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1. Introduction

Randomized solution of initial value problems for ordinary differential equa-
tions (ODEs) has been studied in various papers [2, 9, 11, 12, 16, 17], all of them
dealing with the R™-valued case. In this paper we study initial value problems
for Banach space valued ODEs. We develop a randomized algorithm and analyze
its convergence, extending results from [2, 9].

We also prove lower bounds and consider the complexity. It turns out that
the complexity is connected with the type of the underlying Banach space. For
general Banach spaces upper and lower bounds are almost matching in the sense
that an arbitrarily small gap in the exponent remains. For special spaces, in-
cluding the L, spaces, the bounds are matching and the algorithm is of optimal
order. Furthermore, we show that for arbitrary Banach spaces and for any fixed
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choice of the random parameters the resulting deterministic algorithm is of opti-
mal order in the deterministic setting. This way we generalize complexity results
from [10].

The results of the Banach space valued case are a crucial tool for the com-
plexity analysis of parameter dependent ODEs, a topic which will be treated in
a subsequent paper [4].

2. Preliminaries and the Problem

Let N={1,2,...} and Ny = {0,1,2,...}. For a Banach space X the closed
unit ball is denoted by By, the identity operator by Ix, and the dual space by
X*. Given k € Ny and another Banach space Y, we set % (X,Y) =Y, while for
k> 1welet Z(X,Y) be the space of bounded multilinear mappings T : X* — Y
endowed with the canonical norm

1Tz xyy= sup  [T(z1,..., 7).
T1,....2,€EBx
If £ = 1, this is the space of bounded linear operators, for which we write
Z(X,Y). If X =Y, we write £;,(X) instead of Z;(X, X) and £ (X) instead of
Z(X, X).

Let 1 < p < 2. A Banach space X is said to be of (Rademacher) type p (see
[13, 14]), if there is a constant ¢ > 0 such that for all n € N and zy,...,2, € X

n
=1

where (&)1, is a sequence of independent Bernoulli random variables with P{e; =
—1} = P{e; = +1} = 1/2. The smallest constant satisfying (1) is called the type
p constant if X and is denoted by 7,(X). If there is no such ¢ > 0, we put
75(X) = co. The space Ly, (N,v) with (M,v) an arbitrary measure space and
p1 < o0 is of type p with p = min(py,2). We will use the following result (see
[13], Prop. 9.11).

Lemma 2.1. Let 1 < p < 2, let X be a Banach space, n € N and (0;)1_,
be a sequence of independent X -valued random variables with E||6;||P < oo and
EO;,=0(i=1,...,n). Then

n 1/p n
(E 1> p) < 27(X) (ZE Hez-np)
i=1 k=1

We will work in the setting of information-based complexity theory (IBC),
see [15, 18]. For the notation used here we also refer to [7, 8]. Let us first explain
the general approach, later we specify everything for the initial value problems.

» n
<Yl (1)
k=1

1/p
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An abstract numerical problem is given by a tuple P = (F, G, S, K, A), where
F' is a non-empty set — the set of inputs, G a normed space, S : F — G an
arbitrary mapping — the solution operator, which maps the input ¥ € F to
the exact solution of the problem S(v) € G. Furthermore, K is another non-
empty set and A is any set of mappings from F' to K — the set of information
functionals.

Next we define classes of algorithms for P. In this paper we consider adap-
tive deterministic and randomized algorithms of fixed cardinality (all algorithms
developed later on will be of this type). For the respective notions of algorithms
with varying cardinality see [7, 8].

First we consider the deterministic case and introduce the class A%Y(F, G) of
deterministic algorithms for P which use n information functionals, where n € N.
An element A € A%Y(F,G) is a tuple A = ((u;);,¢), where y3 € A and

pi: K71 A, 1=2,3,...,n
p: K'—G

are arbitrary mappings. Given ¢ € F, we define A\; = uy,
)\i = Mi(/\l(w),...,)\i_l(w)), i:2,3,...,n,

and the output A(¢) of algorithm A at input ¢ by

A@W) = oM (¥), s An(9)).
The error of A is defined as

e(S, A, F) = sup [|S(¢) — A(Y)|lc-
PYeF

Thus we measure the error in the norm of GG. The central notion of IBC is the
n-th minimal error, which is defined for n € N as

edet(S, F) = inf  e(S,A,F).
A€ Adet(F,G)

So edet(S, F) is the minimal possible error among all deterministic algorithms
that use n information functionals.

Next we introduce the respective class of randomized algorithms. An ele-
ment A € A(F,G) is a tuple A = ((,%,P), (Aw)weq), where (2,2, P) is a
probability space,

A, € ARYNE @), weq,

and for each 1 € F' the mapping
weN—A,(W)eqG
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is Y-to-Borel measurable and essentially separably valued, that is, there is a
separable subspace Gy C G such that

Ay,(¥) € Gp  for P-almost all w € €.

Thus, the output A(¢)) of algorithm A at input ¢ € F is the G-valued random
variable A, (¢) on (2,3, P). The error of A is given by

e(S, A, F) = sup E[|S(¢) — Au (¥l
PpeF

and the n-th minimal error for n € N by

e (S, F) = AGA;;E*{;F,G) e(S, A, F).
Consequently, e;2"(S, F') is the minimal possible error among all randomized al-
gorithms that use n information functionals.

The minimal errors el°(S, F) and e!#"(S, F') describe the intrinsic difficulty
of approximating the solution of problem P in the deterministic and randomized
setting, respectively. In this connection let us mention closely related quantities.
The information complexity in the deterministic setting (set = det) and in the
randomized setting (set = ran) is defined for € > 0 by

comp®* (S, F)
= min{n € N: there is an A € A°*(F, G) with (S, A, F) < ¢},

where we put compS®(S, F') = 400 if there is no such n € N. So comp?®*(S, F) is
the minimal number of information functionals needed to reach an error < ¢, and
thus, is a way of assessing the complexity of problem P. It is readily checked that
eSY(S, F) and comp®®*(S, F') are inverse to each other in the following sense: For
alln € Nand e > 0, (S, F) < ¢ if and only if comp®*(S, F) < n for all e; > e,
Hence it suffices to determine one of them. We shall study minimal errors.

Now we describe the Banach space valued initial value problems and specify
the abstract notions. Let X be a Banach space over the reals. (We make this
assumption since below we consider only real differentiation. The results can
also be applied to complex Banach spaces by just regarding them as spaces over
the reals.) Throughout the paper || - || denotes the norm of X. Other norms
are distinguished by subscripts. For —co < a < b < 400, U C [a,b] x X open,

Kk, L >0,r €Np, 0 <p <1 we consider the following class

¢"°(U,k,L) of continuous functions f:U — X
having continuous partial (Fréchet-)derivatives D® with a = (ag,a1) € N3 of
order |a| =ap+ a1 <r

B 8|a‘f(t, x)

DYf(t,z) = a0 Gpon

Lo (X)
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satisfying for (s,z), (t,y), (t,2) € U

I1Df(s,2)l 20y < K O<|al <, (2)
I1Df(s,2) = DS (L, 9)ll 2, x) < wls =t +llz—yl?), laf=7, (3)
1f(ty) = F@& 2l < Ly — 2. (4)

We consider initial value problems for ODEs with values in X

u'(t) = f(tut), telad],  ula)=uo, (5)

with f € €"¢(U,k, L) and up € X. A function u : [a,b] — X is called a solution,
if u is continuously differentiable and satisfies (5). For background on Banach
space valued differential calculus and ODE we refer to [1]. Let Uy C X, V C U
be any subsets. For ¢ € [a,b] denote V(t) = {z € X : (t,x) € V} and define

F = ﬁT’Q(U,H,L, Uy, V) = {(f, U()) : f € %T’Q(U,FL,L),UO € Uy, and
there is a solution w of (5) with u(t) € V(¢) (t € [a,b])}.  (6)

To avoid trivial cases, throughout the paper we assume
F=%"°U,k,L,Uy, V) #0. (7)

Note that due to (4), the solution w is unique. The solution operator S : FF — G
is defined for (f,ug) € F by S(f,up) = u, where u is the solution of the initial
value problem (5) and G = B(][a, b], X) is the space of all X-valued, bounded on
[a, b] functions, equipped with the supremum norm

191l B(la,01,x) = sup _[lg(t)]-
z€[a,b]
Observe that, if
Up+ k(t—a)Bx CV(t), tela,b (8)
(which is satisfied, in particular, if V' = [a, b] x X), then it follows from (2) that for

all f € €7°(U, k, L) and ug € Uy there is a solution u(t) of (5) with u(t) € V(¢)
(t € [a,b]), and consequently,

FU, K, L, Uy, V) = €U, k, L) x Up. (9)

We have chosen this type (6) of F' to cover two typical situations. In the
first case we demand that for all f € €™¢(U,k, L), up € Uy the solution of (5)
exists on [a, b], which usually amounts to restricing the size of b — a. This is the
local situation (8) treated in Theorem 3.2. In the second case we assume that
we have some solution u of (5) (or a set of solutions) and the function f satisfies
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(2)—(4) in some neighbourhood of the solution. This is the global approach with
no restriction on b — a, which is considered in Theorem 3.3.
The class of information functionals A is defined as

A= {5(15@) : (t,x) € U} U {5},

where d; 1) (f, uo) = f(t, ) and d(f,uo) = ug for (f,up) € F. So here we consider
X-valued information functionals, that is K = X. This defines our problem
P=(F,G,S K,A\).

Previous results on the complexity of the initial value problem (5) were all
concerned with the case X = R? and U = V = [a, b] x R%. For the deterministic
setting Kacewicz showed in [10] (see also the comments on p. 827 of [11]) that
there are constants ¢q,cy > 0 such that for all n € N

cin” <L eget(S, F) <econ™ "¢,

For the randomized setting it is proved in [2, 9] that there are constants ¢1,co > 0
such that for all n € N

Cln—r—g—l/Q < ezan(sj F) < C2n—r—g—1/2

(with an aditional arbitrarily small € > 0 in the exponent of the upper estimate
this was already shown in [12]).

It is the goal of this paper to prove appropriate generalizations of these results
for the case of Banach space valued ODEs. Moreover, we consider more general
set U,V than just U = V = [a,b] x X. In the case of X = R? this can be done in
a standard fashion by using sufficiently smooth bump functions on X = R¢. For
arbitrary Banach spaces this requires a different approach since such functions,
in general, do not exist, see [6]. In Sec. 3 we define the algorithm (which slightly
extends that in [2]) and present error estimates. In Section 4 we prove lower
bounds.

Constants ¢, c1, co, . .. appearing in the paper may depend on the class % and
related parameters like r, g, k, L, etc., but are independent of the discretization
parameters n, k, randomness w € 2, and the input (f,up). Moreover, in Sec. 3
constants are even independent of X and the related sets U, Uy, V. In all basic
statements like theorems etc. this is made clear anyway by the order of quantifiers.
Note also that the same symbol may denote different constants, even in a sequence
of relations.

3. The Algorithm and its Analysis

Let 1 € No, n € N, put h = (b—a)/n and t, = a+ kh (kK =0,1,...,n).
To define the needed random variables, let Q = [to,t1] X -+ X [tp—1,1p], let £
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be the sigma-algebra of Lebesgue measurable subsets of €2, and P the normalized
Lebesgue measure on 2. Define & : Q — [tg_1,tx] (kK = 1,...,n) by setting
&h(w) = sp for w = (s1,...,8,) € Q. Then (&)}, are independent random
variables on (2, X, P) such that each & is uniformly distributed on [tx_1, tg].

Given f € ¢"%(U,k,L) and ug € Uy, we inductively define (uy)p_, C X
and X-valued polynomials py;(t) for k =0,...,n—1, j = 0,...,7r as follows.
Suppose uyg is already defined and satisfies

U € U(tk) (10)
(note that ug is the initial value). Then we set for t € [ty, tgi1]
pkg(t) = uk—l—f(tk,uk)(t—tk). (11)

Furthermore, suppose 1, > 1, 0 < j < 71, and py; is already defined. Let Py ;41
be the Lagrange interpolation operator of degree j + 1 on the equidistant grid
tk,j+1,i =t + Zh/(j + 1) (’L = 0, - ,j + 1) on [tk,tk+1]. If

Prj(trjr1s) € Ultejari), 1=0,...,5+1, (12)
we put
i+1
i = (F(trgrrioPrs(th )2 (13)

and define py, ;11 by setting

t
Prjer(t) = gt / (Peyirany) (s)ds. (14)
127

Finally, if pg,, is defined and

Pkry (t) S U(t) (t S [tk7tk+1])7 (15)

we set
U1 = Phry (tog1) + B (F(Ekt1, Prry (Ert1)) — Do, (Et1)) - (16)

The latter choice is motivated by the following. First we approximate

tht1 tht1
u(tpsr) = ulty) + f(s,u(s))ds ~ up + f(s,prr, (s))ds.
/ /

Then the integral is approximated by the Monte Carlo method with one sample
and with variance reduction by separation of the main part. As such we use the
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function pj,. (s), which is close to u/(s) = f(s,u(s)), the latter, in turn, being
near to the integrand f(s, prr, (s)). This gives

tet+1

uk—i-/f(s,pkﬁ(s))ds

tg
tr41

U + / p;crl (S)ds + h(f(ék-l—lvpk'f’l (ék—i-l)) - p;qu (&H—l))
tg

Prry (tet1) + h(f(§k+1,pkn (€k+1)) — P;m (§k+1))7

Q

explaining (16).
The full approximate solution v(¢) on [a, b] is defined as

. Pkrq (t) if te [tk‘atk—I—l) and 0<k<n-1,
v(t) = { Uy it t=t,, (17)
S0 we put
Azl,w(.ﬂu()) :’UEB([CL,Z)],X) (18)

and A7l = (A7, )weq. We say that AJl(f,ug) is defined (or, more precisely,
defined on U) if for all w € Q this definition goes through till (18), that is, (10),
(12), (15) are satisfied at all stages. If for some w, at some stage k, any of
the conditions (10), (12), (15) is violated (in particular, if ug & U(a)), we leave
ATH(f, up) undefined.

Note that, as far as the definition of A7!,, is concerned, fixing any w € {2 is the
same as fixing any values of & € [tx_1,tx] (K =1,...,n). This way the algorithm
becomes deterministic.

First we show that A7! is indeed a randomized algorithm in the sense of the

general notion introduced in Section .

Lemma 3.1. Let (f,ug) € F. If AT'(f,uo) is defined, then A}'(f,up) is a
B([a, b, X)-valued random variable.

P roof.  For the purposes of this proof we include the dependence on
&1,...,& into the notation and write ug(&1,...,&k), prj(&1,-- -, &k, t), etc. We
shall show that ug(s1,...,s;) (0 <k <n)and pg;(s1,...,561) (0<k<n-1,te
[tk,tr+1]) depend continuously on (si,...,sk) € [to,t1] X -+ X [tr—1, tx].

First note that A}l (f,uo) being defined means, in particular, that these func-
tions are defined for all possible values of the s;. To prove continuity, we argue
by induction. For k = 0 the statement is trivial, since there is no dependence.

80 Journal of Mathematical Physics, Analysis, Geometry, 2013, vol. 9, No. 1



Complexity of Initial Value Problems in Banach Spaces

Now assume the statement holds for some k with 0 < k < n. Then by (16), with
§ = (81, ceey Sk) and sg41 € [tk, thrﬂ

Up1(5,8k41) = Phry (5, k1) + B (F (Skt1s Doy (55 k41)) — Py (55 Sk41)) -

Since pgr, (8,t) is a polynomial in ¢, continuity with respect to § for each ¢ €
[tk,tk+1] implies continuity with respect to (S,t¢). Therefore ugq depends con-
tinuously on (8, sx41). Now assume k < n — 1. To prove the statement about
Pk+1,; we argue by induction over j. For j = 0 we have by (11), with 5§ =

(815 -+, 8k Sk11)
Pr41,0(5,1) = up1(8) + f(tra1, ur1(3)) (t — trsr),

which shows the continuous dependence. Now assume that pyi1;(5,¢) depends
continuously on § and hence, also on (§,t). Then by (13), (14)

Qe+1,5(5) = (f(tk+1,j+1,i7pk+1,j(§»tk+1,j+1,i)))g:é

and therefore also

t
Prijai(5t) = upsa() + / (Pestjergisn (3) ()dr

tkt1

have the required continuous dependencies. This completes the induction over j
and also that over k. From (17) we infer

(s smnt) = Diery (815 -+, Sky 1), if te€ [ty tir1)and0<k<n-—1,
Lyeeesom Un (81, -+, 8n), if t=t,,

hence z(s1,...,8,) € B([a,b],X) depends continuously on si,...,s,. This im-
plies that the mapping w — AL, (f, uo) is X-to-Borel measurable and essentially
separably valued. n

In the rest of this section all constants ¢, c1, ... are even independent of X, Uy,
V', and U, which is also made clear by the order of quantifiers in the statements.
Moreover, let us introduce the following constants depending only on r; € Ny
w0 = 1 cm)= max [|Flzcqunr 21 21
c(r1) = 2c(r1) +1,

where P; is the operator of Lagrange interpolation of degree j on [0,1] and
C([0,1], X') denotes the space of continuous, X-valued functions, endowed with
the supremum norm. Observe that if we consider P; (without change of notation)
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as interpolation operator of X-valued functions in C([0, 1], X'), then the constant
remains the same for an arbitrary Banach space X, i.e., we have
Pl = . 19
Jmax [ Pill.eeqon.x)) = colr) (19)
Indeed, the upper bound follows by taking linear functionals, the lower bound by

the fact that, trivially, X contains an isometric copy of R.
Now we estimate the error of the algorithm.

Theorem 3.2. Given r,r1,0,a,b,k,L as above and 1 < p < 2, there are
constants c1,co > 0 such that the following holds. Let X be a Banach space,
04Uy C X,V CUC|[a,b] x X, U open, satisfying (8) and

Uy + c(r1)k(t —a)Bx CU(t), tE€ |a,b] (20)

(which holds, in particular, if U = [a,b] X X ). Then F # () and for alln € N and
(fyuo) € F, AyM(f,uo) is defined on U and satisfies

sup  ||S(f,u0) — Al (o) Bap),x) < cin” mR0Terth (e Q) (21)
(f,uo)GF

and

sup (BN, 10) = A2 10) Pyny)
(f,u0)EF o

< CQTp(X)TL_ min(r—i—g,rl—s—l)—l—&—l/p. (22)

In the previous statement we imposed a certain relationship on k,a, b, Uy, U
and V. Now we drop this assumption while assuming something on V' and U as
well as a minimal smoothness (r 4+ o > 0).

Theorem 3.3. Letr,r1,0,a,b, k, L be as above, 1 < p <2, §g > 0 and assume
that r+o0 > 0. Then there are constants c1,co > 0, ng € N, such that the following
holds. Let X be a Banach space, Uy C X,V C U C [a,b] x X, U open, such that
F %0 and

V(t)+ dBx CU(t), tela,bl. (23)

Then for all n € N with n > ng and (f,uo) € F, A} (f,uo) is defined on U and
the estimates (21) and (22) hold.

We prove these theorems in the following way. With Proposition 3.4 below
we show a respective statement under a stronger assumption. This is the key
part of the proof, which is different from the analysis in [9] and [2]. The latter
would require a martingale type property instead of the type assumption. Then
the proofs of Theorems 3.2 and 3.3 will be a reduction to this proposition.
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For n € N we define

%T’Q(U, R, L, Uo, V, T, n)
= {(f,uo) € F"°(U,k,L, Uy, V) : If u=S(f,up), then
u(ty) + co(r1)k(t —tx)Bx CU(t), t€ [ty,tpr1), 0<k<n-—1
and AJl(f,up) is defined on U}. (24)

Let us note that, if U = [a, b] x X, then for all r; € Ny and n € N the sets defined
in (6) and (24) coincide:

%T’Q(U,R,L,Uo,‘/,’l“l,n) = ﬁT’Q(U,R,L,Uo,V). (25)

Proposition 3.4. Given r,r1,0,a,b,k, L as above and 1 < p < 2, there are
constants c1, ca > 0 such that the following holds. Let X be a Banach space, Uy C
X,V CUCla,bxX, U open, n € N be such that #"°(U, k, L, Uy, V,r1,n) # 0.
Then for all (f,ug) € H#"°(U, K, L,Uy, V,11,n)

IS(fouo) — AL (fouo) | Blagx)y < cn ™nUFenth e (26)

and

(BUS(f.0) = AT 0) )

1/10S comy(X )~ min(r+¢,r1+1)~1+1/p_ (27)

Proolf Differentiating Eq. (5) and using the assumptions on f it
follows that w = S(f,up) is (r + 1)-times continuously differentiable and there
are constants ci, co > 0 such that

[P (@) < e, t € tr,tpt], 1<j<r+1, (28)
[ut D (s) =ul V@) < ealt =%, 5,1 € [try trpal- (29)

Indeed, we show by induction over j that for 0 < j < r there exist constants
kj, Lj such that for each f € €™¢(U, k, L) there is an

fi € €U, Ky, L) (30)
such that
W) = f(tult), te [a.b)]. (31)

For j = 0 we just set fo = f, ko = k, Lo = L. Now assume (30), (31) hold for
some j with 0 < j < r. Differentiating (31), we obtain for ¢ € [a, b]

w020 = i ey + 2wy

of; of;
= 2 Gu®) + 52 () f(E u(?).
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Setting for (t,x) € U

i 1,2) + 21,21 (0,),
it follows that (31) holds for j + 1. Moreover, from (30) we conclude that f; €
¢ I71e(U, K41, Ljy1) for some constants rji1, Lj+1 > 0. This completes the
induction and proves (30), (31). Relation (28) follows directly from (30), (31),
while (29) is a consequence of (3), (30), (31), and the Lipschitz continuity of u
implied by (28).

Observe that for j > 1

fina(t,x) =

1 Pejll.2citr,tern), ) = 1Pill2co.1,x)) < colrr). (32)

For k=0,...,n—1,j=0,...,r1 let py; and gi; be defined by (10)-(14) with
ug, replaced by wu(ty). We show by induction over j that there are constants
c1-4,; > 0 such that for all j with 0 < j < r; the following hold:

Prj is defined and ||pg;(t) — u(ty)|| < co(ri)s(t —tx), t€ [th—1,tk], (33)

sup  |u(t) — Py ()| < erhminrredtEL (34)
t€[tr tht1)

sup  |[u'(t) — Pl (1)]| < coyhmnUredth) (35)
te[tk:thrl]

sup |k (1) — o ()] < esjllultr) — ull, (36)
te[tk,tk+1]

sup [P (1) — Pl (0 < cagllulte) — uall. (37)
te[tk,tk+1]

Note that, since u(ty) = pr;(tr), (34) follows with ¢; j = ¢ ; from (35) by inte-
gration. Similarly, because of uy = py;(tx), (36) is a consequence of (37), with
c3j <1+hes; <1+ (b — a>C4’j.

Let j = 0. By (6), u(tx) € U(tk), so Pro is defined. Moreover, for ¢ € [tg, tg+1]

1Px0(t) — w(ti) | = [1f (trs w(tr)) (¢ — te) || < K(t = tk),
which gives (33). Furthermore,
[u' () = o @)l = IIf (£ u®)) — f(te, ulte))]- (38)

If r =0, it follows from (2), (3) and (5) that

1F (8 w(®)) = f (b ult)) | < w18 = el + [Ju(t) — ultr)]|®) < (14 £€)RE.
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This together with (38) gives (35). If r > 1, we have
I1f (8, u(t)) = f (tr, u(te)]]

= [ (Greuten + G utnsisutsn ) as|] < o2

which, combined with (38) gives (35) also for this case. Finally, we have by (4)

15k0(t) — Do = [1f (s w(te)) — F(tr, w)|| < Llju(te) — gl

showing (37) and completing the proof of (33)—(37) for j = 0.

Now we assume that 71 > 1 and (33)—(37) hold for some j with 0 < j < 7.
It follows from (33) and (24) that pr;(tk j+1,i) € U(tk,j+1,i), SO Dk j+1 is defined.
Furthermore, using (32), we get for ¢ € [ty, txt1]

t

50,1 (£) — ulti) | = / (Pogirng) (s)ds|| < colro)nt — t),

which shows (33) for j + 1. We have
1w (t) = P i O = 1w/ (£) = (Prjr1Grs) (0]
< ' (t) = (Prgiau) Ol + [(Prjarv) (8) = (Pejarg) ()] (39)
Setting | = min(r, j + 1), (28) and the Taylor series with integral remainder term
give

Ll (1)

W) = YT ) + RO, tE [t (40)
=0 ’
with
1 / B ‘
) = (l—l)!t/(t _ S)z 1 <u(l+1)(s) _ u(l“)(tk)) ds if 1>1 )
w'(t) — ' (tr) it 1=0.

Since Py j41 is exact on (X-valued) polynomials of degree < j+1, (32) and (40),
(41) give

sup |[u'(t) = (Pr,j410)) (1)l
tety, tht1]

< DL G ) — WD () (42)
l' te[tk,tk+1}
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For j +1 > r we have [ = r and by (29),

sup  [Ju™V () — V(8] < ehe. (43)
te[tk,tk+1}

If j+ 1 < r, meaning that [ = j+ 1 and [ + 2 < r 4 1, we have by (28)

(%]
sup  [Jul™D () — uFD (1)]| < / [ul™*2)(s)||ds < ch. (44)
tE(tr, tht1] P

Using (32) and the induction assumption (34), we obtain
sup {|(Prj1t')(8) = (Prjr1di) (1))
t€tr,try1]

< co(r) o<r?3ﬁ1 ' (tj416) — S (ejrt,io Prj (e j1,0)) |

= co(r1) o nax If (trjatis w(thjrni)) — f (kg Prj (e r1a)ll

< co(r)L supJu(t) = pg ()] < co(ri)Leq gh™™0HEHITD (45
tE[th thya]
Combining (39) and (42)—(45) proves (35) for j + 1. Finally, we have for ¢ €
[tk thta]

15,541 () = P g (DI = [(Prj+18k5) (8) = (Pjirae;) (1)

< colr) Tnax I f (b jrtsin Prj (tejr1,i) — f (brjti Prj (trjgn,i)

< co(r)L Jnax 1Pk (tk,j1,6)) — Prj(tje1)

< co(r1)Lesjllu(ty) — ukll,

where in the last step we used the induction assumption (36). This shows (37)
for j + 1, completes the induction step and thus the proof of (33)—(37).
Note that (24) and (33) ensure pg,, (t) € U(t) (t € [tg, tk+1]). From (4), (34),
and (35) we get
sup || f (¢, Brr, (£)) — Dy, (D)
t€ltk,trr]

= sup ([[f(tBrr, (1) — F(Eu@)] + (14 () = By (D)
tE[tk,tk+1]
< chmin(r+g,r1+l). (46)
We define for 0 < k<n-1

Wit1 = Prory (teg1) + B (Etrs Prory (Et1)) — Drry (1)) (47)
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Let
€L — u(tk) — UL

denote the error at point 5. Then we have eg =0 and for 0 < k<n—1

ert1 — ek = (tp1) — ul(ty) — (Upgr — up) = dpg1 + Gr1 + Mg,

where
tet1
don = [ (Fltu(e) = £t (6)
tg
Gkt1 = Wey1 — u(ty) — (Upy1 — ug),
tet1
men = [ Fbu O)it ~ (e — u(t).
ty
We have by (16)
trt1
Up1 — up = / P, @)t + h(f (Erg1s Prry (Ep41)) — Phry (Er1))5
tg
and, similarly, from (47)
tkt1
W1 —u(ty) = / Do, @)t + h(f (€15 P (k1)) — Py, (E41))-

tg

Since pryr, does not depend on w, taking the expectation in (53) gives

Euwgsq — u(ty) = / Ut Brns (1)) d.
By (51), (53), and (54),
Ne+1 = / (f(t;ﬁkrl (t)) - ]5;€r1 (t)) dt

—h(f (&g 15 Prory (k1)) — Py (G1))

= Ewgt1 — wiya.
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Relations (46) and (55) imply
||7Ik+1|| < Chmin('r—l—g,rl—l—l)—&—l‘
Moreover, from (4), (34), and (49) we get

1]l < chmin(r+ori+1)+2
Subtracting (52) from (53) and using (4), (36), and (37) gives

lgrrall < chllex]l

Denote

n j

=St o
;H jll+ max z;nz
j= 1=

Since ey = 0, we obtain from (48) and (59) for 1 <k <n

k k k—1
lexll = (D (g5 +dj+mp)|| <D llgill +0 < ch > lesll + 6.
=1 i=1 i=1

Using (61) recursively, we get

k—1 k—2 k—2 k—2
Yo llesl <> llesl +ch )y llesll+6 = (L+ch) Y llej] +6
j=1 j=1 j=1 j=1

k—3
(14 ch)F=1 —1
s<1+ch>2j21||ej||+9+<1+ch>0§-~£ o

Inserting this into (61) yields
ekl < (1 + ch)F~10 < ecth=Dhg < eelb-a)g,

and, with (58) and (60),

max |ep]| < ch™POFTern DL 4 o max
0<k<n 1<k<n

k
Z i
i=1
With v given by (17) we have

sup |[|u(t) — v(t)]|
t€la,b]

= t) — I, Jult,) — )
waox (o sup ) = pins O] () =

(63)
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Moreover, using (34) and (36),

sup  lu(t) —prr (O < sup ([[u®) = Prry O + 1P () — Prr ()
tety,tht1] te€ [tk tet1]

< chmin(rert D+l 4 ool

which together with (62) and (63) gives

IS(f.uo) — AL (f,u0) || B(lag,x) < ch™mrTenthel 4 ¢ max

. (64)

k
Z i
i=1

Now (26) is a consequence of (57) and (64). The case p = 1 of (27), in turn,
follows from (26). Now we assume 1 < p < 2. From (64) we get

E[|S(f,uo) — A7t (f, UO)H%([Q,I)],X)
k

Zﬁi

=1

< eppmin(rHeri AP | LE max P
- 1<k<n

(65)

By (55), (56), (nk)p_; is a sequence of independent X-valued random variables

n
of mean zero. Consequently, (HZle n; )k . is a non-negative submartingale.
From Doob’s inequality ([5], Ch. VII, Th. 3.4) we obtain

k n
P pP p
A < .
E max z;n < R H 277 (66)
On the other hand, from Lemma 2.1 we get
n p n
E| Y u|| < 2rnx)r Y Elmle. (67)
i=1 i=1
Combining (57), (66), and (67) gives
Eoe
) min(r+o,r1+1)+p—1
£ 1Sk z_; ni|| < emp(X)PhP GRTHTPTE,
Inserting this into (65) gives (27) for 1 <p < 2. [

Proof of Theorem 3.2. By assumption, (8) and hence (9) is valid, so
F #0. Let (f,up) € F. Using (10)—(16) and (20), we show by induction that for
0 < k < n the following hold:

uy is defined and ||ug — up|| < ¢(r1)kkh, (68)
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and, if £ <n — 1, then for all j with 0 < j <rg
pr; is defined and ||pg;(t) — uk|| < co(ri)s(t —tr)  (t € [tr, try1])- (69)

First we show that for 0 < k < n — 1 (68) implies (69). So suppose (68) holds
for some 0 < k < n — 1. To derive (69), we argue by induction over j. Let j = 0.
By (20) and (68), ur € U(tx), so pyo is defined and we have

ok (t) — wrll = [[f(tr, un) (t — tp)|| < w(t—tr), t € [, thta]-

Now we assume that (69) holds for some j with 0 < j < ry. It follows that for
t e [tk, tk+1]

125 (8) = woll < llpk;j () — wnll + [l = woll < e(r1)s(t — a),

hence py;(t j+1,) € Uty j414) for i =0,...,75+ 1, so py j+1 is defined. Further-
more, using (32), we get

1Pk,g+1(8) — k|l = /(Pk,j+1ij) (s)ds|| < co(r1)r(t — tg),

tg

showing (69) for j + 1, completing the induction over j and thus, the proof that
(68) implies (69).

Next we prove (68) by induction over k. For k = 0, (68) holds by definition.
Now suppose (68) and hence (69) hold for some k with 0 < k <n — 1. It follows
that for ¢t € [tg, tgs1]

1Pkrs (8) = woll < lPery (8) — wnll + llur = woll < e(r1)s(t — a),

and therefore, pg,, (t) € U(t). This shows that ugy; is defined. Note that

1Pk, I < co(ri)r (t € [trs trial),

which is a consequence of (11) if 7y = 0 and of (14) if r; > 1. We have

1Pk, (tr1) = wrll + || f (Errrs Prr (Ekt1)) — Dy (Grgr) |

upr —ugl] <
< ¢o(r1)kh + (co(r1) + 1)kh = ¢(r1)kh,

hence
lugr1 — wol| < e(r)r(k + 1)h.

This shows (68) for k + 1, completes the induction over k and the proof of (68),
(69).
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It follows that A}l (f,up) is defined. Moreover, with v = S(f,ug) we get

from (5)
u(ty) € Uy + k(ty — a)Bx,

and therefore, using (20), for ¢ € [tg, tg+1], 0 <k <n—1

u(ty) + co(r1)k(t — tg) Bx C Uy + co(r1)k(t — a)Bx C U(t).

This shows that (f,ug) € #"¢(U, k, L, Uy, V,r1,n), therefore
ﬁ'T,Q(U’ K, L7 U07 V) == %T’Q(Uv R, L7 UO? V7 1, n)a
and the result follows from Proposition 3.4.

Proof of Theorem 3.3. We set

W ={(t,u(t)) : t € [a,b], u= S(f,up) for some (f,up) € F}.

(70)

Then W C V and W (t) # 0 (t € [a,b]). Define the function v : [0, +00) — [0, 1]

by
1 if 0§t§250/3
1/)(25)2 3(1—75/50) if 250/3<t<50
0 it 8 < t.

Given (f,ug) € Z"(U, k, L, Uy, V) we define f : [a,b] x X — X by

foa) = { e WONIC0) 2 € V0

where d(z, W(t)) = inf{||lz —y| : v € W(t)} is the distance of = to W(t).

Consequently,

: 20
23

flt,x) = f(t,x), te]a,b], xe€ X, dz,W(t)) <

- 1,9 r>1
¢= o, if r=0,

thus, 0 < 9 < 1. We show that

Put

fe€®?([a,b] x X,r1,L1)

for some k1, L1 > 0 depending only on «, L and dg.
By assumption, d(z, W (t)) < dp implies « € U(t), therefore

sup [If(t,2)[ < sup || f(t@)l| < k.
tela,b],ze X (t,x)eU
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Now fix s,t € [a,b], v,y € X. Let v = S(g,vo) for some
(g,v0) € F"¢(U, Kk, L,Uy, V). Then

d(z,v(s)) < d(z,v(t)) + [[o(s) —v(t)]

d(z, W (s)) <
d(z,v(t)) + kls — t|.

IN A

Taking the infimum over v and using (70), we get
d(x,W(s)) < d(z,W(t)) + &|s — t|,
and, exchanging s and ¢t and combining both estimates, we arrive at
|d(x, W (s)) — d(z, W(t))| < k|s — . (74)

Using this, we derive

[ (d(z, W(s))) — ¢ (d(y, W(1)))]

[ (d(z, W(s))) — ¢(d(z, W ()| + |(d(z, W(t))) — d(d(y, W(2)))]
30y (|d(z, W(s)) — d(z, W(#))| + |d(z, W (1)) — d(y, W (1))])

305 ' (kls — t + | — yl)- (75)

ININ A

Now we verify that f satisfies the g-Hélder condition. We can assume d(z, W (s)) <
d(y, W(t)). If d(x,W(s)) > dg, we have

f(s,2) = f(t.y) =0. (76)
If d(x, W(s)) < & < d(y, W (t)), then ¢(d(y, W(t))) = 0, and therefore f(t,y) =

0. Taking into account (75), we conclude

1f(s.x) = Ft. )l = |l (d(e, W(s)f (s, )]
= |(d(z, W(5))) — v (d(y, W (t))| [ f(s,2)]
< 305 'klkls =t + lz —yl)). (77)

Finally, we assume d(z, W (s)) < dp and d(y, W(t)) < dp. Then, using again (75),

1 (s.2) = F(t, )]
< Jo(d(@, W(s))) — & (dly, W) (s )l
+(d(y, W) f (s, 2) = f(E,9)]
< 30q (ks —t| + lla —yll) + 1 £(s,2) = F(t,9)]l. (78)
Now (3), (73), and (76)-(78) imply the g-Holder condition for f. Finally, Lip-
schitz continuity of f follows from (4) and (76)—(78) with s = ¢, which completes
the proof of (72).

92 Journal of Mathematical Physics, Analysis, Geometry, 2013, vol. 9, No. 1



Complexity of Initial Value Problems in Banach Spaces

Let w = S(f,up). Then, by (70), for all t € [a,b] we have u(t) € W(t) and
therefore, by (71),

u'(t) = ft,u(t)) = ft,ult)).
It follows that 3
S(f,u0) = S(f,uo)- (79)

Let w e Q, n € N, and let @ (0 < k < n), pi; and Gy, (0§k§n~—1,0§
J < r1) be the resulting sequences from the definition (10-16) of A7l (f,uo0). By
(25), (72), and Proposition 3.4,

IS(f,u0) — Anty (fouo) | Bapx) < cn™? < 6o/3, (80)

provided n > ny, where n; = [(3¢1/89)"/¢]. Taking into account (70) and (79),
it follows from (80) that for 0 < k <n —1,t € [ty, tx+1]

d(Brr, (1), W () < [1Prr () = (S(f.u0)) ()]

_ = ]
= Bk (8) = (S u0) D < 5
and hence, also
_ J
(i, W (ti)) < 5 (81)
By (11) and (13), (14), for 0 < j <
1925 (8) — k]| < co(r1)mrh. (82)
Using (74), (81), and (82), we conclude
. 0o 24
d(pkj(t), W(t)) < C()(Tl)lﬁllh -+ g + kh < ? , te [tk;tk+1]7 (83)

provided n > no, with a suitably chosen no > nj.

Next we consider algorithm A7l for (f,uo). Let ug (0 <k < n), prj, and qx;
(0<k<n-—1,0<j<ry) be the corresponding sequences from the definition
(10)—(16), as far as they are defined (compare conditions (10), (12), and (15)).
We show by induction that for 0 < k < n the following holds:

uy, is defined and wy = g, (84)
and, if Kk <n — 1, then for all j with 0 < j <rq

pkj is defined and py; = pi;- (85)
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First we prove that (84) implies (85). So assume that (84) holds for some 0 <
k <mn—1. We show (85) by induction over j. Let j = 0. By (84), (81), and (71),
ug € U(tx) and ~

f(te,ur) = fte, ) = f(t, W),

therefore pyg is defined and

Pro(t) = wi + f (b w) (¢ — t5) = g + f(tr, @) (t — tr) = Pro(t).

Now we assume that (85) holds for some j with 0 < j < r;. Then

Prj (ki) = Pltrjera), i=0,...,5+1, (86)

hence, by (83),
i (1.0, Wt g10.)) < o0 (57)
In particular, py;(ti j+1,) € U(trj+1,4) for i =0,...,5 4+ 1, so py j41 is defined.

Moreover, by (86) and (87)

Ftkjavis Prj (b gari) = (bt Prj (e ja1),
so, compare (13), gx; = Gxj, and therefore,

t
Phj1(t) = up +/(Pk,j+1Qk,j+1)(S)ds

tg
t

= -+ /(Pk,jﬂdk,jﬂ)(s)ds = Dr,j+1(t).

tg

This completes the induction over j and the proof that (84) implies (85).

Next we show (84) by induction over k. For k = 0 it holds by definition. Now
suppose (84) and thus (85) hold for some k with 0 < k < n — 1. Since by (83)
and (85)

- 20
A(pir, (0, W (1)) = d(Brr, (1), W (1) < 57 £ € [t trsa],
it follows that ug is defined and
U1 = Prry (tet1) + A (F (1 Prry (Et1)) — Pl (Grg1))

= Prry (ter1) + R (F (€t Prory (E1)) — Doy (E41)) = Uit

This shows (84) for k + 1, completes the induction over k, and proves (84), (85).
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It follows that A} (f,up) is defined. Setting S(f,up) = u, we have for 0 <
kE<n-—1andt€ [tg,tr1]

[[u(t) = ulty)]| < &t = tx)
and therefore, using (23) and (19)
u(ty) + co(r1)k(t — ty)Bx C u(t) + (co(r1) + 1)k(t — tg)Bx C U(t)

provided n > ng, with ng > ng suitably chosen. Recalling (24), it follows that
for n > ny we have (f,ug) € #"¢(U,k, L,Uy, V,r1,n), consequently

F" (U, k, L, Uy, V) =#"°U,k, L, Uy, V,r1,n).

Now Theorem 3.3 follows from Proposition 3.4. ]

4. Lower Bounds, Banach Space Valued Integration,
and Complexity

To prove lower bounds we shall exploit that Banach space valued integration
is a special case of the initial value problem. While complexity of integration
in the scalar case is well-studied, the Banach space case has been investigated
only recently in [3]. This paper covered the case C", while here we need the case
C™e. The (short) proof of the lower bound is analogous, we include it though
for the sake of completeness. Since algorithms for the initial value problem lead
to algorithms for integration, we can use the algorithm from above to get upper
bounds. Furthermore, it is informative to see what this algorithm means for
integration.

For —oco < a<b<oo, 7€ Ny, 0<p<1let Fy =%"9a,b],1) be the set
of all r-times continuously differentiable functions f : [a,b] — X satisfying for
s,t € [a,b]

IFO )]
1F(s) = O @)

let Go = X and define Sy : Fy — Gy by

1, 0<53<,

’S_t’97

IN A

b
su() = [ syt

Moreover, let Ko = X and Ag = {ds : s € [a,b]} with d5(f) = f(s). This defines
the integration problem Py = (Fpy, Go, So, Ko, Ao).
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Let, as before, Uy C X, V C U C [a,b] x X, U open, k,L > 0. We assume
that there is a ug € Uy and a 61 > 0 such that

up+ 01(t —a)Bx CV(t), tE€]a,b]. (88)
In particular, these conditions are satisfied if
Uy#0 and V =U =[a,b] x X. (89)

Then we can reduce the integration problem to the initial value problem. For
this purpose, set 09 = min(k,d1) and define

R: FO - %"'»Q(U’ "QvL) X U07 R(f) = (Gofa uO)a

where f is given by f(t,z) = f(t) ((t,x) € U). Then the solution of the system
u'(t) = oof(tu(t) (te€lab]),  ula)=u,

is

u(t) = uo + 0o / f(s)ds,

which, by (88), satisfies u(t) € V(t) (¢ € [a,b]). Therefore by (6),
R(f)e F=2%"°U,k,L Uy, V), fE€Fp.

Define
U B([a,b], X) — X, W(g) =05 (g9(b) — o). (90)
Obviously, we have
So=VoSoR.

This shows that the integration problem Py = (Fy, Go, So, Ko, Ag) reduces to P
(see [8] for the formal definition and additional details like the requirements on

R, which are easily seen to be satisfied here). Consequently, with e*** standing
for edet or e we have for all n
et (S0, Fo) < |[¥lluiper (S, F) = oq et (S, F), (91)

where ||¥||1i, denotes the Lipschitz constant of W. Next let us see how algorithm
A7, transforms into an algorithm for Sp. Considering A7}, applied to (oo f, uo),
we have by (11) and (13-14) for ¢ € [tg, tx11]

e (1) =+ 00 / (Por. £)(3)ds.

173
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Here Py, f stands for Py, (f(trr i))ito With tg i = ti +ih/ry if r1 > 1, while
Piof is given by (Prof)(t) = f(tr). It follows that

trt1
wir =t 00 [ (Purs£)Ot+ 00h (F(G1) = (Pros )(€)).
tg
and therefore
_1 W1
Up = o + 0 Z / (Per, f)(t)dt + Uohz (Er+1) = (Prry ) (Err1)) -
k=0 ;.

Together with (17) and (90) this gives
ARL() =W o AL, 0 R(f) = o (un — up)

n—1 tht1
- / P Ot + 2 () — Pen HEr)) |+ (92)
k=0 ty

which is Monte Carlo integration with stratified sampling and separation of the
main part. Moreover, for f € Fy

1So(f) = ALLAII = [ ToSoR(f)—ToAr,oR(f)
o5 M 1S(o0f u0) — Apt, (oo f, wo) | Blap,x)- (93)

Taking, e.g., the choice (89), the conditions of Theorem 3.2 are satisfied, which
together with (93) yields that for any w € Q

sup [1So(f) = ADL(HI < o5 sup [[S(o0f,u0) — A7l (00 o)l 5(jas)x)

IN

fery feFy
< o5t sup [1S(g,v0) — Anlu(9,v0) Bl x)
(g7UO)GF
< en” min(r+oe,r1+1) (94)

and similarly

1/p .
sup (B [1So(f) — AQL(NIP) " < erp(Xnminrterit D (o)
fery

Let us mention that (95) could also be derived directly from (92), Lemma 2.1,
and

sup || f(£) = (P, S)(1)]| < en™mintrteritl),
t€[tr try1]

which is just (35) for the present situation.
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Proposition 4.1. Let r,0,a,b, X be as above. Then there are constants
c1,c2 > 0 such that for all n € N the deterministic n-th minimal error of the
integration problem satisfies

cn T2 < eget(Sg, Fy) <con "0

Let, in addition, 1 < p < 2 and assume that X is of type p. Let px be the
supremum of all p1 such that X is of type p1. Then there are constants cs,cq >0
such that for all n € N the randomized n-th minimal error fulfills

cgn T /Px < e (Sp, Fo) < cyn T IHL/P,

Proof. Choosing r1 > r, the upper bounds follow from (94) and (95),
since algorithm ASJ")U uses not more than cn values of f. Let us turn to the lower
bounds. Since every Banach space X contains an isometric copy Xo of R, scalar
problems reduce to the Banach case by considering problems such that all values
of f are in Xg. Therefore the lower bounds in the deterministic setting and in
the randomized setting with px = 2 follow from the respective scalar results.

Now we assume px < 2 and consider the randomized setting. Since a finite
dimensional space Z always satisfies p; = 2, the space X must be infinite dimen-
sional. By the Maurey—Pisier Theorem (see [14], Th. 2.3) for every n € N there
is a subspace E, C X of dimension 8n and an isomorphism T : 618];{ — FE,, with
IT|| <1 and [T~ < 2. Let ; = Te;, where (e;)§";" is the unit vector basis of
518,7;(. Let ¢ € C*°(R) be such that 1(t) > 0 for ¢ € (0,1) and supp ¢ C [0, 1], let
n € N and define fort e R, =0,...,8n—1

(b—a)
8n

Gilt) = BBn(t — 1), ti=ati

There is a constant cg > 0 such that for all n € N and (o;)3"5* < [-1,1]%"

8n—1
con "¢ E oz € Fy.
=0

Setting f; = con™""%;x; and o1 = fol Y(t)dt, we get for all (ai)fggl Cc R

8n—1 8n—1 b
| X asso| =con™re]| 3 iz / bty
=0 i=0 J

1 8n—1 8n—1 1/px
= gco(b —a)on et H E aizi|| > en "o E ;| PX .
i=0 i=0
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Using Lemma 5 and 6 of [7] with K = X (Lemma 6 is formulated for K = R,
but is easily seen to hold also for K = X)), we conclude

1

ran : . . —r—o—1+1/px
ern(Sy, Fy) > = min E H €iS >en "0
n (S0, Fo) = 4 1C{0,....An—1},|I|>4n ; 0 fif| = ’

with (ai)fgg ! being a sequence of independent Bernoulli random variables with
P{ezzfl}:]}p{z%:‘kl}: 1/2 |

Now we consider the initial value problem.

Theorem 4.2. Let r,0,a,b,k, L be as above, let X be a Banach space, ) #
Uy C X,V CUCla,b] x X, and U open. Assume that one of the following is
fulfilled:

1. Conditions (8) and (20) hold or
2. v+ 0> 0 and there are dp,61 > 0 and ug € Uy such that conditions (23) and
(88) hold.

Then there are constants c1,co > 0 such that for all n € N the deterministic

n-th minimal error of the initial value problem satisfies

cn”"Te < 4N (S F) < eon T C.

Let, moreover, 1 < p < 2 and assume that X is of type p. Let px be the supremum
of all p1 such that X is of type p1. Then there are constants c3,cq > 0 such that
for all n € N the randomized n-th minimal error fulfills

c3n77"7g71+1/px < e;flan(s7 F) < C4n77‘7971+1/p.

Proof  The upper bounds follow directly from Theorems 3.2 and 3.3
and the fact that the algorithm needs not more than cn values of f. The lower
bounds follow from Proposition 4.1 and (91). [ |

Note that the bounds in the randomized cases of Proposition 4.1 and Theorem
4.2 are matching up to an arbitrarily small gap in the exponent. In some cases,
they are even of matching order.

Corollary 4.3. Assume that the conditions of Theorem 4.2 hold. Let px be
the supremum of all p1 such that X is of type p1. Then for each € > 0 there are
constants c1,co > 0 such that for alln € N

Cln—r—g—l—l-l/px < ezan(s’ F) < CQn—r—g—l—i-l/PX-l-E‘

If, moreover, the supremum of types is attained, that is, X is of type px, then
there are constants cs,cq > 0 such that for alln € N

Csn—r—g—l—i—l/px < ezan(s’ F) < C47’L_T_‘Q_1+1/px.
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The latter holds, in particular, for spaces of type 2 and, if 1 < p1 < oo, for spaces
X = Ly, (N,v), where (N, v) is some measure space.

Under the conditions of Proposition 4.1 the same results hold with e;*" (S, F")
replaced by e} (So, Fo).

The lower bounds in Proposition 4.1, Theorem 4.2, and Corollary 4.3 remain
true for algorithms of varying cardinality (see [7, 8] for the definition), since
the results from [7] used in proof of Proposition 4.1 are valid for this class of
algorithms, as well.

For general Banach spaces X upper and lower bounds of matching order of
eran (S F) and e}™(Sp, Fy) remain an open problem.

n
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