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Introduction

The development of modern technology leads to the research of various prob-
lems for differential equations with small parameters. Some problems analysis
is based on the homogenization theory and asymptotic methods. In the pa-
per, the homogenization of spectral problems for a second order operator on
small-periodic networks is studied. The homogenization of the equation on a
small-periodic network was studied in [1], whereas in [2] it was studied on a
small-periodic framework with thin bars. The research of differential equations
on the networks, which in the more complicated form can be transferred to strat-
ified sets or geometric graphs [3, 4], is a new enough direction. The analysis of
the processes in these complex systems leads to the consideration of ordinary
second order differential operators on segment systems [5]. The homogenization
of a spectral problem on domains was studied in [2, 6–9]. The homogenization
of the problems on domains with a high-frequency spectrum was studied in [9].
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The spectral problems on networks were considered in [3, 5], and the spectral
problems on graphs, in [10].

In the paper, in Secs. 1, 2, we consider the spectral cell problem solved in [11],
and the spectral problem on the ε-periodic networks in R2, where ε is a small
positive parameter. The network, spanned on a rectangle, one side of which is
defined by a real l and the other is equal to the unit, is constructed as a union of
the same εY -periodic string crosses. According to [3], we can define the function
spaces on the string cross by identifying it with a stratified set or a geometrical
graph. In Sec. 2, the main theorem of the paper is formulated. In Sec. 3, we
define a derivative for the network according to [1] and construct the asymp-
totic expansions by following the principle of homogenization from [12]. The
expansions are approximate solutions for the spectral problem on the ε-periodic
network. In the last section we provide the asymptotic expansion justification
which is the proof of the main theorem.

1. Statement of the Cell Problem

Let Y be a union of four closed stretched strings that are in the rectangle
Q = [0, 1]× [0, l], where Q is a subset of R2 and l is a fixed positive real number.
Suppose that the network of such rectangles with the same set Y covers R2.
The totality of all Y is called the network G. The set Y is called the periodical
recurring cell. We denote by σ1, σ2, σ3 and σ4 the corresponding cell strings,
whereas strings ends are called nodes. We define T∂Y as nodes that are disposed
on the rectangle boundary ∂Q intersecting with Y . For example, the points
σ01 = (0, l/2), σ02 = (1, l/2), σ03 = (1/2, 0) and σ04 = (1/2, l) are the nodes for
the string cross Y (Fig. 1). We define TY as the set of all nodes for the cell Y .
Let T be the set of all nodes for the network G.

One of the cases of the union of strings in the periodically recurring cell is the
string cross described in [5] and [11]. The strings of the cross under consideration
are supposed to be homogeneous segments, which are right angle arranged and
have a unit tension and mass distribution density [5]. Following [11], the two-
dimensional string cross, which is represented as a pencil of four strings, can be
considered as a string cross formed by two strings σ̃1 and σ̃2 connected in the
complementary midpoint. For the statement of the problem on Y , we define
the function spaces for the string cross with string lengths, which equal 1 and
l (Fig. 1), by using the simple case of the problem for stratified sets that are
considered, for example, in [3].
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Fig. 1. The Y -periodic
string cross.

Fig. 2. The small-periodic network.

Let C(Y ) be the set of the functions u : Y → R, which are restrictions on
Y of continuous functions defined on the rectangle Q. These functions define
continuous restrictions to each string σ̃i denoted as ui for i = 1, 2. An integral of
the function is defined by the following equality:

∫

Y

u dy =
∑

i=1,2

∫

σ̃i

ui dyi,

where the right-hand side is the sum of the Riemann integrals over standard
measures on the strings with the standard parametrizations y1 ∈ [0, 1] and y2 ∈
[0, l].

Thus, the function u on the string cross can be considered as a pair of contin-
uous restrictions of the function to each string of the cross denoted by u1 and u2.
Therefore, the integral is defined as the sum of the string integrals. However, it is
useful to connect the cell integral with the ”volume” of this cell. For example, we
define the cross integral of the unit function as l for the Y -periodic string cross
(Fig. 1). Thus, we introduce a normalizing factor l/(l + 1) and denote

∫

Y

u(y) dy =
l

l + 1




1∫

0

u1(y1) dy1 +

l∫

0

u2(y2) dy2


 . (1)

Let C1(Y ) be the set of functions u : Y → R, which are the restrictions to Y
of the functions from C1(Q) that are defined on the rectangle Q. These functions
define the C1(σ̃i) restrictions ui to each string σ̃i for i = 1, 2. Let L2(Y ) be the
completion of the space C(Y ) with respect to the norm induced by the inner
product

(u, v)L2(Y ) =
∫

Y

uv dy.
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The function space H1(Y ) is the completion of C1(Y ) with respect to the
norm ‖ · ‖H1(Y ) induced by the inner product

〈u, v〉H1(Y ) =
∫

Y

uv dy +
∫

Y

(∂yu)(∂yv) dy. (2)

Taking into account (1), we can rewrite the last equality in details in the form

〈u, v〉H1(Y ) =
l

l + 1




1∫

0

u1v1 dy1 +

l∫

0

u2v2 dy2+

+

1∫

0

(∂y1u1)(∂y1v1) dy1 +

l∫

0

(∂y2u2)(∂y2v2) dy2


 .

To be precise, the last equality defines the integral in (2), since the given function
u ∈ C1(Y ) can be considered as a pair of functions u1(y1) and u2(y2) defined on
the segments [0, 1] and [0, l], respectively, because the coordinates on Y can be
defined with more complexity (further details are to be found in [1, 3–5].

We denote by C1
per(Y ) the space of functions u ∈ C1(Y ) satisfying the peri-

odicity condition

u(yi) = u(yi + li), ∂yiu(yi) = ∂yiu(yi + li),

where y ∈ T∂Y , i = 1, 2, l1 = 1 and l2 = l. We mean that the given equalities hold
for u1(y1) and u2(y2), which are defined by u ∈ C1(Y ). We denote by H1

per(Y )
the completion of the periodic function space C1

per(Y ) with respect to the norm
‖u‖H1(Y ) =

∫
Y u2dy +

∫
Y (∂yu)2 dy.

Consider the Y -periodic spectral cell problem: find u ∈ H1
per(Y ) such that

−∂2
yu(y) = λu(y) for y ∈ Y ;

u(yi) = u(yi + li), ∂yiu(yi) = ∂yiu(yi + li) for y ∈ T∂Y ,
(3)

where ‖u‖L2(Y ) = 1, i = 1, 2, l1 = 1 and l2 = l, with the conditions of function
and flux continuity in string nodes for u1 and u2, which are defined by u. The
conditions have the following form:

u1

(
1
2

)
= u2

(
l

2

)
,

∂y1u1

(
1
2

+ 0
)
− ∂y1u1

(
1
2
− 0

)
+ ∂y2u2

(
l

2
+ 0

)
− ∂y2u2

(
l

2
− 0

)
= 0.
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To be definite, the first equation of (3) can be written as two equations

−∂ 2
y1

u1(y1) = λu1(y1) for y1∈ [0, 1], −∂ 2
y2

u2(y2) = λu2(y2) for y2∈ [0, l],

for u1 and u2, which are defined by u. It agrees with the definition of the derivative
∂y by equality (2). We remark that the continuity and periodicity conditions
are fulfilled automatically for u ∈ C1

per(Y ) (and, in the known sense [1], for
u ∈ H1

per(Y )). Moreover, the solutions of problem (3) are smooth according
to [11], where this problem was solved and the eigenvalues λm = 4π2m2 with
m ∈ Z+ = {0, 1, 2 . . . } and the corresponding eigenfunctions N0(y), N1(y), . . . ,
which are combinations of cos 2πy1m and sin 2πy2m on each string, were obtained.
In this paper, we consider only the eigenvalue λ0 = 0 of problem (3) with the
eigenfunction N0(y) = l−1/2 that means N0

1 (y1) = l−1/2 and N0
2 (y2) = l−1/2.

2. Problem on Networks

We shrink N times the rectangle Q and the string cross Y , where N is a
given natural number. As a result, we obtain the sets Qε and Yε with coordinates
x′= ε y for ε = 1/N . If we repeat the rectangles Qε by periodicity, then we obtain
a closed domain Ω = [0, 1] × [0, l] ⊂ R2 with the Lipschitz boundary ∂Ω. The
small-periodic network Gε spans this domain in R2 (Fig. 2) and it is the union of
N2 string cross Yε. This Yε we call periodically recurring cell with edge lengths
that are equal to ε and lε. The parameter x′ denotes the position of a point on
the network Gε. We denote by Tε the whole node set of the network Gε.

Similar networks with arbitrary arcs instead of stretched strings, which have
the unit span and mass distribution density, was considered in [1]. Therefore, we
will use some notation and calculations from this paper. According to [1], on the
network Gε, we define H1(Gε) as the set of functions, which are continuous in
nodes and absolutely continuous on each string, with the norm

‖u‖2
H1(Gε)

= ε

∫

Gε

(
u2 + (∂x′u)2

)
dx′. (4)

The norm definition is equivalent to the norm definition induced by inner product
(2), which is defined for Gε. The space H1

per(Gε) ⊂ H1(Gε) of periodic functions
on Gε ∩ ∂Ω is defined similarly to the space on Y .

Consider the following spectral boundary problem for the network Gε: find
uε ∈ H1

per(Gε) such that ‖uε‖L2(Gε) = 1 and

−ε2∂2
x′uε(x′) = λεuε(x′) for x′ ∈ Gε ∩ Ω, (5)

uε(x′1, x
′
2) = uε(x′1 + 1, x′2), uε(x′1, x

′
2) = uε(x′1, x

′
2 + l),

∂x′uε(x′1, x
′
2) = ∂x′uε(x′1 + 1, x′2),

∂x′uε(x′1, x
′
2) = ∂x′uε(x′1, x

′
2 + l) for x′ ∈ Gε ∩ ∂Ω.

(6)
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This means that the coordinates x′1 and x′2 can change along the parallel lines,
which are obtained by periodic extensions of the strings εσ̃1 and εσ̃2. To be
precise, it is helpful to consider the function uε ∈ H1

per(Gε) as a set of 2N func-
tions uε

1j(x
′
1j) and uε

2j(x
′
2j) that are defined on the lines. The lines are periodic

extensions of the strings εσ̃1 and εσ̃2, which are parametrized by coordinates
x′1j ∈ [0, 1] and x′2j ∈ [0, l] for j = 1, . . . , N . In this case, periodicity condi-
tion (6) and the function and flux continuity conditions in nodes of the network
Gε, which are defined for the functions uε

1j(x
′
1j) and uε

2j(x
′
2j), hold automatically,

since uε ∈ H1
per(Gε). Thus, problem (5)–(6) reduces to the 2N elliptical equations

for the functions uε
1j(x

′
1j) and uε

2j(x
′
2j) with j = 1, . . . , N ,

−ε2∂ 2
x′1j

(uε
1j) = λuε

1j for x′1j ∈ [0, 1], −ε2∂ 2
x′2j

(uε
2j) = λ uε

2j for x′2j ∈ [0, l].

Besides, the functions uε
1j and uε

2j are smooth enough due to the ellipticity of
these equations.

Problem (5)–(6) has the trivial solution uε = l−1/2 for the eigenvalue λε = 0.
In order to exclude this solution from further consideration, we define the space
H1

per∗(Gε) =
{
u ∈ H1

per(Gε) : (u, 1)L2(Gε) = 0
}

with the norm

‖u‖2
H1∗(Gε)

= ε

∫

Gε

(∂x′u)2 dx′

that is equivalent to norm (4) on H1
per(Gε) by virtue of Poincare’s inequality [3].

We define L2∗(Gε) =
{
u ∈ L2(Gε) : (u, 1)L2(Gε) = 0

}
in the same way. Thus, the

problem (5)–(6) can be considered as variational in the sense of integral identity:
find u ∈ H1

per∗(Gε) such that

ε2

∫

Gε

(∂x′u)(∂x′v) dx′ = λε

∫

Gε

uv dx′ ∀v ∈ H1
per∗(Gε).

By the definition, the operator of problem (5)–(6) is negative definite and
has a compact inverse operator on L2∗(Gε) for a fixed ε (with 0 <ε ≤ ε0) which
follows from the embedding compactness H1

per∗(Gε) ⊂ L2∗(Gε) [4]. Thus, there
are countable sets of eigenvalues λ1

ε, λ2
ε, . . . and orthonormalized eigenfunc-

tions u1
ε, u2

ε, . . . for the problem such that αε2 ≤ λ1
ε ≤ . . . ≤ λs

ε ≤ . . . with the
multiplicity being taken into account, where α is some positive constant and
lims→∞ λs

ε = ∞.
The main aim of the paper is to construct and justify the asymptotic ex-

pansions for eigenvalues and eigenfunctions of problem (5)–(6) with insufficiently
large numbers (s ¿ ε−2). The main statement of the paper is the following
theorem.
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Theorem 1. For eigenvalues λs
ε and eigenfunctions us

ε of problem (5)–(6)
there exists a constant C independent of ε and s such that

|λs
ε − ε2λs| ≤ Cε3(λs)3/2 and ‖us

ε − vs‖L2(Gε)
≤ Cε(λs)1/2

for λs ¿ ε−2 and 0 < ε ≤ ε0, where λs and vs are some eigenvalue and eigen-
function of the relevant homogenization problem which is to be determined later.

Theorem 1 will be proved in Sec. 4. The estimate of this theorem is valid for
all λs and us

ε such that λs ≤ c ε−2+σ with a positive constant c, where 0 < σ ≤ 2
and 0 < ε ≤ ε0 (this means that λs ¿ ε−2 precisely). However, the proof of
the theorem may be incorrect when λs = c ε−2. This situation is natural, since
there is a high-frequency spectrum for problem (5)–(6). The spectrum will be
introduced and justified in further researches. The initial component construction
of asymptotic expansions for λs

ε and us
ε as well as the homogenized problem will

be considered in the next section. In order to construct the initial component
of the asymptotic expansions for the solutions to problem (5)–(6), we will follow
the principles of homogenization introduced in [12].

3. Construction of Asymptotic Expansions

We define the derivative of functions on the network in accordance with [1]. If
a function v(x, y) is an element of C1

(
Ω, H1(Y \TY )

)
(where Ck

(
Ω,W

)
denotes

the space of abstract functions on the domain Ω with values in some Hilbert
space W ), then the following relation is valid:

∂x′v(x′, ε−1x′) =
(∇v(x, y) + ε−1∂yv(x, y)

)∣∣
x=x′, y=x′/ε

, (7)

where ∇ = (∂/∂x1, ∂/∂x2) and ∂y = (∂/∂y1, ∂/∂y2). Notice that sometimes it is
more convenient to consider the function on the string cross Y as two functions
on the corresponding strings.

We will construct an expansion of the eigenfunction uε for problem (5)–(6)
in the form of asymptotic sum (see [12] for more details). The components
of the asymptotic sum are functions of the form u0(x, y), u1(x, y), . . . , where
(x, y) ∈ Q×Y and x = x′, y = x′/ε. The functions have separated variables and
are Y -periodic in second variable. The asymptotic sum is in the following form:

ua(x′,
x′

ε
) = u0(x′,

x′

ε
) + εu1(x′,

x′

ε
) + ε2u2(x′,

x′

ε
). (8)

Consequently, the expansion for eigenvalue λε of problem (5)–(6) should be of
the form

λa = λ0 + ελ1 + ε2λ2. (9)
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The function ua(x, y) is Y -periodic by the definition. Therefore, we can con-
sider this function as the function on Y for fixed x ∈ Ω, if necessary. Moreover,
it is helpful to consider the function as two functions u1

a(x, y1) and u2
a(x, y2) on

the corresponding strings. Using (7), we can rewrite equation (5) in the following
form:

−{
∂2

y + 2ε1∇∂y + ε2∇2
}

ua(x, y) = λaua(x, y), (10)

where y = x′/ε, x = x′, and the notation

∂2
y =

(
∂2

∂y2
1

,
∂2

∂y2
2

)
, ∇∂y =

(
∂

∂x1

∂

∂y1
,

∂

∂x2

∂

∂y2

)
, ∇2 =

(
∂2

∂x2
1

,
∂2

∂x2
2

)

is used for convenience.
Substituting asymptotic sum (8), (9) to (10) and setting equal coefficients

with the same powers of ε, we obtain the equations for the functions u0, u1 and
u2. Taking into account [12], it is useful to choose the asymptotic expansion
components in the form ui = Ni (y) vi(x), where Ni ∈ H1

per(Y ). As stated before,
we consider only the eigenvalue λ0 = 0 for cell problem (3) with the eigenfunc-
tion N0(y) = l−1/2.

Thus, setting equal coefficients for ε0, we obtain the equation

−∂2
yu0 = 0,

which is a cell problem. Thus, we can choose u0 = Av(x), where the constant
A and the function v(x) are defined later. Next, we consider the equation for ε1.
The equation has the form

−∂2
yu1 = λ1u0,

since λ0 = 0 and ∂y∇u0 = 0 due to the definition of u0. It is well known [1] and
may be directly verified that the equation for w ∈ H1

per(Y ) such that

−∂2
yw(y) = g(y)

with a given function g ∈ L2(Y ) is solvable if and only if the right-hand side is
orthogonal to N0(y). The equation for ε1 satisfies the condition only if λ1 = 0
for v(x) 6= 0. The function u1 = Av1(x) is a periodic solution of the equation,
where the function v1(x) is chosen to be null for further simplicity.

Setting equal coefficients for ε2, we obtain the cell equation which, by the
definition, may be considered as the system of equations

−∂2
y1

u1
2(y1, x) = A∂2

x1
v + λ2Av,

−∂2
y2

u2
2(y2, x) = A∂2

x2
v + λ2Av.
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Calculating the inner product of the right-hand side of the equation with the
kernel element N0(y) of the cell equation and setting the product to be equal to
zero, we get

A

∫

Y

(∇2v(x) + λ2v(x)
)
N0(y) dy = 0.

By the integration rule (1), for A 6= 0, we get the spectral homogenized
problem for v(x)

∂2
x1

v(x) + l∂2
x2

v(x) + (l + 1)λ2v(x) = 0 for x ∈ Ω,

v(x) = v(x + li), ∂xv(x) = ∂xv(x + li) for x ∈ ∂Ω,
(11)

where the periodicity conditions are conformed to (5)–(6), v(x) is normalized by
the condition ‖v‖L2(Ω) = 1, and l1 = 1, l2 = l. The solutions of the spectral
problem are determined by the countable sets of eigenvalues

λs = 4π2(l + 1)−1(n2 + m2l−1)

for m,n ∈ N = {1, 2, . . . } to be such arranged that 0 < λ1 ≤ λ2 ≤ . . . (with the
multiplicity being taken into account, which may be 2, 4 or 8 depending on l)
and the corresponding eigenfunctions vs

0(x) have the form

2l−1/2 cos 2πnx1 cos 2πmx2l
−1, 2l−1/2 sin 2πnx1 cos 2πmx2l

−1,

2l−1/2 cos 2πnx1 sin 2πmx2l
−1 or 2l−1/2 sin 2πnx1 sin 2πmx2l

−1

for m,n ∈ N. It is known [13, 14] that λs = 4πs l−1 + O(s1/2) for large s.
Thus, fixing λs, vs

0 and substituting the homogenized equation (11) in the
equation for ε2, we can define A = 1 and

us
0 = vs

0(x), us
2 = N2(y)

(
∂2

x1
vs
0(x) + λsvs

0(x)
)
,

where N2(y) ∈ H1
per(Y ) satisfies the system of the equations

−∂2
y1

N1
2 (y1) = 1, −∂2

y2
N2

2 (y2) = −l−1.

There exists a solution of the system (that is determined up to the constant
function AN0(y)) and the solution is normalized such that

∫
Y N0(y)N2(y)dy = 0.

Thus, we get the eigenvalue and the eigenfunction asymptotics in the following
form:

λs
a = ε2λs, us

a(x, y) = vs
0(x) + ε2N2(y)

(
∂2

x1
vs
0(x) + λsvs

0(x)
)
.

In what follows, we assume that N2(y) is periodically extended to the whole
network. Thus, the function us

a(x
′, x′

ε ) is well defined on Gε. Moreover, the
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function us
a(x

′,x′
ε ) satisfies automatically all periodicity conditions (6) and the

function and flux continuity conditions in string nodes of the network Gε, since
the smooth function vs

0(x) is defined on the rectangle Ω and satisfies the periodic
conditions on Ω whereas the function N2(y) is an element of H1

per(Y ) and is
regular enough on Y as a solution of the elliptical equation on the cross [1, 3].

4. Asymptotics Justification

Before justifying the asymptotic expansions, we must return to the network
definition. We enumerate all N2 cells Qij

ε and the same number of string crosses
Y ij

ε by the numbers i, j = 1, . . . , N . Then, for the whole domain Ω =
⋃

ij Qij
ε and

the network Gε =
⋃

ij Y ij
ε , we obtain the equalities

∫

Ω

v(x) dx =
N∑

i=1

N∑

j=1

∫

Qij
ε

v(x) dx,

∫

Gε

v(x′) dx′ =
N∑

i=1

N∑

j=1

∫

Y ij
ε

v(y) dy,

where for the cell integral and the cross integral we have

∫

Qij
ε

v(x) dx =

iε∫

ε(i−1)

lεj∫

lε(j−1)

v(x1, x2) dx1dx2

and

∫

Y ij
ε

v(y) dy =
l

1 + l




iε∫

ε(i−1)

v(y1, jlε− 2−1lε) dy1 +

lεj∫

lε(j−1)

v(iε− 2−1ε, y2) dy2


,

respectively.
We prove now the statement on the change of integrals over the small-periodic

network Gε by integrals over Ω = [0, 1]× [0, l] which we will need later.
Proposition 1. For v ∈ H2(Ω) there exists a constant C independent of ε

such that the following inequality holds:
∣∣∣∣∣∣

∫

Ω

v(x) dx− ε

∫

Gε

v(x′) dx′

∣∣∣∣∣∣
≤ Cε2.

P r o o f. Consider the linear functional

l(v) =
∫

Ω

v(x)dx− ε

∫

Gε

v(x′)dx′.
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By the definition,

l(v) =
N∑

i=1

N∑

j=1




∫

Qij
ε

v(x) dx− ε

∫

Y ij
ε

v(y) dy


 .

We estimate the functional in brackets using the following lemma from [15].
Lemma (Bramble–Hilbert). Suppose Ω is an open convex bounded do-

main in Rn and the linear functional l(u) is bounded on Hm+1(Ω), where m ∈ Z+

is fixed, that is
|l(u)| ≤ M‖u‖Hm+1(Ω).

If l(u) is equal to zero for every polynomial in variables x1, x2, . . . , xn of degree
m, then there exists a constant M dependent only on Ω such that the following
inequality holds:

|l(u)| ≤ MM |u|Hm+1(Ω),

where |u|Hm+1(Ω) = ‖∇m+1u‖L2(Ω) is a standard seminorm for Hm+1(Ω).

Before using the embedding estimate for H2(Qij
ε ) ⊂ C(Qij

ε ) with some con-
stant independent of ε, we change the variable y = x/ε and introduce the notation
ṽ(y) = v(εy). Thus we get

lij(v) = lij(ṽ) = ε2




∫

Qij

ṽ(y) dy −
∫

Y ij

ṽ(y) dy


 .

Taking into account the embedding estimate max
y∈Qij

|ṽ(y)| ≤ C‖ṽ(y)‖H2(Qij) for

the domain Qij , we have

|lij(ṽ)| ≤ Cε2‖ṽ(y)‖H2(Qij).

It is verified directly that the functional l(ṽ) becomes zero on the first-degree
polynomials. In this case, by the Bramble–Hilbert lemma, we have the relevant
estimate. In this estimate, we return again to the variable x and obtain

|lij(v)| ≤ Mε2|ṽ(y)|H2(Qij) = Mε3|v(x)|
H2(Qij

ε )
.

Therefore, we have

|l(v)| ≤ Mε3
N∑

i=1

N∑

j=1

|v(x)|
H2(Qij

ε )
= Mε3N




N∑

i=1

N∑

j=1

|v(x)|2
H2(Qij

ε )




1/2

=Mε2|v(x)|H2(Ω).
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Thus, the integral change leads to the error O(ε2), and that is just what was to
be proved.

This analogue of the Riemann–Lebesgue lemma will be used later on.

Proposition 2. Let U ∈ L2(Y ) be periodically extended to the whole network
functions and v ∈ H2

per (Ω) be such that ‖ ∂2
x′v‖L2(Gε) ≤ c with the constant c

independent of ε. Then the following inequality holds:
∣∣∣∣∣∣
ε

∫

Gε

U

(
x′

ε

)
v(x′) dx′ − l−1

∫

Y

U(y) dy

∫

Ω

v(x) dx

∣∣∣∣∣∣
≤ Cε2,

where the constant C is independent of ε.
P r o o f. Let M(y) ∈ H2

per∗(Y ) be a solution of the equation

∂2
yM(y) = U(y)− l−1

∫

Y

U(y)dy

and M(y) be periodically extend to the whole network. Using the equality

ε2∂2
x′M

(
x′

ε

)
= ∂2

yM(y)
∣∣
y=x′

ε

= U

(
x′

ε

)
− l−1

∫

Y

U(y)dy,

we multiply it by the function v(x) and integrate the result over the small-periodic
network Gε. Thus, we obtain

ε3

∫

Gε

∂2
x′M

(
x′

ε

)
v(x′) dx′ = ε

∫

Gε

U

(
x′

ε

)
v(x′) dx′ − εl−1

∫

Y

U(y)dy

∫

Gε

v(x′) dx′.

Consider the left-hand side of the equality separately. Integrating by parts
twice, we use the Cauchy–Bunyakovsky inequality. Taking into account the func-
tion periodicity over the network, we get

ε3

∫

Gε

∂2
x′M

(
x′

ε

)
v(x′) dx′ = ε3

∫

Gε

M

(
x′

ε

)
∂2

x′v(x′) dx′

≤ ε2

√√√√ε

∫

Gε

M2

(
x′

ε

)
dx′

√√√√ε

∫

Gε

(
∂2

x′v(x′)
)2

dx′ ≤ c ε2‖M‖L2(Y ),

since

‖M
(

x′

ε

)
‖2

L2(Gε)
=

N∑

i=1

N∑

j=1

ε

∫

Y ij
ε

M2

(
x′

ε

)
dx′ =

N∑

i=1

N∑

j=1

ε2 ‖M‖2
L2(Y ) = ‖M‖2

L2(Y ).
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Using Proposition 1, we get the estimate
∣∣∣∣∣∣
ε

∫

Gε

U

(
x′

ε

)
v(x′) dx′ − l−1

∫

Y

U(y) dy

∫

Ω

v(x) dx

∣∣∣∣∣∣
≤ ε2C.

Thus, we obtained the error O(ε2) that is defined by the values ‖M‖L2(Y ),
‖∂2

x′v‖L2(Gε) and ‖∂2
xv‖L2(Ω) (by Proposition 1). This concludes the proof.

Here we use H2
per∗(Y ), H2

per(Ω), . . . that are defined in the standard way
according to Sec. 1, [3, 15]. In what follows, the constants independent of ε and
s are denoted by C, although the constants may be different in different formulas.

P r o o f of Theorem1. The justification of the asymptotic expansions is real-
ized by the minimax principle, the Rayleigh–Ritz method used from [14] and the
known Vishik–Lyusternik theorem from [13, 16]. We recall the exact formulations
of the statements.

Suppose H1 and H0 are Hilbert spaces. The space H1 is embedded compactly
in H0, and H−1 is a dual space for H1 with respect to the inner product of H0.
The operator L : H1 → H−1 is continuous and such that 〈Lv, v〉H0 ≥ α‖v‖2

H0

∀ v ∈ H1, where α is a positive constant, and L∗ = L. Then the eigenvalues λk

of the operator L are real and define a nondecreasing sequence α ≤ λ1 ≤ λ2 ≤ ...
(with the multiplicity being taken into account), and the eigenfunctions u1, u2, . . .
are orthonormalized in H0. For the operator L, the following statements hold.

Theorem 2 (Minimax principle). Let λk and uk be (ordered) eigenvalues
and eigenfunctions of the operator L. Then the following equalities hold:

λ1 = min
v∈H0

v 6=0

〈Lv, v〉H0

‖v‖2
H0

, λk = min
v∈H0

k
v 6=0

〈Lv, v〉H0

‖v‖2
H0

,

where H0
k =

{
v ∈ H0 : 〈v, u1〉H0 = 0, . . . , 〈v, uk−1〉H0 = 0

}
for k = 2, 3, . . . .

Theorem 3 (Rayleigh–Ritz method). Let Hd be a d-dimensional subspace
of H0 and Pd be an orthogonal projector onto Hd with some natural number d.
Then for the ordered eigenvalues µ1, . . . , µd of the operator PdLPd on Hd and the
eigenvalues λ1, . . . , λd of the operator L the following inequalities hold:

λ1 ≤ µ1, . . . , λd ≤ µd.

Theorem 4 (Vishik–Lyusternik). Let λk and uk be eigenvalues and eigen-
functions of the operator L. Assume that there exists a real µ ∈ R and u ∈ H1

such that ‖u‖H0 = 1 and
‖Lu− µu‖H0 ≤ β.

348 Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 4



Homogenization of Spectral Problem on Small-Periodic Networks

Then there exists λs such that |µ − λs| ≤ β, and for every σ > β there exists
ũ ∈ H1 such that ‖ũ‖H0 = 1 and

‖u− ũ‖H0 ≤ 2βσ−1,

where ũ is a linear combination of the eigenvectors of the operator L, which
correspond to eigenvalues from the interval (µ− σ, µ + σ).

Applying the operator L = −ε2∂2
x′ to the approximate function us

a = us
0+ε2us

2

and using the differentiation rule (7), we obtain

Lus
a

(
x′, x′/ε

)
= −ε2∇2us

0 − ε2∂2
yus

2 − 2ε3∇∂yu
s
2 − ε4∇2us

2

= ε2λsus
0 + ε4λsus

2 + ε3Ks = ε2λsus
a

(
x′, x′/ε

)
+ ε3Ks(x′, x′/ε),

(12)

where for ws
3/2 = ∂3

xvs
0 + λs∂xvs

0 and ws
2 = ∂4

xvs
0 + 2λs∂2

xvs
0 + λsλsvs

0 we denote

Ks(x, y) = −2∇∂yu
s
2 − ε∇2us

2 − ελsus
2 = −2(∂yN2)ws

3/2 − ε(N2)ws
2.

For large λs, directly from (11) we have
∥∥∂xvs

0

∥∥2

L2(Ω)
= O(λs) and

∥∥∂2
xvs

0

∥∥2

L2(Ω)
= O((λs)2),

∥∥∂2
xvs

0 + λsvs
0

∥∥2

L2(Ω)
= O((λs)2),

∥∥ws
3/2

∥∥2

L2(Ω)
= O((λs)3),

∥∥ws
2

∥∥2

L2(Ω)
= O((λs)4),

∥∥∂2
x((ws

3/2)
2)

∥∥
L2(Ω)

= O((λs)4),
∥∥∂2

x((ws
2)

2)
∥∥

L2(Ω)
= O((λs)5).

The similar estimates
∥∥∂x′v

s
0

∥∥2

L2(Gε)
= O(λs), . . . are valid for the correspond-

ing norms on Gε, since a differentiation of vs
0 by ∂x′1 and ∂x′2 gives a multiplier

equivalent to (λs)1/2, |vs
0| ≤ 2l−1/2 by the definition, and, for example, we have

ε
∫
Gε

1 dx′ = l.
Using Proposition 2 (with the constant dependence on v being taken into

account), the regularity of functions N2(y), and the smoothness of functions
vs
0(x), we get

ε

∫

Gε

(
Ks(x′, x′/ε)

)2
dx′ ≤ 4ε

∫

Gε

(
∂yN2w

s
3/2

)2
dx′ + 2ε3

∫

Gε

(
N2w

s
2

)2
dx′

≤ C

∫

Ω

(
ws

3/2

)2
dx + ε2C

∫

Ω

(
ws

2

)2
dx + ε2C(λs)4 + ε4C(λs)5,

(13)

where the constant C is independent of ε and s that is essential for large λs.
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Besides, according to Proposition 2, we obtain the following relations:
∣∣∣ ‖us

a(x
′, x′/ε)‖2

L2(Gε)
− 1

∣∣∣ ≤ Cε2λs +
∫

Ω

vs
0(x)2dx− 1 + Cε4(λs)2

+ 2ε2

∫

Y

N0(y)N2(y)dy

∫

Ω
vs
0(x)

(
∂2

xvs
0(x) + λsvs

0(x)
)
dx + Cε6(λs)3

+ ε4

∫

Y

N2(y)2dy

∫

Ω

(
∂2

xvs
0(x) + λsvs

0(x)
)2

dx

≤ Cε2λs + Cε4(λs)2 + Cε6(λs)3 ≤ Cε2λs

(14)

for λs ¿ ε−2 (that is for λs ≤ C ε−2+σ with 0 < σ ≤ 2), where the constant C is
independent of ε and s, since

∫
Ω vs

0(x)2dx = 1 and
∫
Y N0(y)N2(y)dy = 0 by the

definition. Similarly, we can verify that
∣∣∣∣∣∣
ε

∫

Gε

us
a(x

′, x′/ε) uj
a(x

′, x′/ε) dx′

∣∣∣∣∣∣
≤ Cε2λs + Cε2λj

for s 6= j and λs, λj ¿ ε−2. This means that the functions u1
a, u2

a,. . . , u
s
a are

almost orthonormalized in L2(Gε) (in the sense of last two inequalities) and are
linearly independent for λs ¿ ε−2. Here, it is important that the system of the
eigenfunctions {vs

0}∞s=1 is orthonormalized in L2(Ω). According to (14), we get
‖us

a‖L2(Gε) 6= 0 for λs ¿ ε−2. Therefore, defining ûs
a = ‖us

a‖−1
L2(Gε)

us
a, we obtain

‖ûs
a‖L2(Gε) = 1.
By shifting the term with the eigenvalue λs to the left-hand side of equal-

ity (12), raising the result to the second power, multiplying by ε and integrating
the resulting relation over the network Gε, for λs ¿ ε−2 we obtain

ε

∫

Gε

(
Lus

a − ε2λsus
a

)2
dx′ =

∥∥Lus
a − ε2λsus

a

∥∥2

L2(Gε)
= ε7

∫

Gε

(
Ks(x′, x′/ε)

)2
dx′

≤ ε6C(λs)3 + ε8C(λs)4 + ε10C(λs)5 ≤ ε6C(λs)3

in accordance with (13) and (14). Thus, we have the following inequality:
∥∥Lûs

a − ε2λsûs
a

∥∥
L2(Gε)

≤ ε3C(λs)3/2,

where the constant C is independent of ε and s for λs ¿ ε−2. Therefore, by
Theorem 4, there exists an eigenvalue λ

k(s)
ε of problem (5)–(6) such that

∣∣∣λk(s)
ε − ε2λs

2

∣∣∣ ≤ ε3C(λs)3/2. (15)

350 Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 4



Homogenization of Spectral Problem on Small-Periodic Networks

Thus, the estimate of Theorem 1 for eigenvalues of problem (5)–(6) will follow
from inequality (15) if we verify that k(s) = s for every s = 1, 2 . . . .

By Theorem 2, for the first eigenvalue of problem (5)–(6) we have the relation

λ1
ε = min

0 6=u∈H1
per∗(Gε)

(Lu, u)L2(Gε)

‖u‖2
L2(Gε)

. (16)

By the definition, u1
ε satisfies the equality

(
u1

ε, 1
)
L2(Gε)

= 0. The constructed
asymptotic expansion u1

a for u1
ε may not comply with the orthogonality condition

for a constant. Therefore, we subtract the constant A1
ε = εl−1

∫
Gε

u1
adx′ from u1

a

to have u1
a −A1

ε ∈ H1
per∗(Gε). Then, according to Proposition 2, we get

εl−1

∫

Gε

u1
adx′ =

∫

Ω

v1
0dx + ε2

∫

Ω

(
∂2

xv1
0 + λ1v1

0

)
dx

∫

Y

N0N2dy + O(ε2) = O(ε2),

since
∫
Ω v1

0(x)dx = 0 and
∫
Y N0N2(y)dy = 0 by the definition. Thus, we can

write that A1
ε = ε2Ã1

ε, where |Ã1
ε| ≤ C with C independent of ε. Furthermore,

denoting ũ1
a = u1

a − ε2Ã1
ε, we obtain ũ1

a ∈ H1
per∗(Gε) by the definition of the

constant Ã1
ε.

Thus, we can substitute the obtained function ũ1
a(x

′, x′/ε) into (16). Applying
the operator L to ũ1

a and using the differentiation rule (7), we obtain the result
(which is similar to (12) for s = 1) in the following form:

Lũ1
a

(
x′, x′/ε

)
= ε2λ1

(
u1

0 + ε2u1
2 − ε2Ã1

ε

)
+ ε3K̃1(x′, x′/ε),

where we denote K̃1(x, y) = K1(x, y) + ε2Ã1
ελ

1 and use the relations from Sec-
tion 3. Multiplying the obtained result by εũ1

a(x
′, x′/ε) and integrating over the

network, we get

(
Lũ1

a, ũ
1
a

)
L2(Gε)

= ε

∫

Gε

Lũ1
aũ

1
adx′ = ε2λ1 ‖ũ1

a‖2
L2(Gε)

+ ε4

∫

Gε

K̃1ũ1
adx′. (17)

Consider the last term of relation (17). Using the estimate (13) and the Cauchy–
Bunyakovsky inequality, we obtain

ε

∫

Gε

K̃1ũ1
adx′ ≤


ε

∫

Gε

(K̃1)2dx′




1/2 
ε

∫

Gε

(ũ1
a)

2dx′




1/2

≤ C‖ũ1
a‖L2(Gε).

The subtraction of the constant ε2Ã1
ε from the function u1

a does not influence on
estimate (14) essentially, hence we can write ‖ũ1

a‖L2(Gε) = 1+O(ε2). Substituting
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the result in (16), multiplying the identity (17) by ‖ũ1
a‖−2

L2(Gε)
, and using the

estimate for the last term of the identity, we get the estimate from above for the
first eigenvalue of problem (5)–(6) in the following form:

λ1
ε ≤ ε2λ1 + Cε3.

We fix a natural number d > 1 and denote U1
a = ũ1

a‖ũ1
a‖−1

L2(Gε)
, then we have

‖U1
a‖L2(Gε) = 1 and U1

a ∈ H1
per∗(Gε). In what follows, we orthonormalize the

functions U1
a (x′, x′/ε), u2

a(x
′, x′/ε), . . . , ud

a(x
′, x′/ε) in the space L2∗(Gε).

Define the constant Ai
ε = εl−1

∫
Gε

ui
adx′ for i = 2, . . . , d. Then, we can write

Ai
ε = ε2Ãi

ε as in the case i = 1, where |Ãi
ε| ≤ C with C independent of ε. Thus,

we have ũi
a = ui

a − ε2Ãi
ε ∈ H1

per∗(Gε) for i = 2, . . . , d. Define also the constant
A21

ε = ε
∫
Gε

ũ2
aU

1
adx′. Then, according to Proposition 2, we obtain

A21
ε =

∫

Ω

v2
0v

1
0 dx + O(ε2) = O(ε2),

since
∫
Ω v2

0(x)v1
0(x) dx = 0 by the definition. Thus, A21

ε = ε2Ã21
ε , where |Ã21

ε | ≤ C
with C independent of ε.

Denote ŭ2
a = ũ2

a − ε2Ã21
ε U1

a . Then ŭ2
a is orthogonal to U1

a and satisfies the
relations similar to (12)–(14) and (17). Thus, U2

a = ŭ2
a ‖ŭ2

a‖−1
L2(Gε)

is well de-
fined and orthogonal to U1

a , ‖U2
a‖L2(Gε) = 1 and U2

a ∈ H1
per∗(Gε). Furthermore,

by induction we can find the orthonormalized U1
a , U2

a ,. . . , Ud−1
a and define the

function
ŭd

a = ũd
a − ε2Ãd,d−1

ε Ud−1
a − · · · − ε2Ãd1

ε U1
a .

The function is orthogonal to U i
a when ε2Ãdi

ε = ε
∫
Gε

ũd
aU

i
adx′ with |Ãdi

ε | ≤ C for
i = 1, . . . , d − 1 (it is helpful here that the system of the eigenfunctions v1

0, . . . ,
vd
0 is orthonormalized) and it satisfies the relations similar to (12)–(14) and (17).

Thus, Ud
a = ŭd

a ‖ŭd
a‖−1

L2(Gε)
is defined and orthogonal to the functions U1

a , U2
a , . . . ,

Ud−1
a . Moreover, we get ‖Ud

a‖L2(Gε) = 1 and Ud
a ∈ H1

per∗(Gε).
Define the d-dimensional subspace Hd ⊂ H1

per∗(Gε) as a linear span of the
functions U1

a (x′, x′/ε), U2
a (x′, x′/ε), . . . , Ud

a (x′, x′/ε) and the orthogonal projector
Pd onto Hd. By the definition, for U ∈ H1

per∗(Gε) we have

PdU =
d∑

i=1

U i
a (U i

a, U)L2∗(Gε).

Therefore, PdU
i
a = U i

a for i = 1, . . . , d. Thus, there exist d-element sets of the
eigenvalues µ1

ε, µ
2
ε, . . ., µ

d
ε and of the orthonormalized eigenfunctions w1

ε , w
2
ε , . . ., w

d
ε

of the operator Ld = PdLPd such that the inequality µ1
ε ≤ µ2

ε ≤ . . . ≤ µd
ε is valid
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(with the multiplicity being taken into account). Besides, according to Theo-
rem 3, we obtain

λ1
ε ≤ µ1

ε, . . . , λ
d
ε ≤ µd

ε .

Using the relations similar to (12)–(14) and (17) for the orthonormalized
functions U1

a (x′, x′/ε), U1
a (x′, x′/ε), . . . , Ud

a (x′, x′/ε), we get

LdU
i
a(x

′, x′/ε) = PdLU i
a = ε2λiU i

a + O(ε3)

and ∥∥LdU
i
a − ε2λiU i

a

∥∥
L2(Gε)

≤ ε3C,

where i = 1, . . . , d, and the constant C is independent of ε. Therefore, according
to Theorem 4, there exists an eigenvalue µ

j(i)
ε of the operator Ld such that

∣∣∣µj(i)
ε − ε2λi

∣∣∣ ≤ ε3C, (18)

where i = 1, . . . , d, and the constant C is independent of ε. Here the dependence
of C on i (which is clear from the relations similar to (12)–(14)) is not essen-
tial, since in order to complete the proof of the estimate of Theorem 1 for the
eigenvalues of problem (5)–(6), we have to verify that k(s) = s in (15) for every
s = 1, 2, . . . , d.

Following [13] and [16], we verify that j(i) = i in (18) for every i = 1, . . . , d.
Indeed, if the eigenvalues λ1, . . . , λd are simple, then we have j(i) = i for every
i = 1, . . . , d, since d ordered values µ1

ε, . . . , µ
d
ε are in the ε3-neighborhoods of d

strictly ordered values ε2λ1, . . . , ε2λd which is possible only if j(i) = i. However,
the multiplicity of the eigenvalue λ1 is equal either to two or four, depending on l.

Consider the first case, for example, then λ3 is separated from λ1 by some
positive constant δ (for example, δ = 1 for l = 1/2). Choosing d = 2 in (18), we
conclude that j(1) = 1 and j(2) = 2 (what is to be proved, since λ1 = λ2 ) or
j(1) = 2 and j(2) = 2. In the latest case, there exists a constant σ > 0 such that
µ1

ε < µ2
ε− ε2σ < µ2

ε + ε2σ < µ3
ε, and on the interval (ε2λ1− ε2σ, ε2λ1 + ε2σ) there

exists only one eigenvalue µ2
ε of the operator L2. Thus, by Theorem 4, we have

‖U1
a − w2

ε‖L2(Gε) ≤ εC, ‖U2
a − w2

ε‖L2(Gε) ≤ εC.

But, it is impossible [13] since the normalized function w2
ε approximates two

orthonormalized functions U1
a and U2

a simultaneously.
Thus, the equality j(i) = i for i = 1, 2 is proved. In the same way, we

can prove that k(s) = s in (15) for s = 1, 2 (when the multiplicity of λ1 is 2).
Indeed, there exist only two eigenvalues λ1

ε, λ
2
ε of problem (5)–(6) on the segment

[αε2, µ2
ε], since αε2 ≤ λ1

ε ≤ λ2
ε ≤ µ2

ε due to Theorem 3. Moreover, inequality (15)
is valid. Therefore, we have k(1) = 1 and k(2) = 2 or k(1) = 2 and k(2) = 2.
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In the last case, there exists a constant σ > 0 such that only one eigenvalue λ2
ε

of the operator L is on the interval (ε2λ1 − ε2σ, ε2λ1 + ε2σ). Hence, according
to Theorem 4, almost orthonormalized functions û1

a and û2
a (in the sense of (14))

are approximated by one normalized function u2
ε, which is impossible.

Next, we consider, for example, the case when the multiplicities of λ1 and
λ3 are equal to 2 and r, respectively. Choosing d = 3 + r − 1 in (18), we have
that the eigenvalues µ1

ε, µ
2
ε are in a ε3-neighborhood of ε2λ1, and µ3+r−1

ε is in a
ε3-neighborhood of the value ε2λ3 at least. If µ3

ε is not in the ε3-neighborhood of
the value ε2λ3, then r orthonormalized functions U3

a , . . . , U3+r−1
a can be approxi-

mated by (r− 1) orthonormalized functions w4
ε , . . . , w3+r−1

ε , which is impossible.
Thus, the equality j(i) = i for i = 1, . . . , 3+ r−1 is proved. Similarly, we can

prove that k(s) = s in (15) for s = 1, . . . , 3 + r − 1. Due to inequality (15) and
Theorem 3, this proof can be continued by the induction over d for λd ¿ ε−2.
This proves the estimate of Theorem 1 for the eigenvalues of problem (5)–(6). It
is useful here that for every d and ε the relations

αε2 ≤ λ1
ε ≤ λ2

ε ≤ · · · ≤ λd
ε ≤ µd

ε

hold, which provides a control over the number of eigenvalues for problem (5)–(6)
on the concrete segment [αε2, µd

ε ] ⊂ [αε2, ε2λd +ε2C(λd)3/2]. It is useful, because
the function k(s) in (15) can depend on ε. To be definite, Theorem 4 guaranties
only that the number k(s) in (15) is defined for fixed s and ε.

Next, we consider some eigenvalue λs of problem (11) with the multiplicity r
(which can be 2, 4 or 8). By the definition, we have the relations

λs−1 < λs = λs+1 = · · · = λs+r−1 < λs+r.

Denote by σs the smallest number of (λs−1 + λs)/2 and (λs + λs+r)/2. It follows
from inequality (15) that only eigenvalues λs

ε, . . . , λs+r−1
ε of problem (5)–(6) are

in the interval (ε2λs − ε2σs, ε
2λs + ε2σs). Thus, according to Theorem 4, there

exist constants αj
i (possibly, dependent on ε) for i, j = s, s + r − 1 such that

∥∥ûs
a − αs

su
s
ε − · · · − αs

s+r−1u
s+r−1
ε

∥∥
L2(Gε)

≤ C ε (λs)3/2σ−1
s ,

. . . . . . . . . ,∥∥ûs+r−1
a − αs+r−1

s us
ε − · · · − αs+r−1

s+r−1u
s+r−1
ε

∥∥
L2(Gε)

≤ C ε (λs)3/2σ−1
s .

(19)

Moreover, by the conditions of Theorem 4, we have
∥∥αs

su
s
ε + · · ·+ αs

s+r−1u
s+r−1
ε

∥∥
L2(Gε)

= 1, . . . ,
∥∥αs+r−1

s us
ε + · · ·+ αs+r−1

s+r−1u
s+r−1
ε

∥∥
L2(Gε)

= 1.
(20)
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The functions us
ε, . . . , us+r−1

ε are orthonormalized. Hence, we get

(
αs

s

)2 + · · ·+ (
αs

s+r−1

)2 = 1, . . . ,
(
αs+r−1

s

)2 + · · ·+ (
αs+r−1

s+r−1

)2 = 1

in accordance with (20). This means that the matrix
{
αi

j

}
i,j=s,s+r−1

is orthogo-
nal.

Define the functions ǔs
a, . . . , ǔs+r−1

a as the orthogonal transform of the func-
tions ûs

a, . . . , ûs+r−1
a by the matrix

{
αi

j

}
i,j=s,s+r−1

. Then, it follows from (19)
that

‖ǔs
a − us

ε‖L2(Gε)
≤ Cε (λs)3/2σ−1

s , . . . ,
∥∥ǔs+r−1

a − us+r−1
ε

∥∥
L2(Gε)

≤ Cε (λs)3/2σ−1
s ,

which concludes the proof of Theorem 1 (since it can be assumed that λs = σs

for large s). Here, as the eigenfunction vs of problem (11) from the estimate of
Theorem 1, we can take the relevant linear combination of the eigenfunctions

2l−1/2 cos 2πnx1 cos 2πmx2l
−1, 2l−1/2 sin 2πnx1 cos 2πmx2l

−1,

2l−1/2 cos 2πnx1 sin 2πmx2l
−1, 2l−1/2 sin 2πnx1 sin 2πmx2l

−1
(21)

with the coefficients located in a line of the matrix
{
αi

j

}
i,j=s,s+r−1

and the rel-
evant n and m. We emphasize that for the eigenvalue λs of problem (11) with
multiplicity r there exists some arbitrariness in choosing the eigenfunctions vs

0,
. . . , vs+r−1

0 , which is determined by some orthogonal matrix. Thus, it is necessary
to use the lines of the corresponding orthogonal matrix

{
αi

j

}
i,j=s,s+r−1

.
In conclusion, the asymptotics of the eigenvalues and eigenfunctions for prob-

lem (5)–(6) is constructed and Theorem 1 for the sth eigenvalue λs
ε and sth

eigenfunction us
ε of this problem is proved, where λs is the eigenvalue of the

homogenized problem (11) with the eigenfunction vs, which is suitably orthonor-
malized, i.e., vs is the relevant linear combination of the eigenfunctions from (21).
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