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In the paper we study the complete connected affine submanifolds f :
Mn → Rn+m of rank two, i.e., the strongly (n − 2)-parabolic submani-
folds according to A. Borisenko. The structures of these submanifolds are
described and the explicit parametrization is given for two partial cases.
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Introduction

A submanifold Mn in the Euclidean space EN is called strongly k-parabolic
[1, 3] if at any point the kernel of its vector valued second fundamental form has
a dimension k. In the Euclidean case, the kernels of the second fundamental form
and of the shape operator coincide because of metric structure. In contrast, in
the case of the affine immersion f : Mn → RN , n ≥ 3, the affine fundamental
form and the shape operator have different kernels in general. We propose the
following definition of the strongly k-parabolic affine submanifold.

Definition. The affine immersion f : Mn → RN , (n ≥ 3) is called strongly
k-parabolic if at any point the kernel of its vector valued affine fundamental form
has a dimension k.

For the strongly k-parabolic submanifold, the rank of the Gauss (Grassmann)
map is n− k. That is why this type of submanifolds was called the submanifolds
of rank (n− k) [6]. In this paper, we consider the simplest non-trivial case of the
affine strongly (n− 2)-parabolic submanifold in RN or the submanifold of rank
two, equivalently.

A subspace spanned by the second fundamental form is called the first nor-
mal space N1. The rank two submanifold satisfies dimN1 ≤ 3 at each point.
In the Euclidean case, it is known that if dimN1 = 1, then the submanifold is a
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hypersurface; if dimN1 = 3, then it is either an Euclidean surface or a cone over
a spherical surface up to the Euclidean factor; if dimN1 = 2, then it is of one of
three types: elliptic, hyperbolic and parabolic. A complete parametric description
of the elliptic submanifolds was given in [5]. Parabolic submanifolds of rank two
were described by M. Dajczer and P. Morais in [6] and classified as ruled and
non-ruled parabolic submanifolds. A submanifold is called ruled if Mn admits
a hyperfoliation by the RN -totally geodesic submanifolds. M. Dajczer and P.
Morais described parametrically a class of the ruled parabolic submanifolds and
proved that only ruled parabolic submanifolds admit an isomeric immersion in the
form of a hypersurface. They also gave the polar and bipolar parameterizations
of the non-ruled parabolic submanifolds.

The main goal of this paper is to describe the affine submanifolds of rank two.

1. Preliminaries

Let f : Mn → (Rn+m, D) (m < n, D is a standard flat connection) be an
affine immersion [8] with m-dimensional transversal differentiable distribution Q
along f . For the arbitrary vector fields X and Y on Mn, we have

DXY = f∗(∇XY ) + h(X, Y ), h(X, Y ) ∈ Q,

where∇ is the induced torsion-free connection on Mn, h is the affine fundamental
form. Let ξ1, . . . , ξm be a basis of the transversal distribution Q. Then we have
the affine analogs of the Gauss and Weingarten decompositions

DXf∗(Y ) = f∗(∇XY ) + hα(X, Y )ξα, (1)

DXξα = −f∗(SαX) + τβ
α (X)ξβ. (2)

Let Q̄ = span{ξ̄1, . . . , ξ̄m} be a transformation of Q by

ξ̄α = Φβ
αξβ + Zα, (3)

where Zα are the tangent vector fields on Mn, Φ = [Φβ
α]m×m is a non-degenerate

matrix of smooth functions. It is easy to prove that

h̄α(X, Y ) = [Φ−1]αβhβ(X, Y ), (4)

∇̄XY = ∇XY − [Φ−1]αβhβ(X, Y )Zα. (5)

From (4), we can see that neither the kernel nor the rank of h(X, Y ) : TxM ×
TxM → Qx depends on the choice of a transversal distribution.

A rank of the affine fundamental form is called a pointwise codimension of an
affine immersion. Similarly to the Euclidean case, it is equal to the dimension of
the first normal space.
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Let f : Mn → Rn+m be an affine immersion of rank two with the transversal
distribution Q and pointwise codimension two. A. Borisenko classified the points
of multidimensional submanifold up to the affine transformation based on the
affine type of the osculating paraboloid [2, 3]. Particularly, if F 2 is a submanifold
in EN of pointwise codimension two, then there are three classes of points with
the osculating paraboloid:

(1) x3 = 2x1x2, x4 = (x1)2 − (x2)2,

(2) x3 = (x1)2, x4 = (x2)2,

(3) x3 = 2x1x2, x4 = (x2)2

up to the degenerate affine transformation of the ambient space.
Later on, the same classes of points on the submanifolds of this type were

introduced by M. Dajczer and P. Morais [5, 6] by using another criterion. They
called the points elliptic, hyperbolic and parabolic, respectively.

Remark that elliptic and parabolic submanifolds belong to a class of saddle
submanifolds according to S. Shefel [10]. In [4] V. Glazyrin gave an equivalent
definition of the saddle submanifold in the Euclidean space which can be adapted
to the affine case. Thus, we can give the following definition of the affine k-saddle
submanifold.

Definition. The affine immersion f : Mn → RN , (n ≥ 3) is called k-saddle
if at any point of the immersed submanifold the affine fundamental form with
respect to arbitrary transversal vector has not greater than k coefficients of the
same sign after reduction to the diagonal form.

Evidently, the elliptic and parabolic affine submanifolds are 1-saddle.
Obviously, the point classification of affine rank-two immersion of pointwise

codimension 2 coincides with the point classification of affine immersion M2 → R4

of pointwise codimension 2. For affine metric of affine surface in R4 use the
following symmetric bilinear form [9]

Gυ(X,Y ) =
1
2
(det(e1, e2, De1X,De2Y ) + det(e1, e2, De1Y, De2X)),

where υ = {e1, e2} is local differentiable frame on a neighbourhood of a point
x ∈ M2. Let X = x1e1 +x2e2, Y = y1e1 + y2e2, {ξ1, ξ2} is transversal frame and
ω = det(e1, e2, ξ1, ξ2), then

Gυ(X,Y ) = ((h1
11h

2
12 − h2

11h
1
12)x

1y1 +
1
2
(h1

11h
2
22 − h2

11h
1
22)(x

1y2 + x2y1)

+ (h1
12h

2
22 − h2

12h
1
22)x

2y2)ω
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The quadratic form Gυ(X, Y ) at x can be definite, indefinite, 1-degenerate. There
are parameterization of immersion and transversal frame [9] such that

1) if Gυ positive definite, then

Gυ(X, Y ) = (x1y1 + x2y2)ω, h1 =
(

1 0
0 −1

)
, h2 =

(
0 1
1 0

)

and the point is elliptic;

2) if Gυ indefinite, then

Gυ(X, Y ) = (x1y1 − x2y2)ω, h1 =
(

1 0
0 1

)
, h2 =

(
0 1
1 0

)
or

Gυ(X, Y ) =
1
2
(x1y2 + x2y1)ω, h1 =

(
1 0
0 0

)
, h2 =

(
0 0
0 1

)

and the point is hyperbolic;

3) if Gυ is 1-degenerate, then

Gυ(X, Y ) = x1y1ω, h1 =
(

1 0
0 0

)
, h2 =

(
0 1
1 0

)

and the point is parabolic.

For affine immersion f : Mn → Rn+m of rank two we can choose tan-
gential {e1, . . . , en} and transversal {ξ1, . . . , ξm} frames in such a way that
ej ∈ kerh, j = 3, n and

h1 =




1 0 0 . . . 0
0 h1

22 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0




, h2 =




0 1 0 . . . 0
1 h2

22 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0




, hk = On×n,

where hi is a matrix of the affine fundamental form with respect to ξi, k = 3,m.
Therefore for surface in R4 with the same h1 and h2, we have

Gυ(X, Y ) = (x1y1 +
1
2
h2

22(x
1y2 + x2y1)− h1

22x
2y2)ω,

det Gυ = (−h1
22 −

1
4
(h2

22)
2)ω2.

Obviously, the sign of (h2
22)

2 + 4h1
22 defines a pointwise class of immersion as

follows:

• if (h2
22)

2 + 4h1
22 < 0, then the point is elliptic (case (1));

• if (h2
22)

2 + 4h1
22 > 0, then the point is hyperbolic (case (2));

• if (h2
22)

2 + 4h1
22 = 0, then the point is parabolic (case (3)).
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2. Main Theorem

We consider a generalized affine ruled submanifold. The submanifold f(Mn)
in the affine space RN is called (n− l) ruled if it is foliated by the (n− l) affine
subspaces of RN . These subspaces are called rulings. A transversal to the foliation
l-dimensional submanifold is called a base of the ruled submanifold.

Theorem. Let f : Mn → Rn+m (m < n) be a complete connected C3-smooth
affine immersion of rank two of the pointwise codimension two with the points of
the same class. Then

1) a hyperbolic submanifold is an affine cylinder with (n− 2)-dimensional rul-
ings over a two-dimensional hyperbolic base;

2) an elliptic submanifold is a ruled submanifold with (n−2)-dimensional rul-
ings over a two-dimensional elliptic base;

3) a parabolic submanifold minus a closed subset is a union of open subsets of
the following types of submanifolds:

a) a ruled submanifold with (n− 1)-dimensional rulings over a curve;

b) a cylinder with (n − 2)-dimensional rulings over a two-dimensional
parabolic base.

P r o o f. The structure of the affine strongly parabolic submanifolds was de-
scribed in [11]. Particularly, if f : (Mn,∇) → (Rn+k, D) is the affine immersion
such that dimkerh = const 6= 0, then

• the nullity distribution N = kerh is integrable, the leaves are totally geodesic
in Rn+k;

• there exists a transversal distribution which is stationary along the leaves
of the foliation FN ;

• if (Mn,∇) is complete, then each leaf of the foliation FN is complete.

Let f : Mn → Rn+m be the complete connected affine immersion of rank
two and pointwise codimension two with the points of the same class. Since
dimkerh = n − 2, the submanifold is foliated by the (n − 2)-dimensional affine
subspaces.

Similarly to the Euclidean case [3], we can parameterize f(Mn) locally as

~r(u1, u2, v1, . . . , vn−2) = ~ρ(u1, u2) +
n−2∑

s=1

~as(u1, u2)vs, (6)
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where ~ρ(u1, u2) =




ρ1

...
ρm+2

0
...
0




, ~as(u1, u2) =




a1

...
am+2

0
...
1
...
0




.

Here 1 is at the (m + 2 + s)- th coordinate place of ~as, and vs ∈ (−∞, +∞)
because of completeness.

The transversal to f(Mn) vector fields ξ1, . . . , ξm are also transversal to a
surface F 2 with a position-vector ~ρ. Denote

h2
22 = p, h1

22 = q.

The Gauss decomposition (1) for F 2, after suitable change of transversal distri-
bution (3), takes the form

∂2~ρ

∂u1∂u1
= ξ̄1,

∂2~ρ

∂u1∂u2
= ξ̄2,

∂2~ρ

∂u2∂u2
= µ1 ∂~ρ

∂u1
+ µ2 ∂~ρ

∂u2
+ qξ̄1 + pξ̄2, (7)

where µ1 = Γ1
22, µ2 = Γ2

22.
Here and below we assume that the indices {i, j, k} and {s, l} run over the

ranges {1, 2} and {1, . . . , n − 2}, respectively, unless otherwise stated. Now we
can find

∂~r

∂ui
=

∂~ρ

∂ui
+ vs ∂~as

∂ui
,

∂~r

∂vs
= ~as

∂2~r

∂ui∂uj
=

∂2~ρ

∂ui∂uj
+ vs ∂2~as

∂ui∂uj
,

∂2~r

∂ui∂vs
=

∂~as

∂ui
,

∂2~r

∂vl∂vs
= 0.

From the definition of a kernel of the affine fundamental form and the choice of
a frame, it follows that

∂2~r

∂ui∂vs
=

∂~as

∂ui
= λk

si

∂~ρ

∂uk
. (8)

Hence,
∂2~r

∂ui∂uj
=

∂2~ρ

∂ui∂uj
+ vs

(
∂λk

si

∂uj

∂~ρ

∂uk
+ λk

si

∂2~ρ

∂uk∂uj

)
.

As the mixed derivatives are equal, we have

∂λk
s1

∂u2

∂~ρ

∂uk
+ λk

s1

∂2~ρ

∂uk∂u2
=

∂λk
s2

∂u1

∂~ρ

∂uk
+ λk

s2

∂2~ρ

∂uk∂u1
.
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Denote
∂~ρ

∂uk
= ~ρk and substitute it into the Gauss decomposition (7),

∂λ1
s1

∂u2
~ρ1 +

∂λ2
s1

∂u2
~ρ2 + λ1

s1ξ̄2 + λ2
s1(µ

1~ρ1 + µ2~ρ2 + qξ̄1 + pξ̄2) =

∂λ1
s2

∂u1
~ρ1 +

∂λ2
s2

∂u1
~ρ2 + λ1

s2ξ̄1 + λ2
s2ξ̄2.

Comparing the tangent components, we obtain

∂λ1
s1

∂u2
+ λ2

s1µ
1 =

∂λ1
s2

∂u1
,

∂λ2
s1

∂u2
+ λ2

s1µ
2 =

∂λ2
s2

∂u1
. (9)

Comparing the transversal components, we obtain

qλ2
s1 = λ1

s2, λ1
s1 + pλ2

s1 = λ2
s2. (10)

The tangent frame for (6) consists of

~r1 = ~ρ1 + λk
s1v

s~ρk, ~r2 = ~ρ2 + λk
s2v

s~ρk, ~rs = ~as.

The regularity condition implies that {~ρ1, ~ρ2} and {~r1, ~r2} are linearly indepen-
dent, that is, the matrix

C =
(

1 + vsλ1
s1 vsλ1

s2

vsλ2
s1 1 + vsλ2

s2

)

is non-degenerate. Consider

det C = 1 + vs(λ1
s1 + λ2

s2) + vsvl(λ1
s1λ

2
l2 − λ2

s1λ
1
l2).

By plugging (10) and q = −p2

4
, we get

detC = 1 + vs(2λ1
s1 + pλ2

s1) + vsvl(λ1
s1(λ

1
l1 + pλ2

l1)− qλ2
s1λ

2
l1) =

= (1 + vs(λ1
s1 +

p

2
λ2

s1))
2.

A. In the elliptic case −q >
p2

4
. Then detC > (1 + vs(λ1

s1 + p
2λ2

s1))
2. Hence

detC 6= 0 for all vs, and the regularity condition is fulfilled for the arbitrary
functions λi

sj .

B. In the parabolic case q = −p2

4
. The regularity condition (detC 6= 0 for all

vs) implies

λ1
s1 = −p

2
λ2

s1, λ1
s2 = −p2

4
λ2

s1, λ2
s2 =

p

2
λ2

s1. (11)
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C. In the hyperbolic case −q <
p2

4
, the solution for detC = 0 exists for every

set of nonzero functions λi
sj . Hence, the regularity condition is fulfilled only in

the case of λi
sj ≡ 0.

Now we can prove the theorem.
1. If the submanifold f(Mn) is hyperbolic, then (C) implies ~as(u1, u2) are

constant vectors, and the submanifold (6) is a cylinder with (n− 2)-dimensional
rulings over the two-dimensional hyperbolic surface F 2.

2. If the submanifold f(Mn) is elliptic, then the regularity condition is ful-
filled for an arbitrary choice of λi

sj . Substituting (10) into (9), we have

∂λ1
s1

∂u2
+ λ2

s1µ
1 =

∂q

∂u1
λ2

s1 + q
∂λ2

s1

∂u1
,

∂λ2
s1

∂u2
+ λ2

s1µ
2 =

∂λ1
s1

∂u1
+

∂p

∂u1
λ2

s1 + p
∂λ2

s1

∂u1
.

Therefore,
∂λ1

s1

∂u2
= q

∂λ2
s1

∂u1
+

∂q

∂u1
λ2

s1 − λ2
s1µ

1,

∂λ1
s1

∂u1
=

∂λ2
s1

∂u2
− p

∂λ2
s1

∂u1
− ∂p

∂u1
λ2

s1 + λ2
s1µ

2.

(12)

Equating the mixed derivatives of λ1
s1, we obtain the equation

q
∂2λ2

s1

(∂u1)2
+ p

∂2λ2
s1

∂u1∂u2
− ∂2λ2

s1

(∂u2)2
+

∂λ2
s1

∂u1

(
∂p

∂u2
+ 2

∂q

∂u1
− µ1

)

+
∂λ2

s1

∂u2

(
∂p

∂u1
− µ2

)
+ λ2

s1

(
∂2p

∂u1∂u2
+

∂2q

(∂u1)2
− ∂µ1

∂u1
− ∂µ2

∂u2

)
= 0.

This is a partial differential equation of elliptic type. It has a solution which
depends on the functions p, q, µ1, µ2. Thus, the elliptic submanifold is a ruled
one and, in particular, it can be a cylinder.

3. If the submanifold f(Mn) is parabolic, then q = −p2

4
and we can substitute

(11) into (9)
∂

∂u2
(−p

2
λ2

s1) + λ2
s1µ

1 =
∂

∂u1
(−p2

4
λ2

s1),
∂λ2

s1

∂u2
+ λ2

s1µ
2 =

∂

∂u1
(
p

2
λ2

s1)

to get

− ∂p

∂u2
λ2

s1 − p
∂λ2

s1

∂u2
+ 2λ2

s1µ
1 = −p

∂p

∂u1
λ2

s1 −
p2

2
∂λ2

s1

∂u1
,

∂λ2
s1

∂u2
+ λ2

s1µ
2 =

1
2

∂p

∂u1
λ2

s1 +
p

2
∂λ2

s1

∂u1
.
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Therefore,

λ2
s1(−

∂p

∂u2
+

p

2
∂p

∂u1
+ 2µ1 + pµ2) = 0,

∂λ2
s1

∂u2
− p

2
∂λ2

s1

∂u1
+ λ2

s1µ
2 − 1

2
∂p

∂u1
λ2

s1 = 0.

(13)

Denote
G(u1, u2) = − ∂p

∂u2
+

p

2
∂p

∂u1
+ 2µ1 + pµ2.

As the considered immersion is C3-smooth, the function G(u1, u2) is continuous.

Set D = {(u1, u2) : G(u1, u2) = 0}. Denote by
◦
D the interior of D. The range

of definition G splits into a closed subset ∂
◦
D and a union of open subsets, on

each of which G(u1, u2) is either a null function or a nonvanishing function, or it
vanishes at the points of a null set.

If in a neighborhood of P0 the function G(u1, u2) is nonvanishing or it vanishes
on a null set, then in a neighborhood of this point the system (13) has the unique
solution λ2

s1 = 0 (for all s = 1, n− 2) since the function λ2
s1 is continuously

differentiable. From (11) and (8), it follows that ~as(u1, u2) are constant vectors,
and a considered submanifold (6) is a cylinder with (n − 2)-dimensional rulings
over the two-dimensional parabolic surface F 2.

If G(u1, u2) is a null function in a neighborhood of P0, namely,

− ∂p

∂u2
+

p

2
∂p

∂u1
+ 2µ1 + pµ2 ≡ 0, (14)

then system (13) has a nontrivial solution. Geometrically, (14) means the fol-
lowing. It is known [6, 2] that on a parabolic surface F 2 there is an asymptotic
direction. With respect to the chosen frame (7), the asymptotic direction is
Z = {−p/2, 1} (we assume that e1, e2 correspond to ~ρ1, ~ρ2). Taking into
account that on a surface F 2

∇e1e1 = 0, ∇e1e2 = 0, ∇e2e2 = µ1e1 + µ2e2,

and e2 =
p

2
e1 + Z, we find

∇ZZ = ∇−p

2
e1 + e2

(−p

2
e1 + e2) =

p

2
1
2

∂p

∂u1
e1 − 1

2
∂p

∂u2
e1 + µ1e1 + µ2e2

=
1
2

(
p

2
∂p

∂u1
− ∂p

∂u2
+ 2µ1 + pµ2

)
e1 + µ2Z.

We can see that if (14) holds, then the integral curve for Z is a pregeodesic and
it becomes a geodesic after affine parameter rescaling. Hence, in this case, the
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asymptotic curve on F 2 is a straight line. Therefore, there exists a parameteri-
zation

~ρ(w1, w2) = ~ψ(w1) + w2~ϕ(w1),

where

~ρ1 = ~ψ′(w1) + w2 ~ϕ′(w1), ~ρ2 = ~ϕ(w1),

~ρ11 = ~ψ′′(w1) + w2 ~ϕ′′(w1) = ξ̂1, ~ρ12 = ~ϕ′(w1) = ξ̂2, ~ρ22 = 0.

The regularity of a surface F 2 implies a linear independence of

~ϕ(w1), ~ϕ′(w1), ~ψ′(w1), ~ψ′′(w1).

Hence, ~ϕ(w1) 6= −−−→
const, and the surface F 2 is a ruled one with the trivial kernel

of the affine fundamental form.
Now we construct a ruled submanifold f over the basic surface F 2

~r(w1, w2, v) = ~ρ(w1, w2) + vs~as(w1, w2), where
∂~as

∂wi
= λk

si~ρk.

From (11) with p = 0, we obtain λ1
s1 = λ1

s2 = λ2
s2 = 0. From (13), we get

∂λ2
s1

∂w2 = 0 and, hence, λ2
s1 = λs(w1). From

∂~as

∂w1
= λ2

s1~ρ2 = λs(w1)~ϕ(w1),
∂~as

∂w2
= 0

we find
~as =

∫
λs(w1)~ϕ(w1)dw1.

Thus, the local parameterization of parabolic submanifold (6) is

~r(w1, w2, v1, . . . , vn−2) = ~ψ(w1) + w2~ϕ(w1) +
n−2∑

s=1

vs

∫
λs(w1)~ϕ(w1)dw1.

Taking into account the independence of ~ϕ(w1), ~ϕ′(w1), ~ψ′(w1), ~ψ′′(w1), we
can see that in this case the submanifold is a ruled submanifold with (n − 1)-
dimensional rulings over a curve, i.e., a ruled submanifold in a classical meaning.

Example. The elliptic submanifold of rank two.
We construct the affine elliptic submanifold M4 → R6 with flat connection.

The classification of flat affine surfaces in R4 with flat normal connection was
given by M. Magid and L. Vrancken in [7]. A unique surface of elliptic type is a
complex curve. Denote u1 = x, u2 = y and take, for example, in (6)

~ρ(x, y) = {x, y, x2 − y2, 2xy}.
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Then ~ρ ′1 = {1, 0, 2x, 2y}, ~ρ ′2 = {0, 1,−2y, 2x}. Gauss decomposition (7) yields

~ρ ′′11 = {0, 0, 2, 0} = ξ1, ~ρ ′′12 = {0, 0, 0, 2} = ξ2, ~ρ ′′22 = {0, 0,−2, 0} = −ξ1.

Therefore, for our example µ1 = µ2 = 0, q = −1, p = 0. The system (12) is

∂λ1
s1

∂y
= −∂λ2

s1

∂x
,

∂λ1
s1

∂x
=

∂λ2
s1

∂y
.

Thus, the functions λ1
s1 and λ2

s1 are the real and the imaginary parts of the
complex function fs1. Put, for example, λ1

11 = 0, λ2
11 = 1, λ1

21 = x, λ2
21 = y.

From (10), we obtain λ1
12 = −1, λ2

12 = 0, λ1
22 = −y, λ2

22 = x. To find ~as, we
have the equations:

∂~a1

∂x
= ~ρ ′2,

∂~a1

∂y
= −~ρ ′1,

∂~a2

∂x
= x~ρ ′1 + y~ρ ′2,

∂~a2

∂y
= −y~ρ ′1 + x~ρ ′2.

Therefore,

~a1 = {−y, x,−2xy, x2 − y2}, ~a2 = {1
2
x2 − 1

2
y2, xy,

2
3
x3 − 2xy2,−2

3
y3 + 2x2y}.

Thus, submanifold (6) obtains the following parameterization:

~r(x, y, v1, v2) =




x
y

x2 − y2

2xy
0
0




+ v1




−y
x

−2xy
x2 − y2

1
0




+ v2




1
2x2 − 1

2y2

xy
2
3x3 − 2xy2

−2
3y3 + 2x2y

0
1




It is easy to see that if the base of the elliptic submanifold is the complex
curve

~ϕ = {g1(z), g2(z)},
z = u1 + iu2, then the parameterization of this submanifold takes the form (6),
where ~ρ(u1, u2) is a real form of the vector function ~ϕ(z), and the vector functions
~as(u1, u2) are the real forms of

∫
fs(z)d~ϕ(z).
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