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A known analogue of the Pitt compactness theorem for function spaces
asserts that if 1 <p < 2 and p < r < oo, then every operator T': L, — L, is
narrow. Using a technique developed by M.I. Kadets and A. Petczynski, we
prove a similar result. More precisely, if 1 < p < 2 and F' is a Kéthe-Banach
space on [0, 1] with an absolutely continuous norm containing no isomorph
of L, such that F' C L,, then every regular operator 1" : L, — F is narrow.
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1. Introduction

Narrow operators were introduced and studied by A.M. Plichko and the se-
cond named author in [11]. Let us recall the definition for function spaces on
the Lebesgue measure space ([0,1],%, ). Let Ly denote the linear space of all
equivalence classes of ¥X-measurable functions z : [0,1] — R, and L, = L,[0, 1]
for 1 < p < 0. By 14 we denote the characteristic function of a set A € X.
We set X(A) ={BeX: BC A}, X7 (A) = {B € X(A) : u(B) > 0} and, as a
partial case, X7 = X7([0,1]). The notation A = B LU C means that A = BUC
and BNC = 0. By a sign we mean any {—1,0, 1}-valued element x € Ly. More
precisely, a sign x is called a sign on a set A € ¥ provided that suppz = A.
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A sign x is said to be of mean zero if f[O,l] xdp = 0. Observe that z € Lg is a
sign on A € ¥ if and only if x = 15 — 1¢ for some B,C € ¥ with A = BUC,
and, in addition, u(B) = u(C) means that = is of mean zero. A Banach space
E C Ly is called a Kdthe-Banach space on [0, 1] if the following conditions hold:

(1) 1 € E;

(2) for each x € Ly and y € E the condition |z| < |y| implies x € E and
] < llyll-

Note that, in the terminology of Lindenstrauss—Tzafriri [10, p. 28], a Kothe
function space is a somewhat general notion which concerns the linear subspaces
E of Ly, because we additionally assume the inclusion £ C L;. Using this inclu-
sion and the closed graph theorem, one can show that the inclusion embedding
of F¥ to Ly is continuous. A further convenience of the integrability assumption
E C L, is shown in the following useful observation. Let E and F be K&the—
Banach spaces on [0, 1] with £ C F. Then the inclusion embedding J : £ — F,
Jx = z for all x € E, is continuous. Indeed, given any Kéthe-Banach space G on
[0, 1], by continuity of the inclusions G C L; C Ly where the convergence in Ly is
equivalent to the convergence in measure, we have that every convergent sequence
in G converges in measure. Using this fact and the closed graph theorem, one
can easily prove that any inclusion of Kothe-Banach spaces is continuous.

A Ko6the-Banach space E on [0, 1] is said to have an absolutely continuous
norm if lim,, 4 ||z - 14| = 0 for every z € E.

By L(X,Y) we denote the set of all linear bounded operators from a Banach
space X to a Banach space Y, and set £(X) = L£(X,X). Let E be a Kothe-
Banach space on [0, 1] and let X be a Banach space. An operator T' € L(E, X) is
called narrow if for every A € ¥ and every € > 0 there is a mean zero sign x on A
with [|[Tz|| < e. It is not very hard to show that if £ has an absolutely continuous
norm, then every compact operator T' € L(E, X) is narrow [11]. Thus, narrow
operators generalize compact operators (as well as some other natural classes
of “small” operators). Some properties of compact operators inherit by narrow
operators, but not all of them (see [11], a recent survey [12] and a forthcoming
book [13]).

The classical Pitt theorem [9, p. 76] asserts that for any 1 < p < r < oo every
operator T' € L({,,¢p) is compact. Using the notion of infratype for Banach
spaces, the following result was obtained in [8].

Theorem 1.1. If1 < p < 2 and p < r < o0, then every operator T €
L(Ly, L) is narrow.

Theorem 1.1 can be considered as an analogue of the Pitt compactness the-
orem in the setting of function spaces. We remark that Theorem 1.1 is false for
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any other values of p and 7. If p > 2, then the composition J, o I, of the identity
embedding I}, : L, — Lo and the isomorphic embedding J,. : Ly — L, is evidently
not narrow. And if 1 <p <2 and 1 <r <p, then the identity embedding of L,
into L, is not narrow.

Recall that a linear operator T : E — F between Kéthe-Banach spaces (more
general, between vector lattices) F and F is called positive if Tx > 0 for every
xr € E with x > 0. Here and in sequel x < y for elements of L; means that
z(t) < y(t) holds a.e. on [0,1]. A linear operator T : E' — F'is called regular if
it is a difference of two positive linear operators from F to F.

The main result of the paper is the following theorem.

Theorem 1.2. Let 1 < p < 2 and let F' be a Kdéthe-Banach space on [0, 1]
with an absolutely continuous norm containing no subspace isomorphic to Ly, such
that F C Ly. Then every regular operator T € L(L,, F') is narrow.

Theorems 1.2 and 1.1 are incomparable: Theorem 1.2 covers much more range
spaces, however it is restricted to regular operators.

2. Kadets—Pelczynski Sets

In seminal paper [7] (1962), which became one of the most cited classical
papers on the geometric theory of Banach spaces, M.I. Kadets and A. Pelczyniski
introduced special sets M? in the space L,, 1 < p < oo depending on a positive
parameter € > 0 and consisting of all elements = € L, such that the subgraph of
the decreasing rearrangement of || contains a square with sides e. Let us give a
precise definition for the general setting of the Kéthe-Banach spaces on [0, 1].

Definition 2.1. Let E be a Kéthe-Banach space on [0,1] and € > 0. Set
ME = {a: cE: pftel01]: [zt)] > ellz)p} > 5}.

Obviously, Mf C Mg, whenever ¢/ > " and |, MEE =F.

Remark that the sets MZ for the setting of the Kéthe-Banach spaces were
used by various authors, see, e.g., [10, Proposition 1, p. 8], [4, 5]. The idea of
using these sets can be explained as follows. Given a normalized sequence (x,)
in E, either it is contained in some universal set M, or for every ¢ > 0 there
is n such that z, ¢ MEE In the first case, the norm of E and the Li-norm
are equivalent on (x,), and in the second case, (x,) contains subsequences with
arbitrarily “narrow” elements. This leads to different interesting alternatives for
the sequences and subspaces of . One of the alternatives which we will need
later is obtained in the following lemma (see [13, Lemma 10.63]; we provide its
proof below for the sake of completeness).
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Lemma 2.2. Let E be a Kéthe-Banach space on [0,1] with an absolutely
continuous norm. Let (x,) be an order bounded sequence from E such that for
every e > 0 there existn € N such that x, ¢ ME. Then there exists a subsequence
(yn) of (xn) and a disjoint sequence (z,) in E such that |z,| < |yn| for all n, and
g — 2all = 0.

Before the proof, we recall some lattice definitions. A subset X of a Kothe—
Banach space F is called order bounded provided there exists y € E such that
|z| <y for each z € X. A linear operator T : E — F between Kéthe-Banach
spaces E and F' is called order bounded if T sends order bounded sets from F
to order bounded sets in F. Evidently, any positive operator (hence, any regular
operator) is order bounded. By ET we denote the positive cone of E, that is,
Et={zxeFE: x>0}

Proof Lete € ET be such that |z,] < e for all n € N. Choose a
subsequence (/) of (x,) so that x/, ¢ M, for all n. For every n € N, let
Ay ={te[0,1]: |e(t)] = 272, |} and B, = Ui, Ar.

Note that p(A,) < 27", Buy1 C By, and u(B,) < 27" for each n. Choose
a strictly increasing sequence of the integers (n;); such that [le-1p, || < 1/i
(this is possible because of the absolute continuity of the norm).

Observe that the sets C; = Ay, \ By,,, are disjoint. Let y; = 7, and 2z =
yi - 1¢, for i =1,2,.... Then (z;) is a disjoint sequence, |z;| < |y;|, and

lyi = 2zill = llwg, - Loapes | < Mo, - Loapa,, | + 25, - 16, |
< 12712, - 1o apa,, |+ lle - 1p,,, ]
< 277””6””1[071]” +1/i—0 as i — oo. [

We need the following lemma which in a certain degree develops the previous
one.

Lemma 2.3. Let E be a Kithe-Banach space on [0,1] with an absolutely
continuous norm. Let (x,,) be an order bounded sequence from E such that ||z, | >
§ for some & > 0 and all n € N. Then there exists € > 0 such that x, € M for
all n.

Proof. Lety € E besuch that |z,| <y for all n € N. Supposing the lemma
is false, choose by Lemma 2.2 a subsequence (y;) of (z,,) and a disjoint sequence
(zn) in E such that |z,| < |y,| for all n, and ||y, — 2zn|| — 0. Set A,, = supp 2,
for each n € N. Then |z,| < |yn| - 14, < z-14, and hence

8 < lynll < llznll + lyn — 2nll < [|2 - 1a, || + llyn — 2l

for all n. This is impossible, because ||y, — 2zn| — 0 and ||z - 14, || — 0 by the
absolute continuity of the norm in F. ]
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3. Enflo Operators and Proof of the Main Result

Let X be a Banach space. An operator T' € L(X) is called an Enflo operator
if there is a subspace Y of X isomorphic to X such that the restriction 7|y of
T to Y is an isomorphic embedding. The name “Enflo operator” is due to the
following famous Enflo theorem on primarity of L,: if the space L,, 1 < p < oo,
is decomposed into a direct sum of closed subspaces L, = X @Y, then at least
one of X,Y is isomorphic to L, (see [10, p. 179]).

One of the peculiarities of the spaces L, with 1 < p < 2, which will be used
later, is described in the following deep theorem due to varios authors.

Theorem 3.1. Let 1 < p < 2. Then any non-Enflo operator T € L(L,) is
narrow.

Theorem 3.1 for p = 1 can be deduced from the results of [3]. Moreover,
the following remarkable result of Rosenthal (the equivalence of (c¢) and (d) in
Theorem 1.5 of [14]) gives much more — necessary and sufficient conditions for
an operator 7' € L£(L1) to be narrow.

Theorem 3.2. An operator T € L(Ly) is narrow if and only if for each A € &
the restriction T‘Ll(A) is not an isomorphic embedding, where Li(A) = {x € Ly :

suppx C A}.

Theorem 3.1 in the case 1 < p < 2 was announced by J. Bourgain [1, The-
orem 4.12, item 2, p. 54] without a proof, accompanied with a citation to [6].
Formally, Theorem 3.1 cannot be deduced from [6], however an involved proof
can be written by using the ideas and methods of [6] (such a proof is to be found
in [13, Section 7.3]). Another proof of Theorem 3.1 in the case 1 < p < 2 is
given in [2]. The last our comment is that for p = 2 Theorem 3.1 holds trivially,
because in this case a non-Enflo operator must be compact and hence narrow.

Now we are ready to prove the main result.

Proof of Theorem 1.2. Denote by J € L(F, L,) the inclusion embedding,
Jx =z for all z € F. Consider any T' € L(L,, F') and assume, on the contrary,
that T is not narrow. Choose A € ¥7 and ¢ > 0 such that ||Tz|| > ¢ for each
mean zero sign x on A.

Set S = JoT € L(Ly) and show that S is non-narrow as well. Assuming,
on the contrary, that S is narrow, we find a sequence (z,) of mean zero signs on
A such that [|Sx,| — 0. Since (z,,) is order bounded by 1jg;; and T is regular,
(T'z,,) is an order bounded sequence. And since ||[Tz,| > J for all n € N, by
Lemma 2.3, there exists € > 0 such that Tz,, € M for all n. Thus,

|Szall? = / TaPdp > &,
[0,1]
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which contradicts the condition [|Sz,| — 0. Thus, S is non-narrow. By The-
orem 1.2, S is an Enflo operator. Let E be a subspace of L, isomorphic to L,
such that || Sz|| > al|z|| for some o > 0 and all x € E. Then

Tz > |7~ ISzl > all T~ |
for all x € E which contradicts the assumption that F' contains no subspace
isomorphic to L. [

We do not know whether the assumption of the regularity of T is essential in
Theorem 1.2.
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