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1. Introduction and Main Result

Let X, Y be Banach spaces and let L(X,Y ) be the space of all bounded
linear operators from X to Y . Notationally, all spaces are infinite dimensional
real Banach spaces unless otherwise specified.

Definition 1. An operator T ∈ L(X, Y ) is called superstrictly singular (SSS
for short; finitely strictly singular in other terminology) if there are no number
c > 0 and no sequence of subspaces En ⊂ X, dimEn = n, such that

‖Tx‖ ≥ c‖x‖ for all x in ∪n En . (1)

Put for an operator T

bn(T ) = sup min
x∈SE

‖Tx‖ , (2)

where supremum is taken over all n-dimensional subspaces E ⊂ X and SE is the
unit sphere of E. Evidently,

‖T‖ = b1(T ) ≥ b2(T ) ≥ · · · ≥ 0 ,
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T is SSS if and only if
bn(T ) → 0 as n →∞

and the greatest constant c for which (1) is satisfied, is equal to limn→∞ bn(T ) .
Obviously, every compact operator is SSS and T has finite rank if and only

if bn(T ) = 0 beginning with some integer n. Observe, that if T has infinite rank
then for each n the set In(T ) of all n-dimensional subspaces E such that T |E are
injective, is dense in the set of all n-dimensional subspaces. Then the formula (2)
turns into the following one

bn(T ) = sup
E∈In(T )

1
‖(T |E)−1‖ . (3)

The bn(T ), which are called the Bernstein numbers, were considered in Ap-
proximation and Operator Theory. The constants bn(T ) show how small is the
T -image of the unit sphere SX . For a compact operator T in a Hilbert space H
they coincide with s-numbers which are defined as eigenvalues of the operator
(T ∗T )1/2. There are several generalizations of s-numbers to Banach spaces (see
below for details).

The Bernstein numbers take origin (see Whitley [26]) in the following classical
inequalities:

If pn is a polynomial of degree at most n, then for its derivative

‖p′n‖ ≤ n2‖pn‖ ,

the norm being the supremum norm on [−1, 1] (Markov [13]).
If qn is a complex trigonometric polynomial of degree at most n, then

‖q′n‖ ≤ n‖qn‖ ,

the norm being the supremum norm on the unite circle (Bernstein [2]).

Both of these inequalities have the same form: A Banach space, a derivation
operator D and an (n + 1)-dimensional subspace F are given. The conclusion
estimates the value of ‖D|F ‖. From this point of view it is natural to ask to what
extent the norm depend on F . In particular, what improvement is possible, i.e.
what is the best possible constant

inf{‖D|F ‖ : dimF = n} ?

It appears that this constant is equal to n [26]. Considering the inverse of D
we arrive to the notion of the Bernstein numbers. We find bn(T ) as far as in
(Krein/Krasnoselskĭı/Milman [11]). After (Mitiagin/Henkin [16]), SSS operators
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were introduced implicitly by Mitiagin and PeÃlczyński [17] and explicitly, under
the name “operators of the class C∗

0”, by Milman [15].
The important role has been played by Pietsch’s paper [19] where systematic

theory of abstract s-numbers in Banach spaces was developed (see also [20]). In
particular, Pietsch noted the importance of duality and of the principle of local
reflexivity. The term “superstrictly singular operator” was introduced in (Hin-
richs/Pietsch [7]), where this class was investigated by machinery of superideals,
and by Mascioni [14]. For further progress in the theory of SSS operators in
general Banach spaces see e.g. (Plichko [24]) and (Flores/Hernández/Raynaud
[6]).

As we noted, an operator T is SSS if and only if bn(T ) ↓ 0. One can pose
an “inverse” problem. Let X, Y be Banach spaces and dn ↓ 0. Does there exist
T ∈ L(X,Y ) such that bn(T ) = dn for every n? We have a little chance to obtain
a positive answer. So, we will consider a weaker question which is natural in a
more general setting.

According to Pietsch [21], a map s which assigns to each bounded linear ope-
rator T between Banach spaces a unique sequence (sn(T )), is called an s-function
if for all Banach spaces W,X, Y, Z:

1. ‖T‖ = s1(T ) ≥ s2(T ) ≥ · · · ≥ 0 for all T ∈ L(X, Y ).

2. sn(S + T ) ≤ sn(S) + ‖T‖ for all S, T ∈ L(X,Y ) and all n.

3. sn(RST )≤ ‖R‖sn(S)‖T‖ for all T ∈ L(X,Y ), S∈ L(Y,Z) and R∈ L(Z, W ).

4. If T ∈ L(X,Y ) and rank T < n, then sn(T ) = 0.

5. sn(I) = 1 for all n, where I is the identity map of `n
2 .

The scalar sn(T ) is called the nth s-number of the operator T . The Bernstein
numbers are s-numbers. Another example of s-numbers are the approximation
numbers defined by the formula

an(T ) = inf{‖T − L‖ : L ∈ L(X,Y ), rank L < n}.

These numbers are connected with the well known approximation property of
Banach spaces and characterize the ideal of approximable operators: an(T ) → 0
if and only if T is approximable. The approximation numbers are the largest
s-numbers [19].

Aksoy and Lewicki [1] have introduced the following general concept.

Definition 2. Banach spaces X and Y are said to form a Bernstein pair with
respect to s-numbers sn if for any sequence dn ↓ 0, there exists T ∈ L(X, Y ) such
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that (sn(T )) is equivalent to (dn), i.e. there is a constant b depending only on T
such that for every n

b−1dn ≤ sn(T ) ≤ bdn .

This definition was motivated by well known Bernstein’s “lethargy” theorem
[4] and is a generalization of Bernstein pair with respect to the approximation
numbers (see Hutton/Morell/Retherforsd [8, 9]). Note that Hutton, Morell and
Retherforsd implicitly refereed Bernstein’s lethargy theorem to [3]. In [8, 9] it was
proved that many pairs of classical Banach spaces form the Bernstein pair with
respect to the approximation numbers. The authors advanced a hypothesis that
all couples of Banach spaces form Bernstein pairs (with respect to approximation
numbers). Aksoy and Lewicki [1] showed that many classical Banach spaces form
Bernstein pairs with respect to all s-numbers. Detailed investigations of “rate
of decay” of many s-numbers (Kolmogorov, Gelfand, Weyl, Hilbert,. . . numbers)
was carried out by Oikhberg [18]. We consider a similar question for the Bernstein
numbers. Ideal properties of the Bernstein numbers was considered by Samarskĭı
[25] and Pietsch [21].

First, we present simple examples of pairs (X,Y ) which are not Bernstein
with respect to the Bernstein numbers. They are, in fact, well known (see e.g.
Mitiagin/PeÃlczyński [17]).

For a subspace E of a Banach space X denote by λ(E, X) the relative projec-
tion constant

λ(E, X) = inf ‖P‖ ,

where inf is taken over all projections P of X onto E. Given a Banach space X
put

pn(X) = inf{λ(E,X) : E ⊂ X , dimE = n}.
Note that one can take infimum here only over a dense subset of all

n-dimensional subspaces.

Proposition 1. Let T ∈ L(X,H), where H is a Hilbert space and dimT (X)
= ∞. Then for every n

bn(T ) ≤ 1
pn(X)

‖T‖ .

P r o o f. Let b > 1 and Eb ∈ In(T ) be such that ‖(T |Eb
)−1‖ < bbn(T ) (see

(3)). Take the orthogonal projection Q of H onto T (Eb). Then P = (T |Eb
)−1QT

is a projection of X onto Eb. So

λ(Eb, X) ≤ ‖P‖ ≤ ‖(T |Eb
)−1‖ · ‖Q‖ · ‖T‖ < bbn(T )−1‖T‖.

Hence
pn(X) = inf

dimE=n
λ(E,X) ≤ λ(Eb, X) ≤ bbn(T )−1‖T‖.

Since b > 1 is arbitrary, this implies Proposition 1.
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Corollary 1. Let an operator T ∈ L(X, Y ) can be factored through a Hilbert
space H : T = RS, R ∈ L(X, H), S ∈ L(H,Y ) and dimT (X) = ∞. Then for
every n

bn(T ) ≤ 1
pn(X)

‖R‖‖S‖ .

P r o o f. Indeed, by Proposition 1,

bn(T ) ≤ bn(R)‖S‖ ≤ 1
pn(X)

‖R‖‖S‖ .

For operators, factored through Hilbert spaces see [12].

Definition 3. We say that a Banach space X contains no uniformly comple-
mented finite-dimensional subspaces if pn(X) →∞ as n →∞.

The well known Pisier space P [22, 23] contains no uniformly complemented
finite-dimensional subspaces. Moreover, there exists λ > 0 such that pn(P) ≥
λ
√

n for all n.

Corollary 2. Every operator from a Banach space X, containing no uniformly
complemented finite-dimensional subspaces, into a Hilbert space H is SSS.

Corollary 3. There is λ > 0 such that for every operator T ∈ L(P,H) and
every n

bn(T ) ≤ 1
λ
√

n
‖T‖ .

R e m a r k 1. Since every n-dimensional subspace E ⊂ X is a range of a
projection P : X → E with ‖P‖ ≤ √

n (Kadets/Snobar [10]), one cannot obtain
a better estimation of bn(T ) with using of projections. A similar estimation for
operators from C(K) into H, but with constants 4

√
n instead of

√
n, was noted

in [17].

Proposition 1 implies

Corollary 4. Assume X contains no uniformly complemented finite-dimensional
subspaces and H is a Hilbert space. Then the pair (X,H) is not Bernstein with
respect to the Bernstein numbers.

P r o o f. Indeed, by Proposition 1, for every T ∈ L(X, H) the sequence
bn(T ) cannot go to 0 “more slowly” than 1/pn(c).
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An n-dimensional normed space (E, ‖ ‖) is said to be a-isomorphic to `n
2

(write E
a∼ `n

2 ), a > 1, if there exists an Euclidean norm ‖ ‖2 on E such that for
every e ∈ E

a−1‖e‖ ≤ ‖e‖2 ≤ a‖e‖.
If in this definition the constants a and n are inessential, we say simply about
almost Euclidean subspaces.

R e m a r k 2. If E
a∼ `n

2 then for every subspace F ⊂ E there is a projection
P : E → F with ‖P‖ ≤ a2.

If E
a∼ `n

2 then it have an a-orthonormal basis, i.e. a system (ei)n
1 such that

‖ei‖ = 1 for all i and for all scalars (ai)

a−1
(∑n

1
a2

i

)1/2
≤

∥∥∥
∑n

1
aiei

∥∥∥ ≤ a
(∑n

1
a2

i

)1/2
.

R e m a r k 3. For an a-orthonormal basis, the norm of each projection Pi ,
i < n, of E onto lin(ej)i

1 along to lin(ej)n
i+1 is not greater than a2.

Definition 4. (see e.g. [22, p. 215]). A Banach space X contains uniformly
complemented `n

2 ’s if there is a constant d such that for every ε > 0 and for each
n there is a subspace E ⊂ X and a projection P : X → E such that E

1+ε∼ `n
2 and

‖P‖ < d.

Note that by Dvoretzky’s theorem, if this holds for some ε, then it automat-
ically holds for all ε.

We will show that uniformly complemented almost Euclidean subspaces play
a crucial role in constructing of Bernstein pairs.

Theorem 1. If a Banach space X contains uniformly complemented `n
2 ’s then

there exists a universal constant b = b(X) > 0 such that for each Banach space
Y , and any sequence dn ↓ 0 there exist a bounded linear operator T : X → Y such
that for all n

b−1dn ≤ bn(T ) ≤ bdn .

Corollary 5. Let a Banach space X contain uniformly complemented `n
2 ’s.

Then for every Banach space Y the pair (X, Y ) is Bernstein with respect to the
Bernstein numbers.

A Banach space X is B-convex if it does not contain `n
1 ’s uniformly. Since

every B-convex Banach space contains uniformly complemented `n
2 ’s (see e.g. [22,

pp. 208, 215]), we have
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Corollary 6. Let X be a B-convex Banach space. Then for every Banach
space Y the pair (X, Y ) is Bernstein with respect to the Bernstein numbers.

This corollary recalls us the well known Davis–Johnson compact non-nuclear
operator in a B-convex Banach space [5].

Problem. Does (X, X) form a Bernstein pair with respect to the Bernstein
numbers for every Banach space X?

2. Proof of the Main Result

To prove Theorem 1 we construct a “bounded minimal system” consisting of
almost Euclidean subspaces of arbitrary large dimensions in an arbitrary Banach
space containing uniformly complemented `n

2 ’s.

Lemma 1. Let X contain uniformly complemented `n
2 ’s, with corresponding

ε and d and let d′ > (1 + ε)4d. Then for each finite codimensional subspace
X ′ ⊂ X, each finite dimensional subspace E ⊂ X and each m there exists a
subspace E′ ⊂ X ′ , E′ 1+ε∼ `m

2 and a projection P ′ : X → E′ with ‖P ′‖ < d′ and
kerP ′ ⊃ E.

P r o o f. By definition, one can find an almost Euclidean subspace E0 ⊂ X,
dimE0 > m + dimE + dimX/X0 and a projection P0 : X → E0 with ‖P0‖ < d.
Since E0 is almost Euclidean, by Remark 2, there exists a projection Q0 : E0 →
E1 := E0 ∩ X0 with ‖Q0‖ ≤ (1 + ε)2. Obviously, dimE1 ≥ m + dimE. Put
P1 = Q0P0. Then P1 is a projection of X onto E1 and ‖P1‖ ≤ (1 + ε)2d.

Since E1 is almost Euclidean, by Remark 2, there exists a subspace E′ ⊂ E1 ,
dimE′ = m, and a projection Q1 : E1 → E′ with ‖Q1‖ ≤ (1 + ε)2 and kerQ1 ⊃
P (E). Then P ′ = Q1P1 is the desired projection.

Lemma 2. Let X contain uniformly complemented `n
2 ’s, with corresponding ε

and d. Then for any subsequence (mk)∞k=1 of integers there are subspaces Ek ⊂ X,

each Ek
1+ε∼ `mk

2 , with projections Pk : X → Ek , ‖Pk‖ ≤ d, such that each Ei,
i 6= k, belongs to kerPk.

P r o o f. Of course, one must write ‖Pk‖ ≤ d′, where d′ is from the previous
lemma, but the exact value of the constant d is non-essential here. We present a
construction only.

Take, by definition, a subspace E1 ⊂ X, E1
1+ε∼ `m1

2 , and a projection
P1 : X → E1 with ‖P1‖ ≤ d.

Then take, by Lemma 1, a subspace E2 ⊂ kerP1, E2
1+ε∼ `m2

2 , and a projection
P2 : X → E2 with ‖P2‖ ≤ d and kerP2 ⊃ E1.
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Next take, by Lemma 1, a subspace E3 ⊂ kerP1 ∩ kerP2, E3
1+ε∼ `m3

2 , and a
projection P3 : X → E3 with ‖P3‖ ≤ d and kerP3 ⊃ (E1 ∪ E2), and so on.

R e m a r k 4. Let (Ek) be subspaces from Lemma 2. Then for every k ≥ 1

X = E1 ⊕ E2 ⊕ · · ·Ek ⊕ (∩k
i=1 kerPi).

Next, using the Dvoretzky theorem, we construct in an arbitrary Banach
space a subspace with “bounded minimal system” consisting of almost Euclidean
subspaces of arbitrary large dimensions. Denote by [A] the closed linear span of
the set A.

Lemma 3. Let Y be a Banach space, ε > 0, and (mk)∞k=1 be a sequence of

integers. Then there exist subspaces Fk ⊂ Y , each Fk
1+ε∼ `mk

2 , and projections
Qk : [Fi]∞1 → lin(Fi)k

1 along [Fi]∞k+1 with ‖Qk‖ ≤ 1 + ε.

P r o o f. Lemma 3 is a standard combination of the Dvoretzky and Mazur
theorems. We present a construction only. Recall that a subset Φ ⊂ Y ∗ λ-norms
a subspace F ⊂ Y if for every y ∈ SF there is ϕ ∈ Φ such that ϕ(y) ≥ λ. For each
finite-dimensional subspace F ⊂ Y and 0 < λ < 1 there is a finite set Φ ⊂ SY ∗

which λ-norms F .
So, take a subspace F1 ⊂ Y , F1

1+ε∼ `m1
2 , and a finite subset Φ1 ⊂ SX∗ which

(1 + ε)−1-norms F1.
Then take a subspace

F2 ⊂ Φ>1 := {y ∈ Y : ϕ(y) = 0 for all ϕ ∈ Φ1},

F2
1+ε∼ `m2

2 , and a finite subset Φ2 ⊂ SX∗ which (1 + ε)−1-norms F1 + F2.
Next, take a subspace F3 ⊂ Φ>2 , F3

1+ε∼ `m3
2 , and a finite subset Φ3 ⊂ SX∗

which (1 + ε)−1-norms F1 + F2 + F3, and so on.

In the proof we use diagonal operators in Euclidean spaces whose Bernstein
numbers are well known.

Definition 5. Let E and F be linear spaces with bases (en)m
1 and (fn)m

1 . Let
(dn)m

1 be scalars. A map

D
(∑m

1
anen

)
=

∑m

1
dnanfn

is called the diagonal operator corresponding to (en), (fn) and (dn).
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Proposition 2. (sf. [19, Th. 7.1]). Let (en)m
1 be the standard basis of `m

2 ,
d1 ≥ d2 ≥ · · · ≥ dm ≥ 0 and
D be the diagonal operator in `m

2 corresponding to (en)m
1 and (dn)m

1 .
Then for all n ≤ m

min{‖Dx‖ : x ∈ lin(ej)n
1 , ‖x‖ = 1} = dn and

max{‖Dx‖ : x ∈ lin(ej)m
n , ‖x‖ = 1} = dn .

Corollary 7. Assume m-dimensional normed spaces E and F have
a-orthonormal bases (en)m

1 and (fn)m
1 ,

d1 ≥ d2 ≥ · · · ≥ dm ≥ 0 and
D is the diagonal operator corresponding to (en), (fn), (dn).
Then there is c > 1, depending only on a, such that for all n ≤ m

min{‖Dx‖ : x ∈ lin(ej)n
1 , ‖x‖ = 1} ≥ dn

c
and

max{‖Dx‖ : x ∈ lin(ej)m
n , ‖x‖ = 1} ≤ cdn .

P r o o f of Theorem 1. Let dn ↓ 0. Take a subsequence (nk)∞k=1 of integers
which approach to ∞ so quickly that for all k ≥ 1

dnk+1
<

1
4

dnk
. (4)

Hence, for every k ≥ 1
∞∑

i=k+1

dni <
1
2
dnk

. (5)

Let 0 < ε < 1 , Ek be subspaces from Lemma 2 and Fk , k ≥ 1, be subspaces
from Lemma 3 with mk := nk − nk−1 (and n0 = 0). Take in each Ek and each
Fk some (1 + ε)-orthonormal bases. Rearrange these bases in the natural way,
putting first the basis e1, . . . , en1 of E1, then the basis en1+1, . . . , en2 of E2 and
so on; and similarly for Y . We obtain systems (en)∞1 in X and (fn)∞1 in Y .

Put Nk = {n : nk−1 < n ≤ nk}. Using Corollary 7, (with c from this
corollary) we construct for every k ≥ 1 the diagonal operator Dk : Ek → Fk

corresponding to the bases (en), (fn) and scalars (dn) , n ∈ Nk, such that for all
n ∈ Nk

min
{
‖Dkx‖ : x ∈ [ej ]nnk−1+1 , ‖x‖ = 1

}
≥ dn

c
and (6)

max {‖Dkx‖ : x ∈ [ej ]nk
n , ‖x‖ = 1} ≤ cdn . (7)

Let Pk be the projections from Lemma 2. For every x ∈ X put

Tx =
∞∑

i=1

DiPix (8)

(bellow we will show that the series (8) converges for each x ∈ X).
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We make forth estimations. Let d be from Lemma 2 and c be from Corollary 7.

1. For every k ≥ 1 and x ∈ X, ‖x‖ = 1,

∞∑

i=k+1

‖DiPix‖ < 2cddnk
.

Indeed, Pix ∈ Ei and ‖Pix‖ ≤ ‖Pi‖‖x‖ ≤ d for all i, so

∞∑

i=k+1

‖DiPix‖ ≤ by (7) ≤ cddnk+1 +
∞∑

i=k+2

cddni+1

≤ by (5) ≤ cddnk
+

c

2
ddnk+1

< 2cddnk
.

In particular, this inequality shows that series (8) converges for each x ∈ X,
so T is well defined.

2. For every k ≥ 1 and n ∈ Nk

sup
{
‖Tx‖ : x ∈ [ej ]nk

n ⊕ ∩k
i=1 kerPi , ‖x‖ = 1

}
≤ 3cddn

(by Remark 4, the sum here is direct).

Indeed, take x ∈ [ej ]nk
n ⊕ ∩k

i=1 kerPi , ‖x‖ = 1. Then, by definition of Pi,
Tx =

∑∞
i=k DiPix, so

‖Tx‖ ≤ ‖DkPkx‖+
∞∑

i=k+1

‖DiPix‖ ≤ (by 1) ≤ ‖DkPkx‖+ 2cddnk

≤ (since ‖Pk‖ ≤ d, by (7)) ≤ cddn + 2cddn = 3cddn .

3. For every k ≥ 1 and x ∈ lin(Ei)k
1 , ‖x‖ = 1,

‖Tx‖ ≥ 1
4(1 + ε)

· dnk

c
.

We prove estimation 3 by induction. For k = 1, Tx = D1x, so 3 is followed
from (6) if we take in (6) n = n1. Suppose k > 1, estimation 3 is proved for k−1,
and x ∈ lin(Ei)k

1 , ‖x‖ = 1. Then

x = x1 + x2 , x1 ∈ lin(Ei)k−1
1 , x2 ∈ Ek ,

and, by the construction of Pi,

Tx1 =
k−1∑

i=1

DiPix1 and Tx2 = DkPkx2.
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Hence, by the construction of Di,

Tx1 ∈ lin(Fi)k−1
1 and Tx2 ∈ Fk .

By the construction of projections Qi from Lemma 3,

Qk−1Tx = Qk−1Tx1 + Qk−1Tx2 = Tx1

and
(Qk −Qk−1)Tx = (Qk −Qk−1)Tx1 + (Qk −Qk−1)Tx2 = Tx2 .

Since ‖Qi‖ ≤ 1 + ε, hence ‖Qi −Qi−1‖ ≤ 2(1 + ε). So,

‖Tx‖ ≥ 1
1 + ε

‖Qk−1Tx‖ =
1

1 + ε
‖Tx1‖ (9)

and
‖Tx‖ ≥ 1

2(1 + ε)
‖(Qk −Qk−1)Tx‖ =

1
2(1 + ε)

‖Tx2‖. (10)

Since ‖x‖ = 1, we have that

either ‖x1‖ ≥ 1
2

or ‖x2‖ ≥ 1
2

.

If ‖x1‖ ≥ 1
2 , then by the induction assumption

‖Tx‖
by (9)

≥ 1
1 + ε

‖Tx1‖ ≥ 1
1 + ε

· 1
2
· 1
4(1 + ε)

· dnk−1

c
by (4)

≥ 1
2(1 + ε)2

· 1
4
· 4dnk

c

since ε < 1≥ 1
4(1 + ε)

· dnk

c
.

If ‖x2‖ ≥ 1
2 , then

‖Tx‖
by (10)

≥ 1
2(1 + ε)

‖Tx2‖
by (6)

≥ 1
2(1 + ε)

· 1
2
· dnk

c
=

1
4(1 + ε)

· dnk

c
.

Therefore, 3 is proved.
4. For every k ≥ 1 and n ∈ Nk

min{‖Tx‖ : x ∈ lin(ej)n
1 , ‖x‖ = 1} ≥ 1

4(1 + ε)
· dn

c
.

Indeed, take x ∈ lin(ej)n
1 , ‖x‖ = 1, where n ∈ Nk. Then, as in 3, x = x1+x2,

x1 ∈ lin(Ei)k−1
1 , x2 ∈ Ek; either ‖x1‖ ≥ 1

2 or ‖x2‖ ≥ 1
2 ; Tx1 ∈ lin(Fi)k−1

1 ,
Tx2 ∈ Fk, and the inequalities (9), (10) hold.
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If ‖x1‖ ≥ 1
2 , then

‖Tx‖ ≥ by 3 ≥ 1
4(1 + ε)

· dnk−1

c
≥ 1

4(1 + ε)
· dn

c
.

If ‖x2‖ ≥ 1
2 , then

‖Tx‖
by (10)

≥ 1
2(1 + ε)

‖Tx2‖ =
1

2(1 + ε)
‖Dkx2‖

by (6)

≥ 1
4(1 + ε)

· dn

c
.

Therefore, 4 is proved.

Put b = max{3cd, 4(1 + ε)c}. Inequality 4 shows that for all n

bn(T ) ≥ b−1dn.

Let G ⊂ X be an n-dimensional subspace and n ∈ Nk. Then, by Remark 4,

G ∩
(
[ej ]nk

n ⊕ ∩k
i=1 kerPi

)
6= 0.

So, the inequality 4 confirms that for all n

min
x∈SG

‖Tx‖ ≤ bdn ,

i.e.
bn(T ) ≤ bdn .
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[25] V.G. Samarskĭı, The Construction of an Operator Ideal by Means of Bernštĕın
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