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We give a direct non-abstract proof of the spectral mapping theorem
for the Davies–Helffer–Sjöstrand functional calculus for linear operators on
Banach spaces with real spectra and consequently give a new non-abstract
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1. Introduction

The Helffer–Sjöstrand formula was established in [1] in the following propo-
sition:

Proposition 1.1. ([1] Proposition 7.2) Let H be a self-adjoint operator (not

necessarily bounded) on a Hilbert space H. Suppose f is in C∞
0 (R) and f̃ in

C∞
0 (C) is an extension of f such that ∂f̃

∂z̄
= 0 on R. Then we have

f (H) = −
1

π

∫∫

C

∂f̃ (z)

∂z
(z −H)−1 dxdy, (1.1)

where z = x+ iy.
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The existence of the functional calculus was assumed by the authors. Davies
[2] showed that the formula (Equation 1.1) yielded a new approach to constructing
the functional calculus for linear operators on Banach spaces under the following
hypothesis:

Hypothesis 1.2. H is a closed densely defined operator on a Banach space

B with spectrum σ(H) ⊆ R. The resolvent operators (z −H)−1 are defined and

bounded for all z /∈ R and

‖(z −H)−1‖ ≤ c|Im z|−1

(
〈z〉

|Im z|

)
α

(1.2)

for some α ≥ 0 and all z /∈ R, where 〈z〉 := (1 + |z|2)
1
2 .

His functional calculus for operators on Banach spaces was defined for an
algebra of slowly decreasing smooth functions. Davies [2] pointed out that a
functional calculus based upon almost analytic extensions was also constructed
by Dyn’kin [3]. However, the two approaches were quite different and that Davies’
approach was more appropriate for differential operators.

A spectral mapping theorem for the Davies–Helffer–Sjöstrand functional cal-
culus was proved by Bátkai and Fašanga [4]. They applied methods from abstract
functional analysis and their primary tool was an existing abstract spectral map-
ping theorem from the theory of Banach algebras:

Theorem 1.3. ([4] Theorem 4.1) Let B1 be a commutative, semisimple, reg-

ular Banach algebra, B2 be a Banach algebra with a unit, Θ : B1 → B2 be a

continuous algebra homomorphism and a ∈ B1. Then

σB2 (Θ (a)) = â (Sp (θ)) , where Sp (Θ) := ∩b∈KerΘKer b̂

andˆdenotes the Gelfand transform.

Our exposition of the spectral mapping theorem, part of the Ph.D thesis re-
ferred to in the introduction of [4], takes a very non-abstract and direct approach
to the proof. In particular, an existing spectral mapping is not assumed. Our
sole ingredients, supplementing the tools provided by Davies in [2], are the very
elementary observations:

• ([5] Problem 8.1.11) If H is a closed operator and λ lies in the topological
boundary of the spectrum of H, then for every ǫ > 0 there is a vector v
with norm 1 such that ‖Hv − λv‖ < ǫ.

• Stokes’ Formula has similarities to the Cauchy Integral Formula.
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In the last part of our exposition we derive a functional calculus for operators
with spectra bounded on one side. Our main tool here is an extension operator
of Seeley,

E : C∞[0,∞) −→ C∞ (R) .

1.1. Functional Calculus

We summarize some of the main aspects of the Davies–Helffer–Sjöstrand func-
tional calculus presented in [6] and some properties of the algebra of functions.
Let ψa,ǫ be a smooth function such that

ψa,ǫ (x) :=

{
1 if x ≥ a

0 if x ≤ a− ǫ.

Then given an interval [a, b] , we define the approximate characteristic function
Ψ

[a,b],ǫ

Ψ
[a,b],ǫ

(x) = ψa,ǫ (x) − ψ
b+ǫ,ǫ

(x)

which has a support [a− ǫ, b+ ǫ] and is equal to 1 in [a, b] and is smooth.

Definition 1.4. For β ∈ R let Sβ be the set of all complex-valued smooth

functions defined on R, where for every n ∈ N ∪ {0} there is a positive constant

cn such that

|
dnf (x)

dxn
| ≤ cn〈x〉

β−n.

We then define the algebra A :=
⋃

β<0

Sβ.

Lemma 1.5. (Davies [2, 6]) A is an algebra under point-wise multiplication.

For any f in A the expression

‖f‖n :=
n∑

r=0

∞∫

−∞

|
drf (x)

dxr
| 〈x〉r−1dx (1.3)

defines a norm on A for each n. Moreover, C∞
0 (R) is dense in A with this norm.

Lemma 1.6. The function 〈x〉β is in A for each β < 0.

P r o o f. The statement follows from the observations that if β < 0 and
m ≥ n, then

xn〈x〉β−m ≤ 〈x〉β

and
d
(
xn〈x〉β−m

)

dx
= nxn−1〈x〉β−m + (β −m) xn+1〈x〉β−m−2.
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Lemma 1.7. Let s ∈ R. If f is in A, then the function

gs (x) :=

{
f(x)−f(s)

x−s
x 6= s

f ′ (s) x = s

is also in A.

P r o o f. When |x− s| is large, then

1

|x− s|
≤ cs〈x〉

−1

for some cs > 0. Moreover,

g(r)
s (x) =

r∑

m=0

crf
(m)(x) (x− s)m−r−1 + cf (s) (x− s)−r−1

and

lim
x→s

g(m)
s (x) =

1

m+ 1
f (m+1)(s).

Lemma 1.8. If f ∈ Sβ for β < 0 and g ∈ S0, then fg ∈ A.

P r o o f.

|(fg)(r)(x)| ≤ cr

r∑

m=0

|g(r−m)(x)| |f (m)(x)| ≤ cr,φ〈x〉
β−r.

The following concept of almost analytic extensions is due to Hörmander [7,
p. 63].

Definition 1.9. Let τ (x, y) be a smooth function such that

τ (x, y) :=

{
1 if |y| ≤ 〈x〉

0 if |y| ≥ 2〈x〉.

Then given f ∈ A we define an almost analytic extension f̃ as

f̃ (x, y) :=

(
n∑

r=0

drf (x)

dxr

(iy)r

r!

)
τ (x, y) (1.4)

for some n ∈ N. Moreover, we define

∂f̃

∂z
:=

1

2

(
∂f̃

∂x
+ i

∂f̃

∂y

)
. (1.5)

The specific choices of τ and n are not critical.
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The following lemma establishes the construction of the new functional cal-
culus:

Lemma 1.10. (Davies [2]) Let f ∈ A, then define

f (H) := −
1

π

∫∫

C

∂f̃ (z)

∂z
(z −H)−1 dxdy, (1.6)

where f̃ is an almost-analytic version of f as defined in definition 1.9 and z =
x+ iy. Then

i. If n > α, then subject to hypothesis 1.2 the integral (1.6) is norm convergent

for all f in A and

‖f (H) ‖ ≤ c‖f‖n+1.

ii. The operator f (H) is independent of n and the cut-off function τ , subject

to n > α.

iii. If f is a smooth function of compact support disjoint from the spectrum of

H, then f (H) = 0.

iv. If f and g are in A, then (fg) (H) = f (H) g (H).

v. If z 6∈ R and gz (x) := (z − x)−1
for all x ∈ R, then gz ∈ A and gz (H) =

(z −H)−1
.

1.2. Preliminaries

Definition 1.11. Given z, ω in C, we define the curve Γ in the complex plane

Γ(z, ω, α) := ((1 − α)|z| + α|ω|) ei(1−α)Arg(z)+iαArg(ω),

where α ∈ [0, 1].

The important property of Γ is that it is able to connect two non-zero points
in the complex plane without intersection with the origin.

Theorem 1.12. Let λ ∈ C. If f is a smooth complex valued function in the

interval [a, b], where f (a) 6= λ and f (b) 6= λ, then there is a smooth function h
in C∞ ([a, b]) such that

{x ∈ [a, b] : h (x) = λ} is empty ,

and f − h and all derivatives of f − h vanish at a and b.
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P r o o f. Let

g (x) := Γ

(
f (a) − λ, f (b) − λ,

x− a

b− a

)
+ λ. (1.7)

Since f is continuous, we know there is an 0 < ǫ < b−a
2 such that

{x ∈ [a, b]/ (a+ ǫ, b− ǫ) : f (x) = λ} = ∅.

Then we can define

h :=
(
1 − Ψ

[a+ǫ,b−ǫ],ǫ

)
f + Ψ

[a+ǫ,b−ǫ],ǫ
g.

Lemma 1.13. Given f ∈ A, let λ be a non-zero point in C and let Aλ := {x :
f (x) = λ}.
If Aλ ∩ σ (H) is empty, then there is a function h ∈ A such that h (x) 6= λ for all

x ∈ R and

h (H) = f (H) .

P r o o f. If Aλ is empty, then we put h = f .
If Aλ is not empty, then Aλ is a compact subset of ρ (H). Moreover, Aλ can be
covered by a finite set of closed disjoint intervals [ai, bi] which are also subsets of
ρ (H). By applying Theorem 1.12 to each interval, we can find a function h in A
such that

h(x) = f(x) for all x ∈ σ (H)

and h(x) 6= λ for all x ∈ R. Moreover, since (f − h) has a compact support in
ρ (H) , then it follows from Lemma 1.10 (iii) that h (H) = f (H).

2. Bounded Operators

We let B be a bounded operator satisfying hypothesis (1.2). Moreover, let

u := supσ (B) and l := inf σ (B) .

Lemma 2.1. For any f ∈ A and ǫ > 0

fΨ
[l′,u′],ǫ

(B) = f (B) ,

where l′ < l and u′ > u.
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P r o o f. Suppose f has a compact support, then f − fΨ
[l′,u′],ǫ

has a

compact support disjoint from the spectrum of B, hence, by Lemma 1.10 (iii),
the statement of the lemma is true for functions in C∞

0 (R). The statement for
all f ∈ A follows from the density of C∞

0 (R) in A.

Lemma 2.2. Let f ∈ A. If ǫ > 0 and

Dǫ := {z : |z − u+l
2 | < u−l

2 + ǫ} and ∂Dǫ := {z : |z − u+l
2 | = u−l

2 + ǫ},

then

f (B) =
1

2πi

∫

∂Dǫ

f̃ (z) (z −B)−1 dz −
1

π

∫

Dǫ

∂f̃

∂z
(z −B)−1 dxdy.

P r o o f. By Lemma 2.1, we can assume that f has a compact support in
[l − ǫ, u+ ǫ] .
If R > u−l

2 + ǫ and AR is the annulus {z : u−l
2 + ǫ < |z − u+l

2 | < R}, then

∫

|z−
u+l
2 |<R

∂f̃

∂z
(z −B)−1 dxdy =

∫

AR

∂f̃

∂z
(z −B)−1 dxdy +

∫

Dǫ

∂f̃

∂z
(z −B)−1 dxdy.

Applying Stokes’ theorem

∫

AR

∂f̃

∂z
(z −B)−1 dxdy =

1

2i

∫

|z−
u+l
2 |=R

f̃ (z −B)−1 dz −
1

2i

∫

∂Dǫ

f̃ (z −B)−1 dz

and letting R be large enough for f̃ to vanish on {z : |z − u+l
2 | = R} completes

the proof.

Lemma 2.3. Let ǫ > 0. If l′ < l and u′ > u, then

Ψ
[l′,u′],ǫ

(B) = 1.

P r o o f. Let 0 < δ < 1, and define Ω as the open rectangle

{z ∈ C : |Re z − u′+l′

2 | < u′−l′

2 , |Im z| < δ},

as illustrated in Fig. 1. Using a similar argument to that given in the proof of
Lemma 2.2, we see that

Ψ
[l′,u′],ǫ

(B) =
1

2πi

∫

∂Ω

Ψ̃
[l′,u′],ǫ

(z, z) (z −B)−1 dz −
1

π

∫

Ω

∂Ψ̃
[l′,u′],ǫ

∂z
(z −B)−1 dxdy.
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When l′ ≤ x ≤ u′, then Ψ
[l′,u′],ǫ

(x) = 1. Moreover, when l′ ≤ x ≤ u′, then

Ψ(n)
[l′,u′],ǫ

(x) = 0 for all n > 0. Recalling definition (1.4), we can see that

Ψ̃
[l′,u′],ǫ

(z, z) = 1 for all z ∈ Ω,

hence

Ψ
[l′,u′],ǫ

(B) =
1

2πi

∫

∂Ω

(z −B)−1 dz

and we conclude with an application of Cauchy’s integral formula.

u+l

2
−R l 0 u

u+l

2
+R

−iR
−iδ
i
δ

iR �
x�
−�x�
�

Fig. 1. Integral domain for Lemma 2.3.
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3. Enlargement of A

We extend the algebra A of slow decaying functions in a trivial but necessary
way. The purpose of the extension is to provide a multiplicative identity, the
constant 1 function.

Definition 3.1. Let

Â := {(z, f) : z ∈ C, f ∈ A},

where for each x ∈ R we define

(z, f) (x) := z + f(x).

Moreover, we define the point-wise addition and multiplication:

(ω, f) ◦ (z, g) := (ωz, ωg + zf + fg) ,

(ω, f) + (z, g) := (ω + z, f + g) .

It is clear that (1, 0) , the multiplicative identity, and (0, 0) , the additive identity,

are in Â, and the algebra is closed under these operations.

For any z ∈ C we will denote (z, 0) ∈ Â simply by z.
Given φ = (z, f) ∈ Â, let

π
A,φ

:= f and π
C,φ

:= z

and let

‖φ‖n := |π
C,φ

| + ‖π
A,φ

‖n.

Definition 3.2. We have the extended functional calculus. For φ ∈ Â, let

φ(H) := π
A,φ

(H) + π
C,φ
I

along with the implied norm

‖φ (H) ‖ := |π
C,φ

| + ‖π
A,φ

(H) ‖

≤ |π
C,φ

| + k‖π
A,φ

‖n+1

≤ k‖φ‖n+1

for some k > 1.

Definition 3.3. For φ ∈ Â, let

µ (φ) :=
1

π
C,φ

+ π
A,φ

−
1

π
C,φ

.
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Lemma 3.4. If φ ∈ Â and −π
C,φ

is not in Ran(π
A,φ

), then µ (φ) is in A, and

φ−1 =

(
1

π
C,φ

, µ (φ)

)
.

P r o o f. By re-writing

µ (φ) =
1

π
C,φ

+ π
A,φ

−
1

π
C,φ

=
−π

A,φ

π
C,φ

(
π

C,φ
+ π

A,φ

) ,

then it is routine exercise in differentiation to show that

−1

π
C,φ

(
π

C,φ
+ π

A,φ

)

is in S0. Then, since π
A,φ

is in A, Lemma 1.8 implies the statement.

Corollary 3.5. Given φ = (z, f) ∈ Â and λ ∈ C such that − (z − λ) is not

in the closure of the range of f, then we have

(φ− λ)−1 ∈ Â.

4. Spectral Mapping Theorem

Lemma 4.1. If φ is in Â, then

σ (φ(H)) ⊆ Ran (φ).

P r o o f. Given λ ∈ C which is not in Ran (φ), we have by Corollary 3.5

(φ− λ)−1 ∈ Â,

hence (φ (H) − λ)−1 exists and is bounded and therefore λ 6∈ σ (φ (H)).

Lemma 4.2. If φ is in Â, then

σ (φ (H)) ⊆ φ (σ(H)) ∪ {π
C,φ

}.

P r o o f. Let λ ∈ C be such that λ 6= π
C,φ

and let

Aλ = {x : φ(x) = λ}.

If Aλ ∩ σ(H) = ∅, then by Lemma 1.13, we have that there is function h in A
such that

h(x) = π
A,φ

(x) for all x ∈ σ (H) ,
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and
h(x) 6= λ− π

C,φ
for all x ∈ R,

moreover,
h (H) = π

A,φ
(H) .

Since θ :=
(
π

C,φ
, h
)
∈ Â, it follows from the definition of the enlargement of the

algebra that
φ (H) = θ (H) .

Since λ /∈ Ran (θ), the statement of the lemma follows from Lemma 4.1.

Lemma 4.3. Let φ ∈ Â. If H is bounded and

{x : φ(x) = π
C,φ

} ∩ σ(H) is empty ,

then π
C,φ

/∈ σ (φ (H)).

P r o o f. Let u := supσ (H) and l := inf σ (H).
Let 0 < ǫ≪ 1 such that π

A,φ
is not zero on [l − ǫ, l] and on [u, u+ ǫ].

Then let u′ := u+ ǫ and l′ := l − ǫ.
The set

{x ∈
[
l′, u′

]
: π

A,φ
(x) = 0}

can be covered by a finite number of disjoint intervals [ai, bi] which are all disjoint
from σ (H) and are all in [l′, u′]. Applying Lemma 1.12 to each [ai, bi] , we can
find a function f ∈ A such that

{x ∈
[
l′, u′

]
: f(x) = 0} = ∅

and f = π
A,φ

for all x in R/ [l′, u′].

Let g be any function in A such that g (x) = 1
f(x) for all x ∈ [l′, u′] .

By Lemma 1.10 (iii), we have

π
A,φ

(H) g (H) = f (H) g (H)

and by Lemma 2.1, we have

f (H) g (H) = (fgΨ
[l′,u′],ǫ

)(H) = Ψ
[l′,u′],ǫ

(H),

hence by Lemma 2.3, we have

π
A,φ

(H) g (H) = 1

and, consequently, (
−π

C,φ
+ φ(H)

)
g(H) = 1.
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Theorem 4.4. If φ in Â, then σ (φ (H)) ⊆ φ (σ(H)).

P r o o f. If H is unbounded, then φ (σ(H)) = φ (σ(H)) ∪ {π
C,φ

} and the
theorem follows from Lemma 4.2. If H is bounded and there is an x ∈ σ (H)
such that φ (x) = π

C,φ
, then φ (σ(H)) = φ (σ(H))∪{π

C,φ
} and again the theorem

follows from 4.2. If H is bounded and

φ (x) 6= π
C,φ

for all x ∈ σ (H) , then φ (σ(H)) = φ (σ(H)) by Lemmas 4.2 and 4.3.

Lemma 4.5. Given s ∈ R and a function f ∈ A, let ks (x) :=
(
1,− s+i

x+i

)
∈ Â

and let the function gs be defined as in Lemma 1.7, then

(f (H) − f (s)) (H + i)−1 = gs (H) ks (H) .

P r o o f. This statement follows directly from the functional calculus and
the observation

(−f (s) , f (x))
(
0, (x+ i)−1

)
=

(
0,
f (x) − f (s)

x− s

)(
1,−

s+ i

x+ i

)
.

Theorem 4.6. Let f be a function in A, then

f (σ (H)) ⊆ σ (f (H)) .

P r o o f. We observe the identity

H − x = (H + i) − (x+ i) =
(
1 − (x+ i) (H + i)−1

)
(H + i) = kx (H) (H + i)

(4.1)
for some x ∈ R. Let s ∈ R. Suppose there is a sequence of unit norm vectors
{vm} ⊂ Dom (H) such that lim

m→∞
(H − s) vm = 0. Using identity (4.1 ), we have

lim
m→∞

gs (H) ks (H) (H + i) vm = 0. By applying Lemma 4.5, we can conclude

that lim
m→∞

(f (H) − f (s)) vm = 0. The accumulation points of f (σ (H)) are in

σ (f (H)) since the latter is closed.

R e m a r k 4.7. In the proof of Theorem 4.6, σ (H) is equal to the approximate
point spectrum ofH and it is proved that if s is in the approximate point spectrum
of H, then f (s) is in the approximate point spectrum of f (H).

Corollary 4.8. Let φ be a function Â, then

φ (σ (H)) ⊆ σ (φ (H)) .
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5. Self-Adjoint Operators

We now assume that H is self-adjoint and B is a Hilbert space. The following
theorem of Davies extends the Davies–Helffer–Sjöstrand functional calculus to
C0 (R) for self-adjoint operators.

Theorem 5.1. (Davies [2] Theorem 9) The functional calculus may be ex-

tended to a map from f ∈ C0 (R) to f (H) ∈ L (B) with the following properties:

i. f → f (H) is an algebra homomorphism.

ii. f (H) = f (H)∗ .

iii. ‖f (H) ‖ ≤ ‖f‖∞.

iv. If z 6∈ R and gz (x) := (z − x)−1
for all x ∈ R, then gz (H) = (z −H)−1 .

Moreover, the functional calculus is unique subject to these conditions.

Lemma 5.2. If f ∈ C0 (R) , then

f (σ (H)) ⊆ σ (f (H)) .

P r o o f. This is a consequence of the density of A in C0 (R). By the
Stone–Weierstrass theorem, the linear subspace

{
n∑

i=1

λi

x−ωi
: λi ∈ C ωi /∈ R}

is dense in C0 (R). If fǫ ∈ A is close to f and if v ∈ B is of norm 1, then

‖f (H) v − f (s) v‖ ≤ ‖f (H) − fǫ (H) ‖ + ‖fǫ (H) v − fǫ (s) v‖ + ‖fǫ − f‖∞.

The statement then follows from Lemma 5.1 (iii).

Lemma 5.3. If f ∈ C0 (R) , then

σ (f (H)) ⊆ f (σ (H)).

P r o o f. Let fn be a sequence converging to f in C0 (R) such that

fn (x) :=

n∑

i=1

λn,i

x−ωn,i
, ωn,i /∈ R.

The existence of such a sequence follows from the Stone–Weierstrass theorem as
explained in the proof of Lemma 5.2.
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Suppose λ ∈ C is not in the closure of f (σ (H)). Then there is δ > 0 such
that

inf
s∈σ(H)

|f (s) − λ| = δ.

Also for all large enough n, we have ‖fn − f‖∞ < δ
2 . Then from

|f (s) − fn (s) + fn (s) − λ| ≥ δ

we can deduce that
|fn (s) − λ| > δ − ‖fn − f‖∞,

hence
inf

s∈σ(H)
|fn (s) − λ| > δ

2

and λ /∈ σ (fn (H)).
From the identity

‖ (f (H) − λ) (fn (H) − λ)−1 − 1‖ = ‖ (f (H) − fn (H)) (fn (H) − λ)−1 ‖

we can deduce that λ /∈ σ (f (H)).

6. Functional Calculus for Semi-Bounded Operators

We modify our main hypothesis (1.2) by assuming that the spectrum of H is
bounded below and, without loss of generality, σ (H) ⊆ [0,∞). We introduce a
new ring of functions A+.

Definition 6.1. Sβ
+ is the set of smooth functions on R

+ ∪{0} with the same

decaying property as Sβ, that is, for every n there is positive constant cn such

that

|
dnf (x)

dxn
| ≤ cn〈x〉

β−n.

Then A+ is defined appropriately and similarly we define the Banach space A+
n

with norm

‖f‖A+
n

:=

n∑

r=0

∞∫

0

|
drf (x)

dxr
|〈x〉r−1dx. (6.1)

We present a theorem due to Seeley [8] which gives a linear extension operator
for smooth functions from the half line to the whole line.
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Theorem 6.2. (Seeley’s Extension Theorem) There is a linear extension op-

erator

E : C∞[0,∞) −→ C∞ (R)

such that for all x > 0
(Ef) (x) = f (x) .

The extension operator is continuous for many topologies including uniform
convergence of each derivative. The proof of the theorem relies on the following
lemma.

Lemma 6.3. ([8]) There are sequences {ak}, {bk} such that

i. bk < −1.

ii.
∞∑

k=0

|ak||bk|
n <∞ for all non-negative integers n.

iii.
∞∑

k=0

ak (bk)
n = 1 for all non-negative integers n.

iv. bk → −∞.

The proof to Seeley’s extension theorem is by construction and it is informa-
tive to give explicitly the extension. First, we need to define two linear operators.

Definition 6.4. Given f ∈ A+, φ ∈ A and real a, we define

(Taf) (x) = f (ax) ,

(Sφf) (x) = φ (x) f (x) .

P r o o f. (Proof of Seeley’s Extension Theorem.) Let φ ∈ C∞
c (R) such that

φ (x) =





1, x ∈ [0, 1],

0, x ≥ 2,

0, x ≤ −1.

Then define E such that

(Ef) (x) :=





∞∑
k=0

ak (Tbk
Sφf) (x) , x < 0,

f (x) , x ≥ 0.
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Lemma 6.5. If a > 1, then ‖Ta‖A+
n →A+

n
≤ an.

P r o o f. The proof follows from

‖Taf‖A+
n

=

n∑

r=0

∞∫

0

|
drf (ax)

dxr
|〈x〉r−1dx ≤

n∑

r=0

ar

∞∫

0

|
drf (x)

dxr
|〈x〉r−1dx.

Lemma 6.6. If φ ∈ A, then Sφ is a bounded operator with respect to each

norm ‖ ‖A+
n
.

P r o o f. A simple application of Leibniz’s rule gives

dr (φ (x) f (x))

dxr
=

r∑

m=0

cr
dr−m (φ (x))

dxr−m

dm (f (x))

dxm
,

then

|
dr (φ (x) f (x))

dxr
| ≤ cr

r∑

m=0

dr−m,φ 〈x〉
β−(r−m) d

m (f (x))

dxm

≤ cr,φ

r∑

m=0

〈x〉m−r d
m (f (x))

dxm

we integrate to give

∞∫

0

|
dr (φ (x) f (x))

dxr
|〈x〉r−1dx ≤ cr,φ

r∑

m=0

∞∫

0

|
dm (f (x))

dxm
|〈x〉m−1dx

= cr,φ‖f‖A+
r
,

and hence we have our estimate

‖Sφf‖A+
n

=

n∑

r=0

∞∫

0

|
dr (φ (x) f (x))

drx
|〈x〉r−1dx

≤ cn,φ

n∑

r=0

‖f‖A+
r

≤ cn,φ‖f‖A+
n
.
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Theorem 6.7. For each normed vector space A+
n Seeley’s Extension Operator

is a bounded operator from A+
n to An.

P r o o f.

‖Ef‖An =

n∑

r=0

∞∫

−∞

|
dr (Ef)

dxr
|〈x〉r−1dx

=

n∑

r=0

∞∫

0

|
drf (x)

dxr
|〈x〉r−1dx+

n∑

r=0

0∫

−∞

|
∞∑

0

ak

dr (φ (bkx) f (bkx))

dxr
|〈x〉r−1dx

= ‖f‖A+
n

+ ‖
∞∑

k=0

akT−bk
Sφf‖A+

n

≤ ‖f‖A+
n

+

∞∑

k=0

|ak| ‖Sφ‖ ‖|T−bk
‖‖f‖A+

n

≤ ‖f‖A+
n

+

(
∞∑

k=0

|ak| |bk|
n

)
cn,φ‖f‖A+

n

and hence the extension operator is continuous.

If f and g are elements of A such that f |[0,∞] = g|[0,∞] and the spectrum
of H is [0,∞), then it is not necessary that supp (f − g) ∩ σ (H) is empty since
supp (f − g) ∩ σ (H) = {0} is possible.

Lemma 6.8. If f is a smooth function on R of a compact support such that

supp (f) = [−a, 0]

and H is an operator satisfying our modified hypothesis with σ (H) ⊆ [0,∞], then

f (H) = 0.

P r o o f. Let ǫ ∈ (0, 1) . Define

fǫ (x) := f (x+ ǫ)

so that supp (fǫ) = [− (a+ ǫ) ,−ǫ].
We observe that for all n there are constants pn ≥ 0 such that

‖
dnf

dxn
−
dnfǫ

dxn
‖∞ ≤ pnǫ.
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By Lemma 1.10 (iii), we have that fǫ (H) = 0, moreover, a further application of
Lemma 1.10 implies that for large enough n we have

‖f (H) ‖ = ‖f (H) − fǫ (H) ‖

≤ cn

n∑

r=0

0∫

−(a+1)

|
drf (x)

dxr
−
drfǫ (x)

dxr
|〈x〉r−1dx

≤ ǫcn

n∑

r=0

pr

0∫

−(a+1)

〈x〉r−1dx

= ǫkn,f

hence our result.

Corollary 6.9. If f and g are in A such that f |[0,∞] = g|[0,∞] and σ (H) ⊆
[0,∞], then f (H) − g (H) = 0.

Theorem 6.10. If H satisfies our modified hypothesis with spectrum σ (H) ⊆
[0,∞), then there is a functional calculus γH : A+ → L (B) such that for all

f ∈ A+ ∩A

γH (f) = −
1

π

∫∫

C

∂f̃

∂z
(z −H)−1 dxdy.

P r o o f. Let f+ ∈ A+, then by Seeley’s Extension Theorem there exists an
extension f ∈ A. We define γH (f+) := f (H). This definition is independent of
the particular extension by Corollary 6.9. The functional analytic properties are
inherited from the extension.

Theorem 6.11. (Refinement of Theorem 10 of [2]). Let n ≥ 1 be an integer

and t > 0. If we denote the operator γH

(
e−snt

)
by e−Hnt, then

e−Hn(t1+t2) = e−Hnt1e−Hnt2

for all n ≥ 1 and 0 < t ≤ 1.
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References
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