Journal of Mathematical Physics, Analysis, Geometry 2013, vol. 9, No. 1, pp. 108–113

Isomorphically Polyhedral Banach Spaces

V.P. Fonf

Department of Mathematics, Ben Gurion University of the Negev Beer-Sheva, Israel E-mail: fonf@math.bgu.ac.il

A.J. Pallarés and S. Troyanski

Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo 30100 Murcia, Spain

E-mail: apall@um.es

stroya@um.es

Received October 9, 2012

We prove two theorems giving sufficient conditions for a Banach space to be isomorphically polyhedral.

Key words: polyhedral norms and renormings, boundaries, polytopes, countable covers.

Mathematics Subject Classification 2010: 46B20.

Devoted to the memory of M.I. Kadets

All Banach spaces we consider in this paper are infinite-dimensional and real. A Banach space is called polyhedral if the unit ball of each its finite-dimensional subspace is a polytope [7]. If a Banach space admits an equivalent norm in which it is polyhedral then we say that it is isomorphically polyhedral. In [8] is proved that polyhedral space cannot be isometric to a dual space.

In [9] is proved that if $\operatorname{ext} B_{X^*}$ is countable then X is not reflexive. In [6] this result is strengthen, namely it is proved that if $\operatorname{ext} B_{X^*}$ can be covered by a countable union of compact sets then X is not reflexive.

A subset $B \subset S_{X^*}$ of the unit sphere S_{X^*} of a Banach space X^* is called a boundary (for X) if for any $x \in X$ there is $f \in B$ such that f(x) = ||x||. An important example of a boundary is $\operatorname{ext} B_{X^*}$ (the Krein–Milman theorem).

© V.P. Fonf, A.J. Pallarés, and S. Troyanski, 2013

The first named author is supported by Israel Science Foundation, Grant 209/09. The second author is supported by MCI MTM2011-25377 . The third named authors is supported financially by Science Foundation Ireland under Grant Number SFI 11/RFP.1/MTH/3112, by MCI MTM2011-22457 and the project of the Institute of Mathematics and Informatics, Bulgarian Academy of Science.

A subset B of the dual unit ball B_{X^*} has property (*) if, given any w^* -limit point f_0 of B (i.e. any w^* -neighborhood of f_0 contains infinitely many elements of B), we have $f_0(x) < 1$ whenever x is in the unit sphere S_X . Note that if B is a set such that $|||x||| = \sup\{f(x) : x \in B\}$ defines a norm, and B has (*) for this norm, then B is a boundary for the norm |||.|||.

Any separable polyhedral space has a countable boundary, and if a Banach space has a countable boundary then it is isomorphically polyhedral space [2]. Any (isomorphically) polyhedral space saturated by spaces isomorphic to c_0 , that is any (infinite-dimensional) subspace of a polyhedral space contains an isomorphic copy of c_0 [4].

In this paper we prove two theorems giving sufficient conditions for a Banach space to be isomorphically polyhedral.

Theorem 1. Let X be a Banach space. Then (a), (b) and (c) are equivalent and imply (d).

(a) There are a sequence of subsets of S_X , $\{S_k\}_{k=1}^{\infty}$, $S_X = \bigcup S_k$, and an increasing sequence of norm-compact subsets of S_{X^*} , $\{F_k\}_{k=1}^{\infty}$, $F_k = -F_k$, with the following properties:

$$b_k := \inf_{x \in S_k} \max_{f \in F_k} \{f(x)\} > 0, k = 1, 2, \dots$$
 and $\lim_k b_k = 1$

- (b) There are a sequence $\{t_k\} \subset S_{X^*}$ and a sequence of positive numbers $\epsilon_k > 0$, $k = 1, 2, \ldots$, such that
 - (i) the set $B = \{\pm (1 + \epsilon_k)t_k\}_k$ is a boundary with property (*) for the equivalent norm

$$|||x||| = \sup_{k} |(1+\epsilon_k)t_k(x)|, x \in X,$$

(ii) $B_{(X,|||,|||)} \subset \operatorname{int} B_X$.

(c) There are a sequence $\{t_n\}_n \subset S_{X^*}$ and a sequence of positive numbers $\{\alpha_n\}$, $\lim_n \alpha_n = 0$, such that

$$S_X \subset \bigcup_n S(t_n, \alpha_n),$$

where $S(t_n, \alpha_n)$ are the slices defined as $S(t_n, \alpha_n) = \{x \in B_X : t_n(x) \ge 1 - \alpha_n\}.$

(d) X is a separable isomorphically polyhedral space.

Journal of Mathematical Physics, Analysis, Geometry, 2013, vol. 9, No. 1 109

Proof.

(a) \Rightarrow (b). Fix a sequence $\delta_n > 0$ such that $0 < 3\delta_n < b_n$ and $\lim_n \delta_n = 0$. Choose γ_n defined by the equation $(1 + \gamma_n) = (b_n - 3\delta_n)^{-1}$ and observe that $\gamma_n > 0,$

$$\lim_{n \to \infty} \gamma_n = 0 \text{ and } (1 + \gamma_n)(b_n - 2\delta_n) > 1, n = 1, 2, \dots$$

(notice that here we use that $1 \ge b_n > 0$, for any n and that $\lim_n b_n = 1$).

Since each set F_n is compact, for each n there is a δ_n -net $N_n = \{h_j^n : j =$ $1, 2, \ldots, p_n \} \subset F_n$ such that $||h_i^n - h_j^n|| \ge \delta_n, i \ne j$ and for each $f \in F_n$ there is some h_j^n with $||f - h_j^n|| < \delta_n$.

Clearly, we can write the set $\pm \bigcup_n (1 + \gamma_n) N_n$ in the form $B = \{\pm (1 + \epsilon_k) t_k :$ $k = 1, 2, \ldots$ for suitable t_k 's and ϵ_k 's, $\lim_k \epsilon_k = 0$. Define

$$|||x||| = \sup\{|(1 + \epsilon_k)t_k(x)| : k = 1, 2, \ldots\}.$$

For $x \in S_X$ there is some n such that $x \in S_n$ and some $f \in F_n$ such that $f(x) > b_n - \delta_n$, and some $h_j^n \in N_n$ such that $||f - h_j^n|| < \delta_n$. Then we have

$$|||x||| \ge (1+\gamma_n)h_j^n(x) \ge (1+\gamma_n)(f(x)-\delta_n) > (1+\gamma_n)(b_n-2\delta_n) > 1 = ||x||.$$

On the other hand we have $|||x||| \le \max_k \{(1 + \epsilon_k) ||x||\}$. Therefore

$$||x|| < |||x||| \le \max_{k} \{(1 + \epsilon_k)\} ||x||, x \in X, x \neq 0.$$

This proves (ii) in (b).

Finally we prove that B is a boundary of (X, |||, |||) with (*). Assume the contrary and choose f a w^* limit point of $(1 + \gamma_n)h_j^n$ such that there is x with |||x||| = 1 and f(x) = 1. Since $\lim_{n \to \infty} \gamma_n = 0$, we have that $||f|| \le 1$, and then $||x|| \ge 1$ in contradiction with (ii) we have already proof.

(b) \Rightarrow (a). Put

$$A_k = \{ u \in X : |||u||| = 1, (1 + \epsilon_k)t_k(u) = 1 \}, k = 1, 2, \dots$$

Since B is boundary it follows that $S_{(X,|||,|||)} = \bigcup_k A_k$. Define $S_k = \{u/||u|| : u \in A_k$ A_k and $F_k = \{\pm t_j : j = 1, 2, ..., k\}$. Clearly $S_{(X, \|.\|)} = \bigcup_k S_k$ and

$$\begin{aligned} b_k &= \inf\{\max\{f(x) : f \in F_k\} : x \in S_k\} \\ &= \inf\{\max\{t_i(u/||u||) : i = 1, 2, \dots, k\} : u \in A_k\} \\ &\geq \inf\{t_k(u/||u||) : u \in A_k\} = \frac{1}{(1+\epsilon_k)}\inf\{1/||u|| : u \in A_k\} \geq \frac{1}{(1+\epsilon_k)} > 0. \end{aligned}$$

and clearly $\lim_k b_k = 1$.

110

Journal of Mathematical Physics, Analysis, Geometry, 2013, vol. 9, No. 1

(b) \Rightarrow (c). Put $V = B_{(X,|||,|||)}$. Clearly $V = \bigcap_k \{x \in X : |(1 + \epsilon_k)t_k(x)| \le 1\}$. From (ii) follows that $S_X \subset \bigcup_k \{x \in X : |(1 + \epsilon_k)t_k(x)| > 1\}$. Put $\alpha_k = \frac{\epsilon_k}{1 + \epsilon_k}$, k = 1, 2... and finish the proof.

(c) \Rightarrow (b). Put $\epsilon_k = \frac{2\alpha_k}{1-2\alpha_k}$, $k = 1, 2, \dots$ and $V = \bigcap_k \{x \in X : |(1+\epsilon_k)t_k(x)| \le 1\}$. Since $S_X \subset \bigcup_k \{x \in X : |t_k(x)| \ge 1 - \alpha_k\}$, it follows that

$$\bigcap_{k} \{x \in X : |t_k(x)| < 1 - \alpha_k\} \subset int(B_X),$$

and an easy verification shows that $V \subset int(B_X)$. Now (i) easily follows from $\lim_k \epsilon_k = 0$.

(b) \Rightarrow (d). Is clear, since X has an equivalent norm with a countable boundary with (*).

R e m a r k. In [3] is proved that if X satisfies (c) (in the given norm) then X is isomorphically polyhedral, and if X is isomorphically polyhedral then there is an equivalent norm on X in which it satisfies (c). However, the following question remains open: if X is isomorphically polyhedral then does it satisfy (c) in any equivalent norm? There is a partial answer changing $\alpha_k = \alpha > 0$ with α arbitrary [1]. Finally, let us mention that the implication $(a) \Rightarrow (d)$ is a particular case of one of the results in [5].

Theorem 2. Let X be a Banach space. Assume that $S_X = \bigcup_k S_k$ such that each S_k has an ε -approximative countable boundary, for any $\varepsilon > 0$, in the following sense

(P) for any $k \in \mathbb{N}$ and $\varepsilon > 0$ there is a sequence $\{h_i^k\} \subset (1 + \varepsilon)B_{X^*}$ such that if

$$V_k^* = w^* - cl \, co\{B_{X^*}, \{\pm h_i^k\}_{i \in \mathbb{N}}\}, \qquad V_k = \{x : \max x(V_k^*) \le 1\},\$$

then

 $(i)_k V_k \bigcap S_k = \emptyset$ $(ii)_k \text{ for any } x \in \partial V_k \setminus S_X \text{ there is } h_i^k \text{ with } h_i^k(x) = 1.$ Then X is isomorphically polyhedral.

P r o o f. Fix $\epsilon \in (0, 1)$ and a sequence $\{\epsilon_k\}, \epsilon_k \in (0, \epsilon), \lim_k \epsilon_k = 0$. Next by using property (P) for every $k \in \mathbb{N}$ find $\{h_i^k\}_{i,k=1,2,\dots} \subset (1 + \epsilon_k)B_{X^*}, V_k^*, V_k$ such that $(i)_k$ and $(ii)_k$ are satisfied. Put

$$V^* = w^* - clco\{\pm h_i^k\}_{i,k\in\mathbb{N}}, V = \{x \in X : \max x(V^*) \le 1\},\$$

and introduce in X a new norm |||.||| with the unit ball V. By using $S_X = \bigcup_k S_k$ and $(i)_k, k = 1, 2, \ldots$, we get

$$V \subset intB_X. \tag{1}$$

Journal of Mathematical Physics, Analysis, Geometry, 2013, vol. 9, No. 1 111

Indeed, let $x \in X$ with $||x|| \geq 1$ and take $z = x/||x|| \in S_X$, then $z \in S_k$ for some k and $z \notin V_k$. By the definition of V_k it is possible to find $x_1^* \in B_{X^*}$, $x_2^* \in co\{\pm h_i^k\}_{i\in\mathbb{N}}$ and $\lambda \in [0,1)$ such that $\lambda x_1^*(z) + (1-\lambda)x_2^*(z) > 1, (1-\lambda)x_2^*(z) > 1 - \lambda$ and $x_2^*(x) > ||x|| \geq 1$. Thus we have that $x \notin V$. Note that by (1) and its definition we have that $V = \bigcap_k V_k$.

From $\epsilon_k \in (0, \epsilon), k = 1, 2, ...,$ it follows that $V \supset (1 + \epsilon)^{-1}B_X$. So the norm |||.||| is $(1+\epsilon)$ -equivalent to the original one. We show that the set $B = \{\pm h_i^k\}_{i,k\in\mathbb{N}}$ is a (countable) boundary for the space (X, |||.|||), and then by [2] we conclude that (X, |||.|||) is isomorphically polyhedral. Fix $x_0 \in \partial V$. From (1) follows that $x_0 \in intB_X$. Assume to the contrary that for any $h \in B$ we have $h(x_0) < 1$. Since $x_0 \in \partial V$ there is a sequence $\{h_{i_n}^{k_n}\}_{n=1}^{\infty}$ with $\lim_n h_{i_n}^{k_n}(x_0) = 1$. We consider two cases.

Case 1. $\limsup_n k_n = \infty$. WLOG we can assume that $\lim_n k_n = \infty$. Let $h_0 \in X^*$ be a w^* -limit point of $\{h_{i_n}^{k_n}\}_{n=1}^{\infty}$. Since $h_{i_n}^{k_n} \in (1 + \epsilon_{k_n})B_{X^*}$ and $\lim_k \epsilon_k = 0$, it follows that $h_0 \in B_X$. However $h_0(x_0) = 1$, and hence $||x_0|| \ge 1$, contradicting $x_0 \in V \subset intB_X$.

Case 2. $\sup_n k_n < \infty$. WLOG we can assume that $k_n = l$, for any $n \in \mathbb{N}$. Since $x_0 \in V_l$ (recall that $x_0 \in V = \bigcap_k V_k$), and $\lim_n h_{i_n}^l(x_0) = 1$, it follows that $x_0 \in \partial V_l$. By $(ii)_l$ there is h_i^l with $h_i^l(x_0) = 1$, which proves that B is a (countable) boundary for (X, |||.||).

The proof of the theorem is complete.

112

References

- R. Deville, V. Fonf, and P. Hajek, Analytic and Polyhedral Approximation of Convex Bodies in Separable Polyhedral Banach Spaces. — Israel J. Math. 105 (1998), 139–154.
- [2] V.P. Fonf, Some Properties of Polyhedral Banach Spaces. Funkts. Anal. i Prilozhen. 14 (1980), No. 4, 89–90. (Russian) (English transl.: Funct. Anal. Appl. 14 (1980), 323–324.)
- [3] V.P. Fonf, Three Characterizations of Polyhedral Banach Spaces. Ukr. Mat. Zh.
 42 (1990), No. 9, 1286–1290. (Russian) (English transl.: Ukr. Math. J. 42 (1990), No. 9, 1145–1148.)
- [4] V.P. Fonf, Polyhedral Banach Spaces. Mat. Zametki **30** (1981), No. 4, 627–634.
 (Russian) (English transl.: Math. Notes **30** (1981), No. 9, 809–813.)
- [5] V.P. Fonf, A.J. Pallares, R. Smith, and S. Troyanski, Polyhedrality in Pieces. Preprint.

- [6] M.I. Kadets and V.P. Fonf, Some Properties of the Set of Extreme Points of the Unit Ball of a Banach Space. Mat. Zametki 20 (1976), No. 3, 315–320. (Russian) (English transl.: Math. Notes 20 (1977), No. 3/4, 737–739.)
- [7] V. Klee, Polyhedral Sections of Convex Bodies. Acta Math. 103 (1960), 243–267.
- [8] J. Lindenstrauss, Notes on Klee's paper "Polyhedral sections of convex bodies". Israel J. Math. 4 (1966), No. 4, 235–242.
- [9] J. Lindenstrauss and R. Phelps, Extreme Point Properties of Convex Bodies in Reflexive Banach Spaces. — Israel J. Math. 6 (1968), 39–48.

Journal of Mathematical Physics, Analysis, Geometry, 2013, vol. 9, No. 1 113