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Introduction

As it is known, a barotropic fluid is modelled by an equation of the state relat-
ing fluid pressure and density. In particular, it is supposed that this relationship
is linear. The problem of motions of an ideal rotating fluid with compressibility
being taken into account was first studied in V.N. Maslennikova’s works. In the
paper [1] the spectral problem on normal oscillations of the fluid (viscous or ideal)
filling a rotating bounded domain was studied.

In [2, p. 390-410] (see also [3]) the problem on small motions of an ideal
relaxing fluid in a bounded region, excluding rotation, gravity force, and at some
model restrictions on the boundary conditions for dynamical density, was studied.
The model of the relaxing fluid is a generalization of the barotropic fluid in the
sense that the fluid pressure and the fluid density are coupled through the integral
Volterra operator. In the monograph [2] the theorem on the strong solvability
of the appropriate initial-boundary value problem was proved, and a spectral
problem on normal oscillations was studied.

In [4, 5], the problem on small motions of an ideal relaxing fluid filling a
bounded region and being influenced by a gravitational field was studied. In this
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case the fluid density in the state of relative equilibrium was assumed to be con-
stant. It turns out that the neglect of a change of the stationary density causes
both the breaking of a symmetry of the problem and the noncompact perturba-
tion of the operator pencil corresponding to the spectral problem (even in the case
of a barotropic model). In [6] there was proposed a modified rheological relation
leading to the symmetric model of the ideal relaxing fluid with consideration for
the exact steady state of a fluid. For this model, the evolution and the spectral
problems were studied.

In the present paper the rheological relation from [6] is applied to construct a
model of the viscous relaxing fluid. We reduce the initial-boundary value problem
describing this model to the Cauchy problem for an integro-differential equation
in some Hilbert space. It should be noted that there are some versions of the
initial-boundary value problem in an abstract form. Here the way leading to the
equation well-adapted for further studying of the spectral problem is chosen.

1. Small Motions of a Rotating Viscous Relaxing Fluid

1.1. Statement of the problem. Consider a container that uniformly
rotates around the axis parallel to the gravity force and is completely filled by
a viscous inhomogeneous fluid. The fluid is said to occupy a bounded region
Q) C R3. Let 7 be a unit vector perpendicular to the boundary S := 9 and
directed out of the region 2. We introduce a system of the coordinates Oxjxox3
which is toughly connected with the container so that the Oxj3 axis coincides
with the rotating axis and is directed opposite the gravity force, and the origin
of coordinates is in the region ). In this case, the uniform velocity of rotation
of the container takes the form &y := wpés3, where €3 is the unit vector along the
rotating axis Oxs, and wg > 0 for definiteness. The external stationary field of
forces Fy is considered to be a gravitational field acting along the rotating axis,
i.e., F:O = —geés, g > 0.

Let us consider the relative equilibrium state of the fluid. From the Navier—
Stokes equation of motion of a viscous fluid, written in the moving system of
coordinates, we obtain the formula for the stationary pressure gradient

VP = po(—(ﬁo X (u_j() X 77) — 953) = poV(Qil‘(D'O X ﬂQ — gxg), (1.1)

where 7 is the radius-vector of a moving point of the region , and pg is the
stationary density of the fluid.

In the state of relative equilibrium, the dynamic components of pressure and
density responsible for relaxing effects in the fluid are leaking. Therefore, we will
consider that the fluid is barotropic in the relative equilibrium state and satisfies
the equation of the state VPy = a2 Vpg, where ao is the sound velocity in the
fluid. This equation and relation (1.1) allow us to conclude that pg and a2, can be
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functions of the parameter z := 271w2(2} + 23) — gz3. Further we will consider
that the sound velocity a is defined for the fluid and it is constant. Then the
stationary density can be determined as a function of the parameter z. In this
case, the stationary density pg is constant only when there is neither rotation
nor gravitational field in the system. The function pg(z) satisfies the conditions
0<a; <po(z) <as.

_ We now represent the total pressure and the density of the fluid in the form
P(t,x) = Py(2)+p(t,x), p(t,x) = po(z) + p(t, x), where p(t,z) and p(t, x) are the
dynamical pressure and the density, respectively, arising at small motions of the
fluid relative to its steady state. Assume that the dynamic components satisfy
the following rheological relation:

Pm(%)w@,x) = a2 (Pm(%) + po<z>czm_1(%))vmt,x>, (1.2)

where P, (\) and Q;,—1()) are polynomials with the degrees m and m —1, respec-
tively. In this case we can obviously consider that the coefficient of the highest
degree in the polynomial P,,()) is equal to 1. Following the reasoning and ideas
from [7], we will assume that all roots of the polynomial P, () are real, different
from one another, and negative (we denote them by —b; (I =1,m)) while the
roots of the polynomial @Q,,—1(\) are real, negative and alternate with the roots
of P,(\). Thus from (1.2) we obtain the equation of the state

t

Vp(t,z) = a2, (Vﬁ(t,x) — po(2) / VK (t - $)p(s,z) ds), (1.3)
0

where I?(t) = > 1y krexp(—bit). The numbers bl_1 are used as the times of re-
laxation in the system, and & > 0 (I = 1,m) are some structural constants. As
a_mathematical generalization of the presented constructions, we assume that
K = K(t,x) is a sufficiently smooth positive kernel in the evolution problem.

Let us linearize the Navier—Stokes equation written in the moving system of
coordinates with respect to the relative equilibrium state. Using the equation of
the state (1.3), we obtain the problem of small motions of a viscous relaxing fluid
filling a uniformly rotating solid body

u(t, )
ot

— 2w (t(t, ) x &) = py ' (2) (pAT(t, z) + (n + 37 ) Vdivi(t, z))

- V(agopal(z)ﬁ(t, z)) + /V(agof((t —s,2)p(s,z)) ds + f(t,z) (in Q),
0

0 (in Q), @t,z)=0 (onS),

+
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where (t,x) is the field of velocities in the fluid, p(¢,x) is the dynamic density
of the fluid, x and n are the dynamic and the second viscosity of the fluid, and

—

f(t,x) is a weak field of external forces imposed on the gravitational field.
To symmetrize the system, let us replace aoopgl/Q(z)ﬁ(t, x) =p(t,x). As a
result, we arrive at the basic problem

ou(t, )

5 2w (i(t, ) x &) = py ' (2) (pAi(t,z) + (n + 3~ p) Vdivii(t, z))

—

— V(acopy 2 (2)p(t, ) —|—/V(K(t—s,:p)p(s,az))ds+f(t,x) (in ), (1.4)
0

ap(t, .
o( $)+ 1/2

5 asopy | (2)div(po(2)d(t, ) =0 (in Q), u(t,z)= 0 (on S), (1.5)

where K (t,z) := aoop[l)/Q(z)f((t, x).
For the completeness of the statement of the problem, we set the initial con-
ditions
(0,z) = @(z), p(0,2) = p°(x). (1.6)

1.2. Auxiliary operators and their properties. Let us introduce a vector
Hilbert space L2(£2, pp) with the scalar product and the norm

(@0 0= [ ) T N, = [ i@l 0.
Q Q
We introduce a scalar Hilbert space La(€2) of functions square summable in
the region 2, and also its subspace Lo ,,(2) := {f € L2(2) | (f, p(l)/2)L2(Q) = 0}.
We define an orthogonal projector

0f = f = (.00 ) a0 17 2 0y00 ()

Obviously, the formula I1Ly(Q) = Lo, (€2) is valid.

To pass to the operator formulation of problem (1.4)-(1.6), we introduce a
number of operators and study their properties.

We introduce an operator Si(t,z) := i(u(t,z) x €3), D(S) = Lo(, po). The
following lemma, whose proof is similar to that of an analogous lemma on prop-
erties of the Coriolis operator from [§], is valid.

Lerera 1.1. The operator S is self-adjoint and bounded in EQ(Q7 po): S =8*,
S € L(L2(82, po)); moreover, ||S|| = 1.
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In what follows, we will consider that the function K (¢, ) is continuously dif-
ferentiable with respect to spatial variables and twice continuously differentiable
with respect to time, and the boundary S of the region  belongs to the class C2.

Lemma 1.2. We introduce the space Hy = {i € W}(Q)| @ =

the following scalar product and norm:

(2, 7) 4 —/E ,0)dQ, a4 ::/E(ﬁ @) dQ

E(4, ) := (77— f,u)dlvudlvv—k M Z (Z;Z + gzk) <8Uj + %)
7,k=1 J

0 (on S)} with

aI'k 81‘]'

The space H 4 is a Hilbert space; it is compactly embedded in the space EQ(Q, 00):
Ha C.C. La(Q,po). A generating operator A of a Hilbert pair (Ha; La(S, po)),
which is self-adjoint and positive deﬁmte m LQ(Q p0), possesses a discrete spec-
trum and is defined on D(A) = W(Q) N Hy. For every field @ € Ly(Q, po), the

generalized solution of the problem

—

—py ' (2) (AT + (n+ 3 1) Vdivi) =@ (inQ), @=0 (onS),
given by the formula @ = A0, exists and it is unique.

Proof Wenow show that H4 is a Hilbert space. Let us introduce a new
equivalent norm in the space W} (Q) by the formula

2

3
0 oy = /Z\Vuk\zd(l—i— /ﬁdS
’ Q kzl

S

Let W;S(Q) denote the space W (Q) with a new norm.

For any field @ € W;S(Q) with the condition @ = 0 on the boundary S, the
following Korn inequality is valid (see [9, p. 23, Theorem 2.7]):

/E dQ>cl/Z]Vuk]2dQ—clluH .

where c; is positive constant depending only on the domain €.
By using the Korn inequality, for any field @ € H 4, we can get the following
inequalities:

il

21 oy < 13 < max(3n, 20} 3],

o (1.7)
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The inequalities imply that H 4 is a Hilbert space.

The Hilbert space H4 is dense in EQ(Q, po). Taking into account that the
inequality H/&:HEQ(Q,pO) < CQH’JHW&S(Q) is valid for any field 4 € WQIS(Q), from the
left-hand inequality in (1.7) we obtain that H, and Lo(9, po) form a Hilbert pair
(H a5 L2(€2, po))- .

To find the generating operator A of the Hilbert pair (H4; L2(£2, po)), we use
the identity (see [8, p. 33|)

(AT, D), ) = (@ 0)a, TE€DA), T€Hy= D(AV?). (1.8)

The identity of Betty is valid for any @ € W2(), 7 € 215(9)

/Lﬁ-ﬁdQ = /E(ﬁ, 7) dQ — /o—(ﬁ)ﬁ-ﬁds,
Q

Q S
Li = —(MA?Z—l— (n+ 3_1,u)VdiVﬁ), o) := {Jj7k(ﬁ)}§-’7k:1,
2 Oou;  Ouy )
(@) == (n — Zp)épdiva —L 4 = kE=1,2,3.
O—ng(’U,) (77 3“) ik lvu_‘_u(axk + 617‘7)7 Js ) 4

By using the identities above, for the twice differentiable field @ we can trans-
form identity (1.8) as follows:

(Ad, mig(ﬂ,po) = /E(f[, 0)dQ = /Lﬁ~ vdQ + /U(ﬁ)ﬁ -vdS
Q Q S
= /Lﬁ TdQ = (—py (=) (AT + (0 + 371M)Vdivﬁ),ﬁ)z2(
Q

vao) ’

This implies that any twice differentiable solution @ of the equation Ad = is
a solution of the problem —p,'(2) (LAT+ (n+ 371 p)Vdivi) = (in Q), €= 0
(on S). This problem has a unique generalized solution @ = A~!w for any field
@ € La(, po). Tt should be noticed that the field i is called a generalized solution
of the described problem if the identity

/ E(,7) dS) = / po - 7dQ [: (@, ) EQ(Q’pO)} Vi € Hy
Q Q

holds.
It follows from the smoothness of the boundary S that D(A) = W2(Q) N Hy.
It follows from the left-hand inequality in (1.7) and the compactness of the
embedding of the space W%S(Q) in La(Q2, po) that Ha is compactly embedded
in the space EQ(Q, po): Ha CC, EQ(Q, po)- This implies the compactness of the
operator A~!; hence the spectrum of the operator A is discrete. ]
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Define an operator Bi(t,z) := aoopal/Z(z)div(po(z)ﬁ(t,;1:)), D(B) := Hy.

Lemma 1.3. The adjoint operator B*p = —V(aoopal/Qp), D(B*) = W%va(Q),
WZI’pO(Q) = W3 (Q) N Loy, (Q). The following inequality takes place:

3e>0: |Billwy, (@ < cll4ilz,q,, VieDA).

Proof Let@eD(B):=D(AY?) = Hy. Then we have

(B1, p)szO(Q) = /aoopol/zdiv(poﬁ)de = —/pou V(aoopo 1/2 )dQ
Q Q

+ / aoopy P dS = — / poit-V (aepy %p) dQ = (@, =V (asepy *0)) 7,010
S Q
The above implies the formula for the operator B*.
Consider the problem

Lii = —pAd — (n+ 3 'p)Vdivi = f (in Q), Bri:=ud=4g (onS). (1.9)

It can be shown in the usual way that the matrix differential expression L is
nonsingular and properly elliptic, and the boundary condition By, covers it (see
[10]). It follows from the theorem of normal solvability (see [10, p. 241]) that
there exist constants c¢3 > 0, ¢4 > 0 (not depending on the field @) such that the
following inequalities are valid:

all @0y < ILAZ, o) < calldly g VAEWRQBL),  (110)
Wg(Q,BL) = {a € Wi(Q)|Bri=1d=0 (on S)} = D(A),
3
20y = D (el + D 10wkl .
k=1 la]=2

Further, from the Erling—Nirenberg inequality (see [11, p. 33|) it follows that
there exists a constant ¢ > 0 (not depending on the field @) such that the equality

) ;
5= U Vi e W2(Q), k,j=1,2,3 (1.11)

< osll;

‘ ‘ L2 Q) W22 (Q)

is valid.

Let now @ € D(A) = W2(2, Br). By using inequalities (1.10), (1.11), we get

- —1/2 4. — —1/2 5. i -
1By, =i [ (1995 div(ood? + I P div(po) ) a9 < call
Q

< cocy L, oy < cocs maxpu [ polog ! L A0 = el Al

Q
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where ¢ = ¢(cs, ¢5, po, oo, 2) > 0 is some absolute constant. [ |
We define the operators Q := BA™Y2 QT := A~1/2B*.

Lemma 1.4. The operator Q is bounded Q € L(La(2, po), Ly 4, (€2)).
The operator Q* admits an extension in a continuity to the bounded operator QT,

Qt=Q*, QT = Q*[pp+)-
Proof. Let# e D(B):=D(AY?)=H,. We have

I1BiZ,, @ = /aiopalldiV(poﬁ)\QdQ < 2a§o/ (pc?lleo!zIﬁ!z
Q Q

+ po|diva] )dQ < 07/E (1, @) dQY = C7||Al/2u||L2 (p0)°

where ¢; = 07(%0,,00,9) > 0 is some absolute constant. After replacement
AV =7, v e LQ(Q po), it follows from the last inequality that the operator
@ is bounded. This implies the boundedness of the operator @* and the simply
checked relation Q* = Q*|p(p-). [

We define an operator function M (t)p(t, z) := Ilp(2)K (¢, )p(t, z). Obvi-
ously, the operator function M (t) is bounded self-adjoint and positive definite in
L2:P0 (Q)'

1.3. Reduction to the first-order integro-differential equation.
Solvability of the initial-boundary value problem. Using the operators
introduced above, we can write problem (1.4)-(1.6) as a system of two equations
with initial-value conditions in the Hilbert space H = La(€2, po) @ Lo 5, (£2),

dt

d
dfp +Bu=0, (d;p)(0):=

t
i (2wgiS + A)il — B*p + /B*M(t — s)p(s)ds = f(1),
/ (1.12)
(@ p°)".

Notice that the kernel K (¢, ) is continuously differentiable with respect to
spatial variables, and twice continuously differentiable with respect to time. This
implies that the operator function M (¢) is twice continuously differentiable with
values in the space .C(Y/Vzlyp0 (Q)).

Let us change the variables in system (1.12) according to the formula

¢
/Mt—s s)ds, p(0)=0.
0
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Considering this differentiated relation as a differential equation associated with
system (1.12), we arrive at a Cauchy problem for a first-order integro-differential
equation in the Hilbert space H := La(€2, po) ® L2, (2) ® Lo ,,(£2),

dc

e /M(t—s)g(s) ds+ F(), C(0) =", (1.13)
0

—

where ((t) := ((t); p(t); p(t))7, ¢° == (@°; p%;0)7, F(t) := (£(¢); 0;0)". The nonzero
components of the operator blocks B and M(t) have the following representa-
tion: Mg,g(t) = M/(t), 6171 = 2wiS + A, 8172 = —B*, 8173 = B*, 6271 =B,
83’2 = —M(O)

Thus, if @ and p are a solution of problem (1.4)—(1.6) (the problem on small
motions of the viscose rotating relaxing fluid in a bounded domain) such that
all the reasonings above are applicable, then the function ( is a solution of the
Cauchy problem for the first-order integro-differential equation (1.13).

Definition 1.1. If the function ¢ is a strong solution of the Cauchy prob-
lem (1.13), then the corresponding functions i, p are called a strong solution of the
initial-boundary value problem (1.4)—(1.6). A function ((t) is called a strong so-
lution of the Cauchy problem (1.13) (see [12, p. 38]) if ((t) € D(B) for any t from
Ry :=[0,+00), B((t) € C(Ry;H), ((t) € CHRy;H), ¢(0) = ¢°, and the equation
from (1.13) is satisfied for any t € R,.

Let us change the sough function in problem (1.13), ((t) = e™&(t) :=
e (T(t); q(t); q(t))",

t
fé+(A+$>£:/e‘““—s)M(t—s)f(s)ds+e‘“tf<t), £0)=¢"  (1.14)
0

where nonzero components of the operator blocks A and & have the form A ; := A,
ALQ = —B*, A173 = B*, .A271 = B, ./42’2 = .A3,3 = CLI, 8372 = —M(O), 81’1 =
2wpiS + al (here I is a unit operator in the corresponding space). The operator
S is bounded in ‘H. The domain of definition of the operator A has the form
D(A) := D(A) ® D(B*) @ D(B*). The operator A appears to be non closed.
This fact complicates the using of theorems of solvability of abstract differential
equations. In this connection we will prove the following lemma.

Lemma 1.5. Let a > 471Q|?. Then the operator A admits a closure to the
mazimal uniformly accretive operator A which can be presented in the symmetric
form

A=diag(AV21,1)[Q aI 0 |diag(AY?,1,1)
0 0 al
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and in the Schur-Frobenius form A = (T + D;)diag(4,al + QQ*,al)(Z + Ds).
Here T is a unit operator in H, and the operators T 4+ Dy, I + Day are lower and
upper triangular blocks, respectively. The distinct from zero components of the op-
erator blocks D1 and Dy have the form (D1)21 = QA’l/Q, (D2)12 == —A’l/QQ*,
(D2)13 := A7Y2Q*, (Da)as := —(al + QQ*)'QQ*. The domain of the operator
A has the form D(A) = {(54:0) € H| 4,3 € Lop(), T— A 12Q%(q - ) €
D(A)}.

Proof From the formulas for the operator A it is seen that it is presented
as a product of three closed operators. It follows from the Schur-Frobenius fac-
torization that there exists the operator (A)~!, and the domain of the operator
(A)~! is the whole space H. Thus, A is the closed operator.

Let us check that the operator A is accretive on D(A). Let £ = (¥;¢;q)" € D(A).
We fix [|Q]|(2a)~! < e < 2||Q||~!. Using the Cauchy inequality, we get

Re(A¢, €) = | A"?5)* + Re(Q"q, A"/?5) + allq||* + al[q]|*
> AV — Q1A% + allgl)* + allq]?
> AP — Q[ (27 I AY23 + (26) " al®) + allal’® + allgll?
> min{(1 — [Q"[le27")y(A), a — Q"[I(2e) T }Igl* =: v(A) €%,

where v(A) > 0 is an exact lower boundary of the operator A. It follows from
the estimations above that v(A) > 0 if only the number a satisfies the lemma
conditions. Hence the operator A is uniformly accretive. The range of the values
of the operator A coincides with the whole space H. Hence it is a maximal
uniformly accretive operator.

It can be shown that the factorizations from this lemma are valid for the
operator A when Q* is replaced by Q. By direct computations it is also checked
that the operator A is uniformly accretive on the domain D(A). In this case the

operator A admits a closure which coincides with A. [

Notice that in the lemma the number a > 0 can be chosen to be so large that
A+ S would be a maximal uniformly accretive operator. Everywhere below we
will assume that it is.

Let us consider along with (1.14) a Cauchy problem with the closed operator

% (A+8)E= / e “UTIM(t — 5)E(s) ds + e " F(t), £(0) =¢°. (1.15)
0

The following solvability theorem is valid for problem (1.15).
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Theorem 1.1. Let (° € D(A) and function F(t) satisfies the Gelder condition,
VreR, 3K = K(r) >0, k(r) € (0, 1],

|F(t) — F(s)|ln < K|t —s|F at 0<s,t<r.
Then the strong solution of the Cauchy problem (1.15) exists and it is unique.

Proof Using the Schur-Frobenius factorization for the operator A, we
change the sought function in problem (1.15), 2(t) = (Z 4+ D2)&(t). After a series
of simple transformations we get the following Cauchy problem:

—i—gz—/./\/l (t —s)z(s)ds + F(t), 2(0) = (T +Dy)C" =: 2°, (1.16)

where B:=(I+T)Ag+D, M(t):=e T +D)ML)T+Dy)", F(t) :=
e” % (T +Ds)F(t). The operator Ag := diag(A, al + QQ*,al) is the central block
in the Schur-Frobenius factorization of the operator A. The nonzero compo-
nents of the operator 7 have the form 77 := —A712Qx, Ti3:= A2,
To1 = (T — A~'2Q*)QA~/2. The nonzero component of the operator D3 has
the form (D3)a3 := —a(al + QQ*)"*QQ*, and D := (T + D2)S(T + D2) ™! + Ds.

It follows from the lemmas about auxiliary operators and the introduced no-
tations that the operator D is bounded, and 7 is a compact operator in H.
The domain of the operator Ag is D(Ag) = D(A) & La () & La (). The
operator Ay is self-adjoint and positive definite, and the operator — Ay is a gen-
erator of a strongly continuous analytical semigroup of operators. This implies
(see [12]) that the operator —B is a generator of a strongly continuous semigroup
U(t) := exp(—tB) in ‘H analytical in some sector containing a positive semiaxis.

It follows from M(t) € 02(R+;£(W217p0 (©2))) and formulas for the operator
function M(t) that M(t) € C1(Ry; L(H)).

The further proof follows the ideas from monograph [2].

By the conditions of the theorem the function F(t) satisfies the Gelder condi-
tion, (¥ € D(A), and hence 2" := (Z + D2)(" € D(Ap). We will assume that the
Cauchy problem (1.16) has a strong solution z(t). Taking into account Theorem
1.4 (see [13, p. 130]), we obtain

0 0
—u<t)zo+/u(t—s)ﬁ<s) ds—l—/dr Ut — $)M(s — 7)2(r) ds. (1.17)
0 T
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Consider the internal integral in (1.17). Tt follows from M(t) € CY(R; £L(H))
that there exists the partial derivative

(‘fs <U(t—s)l§*1/(/l\(s—7')z(r)> = U(t—s) M(s—7)2(7)+U(t—s)B ' = M(s—7)z(T).

Integrating this from 7 to ¢ with respect to s, we can see that

9
0s

- /U(t — 3)51./(/1\(3 —7)z(7) ds) =: B\ilM\l(t,T)Z(T} (1.18)

From (1.17) and (1.18) we get that any strong solution z(t) of the Cauchy
problem (1.16) satisfies the following Volterra integral equation:

z(t) = 3(t)+/l§_1ﬂ1(t, s)z(s)ds, z(t):= Z/l(t)zo—l—/U(t—s)]?(s) ds. (1.19)
0 0

Here Z(t) is the solution of the Cauchy problem (1.16), which does not contain
an integral term, and thus 2(t) € C(R; D(B)) N CH(Ry; H).
Let us show that equation (1.19) has a unique solution and this solution is the

strong solution of the Cauchy problem (1.16). Introduce the space H(B) := (D(B),
[ - HH(E))7 where ”ZHH(E) = ||Bz|| for any z € D(B) = D(Ap). It is known that
H(B) is a Banach space.

It follows from (1.18) that B\_l/(/l\l(t,s) €C,0<s<t< +o0; L(H(B)).
Therefore, equation (1.19), considered in H(B), is a Volterra integral equation
of the second kind with continuous kernel. Therefore, taking into account the
inclusion 2(t) € C(Ry;H(B)), we may conclude that equation (1.19) has the
unique solution z(t) € C(R; H(B)).

From the inclusion Z(t) € C*(R4;H), we obtain that z(t) is a continuously
differentiable function with values in the Hilbert space H. Direct computations
show that z(t) satisfies definition 1.1; thus, z(¢) is the unique strong solution
of problem (1.16). Then &(t) = (Z + D2)~'2(¢) is the unique strong solution of
problem (1.15). [ |

Using Theorem 1.1, we study the strong solutions of problem (1.4)-(1.6) (the

problem on small motions of the viscous rotating relaxing fluids in a bounded
domain).
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Theorem 1.2. Let the field f(t,z) satisfy the Gelder condition
VreRy 3K =K(1)>0, k(1) € (0,1]: ||f(t) — f(S)HEQ(Q,pO) <K|t—slF, 0<
s,t < 7. Then for any @’ € D(A) and p° € D(B*) there exists a unique strong
solution of the initial-boundary value problem (1.4)-(1.6).

Proof By the definition 1.1, we are to prove that problem (1.13) has a
unique strong solution. By the theorem conditions, ¢° := (@°;p%;0)™ € D(A)

— —

C D(A), and the function F(t) := (f(¢);0;0)" satisfies the Gelder condition.
From Theorem 1.1 we get that problem (1.15) has the unique strong solution
&(t) = (U(t);q(t); q(t))”. We represent the equation from (1.15) as the system

di .
it) + (al + 2wgiS)T + AT — A7Y2Q g+ A7V2Q7q) = e f(1),

q 1/2-
&4 A2 = 0
g TaateATT=0, (1.20)
g
UL G- M(0)g =

—a(t=s)n gl (+ _
p” e M'(t — s)q(s) ds.

o

The function £(t) will be the unique strong solution of the Cauchy prob-
lem (1.14) if in the first equation of this system it is possible to remove the
brackets before the operator A.

Using the formula £(0) = ¢% = (@%; p°;0)” and Q = BA~'/2, from the second
equation of system (1.20) we obtain

t

t
q(t) = e_atpo — /e_a(t_S)QAl/Qﬁ(s) ds = e_atpo — /e_a(t_S)Bﬁ’(s) ds.
0 0

From the above, by using the third equation from (1.20), we get

S

¢
q(t) = /M(t—s) e 0 — /e_a(S_T)B{)’(T) dr| ds.
0 0

Lemma 1.4 implies that A_1/2Q*|D(B*) = A~Y2Q*t = A='B*. Using the for-
mulas for ¢(t) and @(t), we get that the inclusion 7(t) — A=/2Q*(¢q(t) — q(t)) €
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D(A) is valid if and only if

t S
T(t) + A7V / e ) Bi(s) — M(t — s) / e BE(r) dr b | ds
0 0

t
= 0(t) + / ATV2Qr demalt=o) / M(t —7)e”"9) dr % B(s)ds

t
= 4(t) +/A—1/2Q*R(t,s)36(s) ds =: W(t) € D(A), (1.21)
' t

S

Analogously as in Theorem 1.1, introduce the space H(A) := (D(A), |||z (a)),
where ||V]| g4y = HAUHﬁz(Q,po)' Equation (1.21), considered in H(A), is the
Volterra integral equation of the second kind with the right side of the equation
w(t) which is continuous in H(A). We show that A~/2Q*R(t,s)B€ C, 0 < s <
t < +oo; L(H(A)).

By Lemma 1.3, BA™! € E(Eg(Q,po),Wipo(Q)). It follows from Lemma 1.4
that Al/QQ*|W21YPO(Q):D(B*) = B* € L(W3 (), L2(€, po)). Finally, it follows from
the properties of the operator function M () that the kernel R(t, s) is a continuous
operator function with values in £(Wy 00 (2)). Now estimate the norm

IA™2Q R(t, 5)B¥|| (ay = | A*Q*R(t, 5) B3| = ||B*R(t, s)(BA™") Ad|

< ||B*||L(W21p0752)||R(ta5)|’c(w2{po)HBA_I||£(527W2}p0)||17\|H(A) =: const||V]| g(a)-

This implies that Eq. (1.21) is the Volterra integral equation of the second kind
with continuous kernel. It follows from inclusion w(t) € C(R4; H(A)) that equa-
tion (1.21) has the unique solution ¥(t) € C(Ry; H(A)). Thus, the solution com-
ponent ¥(t) € D(A) and therefore, in system (1.20), the brackets before the ope-
rator A can be removed. As a result, £(¢) is the solution of equation (1.14) with
non closed operator. Using the inverse replacement in (1.14), we obtain that
C(t) = e™(t) is the unique strong solution of the Cauchy problem (1.13). [ ]

1.4. Reduction to the first-order differential equation in the
case of the kernel of a special type. Let us consider the case when
K(t) =>" ki(z) exp(=bit), and ki(z) > 0 (I =1, m) are some structural func-
tions that are assumed to be continuously differentiable in the domain 2. In this
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case the operator function M (t) from (1.12) becomes M (t) = Y ;" exp(—b;t)M;,
where M;p(t,z) := Ilpo(z)k;(z)IIp(t, z). Obviously, the operators M; (I =1,m)
are bounded self-adjoint and positive definite in Ly ,,(£2).

In system (1.12) make the changes

(t)i= [ expl=bit = ) Mipls) s, p(0) =0 (T=T,m)
0

and represent the obtained system of differential equations with initial conditions
as a Cauchy problem for a first-order differential equation in the Hilbert space
H := La(Q, po) ® L2, () @ H, where H := &, Lo ,, (),

G 2wpiS+A —B* B¥\ [i f iW(0) i
yr U B 0 0] (p)=(0), [pO]) =] (122
P, 0 -M I,)] \p 0 5(0) 0

The following notations are used here: p:= (p1;...;0m)7, B* = (B*,...,B"),
M = (My,...,M,)", I, .= diag(b I, ..., by1).
We change the sough function in problem (1.22): (@(t); p(t); p(t))™ = e® (¥ (t);
q(t);q(t))". Then this problem is transformed into the Cauchy problem
dg

S HA+SE=F@), £0)=¢" (1.23)

where £(t) == (U(t); q(t); G(t))7, €° := (@ p%; 0)7, F(t) := (e~ f(t); 0;0)7,

A —B* B* 2wpiS+al 0 0
A=[B af 0|, S:= 0 0 0
0 0 al 0 -M I,

For the operator A the lemma below is valid.

Lemma 1.6. Let a > 471|Q|. Then the operator A admits a closure to a
mazimal uniformly accretive operator A and can be presented in the symmetric
form

I - @
A=diag(A2, 1, |Q oI 0 |diag(AV2,1,1), Q" :=(Q* ...,Q%)
0 0 al

and in the Schur-Frobenius form A = (I + Dy)diag(A, al + QQ*,al)(T + Dy),
where T is a unit operator in H, and the operators T+ Dy and T+ Dy are
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lower and upper triangular blocks, respectively. The distinct from zero com-
ponents of the operator blocks Dy and Dy have the forms (D1)21 := QA2
(Da)12 i= —A7Y2Q%, (Do)1 3 := AV2Q%, (D2)23 := —(al + QQ*)"'QQ*. The
domain of the operator A has the form D(A) = {q € L2 ,,(Q),7 € H: o-
AT12Q g+ A712Q G € D(A)}.

The proof of Lemma 1.6 is similar to that of Lemma 1.5.

Basing on Eq. (1.23), as in the previous point, it is possible to prove Theorem
1.2 of strong solvability of initial-boundary value problem (1.4)-(1.6).

Let us consider the homogeneous equation (1.23) with the closed operator A.
We search for its solution in the following form: £(¢) = exp(—(A + a)t). As a
result, we get the spectral problem (A + S — aZ)¢ = A\¢ which we will associate
with the problem on normal oscillations of the viscous rotating relaxing fluid. The
last one will be studied in the next paper.

The author expresses his gratitude to Prof. N.D. Kopachevsky for fruitful
discussions of the paper.
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