, and \mathcal{I}^* is a dual \mathfrak{A} -bimodule for every closed two-sided ideal \mathcal{I} in \mathfrak{A} . Let \mathfrak{A} be a Banach algebra, and let X be a Banach \mathfrak{A} -bimodule. A derivation is a linear map $D: \mathfrak{A} \longrightarrow X$ such that

$$D(ab) = a.D(b) + D(a).b \qquad (a, b \in \mathfrak{A}).$$

© A. Jabbari, 2012

The set of derivations from \mathfrak{A} into X is denoted by $Z^1(\mathfrak{A}, X)$; it is a linear subspace of $\mathcal{L}(\mathfrak{A}, X)$, where $\mathcal{L}(\mathfrak{A}, X)$ is the space of all bounded linear mappings from \mathfrak{A} into X. For $x \in X$, set $D_x : a \mapsto a.x - x.a, \mathfrak{A} \longrightarrow X$. Derivations of this form are termed inner derivations, and an inner derivation D_x is implemented by x; derivations which are not inner are called outer derivations. The set of inner derivations from \mathfrak{A} into X is a linear subspace $N^1(\mathfrak{A}, X)$ of $Z^1(\mathfrak{A}, X)$. We consider the quotient space $\mathcal{H}^1(A, X) = Z^1(\mathfrak{A}, X)/N^1(\mathfrak{A}, X)$, it is called the first cohomology group of \mathfrak{A} with coefficients in X. Clearly, $\mathcal{H}^1(A, X) = \{0\}$ if and only if every derivation from \mathfrak{A} into X is inner.

The Banach algebra \mathfrak{A} is called amenable if $\mathcal{H}^1(A, X^*) = \{0\}$, or, in other words, if every derivation from \mathfrak{A} into every dual \mathfrak{A} -module is inner. The concept of amenability for the Banach algebra \mathfrak{A} was introduced by Johnson in 1972 [2]. The Banach algebra \mathfrak{A} is weakly amenable if $\mathcal{H}^1(\mathfrak{A}, \mathfrak{A}^*) = \{0\}$. Of course, every amenable Banach algebra is weakly amenable. However, the class of weakly amenable Banach algebras is considerably larger than that of amenable Banach algebras. For example, the group algebra $L^1(G)$ is weakly amenable for each locally compact group G. The examples of weakly amenable, but not amenable, Banach function algebras are given in [3], where it is noted that the commutative Banach algebra \mathfrak{A} is weakly amenable if and only if $\mathcal{H}^1(\mathfrak{A}, X) = \{0\}$ for each Banach \mathfrak{A} -module X.

Let $n \in \mathbb{N}$; the Banach algebra \mathfrak{A} is called *n*-weakly amenable if $\mathcal{H}^1(\mathfrak{A}, \mathfrak{A}^{(n)}) = \{0\}$. Dales, Ghahramani and Grønbæk brought the concept of the *n*-weak amenability of Banach algebras in [4]. The Banach algebra \mathfrak{A} is called permanently weakly amenable if $\mathcal{H}^1(\mathfrak{A}, \mathfrak{A}^{(n)}) = \{0\}$ for each $n \in \mathbb{N}$ (see [4]). The concept of the ideal amenability of Banach algebras was introduced by Gordji and Yazdanpanah in [5]. The Banach algebra \mathfrak{A} is called ideally amenable if $\mathcal{H}^1(\mathfrak{A}, \mathcal{I}^{(n)}) = \{0\}$ for every closed two-sided ideal \mathfrak{A} is n- \mathcal{I} -weakly amenable if $H^1(\mathfrak{A}, \mathcal{I}^{(n)}) = \{0\}$ for every closed two-sided ideal \mathcal{I} of \mathfrak{A} . The ideal amenability of the group algebras $L^1(G), L^{\infty}(G)$ and M(G), where G is a locally compact group, are studied in [6]. In [7], the ideal amenability of abstract Segal algebras, Segal algebras and triangular Banach algebras are studied. In this paper, we continue to study [5–8] for the ideal amenability of Banach algebras.

2. General Results

For the Banach algebra \mathfrak{A} we denote the character space of \mathfrak{A} by $\Phi_{\mathfrak{A}}$.

Theorem 2.1. Let \mathfrak{A} be a Banach algebra, and $\varphi \in \Phi_{\mathfrak{A}}$ such that $ab = \varphi(a)b$ for each $a, b \in \mathfrak{A}$. Then \mathfrak{A} is ideally amenable.

Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2

P r o o f. Let \mathcal{I} be a closed two-sided ideal of \mathfrak{A} , and let $D: \mathfrak{A} \longrightarrow \mathcal{I}^*$ be a continuous derivation. Then

$$\varphi(a)\langle c, Db\rangle = \langle c, D(ab)\rangle = \langle c, a.D(b) + D(a).b\rangle$$

= $\langle ca, Db\rangle + \langle bc, Da\rangle$
= $\varphi(c)\langle a, Db\rangle + \varphi(b)\langle c, Da\rangle$ (2.1)

for each $a, b, c \in \mathfrak{A}$. Let $\lambda \in \mathcal{I}^*$, and let $\delta_{\lambda} : \mathfrak{A} \longrightarrow \mathcal{I}^*$ be the inner derivation specified by λ . Then

for each $a, b \in \mathfrak{A}$. Choose $a_0 \in \mathfrak{A}$ with $\varphi(a_0) = 1$ and set $\lambda(a) = \langle a_0, Da \rangle$ for each $a \in \mathfrak{A}$. Then λ is a linear functional. By use of (2.1) and (2.2), we have

$$\begin{aligned} \langle b, \delta_{\lambda}(a) \rangle &= \varphi(b) \langle a, \lambda \rangle - \varphi(a) \langle b, \lambda \rangle \\ &= \varphi(b) \langle a_0, Da \rangle - \varphi(a) \langle a_0, Db \rangle \\ &= \varphi(a_0) \langle b, Da \rangle = \langle b, Da \rangle. \end{aligned}$$

Therefore, $D = \delta_{\lambda}$, and thus \mathfrak{A} is \mathcal{I} -weakly amenable.

In [5], Gordji and Yazdanpanah asked (Question 4.1): If \mathfrak{A} and \mathfrak{B} are ideally amenable Banach algebras, then is $\mathfrak{A}\widehat{\otimes}\mathfrak{B}$ ideally amenable? In [9], Mewomo answered to this question for a special case, when both \mathfrak{A} and \mathfrak{B} have a bounded approximate identity. In the theorem below we will give the answer to Question 4.1 of [5] in the following sense.

Theorem 2.2. Let \mathfrak{A} and \mathfrak{B} be Banach algebras. Let $\varphi \in \Phi_{\mathfrak{A}}$, and $\psi \in \Phi_{\mathfrak{B}}$ such that

$$ab = \varphi(a)b, \qquad cd = \psi(c)d$$

for each $a, b \in \mathfrak{A}$ and $c, d \in \mathfrak{B}$. Then $\mathfrak{A} \widehat{\otimes} \mathfrak{B}$ is ideally amenable.

P r o o f. Without loss of generality, we suppose that \mathfrak{A} and \mathfrak{B} are unital (see Proposition 1.14 of [5]). Let $e_{\mathfrak{A}}$ and $e_{\mathfrak{B}}$ be the unit elements of \mathfrak{A} and \mathfrak{B} , respectively. Let \mathcal{K} be a closed two-sided ideal of $\mathfrak{A}\widehat{\otimes}\mathfrak{B}$, and let $D:\mathfrak{A}\widehat{\otimes}\mathfrak{B} \longrightarrow \mathcal{K}^*$ be a continuous derivation. For each $a, c, e \in \mathfrak{A}$ and $b, d, f \in \mathfrak{B}$ we have

$$\begin{aligned} \langle c \otimes d, D(ae \otimes bf) \rangle &= \langle c \otimes d, D((a \otimes b)(e \otimes f)) \rangle \\ &= \langle c \otimes d, (a \otimes b).D(e \otimes f) \rangle + \langle c \otimes d, D(a \otimes b).(e \otimes f) \rangle \\ &= \langle ca \otimes db, D(e \otimes f) \rangle + \langle ec \otimes fd, D(a \otimes b) \rangle \\ &= \varphi(c)\psi(d) \langle a \otimes b, D(e \otimes f) \rangle + \varphi(e)\psi(f) \langle c \otimes d, D(a \otimes b) \rangle \\ &= \varphi(a)\psi(b) \langle c \otimes d, D(e \otimes f) \rangle. \end{aligned}$$

Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 137

Fix $b_0 \in \mathfrak{B}$ with $\psi(b_0) = 1$. Then from (2.3) we can write

$$\langle e_{\mathfrak{A}} \otimes e_{\mathfrak{B}}, D(a \otimes b) \rangle = \langle e_{\mathfrak{A}} \otimes e_{\mathfrak{B}}, D((a \otimes b_0)(e_{\mathfrak{A}} \otimes b)) \rangle$$

= $\varphi(a)\psi(b_0)\langle e_{\mathfrak{A}} \otimes e_{\mathfrak{B}}, D(e_{\mathfrak{A}} \otimes b) \rangle$
= $\langle a \otimes b_0, D(e_{\mathfrak{A}} \otimes b) \rangle$ (2.4)

for each $a \in \mathfrak{A}$ and $b \in \mathfrak{B}$. Hence, there exists $\lambda \in \mathcal{K}^*$ such that

$$\langle a \otimes b, \lambda \rangle = \langle a \otimes b_0, D(e_{\mathfrak{A}} \otimes b) \rangle \tag{2.5}$$

for each $a \in \mathfrak{A}$ and $b \in \mathfrak{B}$. Let $\delta_{\lambda} : \mathfrak{A} \widehat{\otimes} \mathfrak{B} \longrightarrow \mathcal{K}^*$ be an inner derivation specified by λ . Take $a \in \mathfrak{A}$ and $b, c \in \mathfrak{B}$. Then

$$\begin{aligned} \langle a \otimes c, \delta_{\lambda}(e_{\mathfrak{A}} \otimes b) \rangle &= \langle a \otimes c, (e_{\mathfrak{A}} \otimes b).\lambda - \lambda.(e_{\mathfrak{A}} \otimes b) \rangle \\ &= \langle a \otimes c, (e_{\mathfrak{A}} \otimes b).\lambda \rangle - \langle a \otimes c, \lambda.(e_{\mathfrak{A}} \otimes b) \rangle \\ &= \langle a \otimes cb, \lambda \rangle - \langle a \otimes bc, \lambda \rangle \\ &= \langle a \otimes b_0, \psi(c)D(e_{\mathfrak{A}} \otimes b) \rangle - \langle a \otimes b_0, \psi(b)D(e_{\mathfrak{A}} \otimes c) \rangle \\ &= \langle a \otimes b_0, \psi(c)D(e_{\mathfrak{A}} \otimes b) - \psi(b)D(e_{\mathfrak{A}} \otimes c) \rangle \\ &= \langle a \otimes b_0, (e_{\mathfrak{A}} \otimes c).D(e_{\mathfrak{A}} \otimes b) \rangle \\ &= \langle a \otimes c, D(e_{\mathfrak{A}} \otimes b) \rangle. \end{aligned}$$

Therefore, $D(e_{\mathfrak{A}} \otimes b) = \delta_{\lambda}(e_{\mathfrak{A}} \otimes b)$ for each $b \in \mathfrak{B}$.

We claim that $D(a \otimes e_{\mathfrak{B}}) = \delta_{\lambda}(a \otimes e_{\mathfrak{B}})$ for each $a \in \mathfrak{A}$. Choose $a_0 \in \mathfrak{A}$ with $\varphi(a_0) = 1$. Then from (2.5) we can write

$$\langle a \otimes b, \lambda \rangle = \langle a \otimes b_0, D(e_{\mathfrak{A}} \otimes b) \rangle = \varphi(a) \langle e_{\mathfrak{A}} \otimes e_{\mathfrak{B}}, D(e_{\mathfrak{A}} \otimes b) \rangle = \langle a_0 \otimes b, D(a \otimes e_{\mathfrak{B}}) \rangle$$
 (2.6)

for each $a \in \mathfrak{A}$ and $b \in \mathfrak{B}$. Now by (2.6), we have

$$\begin{aligned} \langle c \otimes b, \delta_{\lambda}(a \otimes e_{\mathfrak{B}}) \rangle &= \langle c \otimes b, (a \otimes e_{\mathfrak{B}}).\lambda - \lambda.(a \otimes e_{\mathfrak{B}}) \rangle \\ &= \langle c \otimes b, (a \otimes e_{\mathfrak{B}}).\lambda \rangle - \langle c \otimes b, \lambda.(a \otimes e_{\mathfrak{B}}) \rangle \\ &= \langle ca \otimes b, \lambda \rangle - \langle ac \otimes b, \lambda \rangle \\ &= \langle a_0 \otimes b, \varphi(c) D(a \otimes e_{\mathfrak{B}}) \rangle - \langle a \otimes b_0, \varphi(a) D(c \otimes e_{\mathfrak{B}}) \rangle \\ &= \langle a_0 \otimes b, \varphi(c) D(a \otimes e_{\mathfrak{B}}) - \varphi(a) D(c \otimes e_{\mathfrak{B}}) \rangle \\ &= \langle a_0 \otimes b, (c \otimes e_{\mathfrak{B}}).D(a \otimes e_{\mathfrak{B}}) \rangle \\ &= \langle c \otimes b, D(a \otimes e_{\mathfrak{B}}) \rangle. \end{aligned}$$

Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2

Hence, $D(a \otimes e_{\mathfrak{B}}) = \delta_{\lambda}(a \otimes e_{\mathfrak{B}})$ for each $a \in \mathfrak{A}$. Then for each $a \in \mathfrak{A}$ and $b \in \mathfrak{B}$ we have

$$D(a \otimes b) = D((a \otimes e_{\mathfrak{B}})(e_{\mathfrak{A}} \otimes b))$$

= $(a \otimes e_{\mathfrak{B}}).D(e_{\mathfrak{A}} \otimes b) + D(a \otimes e_{\mathfrak{B}}).(e_{\mathfrak{A}} \otimes b)$
= $(a \otimes b).\lambda - \lambda.(a \otimes b) = \delta_{\lambda}(a \otimes b).$

So, $D = \delta_{\lambda}$ on $\mathfrak{A} \widehat{\otimes} \mathfrak{B}$. Thus $\mathfrak{A} \widehat{\otimes} \mathfrak{B}$ is ideally amenable.

Let \mathfrak{A} and \mathfrak{B} be Banach algebras, and $\vartheta : \mathfrak{A} \longrightarrow \mathfrak{B}$ be a bounded homomorphism. $\mathfrak{B}^{(n)}$ (the *n*th dual of \mathfrak{B}) can be regarded as an \mathfrak{A} -bimodule under the module actions

$$a.b^{(n)} = \vartheta(a).b^{(n)}, \quad b^{(n)}.a = b^{(n)}.\vartheta(a) \qquad (a \in \mathfrak{A}, b^{(n)} \in \mathfrak{B}^{(n)}).$$

Also the first and second transposes of ϑ , $\vartheta^* : \mathfrak{B}^* \longrightarrow \mathfrak{A}^*$ and $\vartheta^* : \mathfrak{A}^{**} \longrightarrow \mathfrak{B}^{**}$ are \mathfrak{B} -module morphisms. We can continue this to the *n*th transpose of ϑ .

Theorem 2.3. Let \mathfrak{A} and \mathfrak{B} be Banach algebras. Suppose that \mathcal{I} and \mathcal{J} are two-sided ideals of \mathfrak{A} and \mathfrak{B} , respectively. Let $\mathcal{F} : \mathfrak{A} \longrightarrow \mathfrak{B}$ be a bounded epimorphism, $\theta : \mathcal{I} \longrightarrow \mathcal{J}$ and $\varphi : \mathcal{J} \longrightarrow \mathcal{I}$ be bounded homomorphisms such that $\theta \circ \varphi = id_{\mathcal{J}}$ ($id_{\mathcal{J}}$ is the identity on \mathcal{J}). Then:

- (i) Let $D: \mathfrak{B} \longrightarrow \mathcal{J}^{(2n-1)}$ be a continuous derivation. Then $\mathcal{D} := (\theta^{(2n-1)} \circ D \circ \mathcal{F}) : \mathfrak{A} \longrightarrow \mathcal{I}^{(2n-1)}$ is a continuous derivation, $n \in \mathbb{N}$.
- (ii) Let $D: \mathfrak{B} \longrightarrow \mathcal{J}^{(2n)}$ be a continuous derivation. Then $\mathcal{D} := (\varphi^{(2n)} \circ D \circ \mathcal{F}) : \mathfrak{A} \longrightarrow \mathcal{I}^{(2n)}$ is a continuous derivation, $n \in \mathbb{N}$.
- (iii) In cases (i) and (ii), if \mathcal{D} is inner, then D is also inner.
- (iv) If \mathfrak{A} is n-ideally amenable, then \mathfrak{B} is also n-ideally amenable.

P r o o f. (i) Let D be a continuous derivation. For each $a, b \in \mathfrak{A}$ we have

$$\mathcal{D}(ab) = (\theta^{(2n-1)} \circ D \circ \mathcal{F})(ab)$$

$$= \theta^{(2n-1)} \circ D(\mathcal{F}(a)\mathcal{F}(b))$$

$$= \theta^{(2n-1)}(a.D(\mathcal{F}(b)) + D(\mathcal{F}(a)).b)$$

$$= a.\theta^{(2n-1)}(D(\mathcal{F}(b)) + \theta^{(2n-1)}(D(\mathcal{F}(a)).b)$$

$$= a.\mathcal{D}(b) + \mathcal{D}(a).b.$$
(2.7)

Let $\mathcal{D} = \mathcal{D}_{\lambda}$ be an inner derivation from \mathfrak{A} into $\mathcal{I}^{(2n-1)}$ specified by $\lambda \in \mathcal{I}^{(2n-1)}$. Take $b \in \mathfrak{B}$, therefore there exists $a \in \mathfrak{A}$ such that $\mathcal{F}(a) = b$. For each

Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 139

 $G \in \mathcal{J}^{(2n-1)}$ we have

$$\langle D(b), G \rangle = \langle D(\mathcal{F}(a)), G \rangle = \langle D(\mathcal{F}(a)), \theta^{(2n-2)} \circ \varphi^{(2n-2)}(G) \rangle$$

$$= \langle \theta^{(2n-1)} \circ D(\mathcal{F}(a)), \varphi^{(2n-2)}(G) \rangle$$

$$= \langle D(a), \varphi^{(2n-2)}(G) \rangle = \langle a.\lambda - \lambda.a, \varphi^{(2n-2)}(G) \rangle$$

$$= \langle \varphi^{(2n-1)}(a.\lambda - \lambda.a), G \rangle$$

$$= \langle b.\varphi^{(2n-1)}(\lambda) - \varphi^{(2n-1)}(\lambda).b, G \rangle.$$

$$(2.8)$$

By similar arguments, statements (ii) and (iii) hold. Part (iv) follows trivially from (iii).

3. Commutative Banach Algebras

The ideal amenability of commutative Banach algebras is studied in [8], and the authors referred to obtained many useful results for this case. In this section, we study the ideal amenability of commutative Banach algebras and special classes of them, namely, ℓ^1 -convolution and Lipschitz algebras.

Theorem 3.1. Let \mathfrak{A} be a commutative Banach algebra. If there exists a closed subalgebra \mathfrak{B} of \mathfrak{A} such that

- (i) \mathfrak{B} is dense in \mathfrak{A} ;
- (ii) every derivation from \mathfrak{B} into the dual of every closed ideal of \mathfrak{A} is inner,

then \mathfrak{A} is ideally amenable.

P r o o f. Let \mathcal{I} be a closed two-sided ideal of \mathfrak{A} , and let D be a continuous derivation from \mathfrak{A} into \mathcal{I}^* . Define $D|_{\mathfrak{B}} = D'$. Since every derivation from \mathfrak{B} into the dual of every closed ideal of \mathfrak{A} is inner and \mathcal{I}^* is a symmetric \mathfrak{B} -bimodule, then by [3], D' = 0.

Set $a \in \mathfrak{A}$. Then for each $\varepsilon > 0$ there exists $b \in \mathfrak{B}$ such that $||a-b||_{\mathfrak{A}} < \frac{\varepsilon}{||D||+1}$. Then we have

$$||Da|| = ||Da - D'b|| = ||D(a - b)||$$

$$\leq ||D|| ||a - b||_{\mathfrak{A}} < \varepsilon.$$

Since $a \in \mathfrak{A}$ and $\varepsilon > 0$ are arbitrary, then D = 0. Thus \mathfrak{A} is \mathcal{I} -weakly amenable, and the proof is complete.

Theorem 3.2. Let \mathfrak{A} be a commutative Banach algebra, and \mathcal{I} be an unital two-sided ideal of \mathfrak{A} . If \mathfrak{A} is \mathcal{I} -weakly amenable, then the closed linear span of \mathfrak{AIA} is dense in \mathcal{I} .

Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2

P r o o f. Let \mathfrak{B} be a closed linear span of \mathfrak{AIA} such that $\mathfrak{B} \neq \mathcal{I}$. Choose $a \in \mathcal{I}$ such that $a \notin \mathfrak{B}$. Put $\mathfrak{B}_1 := \{b + a'a : b \in \mathfrak{B}, a' \in \mathcal{I}, a' \notin \mathfrak{B}\}$. Define $\varphi : \mathfrak{B}_1 \longrightarrow \mathcal{I}$ by $\varphi(b + a'a) = a'$. Thus, φ is a homomorphism. We can also extend φ to a homomorphism $\lambda_1 : \mathcal{I} \longrightarrow \mathcal{I}$, where $\lambda_1|_{\mathfrak{B}} = 0$ and $\lambda_1 \neq 0$.

Since $a \in \mathcal{I}$ and $a \notin \mathfrak{B}$, then there exists nonzero $\lambda_2 \in \mathcal{I}^*$ such that $\lambda_2|_{\mathfrak{B}} = 0$. Now define the mapping $D : \mathfrak{A} \longrightarrow \mathcal{I}^*$ by

$$D(a) = \lambda_1(a).\lambda_2$$

for all $a \in \mathfrak{A}$. From the definition of λ_1 and λ_2 , D is linear. Since λ_2 on \mathfrak{B} is zero, then D is a nonzero derivation from \mathfrak{A} into \mathcal{I}^* . But \mathfrak{A} is \mathcal{I} -weakly amenable, consequently, this is a contradiction.

Let Λ be a non-empty totally ordered set, and regard it as a semigroup by defining the product of two elements to be their maximum. The resulting semigroup, which we denote by Λ_{\vee} , is a semilattice. We may then form the ℓ^1 convolution algebra $\ell^1(\Lambda_{\vee})$. For every $t \in \Lambda_{\vee}$ we denote the point mass concentrated at t by e_t . The definition of multiplication in $\ell^1(\Lambda_{\vee})$ ensures that $e_s e_t = e_{\max(s,t)}$ for all s and t.

The semilattice Λ_{\vee} is a commutative semigroup in which every element is idempotent. If we denote the set of idempotent elements of Λ_{\vee} by $E(\Lambda_{\vee})$, then $E(\Lambda_{\vee}) = \Lambda_{\vee}$. The ℓ^1 -convolution algebras of semilattices provide interesting examples of commutative Banach algebras.

Proposition 3.3. Let Λ be a totally ordered set. Then $\ell^1(\Lambda_{\vee})$ is n-ideally amenable, $n \in \mathbb{N}$.

P r o o f. Since $E(\Lambda_{\vee}) = \Lambda_{\vee}$, then by Proposition 2.2 of [10], $\ell^1(\Lambda_{\vee})$ is weakly amenable. The Banach algebra $\ell^1(\Lambda_{\vee})$ is a commutative Banach algebra. Then by Theorem 2.1 of [8], the weak amenability of $\ell^1(\Lambda_{\vee})$ implies its *n*-ideal amenability.

Let K be a compact metric space with metric d, and take α such that $0 < \alpha \leq 1$. Then $Lip_{\alpha}K$ is a space of the complex-valued functions f on K such that

$$p_{\alpha}(f) = \sup\{\frac{|f(x) - f(y)|}{d(x, y)^{\alpha}} : x, y \in K, x \neq y\}$$

is finite. For $f \in Lip_{\alpha}K$, set

$$||f||_{\alpha} = |f|_K + p_{\alpha}(f).$$

Then $(Lip_{\alpha}K, ||f||_{\alpha})$ is a Banach algebra on K. A function $f \in lip_{\alpha}K$ if

$$\frac{|f(x) - f(y)|}{d(x, y)^{\alpha}} \longrightarrow 0 \quad as \ d(x, y) \longrightarrow 0,$$

Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2

where $lip_{\alpha}K$ is a close subalgebra of $Lip_{\alpha}K$ (for more details see [11] and [12]). Many results on the amenability and weak amenability of Lipschitz algebras are given in [3].

Proposition 3.4. Let K be an infinite compact metric space, and let $\alpha \in (0,1)$. Then $lip_{\alpha}K$ is 2-ideally amenable.

P r o o f. The algebra $lip_{\alpha}K$ is Arens regular, and $(lip_{\alpha}K)^{**}$ is semisimple, and so by Corollary 2.4 of [8], $lip_{\alpha}K$ is 2-ideally amenable.

In the following theorem \mathbb{T} is a group of complex numbers of modulus one,

$$\mathbb{T} = \{ z \in \mathbb{C} : |z| = 1 \},\$$

such that it is isomorphic to \mathbb{R}/\mathbb{Z} , and I is the closed interval [0,1].

Proposition 3.5. Let K be a compact metric space, and let $\alpha \in (0, 1)$. Then

- (i) If K is \mathbb{T} , and $\alpha > \frac{1}{2}$, then $lip_{\alpha}\mathbb{T}$ is not ideally amenable. Furthermore, $lip_{\alpha}\mathbb{T}$ is not 2k + 1-ideally amenable for any $k \in \mathbb{Z}^+$.
- (ii) If K is \mathbb{I} , then $Lip_{\alpha}\mathbb{I}$ is not ideally amenable.

P r o o f. (i) By Theorem 3.11 of [3], $lip_{\alpha}\mathbb{T}$ is not weakly amenable, and by Theorem 2.1 of [8], $lip_{\alpha}\mathbb{T}$ is not ideally amenable. (ii) By Proposition 9.2 of [11], there are nonzero continuous point derivations on $Lip_{\alpha}\mathbb{I}$, and by Proposition 1.3 of [4], $Lip_{\alpha}\mathbb{I}$ is not weakly amenable, then by theorem 2.1 of [8], $Lip_{\alpha}\mathbb{I}$ is not ideally amenable.

References

- F.F. Bonsall and J. Duncan, Complete Normed Algebras. Springer-Verlag, Berlin, 1973.
- [2] B.E. Johnson, Cohomology in Banach Algebras. Mem. Amer. Math. Soc. 127, Providence, R.I., USA, 1972.
- [3] W.G. Bade, P.C. Curtis, and H.G. Dales, Amenability and Weak Amenability for Beurling and Lipschitz Algebras. — Proc. London Math. Soc. 55 (1987), No. 2, 359–377.
- [4] H.G. Dales, F. Ghahramani, and N. Grønbæk, Derivations into Iterated Duals of Banach Algebras. - Studia Math. 128 (1998), No. 1, 19-54.
- [5] M.E. Gordji and T. Yazdanpanah, Derivations into Duals of Ideals of Banach Algebras. Proc. Indian Acad. Sci. 114 (2004), No. 4, 339-403.

- [6] M.E. Gordji and S.A.R. Hosseiniun, Ideal Amenability of Banach Algebras on Locally Compact Groups. - Proc. Indian Acad. Sci. 115 (2005), No. 3, 319-325.
- [7] A. Jabbari, Ideal Amenability of Various Classes of Banach Algebras. Acta Math. Vietnam 36 (2011), No. 3, 651–658.
- [8] M.E. Gordji and R. Memarbashi, Derivations into n-th Duals of Ideals of Banach Algebras. — Bull. Iran. Math. Soc. 34 (2008), No. 1, 59–71.
- [9] O.T. Mewomo, On Ideal Amenability in Banach Algebras. An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.). 56 (2010), No. 2, 273–278.
- [10] H.G. Dales, A.T.M. Lau, and D. Strauss, Banach Algebras on Semigroups and their Compactifications. —- Mem. Amer. Math. Soc. 205 (2010), No. 966.
- [11] D.R. Sherbert, The Structure of Ideals and Point Derivations in Banach Algebras of Lipschitz Functions. — Trans. Amer. Math. Soc. 111 (1964), 240–272.
- [12] N. Weaver, Lipschitz Algebras. World Scientific Publishing Co. Pte Ltd., 1999.

Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 143