
Journal of Mathematical Physics, Analysis, Geometry
2013, vol. 9, No. 1, pp. 7�24

Radon�Nikod�ym Theorems for Multimeasures in
Non-Separable Spaces

B. Cascales
Departamento de Matem�aticas, Universidad de Murcia

30100 Espinardo (Murcia), Spain
E-mail: beca@um.es

V. Kadets
Department of Mechanics and Mathematics, V.N. Karazin Kharkov National University

4 Svobody sq., Kharkiv 61022, Ukraine
E-mail: vova1kadets@yahoo.com

J. Rodr��guez
Departamento de Matem�atica Aplicada, Facultad de Inform�atica, Universidad de Murcia

30100 Espinardo (Murcia), Spain
E-mail: joserr@um.es

Received February 8, 2012, revised June 7, 2012
We prove two Radon�Nikod�ym theorems for multimeasures using set-

valued Pettis integrable derivatives. The �rst one works for dominated
strong multimeasures taking convex compact values in a locally convex
space. The second one works for strong multimeasures taking bounded
convex closed values in a Banach space with the RNP (and for Bochner
integral of the Radon�Nikod�ym derivative as well). The main advantage of
our results is the absence of any separability assumptions.
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Dedicated to the memory of Mikhail Kadets

1. Introduction
The �rst Radon�Nikod�ym theorems for multimeasures go back to the 1970's

where pioneering results were established amongst others by Debreu and Schmei-
dler [9], Artstein [1], and Cost�e and Pallu de la Barri�ere [8]; whereas the �rst two
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papers deal with multimeasures with values in �nite dimensional spaces the last
one deals with multimeasures with values in Souslin in�nite dimensional spaces.
As presented in the introduction of [1] these original results in �nite dimensional
spaces were motivated for their applications to mathematical economics, control
theory and other mathematical �elds: Chapter 20 in [19] is a good reading for the
origins and applicability of these results.

We are here interested about the mathematical ideas behind Radon�Nidod�ym
theorem for multimeasures and our starting point is the remarkable result that
follows:

Theorem 1.1 (Cost�e and Pallu de la Barri�ere [8], Thm. 3.1). Let (E, Y ) be
a dual pair such that (E, σ(E, Y )) is a Souslin space, M be a weak multimeasure
de�ned on a complete �nite measure space (Ω, Σ, µ). Let M take σ(E, Y )-locally
compact closed convex values, and let there be a σ(E,F )-locally compact set Q
such that M(A) ⊂ µ(A)Q for all A ∈ Σ. Then there is a weakly integrable
multifunction F whose inde�nite weak integral is M.

Note that the theorem above is applicable for instance when X is a separable
Banach space and Q ⊂ X is a weakly compact set, because in this case the weak
topology σ(X,X∗) is Souslin. The aim of this article is to show that in reality
in the case of Q being compact any topological restriction about Q or about
the pair (E, Y ) is unnecessary. Our proof is completely di�erent from that of
[8, Theorem 3.1] and yields a widely applicable technique that allows us to obtain
Radon�Nikod�ym type results, amongst other, for multimeasures in Banach and
dual Banach spaces without separability assumptions.

Note, that there is a number of papers (see, e.g., [7, 16, 15] and the references
therein) devoted to the Radon�Nikod�ym theorem for multimeasures searching for
a Radon�Nikod�ym derivative in separable Banach spaces, where the integral of
the corresponding multifunction is de�ned as (the closure of) the set of all Bochner
integrable selectors. Our method of constructing Radon�Nikod�ym derivatives
enables us to get rid of the separability restriction in that type of results as well.

2. De�nitions and Terminology

Throughout this paper (Ω, Σ, µ) is a complete �nite measure space. The in-
dicator function of A ∈ Σ is denoted by 1A. By X we denote a (real) locally
convex space. X∗ stands for the topological dual space of X. By 2X we denote
the family of all non-empty subsets of X. We consider the following subfamilies
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of 2X :

bcc(X) := {A ∈ 2X : A is bounded, convex and closed};
ck(X) := {A ∈ 2X : A is convex and compact};

cwk(X) := {A ∈ 2X : A is convex and weakly compact}.

For any set C ⊂ X and any x∗ ∈ X∗, we write

δ∗(x∗, C) := sup{x∗(x) : x ∈ C} and C|x∗ := {x ∈ C : x∗(x) = δ∗(x∗, C)}.

De�nition 2.1. A multifunction F : Ω → bcc(X) is called Pettis integrable if

(i) δ∗(x∗, F ) is integrable for every x∗ ∈ X∗;

(ii) for each A ∈ Σ, there is
∫
A F dµ ∈ bcc(X) such that

δ∗


x∗,

∫

A

F dµ


 =

∫

A
δ∗(x∗, F ) dµ for every x∗ ∈ X∗.

Here the function δ∗(x∗, F ) : Ω → R is de�ned by δ∗(x∗, F )(t) := δ∗(x∗, F (t)).

The Pettis integral for multifunctions was �rst considered by Castaing and
Valadier [6, Chapter V, � 4] and has been widely studied in recent years, see, e.g.,
[3, 4, 12, 23].

Given a sequence (An) of subsets of X, we write
∑

n An to denote the set of all
elements of X which can be written as the sum of an unconditionally convergent
series

∑
n xn, where xn ∈ An for every n ∈ N.

De�nition 2.2. A multifunction M : Σ → 2X is called a strong multimea-
sure if :

(i) M(∅) = {0};
(ii) for each disjoint sequence (En) in Σ, we have M(

⋃
n En) =

∑
n M(En).

We say that the strong multimeasure M : Σ → 2X is µ-continuous (shortly
M ¿ µ) if M(A) = {0} whenever A ∈ Σ satis�es µ(A) = 0. A selector m of M
is a vector-valued function m : Σ → X such that m(A) ∈ M(A) for every A ∈ Σ.

For the concept of multimeasure and historical references we refer to [15,
Chapter 7] and the references therein. For the terminology of vector measure and
integration theory, in particular for de�nition and properties of Bochner integral
and Banach spaces with the Radon�Nikod�ym Property (RNP) we refer to [11].
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3. Radon�Nikod�ym Theorem for Dominated Multimeasures

This section is devoted to proving the following Radon�Nikod�ym theorem for
strong multimeasures. To be able to provide a proof for this result we will have
to establish �rst a few preliminary results.

Theorem 3.1. Let M : Σ → ck(X) be a strong multimeasure for which there
is a set Q ∈ ck(X) such that M(A) ⊂ µ(A)Q for all A ∈ Σ. Then there is a
Pettis integrable multifunction F : Ω → ck(X) such that:

(i) For every countably additive selector m of M there is a Pettis integrable
selector f of F such that m(A) =

∫
A f dµ for all A ∈ Σ.

(ii) For every A ∈ Σ the following equalities hold:

M(A) =
∫

A

F dµ =





∫

A

f dµ : f is a Pettis integrable selector of F



 .

Any strong multimeasure as in Theorem 3.1 has bounded variation, in the
sense of the following de�nition. Given a continuous seminorm p on X and A ⊂ X,
we write

‖A‖p := sup{p(x) : x ∈ A}.
De�nition 3.2. Let M : Σ → 2X be a strong multimeasure. For each contin-

uous seminorm p on X and each E ∈ Σ, we de�ne

|M |p(E) := sup
∑

i

‖M(Ei)‖p ,

where the supremum is taken over all �nite partitions (Ei) of E in Σ.
We say that M has bounded variation if |M |p(Ω) < ∞ for every continuous

seminorm p on X.

We start by recalling the following result that is part of the folklore.

Proposition 3.3. Let M : Σ → 2X be a strong multimeasure of bounded
variation. Then:

(i) for every continuous seminorm p on X, |M |p is a countably additive �nite
measure;

(ii) every �nitely additive selector m : Σ → X of M is countably additive.
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P r o o f. Statement (i) can be proved in the same way that the case
of signed (single-valued) measures; its validity for Banach space-valued strong
multimeasures was already pointed out in [16, Proposition 1.1].

To prove statement (ii), take a disjoint sequence (En) in Σ and �x a continuous
seminorm p on X. Then

p

(
m

(⋃
n

En

)
−

k∑

n=1

m(En)

)
= p

(
m

( ⋃

n>k

En

))

≤
∥∥∥∥∥M

( ⋃

n>k

En

)∥∥∥∥∥
p

≤ |M |p
( ⋃

n>k

En

)
→ 0 as k →∞,

because |M |p is a countably additive �nite measure (by (i)). Since p is arbitrary,
the series

∑
n m(En) converges to m(

⋃
n En) in X.

The following result on countably additive selectors of multimeasures can be
extracted from [24, Theorem 3]; cf. [16, Proposition 2.1] for an analogous result
dealing with exposed points and Banach spaces: the proof is included here because
it might be di�cult for some readers to get a copy of the original paper [24].

Lemma 3.4 (Pallu de la Barri�ere). Let M : Σ → 2X be a convex valued strong
multimeasure of bounded variation.

(i) If x ∈ ext(M(Ω)), then there is a countably additive selector m of M such
that m(Ω) = x.

(ii) If M takes values in ck(X), then for every x ∈ M(Ω) there is a countably
additive selector m of M such that m(Ω) = x.

P r o o f. (i) Observe �rst that if C1, C2 ⊂ X are convex and x ∈ ext(C1+C2),
then there exist unique xi ∈ Ci such that x = x1 + x2; moreover, xi ∈ ext(Ci).

For each A ∈ Σ, we have x ∈ ext(M(Ω)) = ext
(
M(A) + M(Ω \ A)

)
and

so there exist unique m(A) ∈ M(A) and m(Ω \ A) ∈ M(Ω \ A) such that x =
m(A) + m(Ω \A).

We claim that m : Σ → X is �nitely additive. Indeed, take disjoint A1, A2 ∈ Σ
and set A := A1 ∪ A2. Since m(A) ∈ M(A) = M(A1) + M(A2), we can write
m(A) = x1 + x2 for some xi ∈ M(Ai). Since

x = m(A) + m(Ω \A) = x1 +
(
x2 + m(Ω \A)

)

and x2 + m(Ω \ A) ∈ M(A2) + M(Ω \ A) = M(Ω \ A1), we obtain x1 = m(A1).
In a similar manner, x2 = m(A2). Hence m(A) = m(A1) + m(A2). Now we use
(ii) in Proposition 3.3 to conclude that m is countably additive.
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(ii) Let S be the set of all �nitely additive selectors of M and consider

R :=
{(

m(A)
)
A∈Σ

: m ∈ S
}
⊂

∏

A∈Σ

M(A) ⊂ XΣ

equipped with the product topology T. Since R is T-closed and
∏

A∈Σ M(A) is
T-compact, R is T-compact as well. Since the mapping

ϕ : R → X, ϕ(m) := m(Ω),

is T-continuous, the set ϕ(R) ⊂ M(Ω) is compact. By (i) and the convexity
of ϕ(R) we have

co
(
ext(M(Ω))

) ⊂ ϕ(R)

and an appeal to the Krein�Milman theorem [20, �25.1.(4)] ensures us that ϕ(R) =
M(Ω).

Hence for every x ∈ M(Ω) there is a �nitely additive selector m of M such
that m(Ω) = x. Again, statement (ii) in Proposition 3.3 can be used to conclude
that m is countably additive.

Given a set B ⊂ X, we denote by att(B) the set of those x∗ ∈ X∗ that attain
their supremum on B (i.e. B|x∗ 6= ∅). The result isolated in Lemma 3.5 below was
proved in [8, Proposition 5.1] under the assumption that X is �nite-dimensional,
but in fact that assumption was not used in the proof.

Lemma 3.5 (Coste and Pallu de la Barri�ere). Let M : Σ → 2X be a strong
multimeasure. If x∗ ∈ att(M(Ω)) then:

(i) x∗ ∈ att(M(A)) for all A ∈ Σ;

(ii) the mapping M |x∗ : Σ → 2X , M |x∗(A) := (M(A))|x∗, is a strong multimea-
sure.

P r o o f. (i) Fix A ∈ Σ. Pick x ∈ M |x∗(Ω) ⊂ M(Ω) = M(A) + M(Ω \ A)
and write x = y + z for some y ∈ M(A) and z ∈ M(Ω \ A). Suppose if possible
that y 6∈ (M(A))|x∗ . Then x∗(v) > x∗(y) for some v ∈ M(A) and so the vector
v + z ∈ M(A) + M(Ω \A) = M(Ω) satis�es x∗(v + z) > x∗(y + z) = x∗(x), which
contradicts the choice of x. Thus y ∈ (M(A))|x∗ and so x∗ ∈ att(M(A)).

(ii) Clearly M |x∗(∅) = {0}. Now let (An) be a disjoint sequence in Σ and set
A :=

⋃
n An. To prove M |x∗(A) ⊂ ∑

n M |x∗(An), pick x ∈ M |x∗(A) ⊂ M(A) =∑
n M(An) and write x =

∑
n xn, where xn ∈ M(An). By the argument used in

the proof of (i), we have xn ∈ M |x∗(An) for every n ∈ N, hence x ∈ ∑
n M |x∗(An).
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To prove
∑

n M |x∗(An) ⊂ M |x∗(A), take any x ∈ ∑
n M |x∗(An) and write

x =
∑

n xn, where xn ∈ M |x∗(An). Each y ∈ M(A) can be written as y =
∑

n yn

for some yn ∈ M(An), so that

x∗(y) =
∑

n

x∗(yn) ≤
∑

n

x∗(xn) = x∗(x).

It follows that x ∈ M |x∗(A) and the proof is over.

Let ρ : Σ → Σ be a lifting on (Ω, Σ, µ) (see, e.g., [17, p. 46, Theorem 3] or [14,
341K]). Note that ρ satis�es the following properties:

1. If A,B ∈ Σ and µ(A∆B) = 0 then ρ(A) = ρ(B).

2. µ(ρ(A)∆A) = 0 for every A ∈ Σ.

3. ρ(A ∩B) = ρ(A) ∩ ρ(B) for every A,B ∈ Σ.

4. ρ(∅) = ∅, ρ(Ω) = Ω.

5. ρ(Ω\A) = Ω\ρ(A) for every A ∈ Σ.

6. ρ(A ∪B) = ρ(A) ∪ ρ(B) for every A,B ∈ Σ.

Then ρ(Σ) is a subalgebra of Σ such that µ(A) > 0 whenever A ∈ ρ(Σ) \ {∅}.
We consider the collection f of all �nite partitions of Ω into elements of

ρ(Σ) \ {∅}, equipped with the natural ordering (de�ned by saying that Γ1 Â Γ2 if
and only if Γ1 is �ner than Γ2). Then (f,Â) is a directed set.

The notion of Pettis integrable vector-valued function f : Ω → X as can be
found in the literature (see, e.g., [11, II.3] for the Banach space case) corresponds
to De�nition 2.1 for F (t) := {f(t)} when the integral

∫
A F dµ is a singleton.

Recall that a function f : Ω → X is strongly measurable if it is the µ-a.e.
limit of a sequence of simple functions. A celebrated Pettis' result establishes
that, when X is a Banach space, a function f : Ω → X is strongly measurable if,
and only if, f is weakly measurable (i.e., x∗ ◦ f is measurable for every x∗ ∈ X)
and f(Ω \ A) is separable for some A ∈ Σ with µ(A) = 0, see [11, Theorem 2,
p. 42].

De�nition 3.6. For every Pettis integrable function f : Ω → X and every
Γ ∈ f, we de�ne fΓ : Ω → X by

fΓ :=
∑

A∈Γ

( 1
µ(A)

∫

A

f dµ
)
1A.

Journal of Mathematical Physics, Analysis, Geometry, 2013, vol. 9, No. 1 13
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The following lemma can be deduced from a result by Kupka, see [21, Lemma 4.3].
For the readers convenience we prefer to give a direct proof.

Lemma 3.7. Suppose X is a Banach space and f : Ω → X is strongly mea-
surable and Pettis integrable. Then limΓ fΓ = f µ-a.e. Moreover, for every ε > 0
there is U ∈ Σ with µ(Ω \ U) < ε such that limΓ fΓ = f uniformly on U .

P r o o f. Without loss of generality we may assume that f(Ω) is separable.
Fix ε > 0 and a sequence (εn) of positive real numbers converging to 0.

Fix n ∈ N. We can �nd a disjoint covering {Dn,k}k∈N of f(Ω) by Borel sets
with diam(Dn,k) < εn. Since {f−1(Dn,k)}k∈N is a partition of Ω into measurable
sets, we can choose jn ∈ N large enough such that

µ
(
f−1

( ⋃

k>jn

Dn,k

))
<

ε

2n
.

De�ne Bn,k = f−1(Dn,k) and An,k := ρ(Bn,k) for all k = 1, 2, . . . , jn. Observe
that Vn :=

⋃jn

k=1(An,k
⋂

Bn,k) ∈ Σ satis�es

µ(Vn) =
jn∑

k=1

µ(An,k ∩Bn,k) =
jn∑

k=1

µ(Bn,k) = µ
(
f−1

( jn⋃

k=1

Dn,k

))
> µ(Ω)− ε

2n
.

Set

An,jn+1 := Ω \
jn⋃

k=1

An,k = ρ
(
f−1

( ⋃

k>jn

Dn,k

))

and let Γn ∈ f be the partition of Ω consisting of all non-empty An,k's.
We claim that ‖fΓ(t) − f(t)‖ < εn for every Γ ∈ f with Γ Â Γn and every

t ∈ Vn. Indeed, let k ∈ {1, . . . , jn} be such that t ∈ An,k ∩Bn,k. Then An,k ∈ Γn

and there is A ∈ Γ such that t ∈ A ⊂ An,k, so that µ(A \Bn,k) = 0 and

fΓ(t) =
1

µ(A)

∫

A

f dµ =
1

µ(A ∩Bn,k)

∫

A∩Bn,k

f dµ ∈ co
(
f(A ∩Bn,k)

) ⊂ co(Dn,k),

thanks to the Hahn�Banach separation theorem. Since f(t) ∈ f(Bn,k) ⊂ Dn,k

and diam(co(Dn,k)) = diam(Dn,k) < εn, we get ‖fΓ(t)− f(t)‖ < εn, as claimed.
The previous claim ensures us that limΓ fΓ = f uniformly on U :=

⋂
n∈N Vn,

which belongs to Σ and satis�es

µ(Ω \ U) = µ
( ⋃

n∈N
Ω \ Vn

)
≤

∑

n∈N
µ(Ω \ Vn) <

∑

n∈N

ε

2n
= ε.

Since ε > 0 is arbitrary, a standard argument now implies that limΓ fΓ = f µ-a.e.
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We stress that, in particular, Lemma 3.7 is applicable to ordinary real-valued
Lebesgue integrable functions.

Remark 3.8. The conclusion of Lemma 3.7 can fail without the strong mea-
surability assumption. In fact, for a Banach space X, a Pettis integrable function
f : Ω → X is strongly measurable if, and only if, we have

(a) limΓ fΓ = f µ-a.e. and

(b) the set R(f) = {∫A f dµ : A ∈ Σ} is separable.

Such separability condition is ful�lled automatically for any Pettis integrable func-
tion f : Ω → X under mild assumptions on either µ or X, see, e.g., [22,
Sections 9 and 10] and [25, Chapters 4 and 5]. Also, if f : Ω → X is Birkho� or
McShane integrable then R(f) is relatively norm compact [2, 13], hence R(f) is
separable and therefore for such an f if limΓ fΓ = f µ-a.e. then f is neccesarily
strongly measurable.

From now on we work with a �xed ultra�lter U on f containing all subsets of
f of the form {Γ′ ∈ f : Γ′ Â Γ} where Γ ∈ f.

De�nition 3.9. Let {VΓ : Γ ∈ f} be a collection of subsets of X. We denote
by LIMΓ VΓ the set (maybe empty) of all x ∈ X for which there exist vΓ ∈ VΓ,
Γ ∈ f, such that U − limΓ vΓ = x.

P r o o f of Theorem 3.1. For every Γ ∈ f, de�ne MΓ : Ω → ck(X) by

MΓ :=
∑

A∈Γ

M(A)
µ(A)

1A.

Given any t ∈ Ω, we have MΓ(t) ⊂ Q for all Γ ∈ f and so the compactness of Q
yields ∅ 6= LIMΓ MΓ(t) ⊂ Q. We can de�ne a multifunction F : Ω → ck(X) by

F (t) := LIMΓ MΓ(t). (1)

Let us check that F satis�es the required properties.
In order to prove (i), let m be a countably additive selector of M . For each

Γ ∈ f, de�ne mΓ : Ω → Q ⊂ X by mΓ :=
∑

A∈Γ
m(A)
µ(A) 1A. Then we can de�ne a

function f : Ω → X by f(t) := U − limΓ mΓ(t). Observe that f is a selector of F ,
because mΓ is a selector of MΓ for every Γ ∈ f.

Fix x∗ ∈ X∗. Clearly, x∗ ◦m is countably additive. Moreover, the inequalities

min(x∗(Q))µ(A) ≤ x∗(m(A)) ≤ max(x∗(Q))µ(A) for all A ∈ Σ

Journal of Mathematical Physics, Analysis, Geometry, 2013, vol. 9, No. 1 15
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imply that x∗ ◦m has bounded variation and x∗ ◦m ¿ µ. Let h be the Radon�
Nikod�ym derivative of x∗ ◦ m with respect to µ. Note that for each Γ ∈ f we
have

hΓ =
∑

A∈Γ

( 1
µ(A)

∫

A

h dµ
)
1A =

∑

A∈Γ

(x∗ ◦m)(A)
µ(A)

1A = x∗ ◦mΓ.

By Lemma 3.7 applied to h, we have limΓ x∗ ◦mΓ = h µ-a.e. On the other hand,
by the de�nition of f we have U − limΓ(x∗ ◦mΓ)(t) = (x∗ ◦ f)(t) for every t ∈ Ω.
It follows that x∗ ◦ f = h µ-a.e. Hence x∗ ◦ f is integrable and satis�es

∫

A

x∗ ◦ f dµ =
∫

A

h dµ = x∗(m(A)) for all A ∈ Σ.

As x∗ ∈ X∗ is arbitrary, f is a Pettis integrable Radon�Nikod�ym derivative of m.
We now turn to the proof of (ii). Fix x∗ ∈ X∗. The �nitely additive measure

ν : Σ → R de�ned by the formula ν(A) := δ∗(x∗,M(A)) satis�es

min(x∗(Q))µ(A) ≤ ν(A) ≤ max(x∗(Q))µ(A) for all A ∈ Σ.

Hence ν is countably additive, it has bounded variation and ν ¿ µ. Let g be the
Radon�Nikod�ym derivative of ν with respect to µ. For every Γ ∈ f we have

gΓ =
∑

A∈Γ

( 1
µ(A)

∫

A

g dµ
)
1A =

∑

A∈Γ

δ∗(x∗,M(A))
µ(A)

1A = δ∗(x∗,MΓ).

Lemma 3.7 applied to g ensures us that limΓ δ∗(x∗,MΓ) = g µ-a.e; bearing in
mind now the equality (1) it follows that

δ∗(x∗, F ) ≤ U − lim
Γ

δ∗(x∗,MΓ) = g µ-a.e. (2)

¨ Claim. The function δ∗(x∗, F ) is integrable.
Indeed, observe �rst that the mapping M |x∗ : Σ → ck(X) is a strong multimeasure
(by Lemma 3.5) and has bounded variation because M |x∗(A) ⊂ µ(A)Q for every
A ∈ Σ. Lemma 3.4 provides us with a countably additive selector m of M |x∗ ,
that is also a selector of M that satis�es

x∗(m(A)) = δ∗(x∗,M(A)) =
∫

A

g dµ for all A ∈ Σ.

By (ii), there is a Pettis integrable selector f of F such that for every A ∈ Σ
we have

∫
A f dµ = m(A) and so

∫
A x∗ ◦ f dµ = x∗(m(A)) =

∫
A g dµ. Therefore

x∗ ◦ f = g µ-a.e. On the other hand, in view of (2) we also have x∗ ◦ f ≤
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δ∗(x∗, F ) ≤ g µ-a.e. It follows that δ∗(x∗, F ) = x∗ ◦ f µ-a.e., hence δ∗(x∗, F ) is
integrable, as claimed.

Moreover, for every A ∈ Σ we have
∫

A

δ∗(x∗, F ) dµ =
∫

A

x∗ ◦ f dµ = x∗(m(A)) = δ∗(x∗,M(A)).

Since x∗ ∈ X∗ is arbitrary, F is Pettis integrable and M(A) =
∫
A F dµ for all

A ∈ Σ.
To �nish the proof of (ii), �x A ∈ Σ and note that the Hahn�Banach separation

theorem implies

M(A) ⊃




∫

A

f dµ : f is a Pettis integrable selector of F



 =: S(A).

In order to prove the converse inclusion, take any x ∈ M(A). Lemma 3.4 applied
to the restriction of M to the trace σ-algebra ΣA := {B ∩A : B ∈ Σ} guarantees
the existence of a countably additive selector m1 : ΣA → X of M |ΣA

such that
x = m1(A). Now let m : Σ → X be any countably additive selector of M . Then
the formula

m̃1(B) := m1(B ∩A) + m(B \A)

de�nes a countably additive selector m̃1 : Σ → X of M extending m1. By
part (i) applied to m̃1, there is a Pettis integrable selector f of F such that
m̃1(B) =

∫
B f dµ for all B ∈ Σ. So, x = m̃1(A) =

∫
A f dµ ∈ S(A). We have

�nally established that M(A) = S(A). The proof is over.
In the last result of this section cw∗k(X∗) denotes the family of all non-empty

convex w∗-compact subsets of the dual X∗ of a Banach space X; w∗ is the weak∗
topology of X∗ and BX∗ stands for the closed dual unit ball. For the concept and
properties of Gel'fand integral for multifunctions we refer to the paper [5].

Proposition 3.10. Let X be a Banach space and let M : Σ → cw∗k(X∗) be a
µ-continuous strong multimeasure for the dual norm with bounded norm variation
|M |. Then there exists a Gel'fand integrable multifunction F : Ω → cw∗k(X∗)
such that for every A ∈ Σ we have

M(A) =
∫

A

F dµ =
{ ∫

A

f dµ : f is a Gel'fand integrable selector of F
}

.

P r o o f. Let g be the Radon�Nikod�ym derivative of |M | with respect to µ.
For each n ∈ N let us de�ne An := {t ∈ Ω : n − 1 ≤ g(t) < n} ∈ Σ and write
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Σn := {A∩An : A ∈ Σ}. The restriction M |Σn : Σn → cw∗k(X∗) satis�es that for
every A ∈ Σn we have M(A) ⊂ µ(A)

(
nBX∗

)
. According to Theorem 3.1 applied

to the locally convex space (X∗, w∗) there is a Gel'fand integrable multifunction
Fn : An → cw∗k(X∗) such that

M(A) =
∫

A

Fn dµ for every A ∈ Σn. (3)

Note that {An}n∈N is a partition of Ω in Σ, therefore the multifunction

F : Ω → cw∗k(X∗), F (t) := Fn(t) whenever t ∈ An,

clearly satis�es that δ∗(x, F ) is measurable for every x ∈ X. On the other hand
for every n ∈ N, every A ∈ Σn and every x ∈ X, we have that

∫

A

δ∗(x, F ) dµ =
∫

A

δ∗(x, Fn) dµ = δ∗(x,M(A))

≤ ‖x‖‖M(A)‖ ≤ ‖x‖|M |(A) = ‖x‖
∫

A

g dµ.

Therefore, for every x ∈ X we have δ∗(x, F (t)) ≤ ‖x‖g(t) for µ-a.e. t ∈ Ω. Hence,
for every x ∈ X we also have
−δ∗(x, F (t)) = inf{−x∗(x) : x∗ ∈ F (t)} ≤ δ∗(−x, F (t)) ≤ ‖ − x‖g(t) = ‖x‖g(t)

for µ-a.e. t ∈ Ω and consequently δ∗(x, F ) is integrable. So F is Gel'fand inte-
grable.

To �nish we will establish that for every A ∈ Σ we have M(A) =
∫
A F dµ,

which is equivalent to proving that δ∗(x,M(A)) = δ∗(x,
∫
A F dµ) for every x ∈ X,

because both sets are convex and w∗-compact (see [5, Theorem 4.5] for the
latter). On one hand, for each x ∈ X the measure νx : Σ → R given by
νx(A) := δ∗(x,M(A)) is countably additive. On the other hand, since F is
Gel'fand integrable, for each x ∈ X the measure σx : Σ → R de�ned by σx(A) :=
δ∗(x,

∫
A F dµ) =

∫
A δ∗(x, F ) dµ is also countably additive. The formula (3) im-

plies in particular that νx|Σn = σx|Σn for every n ∈ N, and �nally the countable
additivity of νx and σx leads to νx = σx in Σ. The proof is over.

4. Set-Valued Derivatives in Banach Spaces with the RNP
Throughout this section X is assumed to be a Banach space. Our aim here is

to demonstrate the following statement:
Theorem 4.1. Suppose X has the RNP. Let M : Σ → bcc(X) be a strong

multimeasure of bounded variation with M ¿ µ. Then there is a Pettis integrable
multifunction F : Ω → bcc(X) such that:
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(i) For every countably additive selector m of M there is a Bochner integrable
selector of F such that m(A) =

∫
A f dµ for all A ∈ Σ.

(ii) For every A ∈ Σ the following equalities hold:

M(A) =
∫

A

F dµ =





∫

A

f dµ : f is a Bochner integrable selector of F



.

This result generalizes Theorem 2 of [7] proved for separable spaces. The
anonymous referee kindly communicated to us that in the case of strongly compact
values the theorem reduces to the separable case, but already for weakly compact
values there is no such a reduction. Before o�ering a proof for Theorem 4.1 we
need a lemma:

Lemma 4.2. Suppose X has the RNP. Let M : Σ → bcc(X) be a strong
multimeasure of bounded variation. Then there exist a norm dense set W ⊂ X∗

and a family {mx∗}x∗∈W of countably additive selectors of M such that

x∗(mx∗(A)) = δ∗(x∗,M(A)) for every x∗ ∈ W and every A ∈ Σ.

P r o o f. By the Bishop�Phelps theorem (see, e.g., [10, p. 3]), the set
W := att(M(Ω)) is norm dense in X∗. Fix x∗ ∈ W . Then Lemma 3.5 ensures
that M |x∗ : Σ → bcc(X) is a strong multimeasure. Since M |x∗(A) ⊂ M(A) for
all A ∈ Σ and M has bounded variation, M |x∗ has bounded variation as well.
Since M |x∗(Ω) ∈ bcc(X) and X has the RNP, we have ext(M |x∗(Ω)) 6= ∅ (see,
e.g., [10, Theorem 1, p. 231]). Therefore, Lemma 3.4 applied to M |x∗ guarantees
the existence of a countably additive selector mx∗ of M |x∗ . Of course, mx∗ is a
selector of M and we have x∗(mx∗(A)) = δ∗(x∗,M(A)) for all A ∈ Σ.

P r o o f of Theorem 4.1. As in the proof of Theorem 3.1, for each Γ ∈ f we
consider the multifunction MΓ : Ω → bcc(X) given by

MΓ :=
∑

A∈Γ

M(A)
µ(A)

1A

and, for each t ∈ Ω, we de�ne

G(t) := LIMΓ MΓ(t)

(with respect to the norm topology). We shall prove �rst that

∅ 6= G(t) ∈ bcc(X) for µ-a.e. t ∈ Ω. (4)

Journal of Mathematical Physics, Analysis, Geometry, 2013, vol. 9, No. 1 19



B. Cascales, V. Kadets, and J. Rodr��guez

Obviously, G(t) is convex for all t ∈ Ω. To check that G(t) 6= ∅ for µ-a.e. t ∈ Ω,
let m be any countably additive selector of M (apply Lemma 4.2). Observe that
m has bounded variation and m ¿ µ. Since X has the RNP, there is a Bochner
integrable function f : Ω → X such that m(A) =

∫
A f dµ for all A ∈ Σ. In

particular, for every Γ ∈ f and every t ∈ Ω we have

fΓ(t) =
∑

A∈Γ

( 1
µ(A)

∫

A

f dµ
)
1A(t) =

∑

A∈Γ

m(A)
µ(A)

1A(t) ∈ MΓ(t).

According to Lemma 3.7, we have limΓ fΓ = f µ-a.e., hence f(t) ∈ G(t) 6= ∅
for µ-a.e. t ∈ Ω. On the other hand, |M | is a countably additive �nite mea-
sure (Proposition 3.3) with |M | ¿ µ and we can consider its Radon�Nikod�ym
derivative g with respect to µ. For every Γ ∈ f and every t ∈ Ω we have

‖MΓ(t)‖ =
∑

A∈Γ

‖M(A)‖
µ(A)

1A(t) ≤
∑

A∈Γ

|M |(A)
µ(A)

1A(t)

=
∑

A∈Γ

( 1
µ(A)

∫

A

g dµ
)
1A(t) = gΓ(t).

Bearing in mind that limΓ gΓ = g µ-a.e. (by Lemma 3.7), it follows from the
equality above that ‖G(t)‖ ≤ g(t) < ∞ for µ-a.e. t ∈ Ω. This �nishes the proof
of (4).

Now let F : Ω → bcc(X) be any multifunction such that F (t) = G(t) for
µ-a.e. t ∈ Ω. We shall check that F satis�es the required properties. Observe
that (i) has already been obtained in the proof of (4).

By Lemma 4.2, there exist a norm dense set W ⊂ X∗ and a family {mx∗}x∗∈W

of countably additive selectors of M such that
x∗(mx∗(A)) = δ∗(x∗,M(A)) for every x∗ ∈ W and every A ∈ Σ.

Thus, (i) applied to each mx∗ ensures us of the existence of a family {fx∗}x∗∈W

of Bochner integrable selectors of F such that
∫

A

(x∗ ◦ fx∗) dµ = x∗




∫

A

fx∗ dµ


 = δ∗(x∗,M(A)) (5)

for every x∗ ∈ W and every A ∈ Σ.
Fix x∗ ∈ W . Given Γ ∈ f and t ∈ Ω, we have

δ∗(x∗,MΓ(t))
t∈A, A∈Γ

= sup
{

x∗(x) : x ∈ M(A)
µ(A)

}
=

δ∗(x∗,M(A))
µ(A)

(5)
=

1
µ(A)

∫

A

(x∗ ◦ fx∗) dµ = (x∗ ◦ fx∗)Γ(t).
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Last equality and Lemma 3.7 (applied to x∗ ◦fx∗) yield δ∗(x∗, F ) ≤ x∗ ◦fx∗ µ-a.e.
Since fx∗ is a selector of F we have δ∗(x∗, F ) = x∗ ◦ fx∗ µ-a.e. Hence δ∗(x∗, F ) is
integrable and (5) says that

∫

A

δ∗(x∗, F ) dµ = δ∗(x∗,M(A)) for all A ∈ Σ. (6)

Let us consider now an arbitrary x∗ ∈ X∗. Since W is norm dense in X∗, we
can �nd a sequence (x∗n) in W such that ‖x∗n − x∗‖ → 0. Since F takes bounded
values, we have δ∗(x∗n, F ) → δ∗(x∗, F ) pointwise. Moreover, for each n ∈ N we
have

|δ∗(x∗n, F (t))| ≤ ‖x∗n‖‖F (t)‖ ≤ Cg(t) for µ-a.e. t ∈ Ω,

where C := supk∈N ‖x∗k‖ and g is the Radon�Nikod�ym derivative of |M | with re-
spect to µ (see the proof of (4) above). An appeal to the Dominated Convergence
Theorem assures that δ∗(x∗, F ) is integrable and that

∫

A

δ∗(x∗, F ) dµ = lim
n→∞

∫

A

δ∗(x∗n, F ) dµ
(6)
= lim

n→∞ δ∗(x∗n, M(A)) = δ∗(x∗,M(A))

for every A ∈ Σ. This proves that F is Pettis integrable and

M(A) =
∫

A

F dµ for every A ∈ Σ.

Fix A ∈ Σ. Observe that the inclusion

M(A) =
∫

A

F dµ ⊃




∫

A

f dµ : f is a Bochner integrable selector of F



 =: S(A)

follows directly from the Hahn�Banach separation theorem. To prove the converse
inclusion, take any x ∈ ext(M(A)). By Lemma 3.4 applied to M |ΣA

, there is
a countably additive selector m1 : ΣA → X of M |ΣA

such that x = m1(A).
Let m̃1 : Σ → X be any countably additive selector of M extending m1 (see
the proof of (ii) in Theorem 3.1). By (i) applied to m̃1, there is a Bochner
integrable selector f of F such that m̃1(B) =

∫
B f dµ for all B ∈ Σ. Thus,

x = m̃1(A) =
∫
A f dµ ∈ S(A). This shows that ext(M(A)) ⊂ S(A) and so we

have co(ext(M(A))) ⊂ S(A) (because S(A) is convex). Since

M(A) = co
(
ext(M(A)

)

thanks to the RNP (see, e.g., [10, Theorem 1, p. 231]), we conclude that M(A) =
S(A). The proof is over.
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Remark 4.3. If we additionally assume that X∗ has the RNP and M takes
values in cwk(X) in Theorem 4.1, then

SF := {f : Ω → X : f is Bochner integrable selector of F}

is relatively weakly compact in L1(µ,X).

P r o o f. For any f ∈ SF , let mf : Σ → X be the countably additive selector
of M de�ned by mf (A) :=

∫
A f dµ. Observe that

∫

A

‖f‖ dµ = |mf |(A) ≤ |M |(A) for all A ∈ Σ.

From the previous inequality and the fact that |M | is a µ-continuous countably
additive �nite measure (Proposition 3.3) it follows that SF is uniformly integrable.
Moreover, for each A ∈ Σ, the set





∫

A

f dµ : f ∈ SF



 ⊂ M(A)

is relatively weakly compact in X. Since X∗ has the RNP, we infer that SF is
relatively weakly compact in L1(µ,X) (see, e.g., [11, Theorem 1, p. 101]).

If X is separable and F : Ω → 2X is an E�ros measurable multifunction taking
closed non-empty values, then the relative weak compactness of SF in L1(µ,X)
implies that F (t) is weakly compact in X for µ-a.e. t ∈ Ω, see [18, Theorem 3.6].
So the answer to the following natural question is a�rmative when X is separable
[7, Theorem 3]:

Question. Under the assumptions of Theorem 4.1, suppose further that X∗

has the RNP and M takes values in cwk(X). Is it possible to construct F in such
a way that F (t) ∈ cwk(X) for µ-a.e. t ∈ Ω? Does our construction give F with
this additional property?

Acknowledgement. We express our gratitude to the referee for several useful
comments, in particular for telling us about Kupka's paper [21] where a similar
idea of constructing Radon�Nikod�ym derivatives was introduced for single-valued
vector measures and Bochner integrable Radon�Nikod�ym derivatives.
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