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1. Introduction

The two n-gons inscribed into the regular (2n−1)-gon are said to be antipodal
if the total number of their diagonals and sides of the same length is n for all
admissible lengthes. This notation was introduced in [1, p. 48] for studying the
half-circulant Hadamard matrices of the form

H =
(

A B
B −A

)
,

where A(B) is a matrix of order 2n including submatrix of order 2n− 1 which is
the right (respectively the left) circulant [2, p. 459].

The question on the existence of half-circulant Hadamard matrices of order
4n, n being an arbitrary natural number, is equivalent to the question on the
existence of inscribed antipodal n-gons [1, Theorem 4]. As the question on the
existence of half-circulant Hadamard matrices of order 4n for any n still remains
open, it is important to study the properties of antipodal polygons.

In the present paper, we study the group properties of antipodal polygons,
namely, the groups of transformations which transform antipodal polygons into
antipodal ones as well as their order and the number of equivalence classes of
n-gons inscribed into the regular (2n−1)-gon. We begin with the results obtained
in [1] and their generalizations.
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2. Self-superposition of the Regular (2n− 1)-gon

In a complex plane, we consider a regular (2n − 1)-gon inscribed into the
unit circle with center at the origin. Any its vertex is given by a monomial zk,
k = 0, 1, 2, . . . , 2n − 2, where z = e

2πi
2n−1 and n ≥ 3. Hence, a convex n-gon P

inscribed into the regular (2n − 1)-gon is given by the generating polynomial
p(z) =

∑2n−2
k=0 xkz

k, where xk = 1 if the vertex of the regular (2n − 1)-gon
with number k belongs to P , and xk = 0 if otherwise. Since P is an n-gon,∑2n−2

k=0 xk = n. Thus, for the square of the modulus of the polynomial p(z), the
relation

|p|2 = n + 2
n−1∑

k=1

dk cos
2πk

2n− 1

holds, where dk is the number of equal diagonals and sides of n-gon P for which
a vision angle (from the origin) is 2πk

2n−1 [1, Lemma 1], and
∑n−1

k=1 dk = n(n−1)/2.
Thereby, for the antipodal n-gons P and P ′ with the generating polynomials p
and p′ =

∑2n−2
k=0 x′kz

k, the equality |p|2 + |p′|2 = n holds since, by the definition of
antipodal n-gons, dk + d′k = n for each k = 1, 2, . . . , n− 1, and by the well-known
identity,

∑n−1
k=1 cos 2πk

2n−1 = −1
2 (see [1, Theorem 3]).

In [1], for convex n-gons inscribed into the regular (2n−1)-gon, there are stu-
died trivial and nontrivial transformations which transform one inscribed n-gon
into another and thus transform antipodal n-gons into antipodal ones. To tri-
vial transformations we refer rotations on angle multiple 2π

2n−1 and symmetries
relative to straight lines passing through the center of the regular (2n − 1)-gon
and one of its vertices. Under such a rotation (and a specular reflection) each
convex n-gon is transformed into equal convex n-gon. Since in equal polygons
the corresponding diagonals are equal, antipodal n-gons transform into antipodal
n-gons by definition. Moreover, their sides transform into sides, and diagonals
into diagonals. But, since the sides and the diagonals have the same lengthes are
equivalent by definition, one cannot exclude from consideration the nontrivial
superpositions of the regular (2n− 1)-gon when some of its sides transform into
its diagonals and conversely. The same can be observed in antipodal n-gons
inscribed into it (after joining diagonals!). Nontrivial self-superpositions of the
regular (2n − 1)-gon from [1] which transform some of its sides into diagonals
and conversely are called inversions. We will give the definition of the inversion
suitable for our case by using special transformations of the generating polynomial
of antipodal n-gons.

Let m and 2n − 1 be mutually prime integers denoted by (m, 2n − 1) = 1.
In a generating polynomial p(z) =

∑2n−2
k=0 xkz

k of the n-gon P replacing the
argument z by zm, we obtain a convex n-gon Pm with generating polynomial
pm =

∑2n−2
k=0 xkz

|mk|, where |mk| is the least nonnegative residue of number mk
modulo 2n− 1. In [1, p. 49], it is shown that if s is a solution of the comparison
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equation ms ≡ 1, (mod 2n− 1) which is unique by property IV [3, p. 49], then
the polynomial pm can be written in the form pm =

∑2n−2
k=0 x|ks|zk. Thus the

n-gon Pm is obtained from P by multiplying by modulo 2n−1 the indexes of the
coefficients xk of its generating polynomial, which correspond to vertices P , by
the same number s, (s, 2n − 1) = 1. The set of all these numbers is the group
of residue classes modulo 2n− 1 which are mutually prime. Their total number
is determined by the Euler function ϕ(2n − 1) =

∏
(1 − 1

p), where the product
is extended to all proper prime divisors of the number 2n − 1 (see [3, p. 59]).
The transformation of n-gons inscribed into a regular (2n− 1)-gon under which
the numbers of their vertices are multiplied modulo 2n− 1 by the same natural
number, which is mutually prime with module, is called inversion. The set of
all inversions forms the group possessing the properties of the residue classes
which are mutually prime with module 2n− 1. In particular, the product of two
inversions is an inversion. And all inversions form the Abelian group Γ2n−1 of
order ϕ(2n− 1). By Theorem 1 [1], any inversion transformation transforms an
antipodal n-gon into antipodal n-gon.

We may summarize the above as follows. Rotations and specular reflections,
transforming one inscribed n-gon into another, transforms simultaneously the
regular (2n − 1)-gon they are inscribed in into itself. Together they form a self-
superposition group D2n−1 of order 4n − 2 which is known to be called as the
dihedral group. In fact, it is a permutation group over the set of vertices of the
regular (2n − 1)-gon and thus is a subgroup of the symmetrical group of degree
2n − 1. The group of inversions Γ2n−1, transforming one inscribed n-gon into
another, also transforms the regular (2n−1)-gon they are inscribed in into itself.
Let Γ2n−1 be a subgroup of the symmetric group of degree 2n−1 generated by its
subgroups D2n−1 and Γ2n−1. This subgroup (further called permutation group)
consists only of those members of the symmetric group of degree 2n− 1 that are
equal to the product of finite number of group members D2n−1 and Γ2n−1. The
group D2n−1 is the group of self-superposition (with diagonals!) of the regular
(2n− 1)-gon.

R e m a r k. Attention should be payed to the fact that the group G2n−1 does
not include all self-superpositions of the regular (2n−1) that transform antipodal
n-gons into antipodal ones. For example, previously it was proved that if number
2n−1 is prime, then there exists a Hadamard matrix of half-circulant type of order
4n [2, Theorems 1 and 2]. To these matrix there corresponds a pair of antipodal
n-gons, the vertices of one of which are the vertices of the regular (2n− 1)-gon,
numbers of which are quadratic residues modulo 2n − 1 (and null-vertex), and
the vertices of other are quadratic non-residues modulo 2n − 1 (and again null-
vertex). It is evident that any permutation, transforming quadratic residues into
quadratic ones and quadratic non-residues into quadratic non-residues or trans-
forming quadratic residues into quadratic non-residues and conversely, transforms
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the pair of antipodal n-gons into itself (each into itself or one into another). At
the same time, for some n there may exist other pairs of antipodal n-gons not
transformed into antipodal n-gons under this permutation. As it is in the case
when n = 6, for antipodal 6-gons with the numbers of vertices 0, 1, 2, 3, 5, 6 and
0, 1, 3, 5, 7, 8 (natural numbers 1, 3, 5 are quadratic residues modulo 11, and 2, 6
and 7, 8 are quadratic non-residues modulo 11,), the numbers of equal diagonals
and sides for the first one are: d1 = 4, d2 = 3, d3 = 3, d4 = 2, d5 = 3 and for the
second one: d1 = 2, d2 = 3, d3 = 3, d4 = 4, d5 = 3. Therefore, these transforma-
tions are not included into our self-superposition group of the regular (2n−1)-gon.
We are focused only on the self-superpositions of the regular (2n − 1)-gon that
transform any antipodal polygons into antipodal ones.

3. Equivalence Classes of Inscribed n-gons

Let us renumber the vertices of the regular (2n − 1)-gon by integer from 0
to 2n − 2 inclusive in counterclockwise order. The total number of the convex
n-gons inscribed into this polygon is equal, evidently, Cn

2n−1. Among them there
are either the ones that superimpose one another by a rotation (or, possibly, by a
specular reflection), belonging to the dihedral group D2n−1 of order 4n−2, or the
ones that superimpose each other by an inversion γm, (m, 2n− 1) = 1, belonging
to the inversion group Γ2n−1 of order ϕ(2n− 1). They all belong to the group of
self-superpositions G2n−1 of the regular (2n− 1)-gon generated by them.

Theorem 1. The order of the permutation group G2n−1 is (2n−1)ϕ(2n−1).

P r o o f. Let α = (012 . . . 2n− 2) be a permutation generating the rotation
group of the regular (2n − 1)-gon denoted by A2n−1. The group A2n−1 is cyclic
with α2n−1 = e, where e is its unit member. And let β = (0)(1 2n − 2)(2 2n −
3) . . . (n− 1n) be a transformation of the symmetry of the regular (2n− 1)-gon
relatively to the straight line, passing through its center and the vertex with
number null, decomposed into the product of cycles. Since (αkβ)2 = e, then
αkβ = βα−k, where α−k = α2n−1−k. Therefore, any permutation of dihedral
group D2n−1 can be represented in the form αk or αkβ, k = 1, 2, . . . , 2n − 1.
Any permutation of the group D2n−1 can also be represented in the form αkγ1

or αkγ2n−2, k = 1, 2, . . . , 2n − 1, since the inversion γ1, obtained by multiplying
indexes of the generating polynomial p(z) by 1, coincides with the identity element
of the rotation group A2n−1, and the inversion γ2n−2, obtained by multiplying
the same indexes by 2n− 2, coincides with β.

Next we verify that αγm = γmαm, m = 2, 3, . . . , 2n − 3. Let us prove that
αkγm = γmα|km| assuming by induction that it is valid for α2, α3, . . . , αk−1. In-
deed,

αkγm = α(αk−1γm) = α(γmα|(k−1)m|) = (αγm)α|(k−1)m| = γmα|km|.
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Then by the above, we obtain that any permutation γmαs, s = 1, 2, . . . , 2n−2
of the group G2n−1 can be represented in the form αkγm since for a given m,
mutually prime with 2n − 1, the comparison equation mk ≡ s (mod 2n − 1)
always has a solution for any integer s and it is unique (by property IV [3,
p. 49]). Hence the product of permutations αk1γs and αk2γs is a permutation of
the same kind αk3γ|ms|, where the residue is equal to the product residues m and
s mutually prime with module 2n− 1, and the power k3 is uniquely determined
by k1 and k2. Therefore, a product of any finite number of permutations of the
kind αkγm is a permutation of the same kind. Thus, αkγm is a general element
of the group Γ2n−1 and, consequently, the order of G2n−1 is equal to the product
of the integers 2n− 1 and ϕ(2n− 1), which was to be proved.

As it follows from the proof of Theorem 1, the permutation group G2n−1,
operating on the set of vertices of the regular (2n−1)-gon zs, s = 0, 1, 2, . . . , 2n−2,
is a common (non-direct) product of its subgroups A2n−1 and Γ2n−1 [4, p. 485].
Thus, if not taking into account the passage to the residues modulo 2n− 1, any
rotation αk from the first subgroup leads to the increasing of the number of each
vertex on k, and any inversion γm from the second subgroup leads to multiplying
of the same numbers by m. On a set of convex n-gons inscribed into the regular
(2n−1)-gon, we introduce the relation of equivalence. Namely, the two inscribed
n-gons P1 and P2 are said to be equivalent relative to the group G2n−1 (or any its
subgroup) if in this group (subgroup) there can be found a permutation g such
that P2 = P1g. Evidently, P1 = P2g

−1. All inscribed n-gons that are equivalent
to each other form an equivalence class. Denote the number of equivalence classes
relative to a group G by KG.

Lemma 1. The number of equivalence classes KA2n−1 of the set of convex
n-gons inscribed into the regular (2n − 1)-gon relative to subgroup A2n−1 of the
group G2n−1 is equal to Cn

2n−1/(2n− 1). As a representative of every equivalence
class there can always be chosen an n-gon with generating polynomial

∑2n−2
k=0 xkz

k

for which
∑2n−2

k=0 kxk ≡ 0 (mod 2n− 1).

P r o o f. The first statement of the lemma follows from the fact that the
order of the rotation group A2n−1 is equal to 2n − 1. Let us prove the second
statement.

Let an n-gon P with generating polynomial
∑2n−2

k=0 xkz
k, where

∑2n−2
k=0 xk = n,

be a representative of some equivalence class. And let
∑2n−2

k=0 kxk = q 6≡ 0
(mod 2n−1). Turn P on the angle 2πr

2n−1 counterclockwise. For the n -gon P in a
new position P ′,

∑2n−2
k=0 x′|k+r|z

|k+r| is a generating polynomial. However, by the
construction, x′|k+r| = xk for all k . Therefore,
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2n−2∑

k=0

(k + r)x′|k+r| =
2n−2∑

k=0

(k + r)xk = q + r
2n−2∑

k=0

xk = q + rn.

Since the integers n and 2n− 1 are mutually prime, then by known property
there is one and only one residue class r satisfying the comparison equation
nr + q ≡ 0 (mod 2n− 1), from which the second statement follows. Lemma 1 is
proved completely.

Corollary. In each equivalence class relative to the rotation subgroup of
G2n−1 there is only one inscribed n-gon for the coefficients xk of the generat-
ing polynomial of which the condition

∑2n−2
k=0 kxk ≡ 0 (mod 2n− 1) is fulfilled.

The convex n-gons inscribed into the regular (2n−1)-gon, for the coefficients
of the generating polynomial

∑2n−2
k=0 xkz

k of which the condition
∑2n−2

k=0 kxk ≡ 0
(mod 2n− 1) is fulfilled, are called basic n-gons.

Lemma 2. Each inversion γm (m, 2n − 1) = 1 transforms any basic n-gon
into itself or into another basic n-gon.

P r o o f. Let P be a basic n-gon with generating polynomial
∑2n−2

k=0 xkz
k,

where
∑2n−2

k=0 kxk ≡ 0 (mod 2n − 1). By the definition, the inversion γm trans-
forms it into an n-gon with vertex numbers |km|, for which xk = 1, 0 ≤ k ≤ 2n−2.
But

∑
xk=1 |km| ≡ m

∑
xk=1 k ≡ 0 (mod 2n − 1), from which the desired state-

ment follows. Lemma 2 is proved.
Notice that the inversion γm transforms the basic n-gon P into itself if num-

bers of all its vertices enter into several cycles of the kind (s |sm| . . . |smi−1|),
where mi ≡ 1 (mod 2n− 1), for which the total sum of lengthes is n, moreover,
the power i is a divisor of order ϕ(2n − 1) of the inversion group. Any n-gon
transformed into itself by permutation αkγm of the group G2n−1 also possesses
this property. It is possible to show that if the inversion γm transforms P into it-
self, then the length of each cycle, in product of which γm decomposes, is smaller
than n.

The group properties established above allow to obtain the results being of
great importance for the development of the computer search algorithm of an-
tipodal polygons.

Theorem 2. The number of equivalence classes of the set of Cn
2n−1 convex

n-gons inscribed into the regular (2n− 1)-gon relative to the group G2n−1 equals

KG2n−1 =
(

Cn
2n−1

2n− 1
+

(m,2n−1)=1∑

m=2

F (γm)
)

/ϕ(2n− 1),

where F (γm) is the number of basic n-gons transformed into themselves by the
inversion γm.
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P r o o f. By Lemma 1, every equivalence class of the set of n-gons inscribed
into the regular (2n− 1)-gon relative to G2n−1 contains necessarily basic n-gons.
From Lemma 2, it follows that the set of all basic n-gons, contained in each
equivalence class relative to G2n−1, is the equivalence class of all basic n-gons
inscribed into the regular (2n − 1)-gon relative to the inversion group Γ2n−1.
Therefore, the numbers of the equivalence classes relative to the groups G2n−1

and γ2n−1 equal one another. By the well-known Burnside lemma [5, p. 68], we
have

KG2n−1 =
1

ϕ(2n− 1)

((m,2n−1)=1∑

m=1

F (γm)
)

,

where ϕ(2n−1) is the order of the group Γ2n−1 and F (γm) is the number of basic
n-gons transformed into themselves by the inversion γm. Taking into account that
by Lemma 1 F (γ1) =

Cn
2n−1

2n−1 , we obtain the desired statement from the previous
relation.

4. Antipodal Basic n-gons

From the proof of Lemma 1 it follows that the basic n-gon is obtained from
a non-basic n-gon with the help of some rotation αk, where α = (012 . . . 2n− 2)
and 1 ≤ k ≤ 2n − 2. Since at any rotation a convex n-gon transforms into the
one equal to it, antipodal n-gons P and P ′ can be transformed into basic n-gons
by a proper rotation not changing their quantities dk and d′k of equal diagonals
and sides (recall that by the definition of antipodal n-gons, dk + d′k = n for all
k = 1, 2, . . . , n − 1). Thus, at finding a pair of antipodal n-gons, it is possible
to restrict ourselves only by basic n-gons for which the coefficients xk and x′k of
their generating polynomials satisfy the conditions

∑2n−2
k=0 kxk ≡ 0 (mod 2n−1),∑2n−2

k=0 kx′k ≡ 0 (mod 2n− 1), respectively.

Theorem 3. Let p(z) =
∑2n−2

k=0 xkz
k and p′(z) =

∑2n−2
k=0 x′kz

k be the generat-
ing polynomials of antipodal basic n-gons P and P ′. Then

∑2n−2
k=0 k2(xk +x′k) ≡ 0

(mod 2n − 1) if (3, 2n − 1) = 1 and
∑2n−2

k=0 k2(xk + x′k) ≡ 2n−1
3 (mod 2n − 1),

otherwise.

P r o o f. Since P is a basic n-gon,
∑2n−2

k=0 kxk ≡ 0 (mod 2n−1). Next, since
xk equals 1 or 0, that is, x2

k = xk, then

(2n−2∑

k=0

kxk

)2

=
2n−2∑

k=0

k2xk + 2
∑

k>m

kmxkxm
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=
2n−2∑

k=0

k2xk +
∑

k>m

[k2xk + m2xm − (kxk −mxm)2]

= n
2n−2∑

k=0

k2xk −
k>m∑

xk=xm=1

(kxk −mxm)2 ≡ n
2n−2∑

k=0

k2xk −
n−1∑

s=1

s2ds (mod 2n− 1).

Here on the last step, our passing to the comparison equation is determined by
the fact that for the diagonal connecting the vertices of the n-gon P with numbers
k and m and visible from the center of the regular (2n− 1)-gon under the angle,
say, 2πs

2n−1 , the difference kxk −mxm may be equal either to s or 2n− 1− s, but
(2n− 1− s)2 ≡ s2 (mod 2n− 1).

Similarly, for the basic n-gon P ′ we obtain

(2n−2∑

k=0

kx′k

)2

≡ n
2n−2∑

k=0

k2x′k −
n−1∑

s=1

s2ds (mod 2n− 1).

Summing up the concluding comparisons for the inscribed n-gons P and P ′

termwise and taking into account that they are basic and antipodal by the con-
ditions of the theorem, we obtain

(2n−2∑

k=0

kxk

)2

+
(2n−2∑

k=0

kx′k

)2

≡ n

2n−2∑

k=0

k2(xk + x′k)−
n−1∑

s=1

s2(ds + d′s)

≡ n
2n−2∑

k=0

k2(xk + x′k)− n
n−1∑

s=1

s2 ≡ 0 (mod 2n− 1).

Since the integers n and 2n−1 are mutually prime, and
∑n−1

s=1 s2 = n(n−1)(2n−1
6

[6, p. 89], for the basic antipodal n-gons we finally obtain the relation

2n−2∑

k=0

k2(xk + x′k) ≡
n(n− 1)(2n− 1)

6
(mod 2n− 1).

It is seen that if 3 is not a divisor of module 2n−1, then
∑2n−2

k=0 k2(xk+x′k) ≡ 0
(mod 2n−1) which is stated by the theorem. And if 3 is a divisor of integer 2n−1,
then it is easy to check that

n(n− 1)(2n− 1)
6

=
(n + 1)(n− 2)(2n− 1)

6
+

2n− 1
3

,

where n + 1 = 3n − (2n − 1) is divided by three. And thus in this case,∑2n−2
k=0 k2(xk + x′k) ≡ 2n−1

3 (mod 2n− 1). The theorem is proved completely.
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Let W2n−1 be a quadratic residue subgroup of the group of residue classes
modulo 2n − 1, w be its order, and w1, w2, w3, . . . be its members in ascending
order beginning with w1 = 1. Let Q and Q′ be basic antipodal n-gons with gene-
rating polynomials q =

∑2n−2
k=0 xkz

k and q′ =
∑2n−2

k=0 x′kz
k. Denote by q2 a non-

negative residue of number
∑2n−2

k=0 k2xk modulo 2n− 1, and by q′2 a nonnegative
residue of number

∑2n−2
k=0 k2x′k the same modulo. By Theorem 3, q2 + q′2 ≡ 2n−1

3
(mod 2n− 1) or q2 + q′2 ≡ 0 (mod 2n− 1) depending on whether 3 is a divisor of
integer 2n − 1 or not. Under the condition q2 ≤ q′2, these comparison equations
have evidently exactly n solutions. The pair (q̄2, q̄

′
2) is said to be equivalent to

the pair (q2, q
′
2) if there exists a quadratic residue ws, 2 ≤ s ≤ w such that the

nonnegative residue of number wsq̄2 is equal to q2, and nonnegative residue of
number wsq̄

′
2 is equal to q′2 or nonnegative residue of number wsq̄2 is equal to

q′2 and nonnegative residue of number wsq̄
′
2 is equal to q2. Thus, the solution

(q2, q
′
2) is equivalent to the solution (q̄2, q̄

′
2) with respect to wr, where s · r ≡ 1

(mod 2n − 1), i.e., the equivalent solutions of our comparison form some class
relatively to the quadratic residue group W2n−1.

Theorem 4. Let
∑2n−2

k=0 xkz
k and

∑2n−2
k=0 x′kz

k be the generating polynomials
of any antipodal basic n-gons Q and Q′. And let K be the number of pairwise non-
equivalent pairs (q2, q

′
2), which can be the suitable nonnegative residues modulo

2n− 1 for Q and Q′, namely, q2 ≡
∑2n−2

k=0 k2xk, q′2 ≡
∑2n−2

k=0 k2x′k. Then

K =
(

n +
w∑

s=2

F (ws)
)

/w,

where F (ws) is the number of pairs (q2, q
′
2) which are transformed into themselves

by quadratic residue ws.

To prove the theorem, it is sufficiently to notice that F (w1) = n and to apply
the well-known Burnside lemma.

Notice that by property III [3, pp. 99–100], the order of the quadratic residue
group W2n−1 is equal to ϕ(2n−1)

2k , where k is a quantity of various prime divisors
of number 2n− 1.

In conclusion, the author wishes to thank the reviewers for their helpful com-
ments.
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