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Dedicated to the 80th birthday of Professor F.S. Rofe-Beketov

1. Introduction

Let A be a self-adjoint positive definite operator in a separable Hilbert space
H. Tt is known that the domain of the operator A’ (§ > 0) becomes a Hilbert
space Hy with respect to the scalar product (z, )y = (A%z, A%)), z,y € Dom(A?).
For 6 = 0, we consider that Hy = H.

We denote by La((a,b); H),—oco < a < b < 400, the Hilbert space of all vector
functions defined on (a,b), with the values in H, which have the finite norm

1
2

b
11 Loatyorny = / £ ()12 dt

(see [1]). Further, we denote by L(X,Y) a set of the linear bounded operators
acting from the Hilbert space X to another Hilbert space Y. For Y = X, we
consider L(X,X) = L(X). We also denote the spectrum of the operator (-)

by o(-).
We introduce the linear space

W2 (( = {u(t) ) € La((a,b); H), u”"(t) € La((a,b); H) }

with the norm

N|=

2 2
lullwz (@) = (HAQUHLQ((a,b);H) + HUHHLQ((a,b);H))

The lineal becomes a Hilbert space [2]. Here and further the derivatives are
understood in the sense of distribution theory. For a = —oco0, b = 400, we will
assume that

Lo((—00,+00); H) = Lo(R; H), W2((—o00, +00); H) = W3(R; H), R = (—00, +00).
For a = 0, b = 400, we will suppose that

Besides the spaces introduced, we will use the following subspaces:
W2 R+’ {U ‘u 6 W2 (R+’ )7 (O) = U/(O) = O} ’

W(;%T(RJ’_;H) = {u(t) cu(t) € WE(Ry; H), u(0) = Tu/(0), T € L(H%, H;)} :

2
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Now we pass to the statement of the boundary value problem studied. We
consider the operator differential equation of the form

— () + p(H) A%u(t) + Aol () = f(1), t € Ry, 1)
satisfying the boundary conditions at zero
u(0) = T’ (0), (2)

where f(t), u(t) are the functions with values in H, T € L(H%, H%), Aj is alinear

unbounded operator, A is a self-adjoint positive definite operator in H, p(t) = «
if t € (0,1), and p(t) = B if t € (1,400), and «, B are positive unequal numbers.
For definiteness, we suppose that a < .

Definition. Problem (1), (2) is called reqularly solvable if for every function
f(t) € La(Ry; H) there exists a function u(t) € WE(Ry; H) satisfying equation
(1) almost everywhere in R, boundary condition (2) holds in the sense of con-
vergence of the space Hg, i.e.,

}i_rz% |u(t) — Tu'(t)HH% =0,

and the estimate
lullwz(ry.my < const | fll L, m)
takes place.

A review article of A.A. Shkalikov [3] contains a detailed analysis of the results
of both the author himself and other authors obtained on the problems of sol-
vability and spectral problems, mainly the boundary value problems for opera-
tor differential equations when the coefficients in the boundary conditions are
only complex numbers. Among the results, we especially mark out the papers of
M.G. Gasymov [4-6] and his followers. Note that these boundary value problems
do not lose their actuality (see, for example, the recent papers of S.S. Mirzoev and
M.Yu. Salimov [7], A.R. Aliev and S.S. Mirzoev [8], A.R. Aliev [9]). Nevertheless,
there are rather few works on solvability and the studying of the spectrum, the
completeness of root vectors and elementary solutions of boundary value problems
for operator-differential equations when the coefficients of the boundary conditions
are operators. The first works on this subject were the papers of F.S. Rofe-Beketov
[10], V.A. Ilyin and A.F. Filippov [11], M.L.Gorbachuk [12], S.Y. Yakubov and
B.A. Aliev [13]|. Later in this direction there appeared an interesting paper of
M.G. Gasymov and S.S. Mirzoev [14], in which both the problems of solvability
and some spectral aspects of the boundary value problems for elliptic type ope-
rator differential equations of the second order considered on the semiaxis were
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studied by using original methods. This work found its proper development in
the papers of S.S. Mirzoev and his followers (see [15-19]).

The present paper aims to obtain appropriate solvability results of the paper
by M.G. Gasymov and S.S. Mirzoev [14] for the case when the principal part of
the equation contains discontinuous (piecewise constant) coefficient. Such prob-
lems are of interest not only because they contain appropriate boundary value
problems, in the boundary conditions in which the coefficients are complex num-
bers, but also because they can be applied to a wider range of the problems for
partial differential equations and a number of problems in mechanics, in particu-
lar, non-standard problems in the theory of elasticity of multilayered bodies. For
simplicity, a point of discontinuity is taken. Here we note that a regular solva-
bility of the boundary value problems for operator differential equations of the
second order with discontinuous coefficients, when the coefficients in the boun-
dary condition are only complex numbers, is studied in paper [20] and developed
in [21].

2. Main Results

We begin with considering the problem
—u"(t) + p(t) A%u(t) = (1)t € Ry, (3)

u(0) = Tu'(0), (4)

where f(t) € La(Ry; H), u(t) € WZ(Ry; H).
As can be seen, equation (3) is obtained from (1) at A; = 0.
The following theorem is true.

Theorem 1. Let the operator

Towp=FE+ VaTA + M (\/aTA _ E) o 2VaA

have a bounded inverse operator in H§7 where E is an identity operator in H and
et is a semigroup of bounded linear operators generated by the operator —A.
o

Then the operator Py, acting from the space W22’T(R+; H) to the space La(R4+; H),
o
Pou(t) = —u"(t) + p(t) A%u(t), u(t) € W227T(R+; H),
induces an isomorphism between these spaces.

Proof We wil show that the equation Pyu(t) = 0 has only the trivial

o
solution in the space W227T(R+; H). Indeed, the general solution of the equation
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Pyu(t) = 0 from the space W2(R,; H) has the form

vi(t) = e_\/atAcpl + 6—\/5(1—0,4%02 , t e (0,1),
uo(t) =

va(t) = e VAU DAYs t € (1,+00),

o
where the vectors 1, @2, p3 € H% From the condition ug(t) € W227T(R+; H) we
have

v1(0) = Tv1(0), vi(1) = v2(1), vi(1) = v5(1).

Thus for the vectors @1, 2, @3 we get the system of equations

pr+e Voo, =T (—\/5A901 + \/5146"/‘5%2) :
e VA o1 + o = 3,
—Vade Veldo +\Jalpy = —/BAps.

From this system, in turn, it implies that

p3 = ge_\/aA%—\/g@% P2 = \\;Jm\? —Vedy,

\F \Fef\/’A 5 _Va-VB e~Wad,
o1 \erf Vel +/aT Ay ot ffTA 2 =0.

Consequently,

Toppl = <E ++vaTA+ \\; \\; (fTA E) _2\/&4> w1 = 0.

Since by the condition of the theorem the operator T;, g has a bounded inverse
operator in H3, then from the last equation it follows that ¢; = 0. Consequently,

2
w2 =3 =0, i.e., ug(t) = 0. From the condition of the theorem it is clear that at
any f(t) € Lo(R4; H) the equation Pyu(t) = f(t) has a solution from the space
o

W3 (R4 ; H) and this solution has the representation

[ w(), te(01),
u(t) = { un(t), € (1 1o0),

where

1
1
u(t) = OV /e_ﬂt_smz‘l_lf(s)ds + T, h(VaTA— E)e~Velt+1)A
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1
\/7_\/> e—\/a(l—s)A -1 G4 — —va(s—1)A 4-1
et or s rere

+o00
1
+m / e VAETDALT f(s)ds | + T 5(E + aT A)e vVoll=H4

1 —+o00
Vva—B Ja(l-s)A 4—1 1 —VB(s—1)A 4—1
><|:2 /e A f(s )d8+\/5+\/31/€ A7 f(s)ds

va (Va+/B)

0

1

1 L —vae-na Va—VB —JasA -1
+Ta’ﬁ(\/aTA E)e 2\/5(\/54—\/3)0/6 A" f(s)ds
o VB(t-1)A

+o00
ug(t)—%l/ﬁ/e_\/mt_SAA_lf( s)ds+ T, B(E—i—\fTA) Tt /B

1
« e—\/a(l—s)AA—lf(S)dS \/> f f(s 1) AA f( ) ]
/ 5

+T, h(VaT A — B)eVA-DAm2vad { e VolTDAAT 1 (s)ds

.

+0o0
L[ —VB-na -1
+2\/Bl/e A f(s)ds].

We note that the fulfillment of boundary condition (4) is verified directly. In

addition, for any wu(t) € W227T(R+; H) we have

1Psull?y ey = 0" + p A%,

2
<2 (HUH|EQ(R+;H) +max(a®; 5%) HAzUHLQ(RJr;H))

2
< 2max(1; 0% 52) ulliyz g, oy -

o
i.e., the operator Py : W227T(R+; H) — Lo(Ry; H) is bounded. Then the assertion
of the theorem follows from the Banach theorem on the inverse operator. The
theorem is proved.
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From Theorem 1 it implies that the norms [|Foul| ., g, .p) and Hung(R%H)

o
are equivalent in the space WQQ’T(RJF; H).
The following theorem is true.

Theorem 2. Suppose that the operator T, g has a bounded inverse operator
in Hs, and the operator B = A1A™! is bounded in H, moreover, ||B|| < NT_l,
2
where
! -1
Nr = Sup | Au HLQ(R+;H) ||POUHL2(R+;H) :
0Fu(t)eW3 (R4 H)

Then problem (1), (2) is reqularly solvable.

o
P roof. Denoting by P; the operator acting from the space WQ%T(R+; H)
to the space Lo(Ry; H) in the following way:

o
Pru(t) = Apd/(t), u(t) € Wsp(Ry; H),
we can rewrite problem (1), (2) in the form of the operator equation

Pou(t) + Pru(t) = f(t),

o
where f(t) € Lo(Ry; H), u(t) € W227T(R+; H). Since by Theorem 1 the operator
Py has a bounded inverse Py ' acting from the space Lo(R.; H) to the space

W;%T(RjL; H), then after substitution u(t) = Py 'v(t) we obtain the equation
(B + PRy () = f(t)
in the space Lo(R4+; H). And due to the fact that for any v(t) € Lay(R4; H)
HP1P0_1”HL2(R+;H) = [|Prullyry .y < 1Bl HAUIHLQ(R+;H)

< Nr ||Bl[[[Poull 1, gy = Nr Bl Ly sy »

then for N7 || B|| < 1 the operator E+ P; P, ! is invertible in the space La(R.; H)
and
u(t) = Py (B + PPy ) TH (1),
thus
HUHW22(R+;H) < const ||f||L2(R+;H) :

The theorem is proved.
We note that the problem of estimating the number Np arises here. For this
purpose we will use the idea of the procedure offered in [22].
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First we prove the following statement.
o
Lemma 1. For any u(t) € W22’T(R+;H) there takes place the inequality
e

2
1Poully (i, o1y = 3 (Hu//HfLQ(R+;H) +alB || A%l m

+20 HAU,H;(R+;H) + 2ﬁRe(AT%$)%) ;

where . = u'(0) € H1.
2

P r oo f Multiplying both sides of equation (3) by p_%(t), we get

o=t o=t =3 ptan
2 = 2 u = ||— 2U 2 u
P ey — 1P ey TP P Lo(RyH)
o —1 ‘ 1 9 ‘2 "ooA2
= 2 2A — 2R ,A i
Hp “ La(Ry;H) e “ Lo(Ry;H) € (u U)Lz(R+;H)

Now, integrating by parts, we have

—2Re (u”, Azu) = 2Re (A%UI(OL A%U(O)> +2 HA“/HiQ(R+;H)

— 112
= 2Re (AT:L’,:E)% +2||Au HL2(R+;H) .
Then
e e s )
3 U = 2U 2 u
P ey — NP ey TP Lo(RysH)
2
+2 HAU,HLQ(R+;H) +2Re (AT'x, x)% (5)
o
On the other hand, for u(t) € WiT(R+; H) we have
1ol ) > |0 Pou | (©
u . o' u :
0 L2(R+7H) - P 0 LQ(R+;H)
Taking into account equality (5) in (6), we obtain
2 L 2
it 2 (4
1 Poullr,(ry iy = o ( PR e +||p2 A%u Lol et)

1
2

2
+2 [ A0, oy + 2Re(AT ), )
1 2
za <ﬁ HUHH;(RHH) to HAQUHLQ(R+;H) +2 HAu/Hiz(RJr;H)

+2Re(ATz, x)%) = %S(u),

214 Journal of Mathematical Physics, Analysis, Geometry, 2013, vol. 9, No. 2
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where ) )
S(u) = H“”HL2(R+;H) +af HAQUHLQ(RJF;H)

+24 HAUIH2LQ(R+;H) + 206Re(ATz, x) (7)

1.
2
Lemma 1 is proved.

For further operations we factorize the considered in the space Hy polynomial
operator pencil of the form

P(\;v; A) = ME + aBA* — 260247 + 4A2A%

Lemma 2. For vy € |0, 255(04é + 5%)) the operator pencil P(\;7y; A) is in-
vertible on an imaginary axis and is represented in the form

Py A) = FAv; A)F (=593 A),

where
FX7;A) = (AE — wi(7)A)(AE — wa(7)A)

= N2E + a1 (7)AA + az(v) A%, (8)

and Rewn(7) < 0, k = 1,2, a1(7) = /283 (a? + B%) — 7, as(y) = a¥ 8.

Proof. Let~e]0, 2[3%(04% —l—ﬁ%)) Then for 0 € 0(A) and A =&, £ € R,
we have
P(i&;v;0) = €' + afo’ +26¢%0° — y&%0”

4 2 2 4 2
=gt <§4+aﬁ+25§2—’y§2> =0t (;+aﬁ+2ﬁ§2>
% 4 4 52
X<1—7§i+aﬁ+2ﬁgz>20 <U4+aﬁ+2ﬁg2)

62
52

X |1=vsup z— 3
%20%—1-&64-25%

Since )
sup % = L
@0 +aB+285  283(a +p7)

it follows that P(i&;y;0) > 0 for v € [0,25%(a% + ﬂ%)) Consequently, the
polynomial P(i&;v;0) has no roots on the imaginary axis for v € [O,QB%(a% +
ﬂ%)) Therefore, this polynomial has two roots wi(y)o and wa(y)o from the left
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half-plane and two roots —wi(y)o and —wy(y)o from the right half-plane, i.e.,
RQWk(’y) < 07 k= 17 27 and W1(’}/) == WQ('}/) Thus,

P(X;vi0) = F(Av;0)F (=X 75 0), (9)
where
F(Xy0) = (A= wi(7)0)(A = wz(v)o)
= A2 4 a1 (7)Ao + as(y)o.
Since Rewy(y) <0, k = 1,2, then

ar(y) = —(w1(7) + w2(7)) = =(wi(7) + wi(7)) = —2Rew1(7) > 0.

And as a3(7) = af and a(7) = w1 (Vw2(y) = wi(y)wr(7) = jwi(1)]* > 0, we ob-
tain that as(y) = a2 32. Further, from equality (9) it follows that a?(y)—2az(y) =
—y + 28, ie., a3(y) = 2a2(y) + 28 — v = 2a%ﬁ% + 28 —~v > 0. Consequently,

ar(y) = \/Qﬁ%(a% + ﬁ%) — 7. Now, using the spectral decomposition of the ope-
rator A, from equality (9) we obtain the assertion of the lemma. Lemma 2 is
proved.

Now we prove the lemma which plays an important role in our investigation.

Lemma 3. For any u(t) € W227T(R+;H) and v € [0,2ﬂ%(a% + ﬁ%)) the
following identity holds:

2
2 d
S(u) — v HAUIHLQ(RJF;H) = (R(y)x,x) + HF <dt;7; A> U , (10)
La(Ry;H)
where F(X\;7y; A) is defined from equality (8), and
1,10 1,1 1
(R( ), 2) = 26% (o + B3) Re(ATw, 2), +1/28% (o} + ) =5
« (Rl + ot Jarely, ) ()
2 2

P roof. First we denote by Dy(Ry; Hs) the lineal of all infinitely differen-
tiable functions with values in Ha, having compact supports on Ry and satisfying
boundary condition (2) at zero. By density and trace theorems [2], this lineal is

o
dense everywhere in W227T(R+; H). Consequently, it is enough to prove (10) for
the functions from Dp(Ry; Hs). Tt is obvious that for u(t) € Dp(R4; Hy) and
v €0, Qﬁ%(a% + ﬁ%)) the following equality holds:

d
FlZiyA
I (i)
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+a?(y) HAU/HZ(R+;H) + a3 (%) HAQUHZ(R oy T 2a1(vy)Re (u”, Au')

Lo(Ry;H)
+2as(y)Re (u",A2 ) Lo(R: H)—|—2a1( v)az(v)Re (Au A%y )L2(R+;H). (12)

On the other hand, applying integration by parts, we obtain the equalities

Re(u”, A%u U) Lo (Ry;H) = HAu HL2 ) — Re(ATz,x)1,

1

2

2Re(u", Au') 1y (ry i) = — HHC”%@ ; 2R€(AUI7A2U)L2(R+;H) =— ||AT~”3H§1l .
2 2

Taking into account equalities from (12) and the values a;(y) and az(y) from
Lemma 2, we have

d ? 2 2
HF <dt;% A> ! Lo(Ry;H) B HuNHL2(R+%H) +af HAQUHL2(3+%H)
—|—(2ﬁ (a2 —|—ﬁ HAU HLﬂR.h ) QCM%B% HAU"E2(R+;H)—QQ%B%Re(ATx,x)%

11 1 1,1 11 1
—\/252(042 +52) =7 |z, - 04252\/%2(042 +2) — v | ATx|;,
2 2

= S(u) = || A ||}, oy — ROV, ), (13)

where S(u) and (R(v)z,z) are defined from (7) and (11), respectively. The va-
lidity of (10) follows from (13). Lemma 3 is proved.

o
Obviously that S(u) is the norm in the space W3 (R ; H) which is equivalent
to the initial.norm Hung(R%H). . .
The studies above allow us to assert that the following theorem is true.

Theorem 3. The number Sy, defined as

So = sup HAu HL2 Sié(u),

0£uEWZ(R4;H)

R+7 )
@ fnie and S0 = Tl
e}

Proof. Clearly, for u(t) € W2(Ry; H), for any v € [0, 2ﬁ%(a% —|—ﬁ%)) from
equality (10) we obtain

2

S(u) =y || A7, o) = HF <CZ;7;A> u (14)

Ly (Ry;H)
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Passing in (14) to the limit as v — Qﬂ%(a% + ﬂ%), we have

S(u) 2 283 (a4 + 8%) | AW/}, i,y

ie.,
1 1
HAU/HL2(R+?H) = 11 1 52(u)
26% (a3t + 2)
Consequently, the number Sy < % We show that here the equality
Jatelah
holds, i.e., Sy = % For this purpose, for any € > 0 it is sufficient to

To1 1
V283 (a?48%)
o
construct a vector function u.(t) € W2(R,; H) such that

1 1 1
E(ue) = S(uc) — (262 (az + 52) + &) || A}, gy < O-

Let ¢ € Hy, |||l = 1, and g¢(¢) be a scalar function having a twice continuous
derivative in R, and g(t), ¢"(t) € L2(R). Then, using Plancherel’s theorem on
the Fourier transformation, we obtain

E(g(t)) = S(g(0)9) — (282(a2 + 52) +) | Ag D01, ()

+o0
- / (E'E + aBA" + 266247 — (253 (ab + ) + )E2 A%, ) |9(6)? de
“+oo
_ / (6, 0) 9O Pde (vl = 1), (15)

where

2 11
¢=(6,9) = &' + ap | A% — (20252 + )€ | Ay
o . pabghic)?
It is obvious that for fixed ¢, at the points § = £ [ ==5—=| |[|A%|], the
function ¢.(&, 1) takes its minimum value which is equal to
2 1.1 £\2
he(¥) = a8 [[ 426" — (a2 8% + 2) ll4v]*.

Since ¥ € Hy is an arbitrary vector (||¢|| = 1), it can be chosen. Namely, if the

operator A has an eigenvector, then we may chose this vector as ¢. Indeed, in this
2

case A = pap, and h.(¢) = afu* — (a%ﬁ% + %) pt < 0. If p is a continuous

spectrum, then it is possible to find a vector 1) € Hy such that A*y = pFep 4 0(6)
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2
at § — 0, k = 1,2,3,4. Then h.(¢)) = afBu* — (a%ﬁ% + %) ut +0(8) < 0 for
sufficiently small § > 0. Thus, it is always possible to find a vector ¢ € Hy
(ll|l = 1) such that mﬁin q:(&, 1) < 0. After choosing the vector 1, by using the

continuity of the function ¢-(£,v) at £, there exists an interval (n1(g),n2(¢)) in
which ¢:(&,1) < 0. Now we construct the function g(t). Let g(£) be an arbitrary
twice continuously differentiable function in R whose support is contained in the
interval (n1(g),m2(¢)). Then from equality (15) we get

n2(e)
B(g(t)e) = / 4:(6,9) [3(€) 2 d€ <0,

n1(e)

and

g(t)z\/% / a(6)etde.

The theorem is proved.

Remark 1. We note that, in general, S(u) is not a positive number for

o
all u(t) € W;T(R+;H)_ Indeed, let u(t) = e 0ty and ¢o be some eigenvector
of the operator A corresponding to Ao, ||¢o|| = 1. Then,

2
S(u) = H“//Hig(R+;H) +af ||A2UHL2(R+;H) —20Re (u//7A2u)L2(R+;H)

2 2

2 _—Aot
= e

+ap H/\ge_AOt@o‘

Lo(Ry;H) Lo(Ry;H)

-2 Re()\Qe_AOt ,)\26_>‘0t )
B 0 ®05 Ao ¥0 Lo(RH)

2
— 28X He_ms@o‘

2
— (14 o e i)
( 5) 0 ¥0 Lo(ResH)

La(Ry3H)

3
_ (1—|—aﬂ—2ﬁ)/\§He*A0t¢0‘ 2 _ (1+aﬂ—2ﬁ)%,

Lo(Ry;H)

Obviously, we can require 7 = —A~! i.e., the condition Tw'(0) = u(0) to be
satisfied. Then it is clear that for 23 — a8 > 1 the expression S(u) is negative,

and for 20 —af =1 S(u) = 0, u(t) € W227T(R+;H). Thus, for S(u) in the

o
space WiT(R+; H) to be equivalent to the initial norm ||u||W22(R+;H), additional
conditions should be imposed on the operator 7.
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Lemma 4. Let x € H% If | |1i1r1in . (R(0)x,z) > 0, then
x|y, =
2

2
S(u) > const a2y,

for any u(t) € W227T(R+;H).
Proof. TFrom (10), for v =0 we get
S(u) > (R(0)x, z) .

Since from the condition of the lemma min (R(0)z,x) = ¢ > 0, it is obvious

that for Hu\|W22(R+;H) = 1 the inequality

S(u) > ¢

holds.

o
Since S(u) = ||u||%,V22(R+;H) S <“>, then for all u(t) € W227T(R+;H)

|‘uHW22(R+;H)

S(u) > ¢ |lullfyzr, .m

is valid. The lemma is proved.

From Lemma 4 it follows that

St = Sup HA“/HLQ(RJF;H) Cht (u)
O#uGWiT(R_;_;H)

1

<= d,
c2

sup [Au]|
0Fu(t)EWS p(Ry;H)

1 .
Ri;H) Hu||W22(R+%H) -

and d < oo by the theorem on intermediate derivatives [2]. Consequently, ST < oo.

o o

Since Wi, (Ry; H) D W(R4; H), then Sp > Sp = ———~1——.

’ el
Theorem 4. Let the conditions of Lemma 4 be satisfied and ReAT > 0 in

Hi. Then
2
1
Sr =

2 (at + 1)
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P roof. If the conditions of the theorem are satisfied, then (R(y)z,x) > 0
for any v € [0, Qﬁ%(a% + ﬁ%)) Consequently, by Lemma 3 it follows that for any
o

u(t) € W227T(R+; H) and v € [0, 26%(04% + ﬁ%)) the inequality

S(u) >~ HAU,H;(R+;H)

is true. Passing in the last inequality to the limit as v — Qﬁ%(a% + [3%), we have

1
ST S 1 1 1 ’
28} (a} + p})
Thereby,
1
St = 1,1 1
232 (oﬂ + /32)

The theorem is proved.
Basing on the obtained results, estimating the norm of the intermediate deriva-

o
tive operator A% : WiT(R+; H) — Ly(Ry;H) with respect to the norm
[Poull 1, (g, .pry and taking into account Lemma 1, we give the exact formulation
of the conditional Theorem 2 in the following form.

Theorem 5. Suppose that the conditions of Lemma 4 are satisfied,
ReAT > 0 in H% and the operator B = A1A™' is bounded in H, moreover,

B2

Remark 2 In Theorem 5, the condition ReAT > 0 in Hi provides
2
invertibility of the operator T, g in the space H%

1
|B|| < /2« <l + 0‘?) Then problem (1), (2) is regularly solvable.

Now we will specify the value of Sp under the condition min Re(ATz,x)1<0.

1
el , =1 2
2

The following theorem holds.
Theorem 6. Suppose that | min Re(AT:L’,x)% < 0 and the conditions of

ac||H1 =1
2
Lemma 4 are satisfied. Then
2\ ~3
1 L i ' Re(ATx,x)1
St = 1-2532(a2 + 32) | min T 1 e
282 (a3 + [37) 1elay =11+ a2 52 | ATy,
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Proof. First we note that since the pencil F(\;v; A) for v € [0, QB%(a% +
ﬂ%)) is represented in the form

FX7;4) = (AE —wi1(7)A)(AE — wa(7)A),

where Rewy(y) <0, k = 1,2, then the Cauchy problem
F (d;y;A> u =0, (16)
dt
uw(0) =Tz, v/ (0) =2z, x € Hé? (17)
has the unique solution u(t;y;z) € W3(R4; H) represented in the form

u(t;y; x)

1 [ewl('y)tA(wQ (’)/)Tx _ A_lac) 4 eWz(’Y)tA(A—lx —wy (V)Tx) .

— w2(7) —wi(y)
It follows easily that

et 33 2)llwg sy < () 12l -

Further, using the uniqueness of the solution of Cauchy problem (16), (17) and
taking into account the Banach theorem on the inverse operator, we have

lalts v 0wz, arny = ) el o da(3) > 0. (18)
2

Now we note that from Theorem 4 it follows that
1

267 (a2 + B2)

St >

Consequently, S% € (0, Qﬁ%(a% + ﬂ%)) Then, in equality (10), taking for u(t)
the solution u(t;v;z) of Cauchy problem (16), (17), for |[x||5, =1, we obtain
2

2
(R(v)z, ) = S(u(t; v;2)) = v || A (&% 2) ||, o, iy = S(ults 152)) (1 = 757) >0
(19)
for v € [0, S;2). Taking into account Lemma 4 and inequality (18), we obtain

(R(Y)z,x) > cd5(v)(1 —~57) > 0.

By that, min (R(y)z,z) > 0 for v € [0, S52). The same argument can be used

el =1
2

for the case w1(y) = wa (7).
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Continuing, by definition St, for all v € (S}Q,QB%(a% + ﬁ%)) there exists a
o
function v(t;y) € W227T(R+; H) such that

St7)) <y 1A GG, ey -

Consequently, for v € (552, Qﬁ%(a% + ﬂ%)) from equality (10) it follows that

2
<0, z, = V' (0;7),

d
(R(7)Ty, 24) + HF <dt;7; A) v(t;7)
La(Ry;H)

B min (R(7)z,2) < (R(y)ay,2,) < 0.

el g, =1
2

Thus, since | ﬁnin ) (R(7y)x,z) is a continuous function and it changes its sign at
X Hl =
2
the point v = S:FQ, then min <R(S}2):v, 33> =0.

ol =1

2
To complete the proof, we consider the functional of the form

) Re(ATz, x)

QUse) = \/283(a + %) — 1425} (b +5Y)

1
2

2|y, =
L+azfs |ATal}, "
2

Since (R(7) >
Yz,
Qy;x) = T 5
1+ 232 HATacHH1
2

< (R(vy)z,z),

then
min  Q(S;%x) < | min  (R(S;%)z,z) = 0.

|z, =1  lelly, =1

2 2
On the other hand,
(R(S7)m.2) = Q(si%x) 1+ 0o ATl
3
< Q(S7% ) (1 +a3f3 ||AT”§{1—>H1>
2 2
and, consequently,

-1
min  Q(S;%x) > (1 +azpe ||AT]§{1_>H1> min <R(S;2)x,a:> = 0.
2 2

ey, =1 el g, =1
2 2
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Thus we have

min  Q(S;% ) = 0.
el g, =1
2

So,

Re(ATx, :L')

V283 (0} + %) - 577 = —283 (a3 + ) '
H:vIIH1—1 14 o232 IIAT@“HHl

Then, taking into account min Re(AT'z,x)

1 < 0, from the above we get
Hz”Hl*l 2
2\ 2
1 Re(ATx, x)
Sr = 1-232(a? +/2)| min
Qﬂ%(a% +/8%) Hx”Hl_l 1 +042,62 ||AT.THH1

The theorem is proved.

In the case when min Re(ATz,xz)1 < 0, Theorem 2 is formulated as

1
= 2
Hr”Hl =1
follows.

Theorem 7. Suppose that the conditions of Theorem 6 are satisfied, the
operator Ty, g is bounded invertible in the space Hs and the operator B = AAL
2

is bounded in H, moreover

2\ 2
Re(ATzx,x)

N|—=

1
2 1 1 1
1Bl < (|20 [1+ %) | 1-28%(a? +62)| min
35 lells, =1 1+ a3 ||ATa|)%,
§

Then problem (1), (2) is regularly solvable.

Despite the fact that equation (1) was presented in a more general form in the
paper of A.R.Aliev [18], in this paper only the case when ReAT > 0 is studied.
Moreover, our results improve the results obtained in [18].
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