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We consider a two-magnon system in the isotropic non-Heisenberg fer-
romagnetic model of an arbitrary spin s on a r-dimensional lattice Z¥. We
establish that the essential spectrum of the system consists of the union of
at most four intervals. We obtain lower and upper estimates for the num-
ber of three-particle bound states, i.e., for the number of points of discrete
spectrum of the system.
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We consider a two-magnon system in the isotropic non-Heisenberg ferromag-
netic model of an arbitrary spin s with impurity on a v-dimensional lattice Z"
and study the discrete and essential spectra of the system. The system consists
of three particles: two magnons and an impurity spin.

The Hamiltonian of the system has the form

2s
z z 1 — — n
Hreg ==Y  Jn(S787sr = 5"+ S(S5Smyr + SnShir)

m,T n=1

2s
zZ Qz 1 — - n
=2 D (= Ta)(S557 — 8%+ S (STS; +5557)) (1)

T n=1

and acts on the symmetric Fock space 5. Here J,, > 0 are the parameters of the
multipole exchange interaction between the nearest-neighbor atoms in the lattice
Zv, JY # 0 are the atom-impurity multipole exchange interaction parameters,
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S, = (S Sy;S%) is the atomic spin operator of spin s at the lattice site m,
and 7 = *xe;,7 = 1,2,...,v, where ¢; are the unit coordinate vectors. Let ¢g
denote the vacuum vector uniquely defined by the conditions S;f¢g = 0 and
SZ g = spg, where [|@o|| = 1. We set St = S 4 iSy,, where S, and S}
are the magnon creation and annihilation operators at the site m. The vector
SmSy o describes the state of the system of two magnons located at the sites m

and n with spin s. The vectors {\/4 2+(412 1590
S S§°—48)0m,n

system. Let % be the Hilbert space spanned by these vectors. The space is
called the two-magnon space of the operator H. We also denote the restriction of
H to % by HQ.

S-S o} form an orthonormal

Proposition 1. The space 54 is an invariant subspace of H. The operator
Hy = H/ , is a bounded self-adjoint operator generating a bounded self-adjoint
operator Hy whose kernel in the momentum representation, i.e., in Lo(T"), is
given by the formula

(o)) = hias ) f () + / (s ;) f (62 +y—t)dt+ D / ha(a: 8) (s y)ds

Tl/
+E/h3 y;t) f(x;t) dt+//h4 xyy; s;t) f(s;t)dsdt, (2)
Tv Tv
where ,
h(z;y) = 8814;[1 — cos 2k ;yk cos =& ; yk]
and

hi(z;y;t) = —4s(2s — 1)B

14 14
Tkt Yk Tk — Yk Tk — Yk
X g 1{1 + cos(z + yx) — 2 cos 5 08— }—4C g {cos —5
= =

— COS

Tk LYk cos(TEEYE ) wyt € T holw:s) = Z{1+cos i — 5i)

—coss; —cosxi}t, hs(y;t Z{l + cos(y; — t;) — cost; — cosy; },

and

v

ha(z;y;sit) = F Y [1+ cos(a; + yi — s; — i) + cos(s; + ;) + cos(@; + y)
=1
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14
— cos(x; —s;—t;) —cos(y; — s; —t;) —cos x; —cos y; ]|+ Q Z[cos(xi —t;)+cos(y;—s;)]
i=1

+M Z[cos(:ri —8;) +cos(y; — ;)] + N Z[cos s; + cost; + cos(x; + y; — 8;)
i=1 i=1

+cos(xi +yi — i),

here

A= J1—25Jo+(28)2J3+. . . +(=1)*T g, B = Jo—(65—1)J3+(285%—10s+1)J4—
(12053 —68s2+14s5—1)J5+. .., C = Jy+ (45 —65+1)Jo— (24533252 +10s—1) J3+
(1125* —160s3+7252 —145+1).J; — (4805° — 7685* +44853 — 12852 +185—1)J5+. . .,
D=-2%7 (=25)(J0 — Ji), E =D, F = (25 — 45%)(JY — Jo) + (25 — 165> +
2483)(J) — J3) 4+ .4, Q = (—48% +28)(J9 — Jo) + (—4s +20s? — 2453)(J) —
J3) 4+ ooty M= 2[(JY — J1) — (14 5s + 282)(J9 — J2) + (1 — 8s + 2252 —
1283)(J9 = J3)+...+...], N = —(J) = J1) + (1 — 65+ 45%)(J9 — J2) — (1 — 10s +
3282 —2483)(JY — J3) + ...+ ... ].

In the isotropic non-Heisenberg ferromagnetic model of an arbitrary spin s
with impurity, the spectral properties of the above operator in the two-magnon
case are closely related to those of its two-particle subsystems. The initial system
is usually called a three-particle system, and the corresponding Hamiltonian is
called a three-particle operator. We first study the spectrum and the correspond-
ing eigenvectors, which we call the localized impurity states (LIS) of one-magnon
impurity systems, and the spectrum and the corresponding eigenvectors, which
we call the bound states (BS) of two-magnon systems.

1. One-Magnon Impurity States

The spectrum and the LIS in the one-magnon case of the isotropic non-
Heisenberg ferromagnetic model of arbitrary spin with impurity were studied
in [1].

The Hamiltonian of a one-magnon impurity system also has the form (1).
The vector S,,po describes the one magnon state of spin s located at the site
m. The vectors {\/%Sn_@cpo} form an orthonormal system. Let 7 be the Hilbert
space spanned by these vectors. It is called the space of one-magnon states of
the operator H. Denote by H; the restriction of the operator H to the space J4.

Proposition 2. The space 74 is an invariant subspace of the operator H.
The operator Hy = H/ 4 is a bounded self-adjoint operator generating a bounded
self-adjoint operator Hi acting on the space lo(Z") according to the formula

v

(Hif)(p) =D (-1 5st > 2k 2f(p) — f(p+7) — f(p— 7))

k;:l p,T
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+ Z DR IR = Je)(25)" Y (F(1) = £(0)(Bpr = Gp0), (3)

p77—

where 0y, ; is the Kronecker symbol, and the summation over T is over the nearest
neighbors. The operator Hy acts on the vector 1) = (2s)~1/2 > F(P)S, po € H4
by the formula

Hytp = Zﬂlf \ﬁp (4)

Proposition 2 is proved by using the well-known commutation relations for
the operators Sy, Sy, and SZ : [Sh, S| = 26,057, [Si, Si] = £0mn S
Lemma 1. The spectra of the operators Hy and Hy coincide.

Proof Because Hy and H; are bounded self-adjoint operators, it follows
that if A € o(H7), then the Weyl criterion (see [2]) implies that there is a sequence
{1, }5°; such that ||¢,|| =1 and

nh_{loloHqupn_)‘wn” =0. (5)

We set 1, = (25)~1/2 >-p fn(D)Sy wo.
Then

[ Hitpn, — My || = (len — N, Hithy — Miy,)

= _Hifalp) = Mfalp)I? (—= 0) = |[Hi1Fy — ARy

’75_
1 ~ _
X(%S;Sp@Oa(PO):H(HI_ )P H( 28<P0,<P0)—H(H1— )Full? = 0, n — oo.

Here F,, = (fn(p))pezv and ||F,|* = Zp\fn(p)P = [|¢m||? = 1. Tt follows that

A\ € o(H1). Consequently, o(H1) C o(H1). Conversely, let A\ € o(H1). Then, by
the Weyl criterion, there is a sequence {F},}2°; such that

1Fall= [ 1fa@)2=1 and ||(HiF, —AF,|| -0, n—oo.  (6)
p

We conclude that ||[¢,|| = ||Fy|| = 1 and ||H1E, — AFy,|| = ||H1tn — Mby]|.
Thus (6) and the Weyl criterion imply that A € o(H;) and hence o(H1) C o(Hy).
These two relations imply that o(H1) = o(Hj).

The spectrum and the LIS of the operator H; can be easily studied in its
quasimomentum representation. Denote by .% the Fourier transformation

F 15(2%) — La(T").
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Here TV is the v— dimensional torus endowed with the normalized Lebesgue
measure dA : A(T") = 1.

Proposition 3. The operator Hy = ZH1.F " acts on the space La(T") by
the formula

(H\f) () = p(s)h(x) f () + Q(S)/hl(w;t)f(t)dt, (7)

Tl/

where h(z) =v — Y./ cosxj, hi(z;t) = v+,  [cos(z; —t;) — cosa; — cost),
p(s) = =230 [(=28)F Ty, q(s) = —23°0%  (=2s)8(J) — Jp), t € T".

To prove Proposition 3, the Fourier transform of (3) should be considered
directly.

It is clear that the continuous spectrum of the operator ﬁl is independent
of q(s)hi(x;t) and it fills the whole closed interval [m,;M,], where m, =
mingerv p(s)h(z), M, = maxzerv p(s)h(z).

Definition 1. An eigenfunction ¢ € Lo(T") of the operator fllforrespond—
ing to an eigenvalue z ¢ [my; M,] is called the LIS of the operator Hy, and z is
called the energy of this state.

We consider the operator K,(z) acting on the space J/z,’? according to the
formula

(K (2)f)(z) = /Mf(t)dt,x,t cT”.
ey

It is a compact operator in the space %7{ for the values z lying outside the set

Gy = [my; M.
Set

(1 —costy)(v— Y7 cost;)dt sin?tidt

Ay(z) = (1+4q(s) ‘ )X (M+4q(s) [ —75—)
7[ p(s)h(t) — = 7[19(8)’1@) -z
s cost] — costa)?
x(1+ q;) / ( pé)h(t) _ti Wy, (8)
T

where dt = dt1dty ... dt,.

Lemma 2. A number zg & [my; M,] is an eigenvalue of the operator Hy if
and only if it is a zero of the function A, (z), i.e., A,(z9) = 0.

P roof In the case under consideration, the equation for the eigenvalues
is an integral equation with a degenerate kernel. Therefore it is equivalent to a
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homogeneous linear system of algebraical equations. A homogeneous linear sys-
tem of algebraic equations has a nontrivial solution if and only if the determinant
of the system is zero. Taking into account that the function h(sy;s2;...;s,) is
symmetric and carrying out the corresponding transformations, we present the
determinant of the system in the form A, (z).

We denote a set of all pairs w = (p(s);¢(s)) by 2 and introduce the following
subsets in €2 for v =1

Ar ={w:p(s) > 0,—p(s) < q(s) <0}, Ay = {w: p(s) > 0,q(s) < —p(s)},
Az ={w:p(s) <0,q(s) <p(s)}, A = {w:p(s) > 0,p(s) < q(s)},
As ={w:p(s) > 0,0 <q(s) <p(s)}, A6 = {w: p(s) <0,q(s) = p(s)},
A7 ={w:p(s) <0,0 <q(s) < —p(s)}, As = {w : p(s) < 0,q(s) > —p(s)}.
We write
2y — _lp(s) +a(s)llp(s) — 3q(s) + VD]
4q(s) ’
Ly = P+ q(s))?
2q(s) 7
. Ip(s) + a(s)]lp(s) — 3a(s) = VD]
3= 1q(s )

where D = [p(s) + q(s)][p(s) + 9q(s)].

The following theorem describes the variation of the energy spectrum of the
operator Hi in the one-dimensional case.

Theorem 1. (i) Ifw € As|JAs, (w e A4JAs), then the operator Hy has
exactly two LIS’s, p1 and o2, with the respective energies z1 and zo (22 and z3)
satisfying the inequalities z1 < 2z (22 < 23) and z; < mq, i = 1,2 (2; > M,
j=2,3).

(ii) If w € Ag (w € As), then the operator Hy has a single LIS ¢ with the
enerqy z = z1 (z = z3) satisfying the inequality zy < my (z3 > My).

(iii) If w € A1 |J Az, then the operator Hy has no LIS.

We sketch the proof of Theorem 1. In the one-dimensional case, the equation
A1(z) = 0 is equivalent to the system of two equations,

(1 —cost)dt
trat) T/ P = Y
and sin? tdt
1+4q(s) / FEICEE =0. (10)
T
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In the one-dimensional case, the integrals in equations (9) and (10) can be
found explicitly for the values z ¢ G1 = [mq; M;]. We obtain:
(a) for z < my:

q(s)  zq(s) 22q(s)
e T e T RV =] )
and
q(s) _ zq(s) 2q(s) zq(s)[z —2p(s)]  _
"6 TR0 T aeve = PV =] D
(b) for z > M;
() s el
O TS B TRy v (1)
and
L) ) ) =)

p(s)  P*s)  p(s)v/zlz —2p(s)]  p*(s)\/2[z — 2p(s)]

In turn, these equations are equivalent to the next equations:
(a) for z < my:

{p*(s) + p(s)q(s) + zq(s)}/ 2]z — 2p(s)] + 2°q(s (11)

and

{P*(s) + p(s)a(s) — zq(s)}v/z[z — 2p(s)] — zq(s)[z — 2p(s)] = 0, (12)
(b) for z > M;:

{p°(s) + p(s)a(s) + 2q(s) }v/2[z — 2p(s)] — 2%q(s) (13)

and

{*(s) + p(s)a(s) — zq(s)}v/z[z — 2p(s)] + zq(s)[z — 2p(s)] = 0. (14)

Solving equation (11’), we find the root z = 21, and solving equation (12'), we
find the root z = z9. In turn, solving equation (13’), we find the root z = z3, and
solving equation (14’), we find the root z = z5. Whence the proof of Theorem 1
immediately follows in view of the existence of conditions for these solutions.

In the case of the dimension v = 2, for the pairs w, we introduce:

By = {w:p(s) > 0,—p(s) < g(s) <0}, By = {w:p(s) <0,0 <qls) < —p(s)},
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By = {w: pl(s) > 0,~%p(s) < als) < ~p(s)}, Ba = {w : pls) < 0, p(s) <
als) < 0}, By = {w : pls) > 0,0 < als) < 2pls)}, Bs = fw : pls) < 0,

~ps) < als) < ~p)} Br = pls) > 0~ 0nls) < als) < ~pls)}:

) 27
Bg = {w : p(s) < 0, %p(s) < q(s) < 2551)(8)}, By = {w : p(s) > 0, %p(s) <
as) < pl(s)}h, Bio = w0 pls) < 0.~ 'p(s) < as) <~ ()}, By = {w
p(s) > 0,q(s) < —%p(s)}, Bus = {w: p(s) < 0,q(s) < 12L70p(8)}, Bug = {w :

p(s) > 0,q(s) > %p(s)}, Biy ={w:p(s) <0,q(s) > —%p(s)}.

The next theorem describes the variation of the energy spectrum of the op-
erator H;p in the two-dimensional case.

Theorem 2. (i) If w € By|J Ba, then the operator I:H has no LIS.

(ii) If w € B3s\UBy (w € BsJBs), then the operator Hy has a single LIS
© with the energy z1 (z2), where z1 < mo (20 > Ms). The energy level is of
multiplicity one.

(iii) If w € Br\UBs (w € Byl|JBuo) then the operator Hy has ezactly two
LIS’s, p1 and g2, with the respective energies z1 and zo (23 and z4), where z; <
mo, 1 =1,2 (25 > My, j =3,4). The energy levels are of multiplicity one.

(iv) If w € B11|J Bi2 (w € Big|J Bi4), then the operator f~I1 has three LIS’s,
©1, w2 and @3, with the respective energies z1,zo and z3 (24,25 and zg), where
zi <mg, 1 =1,2,3 (2 > Ma, j =4,5,6). The energy levels zy and z3 (24 and
z¢) are of multiplicity one, while zo (z5) is of multiplicity two.

Proof The functions

(p(z):/(1—cost1)(2—cost1—costg)dt’ 1/1(Z)=/p(SinZtldt

p(s)h(t) — 2 s)h(t) —z’
T2 T2
[ (costy — costy)?dt
)= T/ FOOEE

are the monotone increasing functions of z for z ¢ [mgy; Ms]. Their values can be
exactly calculated at the points z = mg and z = Ms. For z < mg and p(s) > 0, the
function ¢(z) increases from 0 to (p(s))~!, the function 9(z) increases from 0 to
9(25p(s))~1, and the function (z) increases from 0 to 27(50p(s)) L. For z > My
and p(s) > 0, these functions increase from —oc to 0, from —9(25p(s))~! to 0, and
from —27(50p(s)) ™! to 0, respectively. If p(s) < 0 and 2z < mg, then they increase
from 0 to oo, from 0 to —9(25p(s))~!, and from 0 to —27(50p(s)) !, respectively.
For p(s) < 0 and z > My, the functions ¢(z),1(z), and #(z) increase from (p(s))~!
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to 0, from 9(25p(s)) ! to 0, and from 27(50p(s)) ! to 0. Investigating the equation
Ay(z) = 0 outside the domain of the continuous spectrum, we immediately prove
the assertion of Theorem 2.

In the case v = 3, we introduce the notation:

sin? s1 dsydsodss sin? s1 dsydsodss
a = =
3 — COS §1 — COS S9 — COS S3 3+ cos sy + cos sy + cos sz’
T3 T3
b / (cos 81 — cos s2)2 ds1dsadss _ / (cos s1 — cos s2)? ds1dsadss3

3 — COS S§1 — COS S92 — COS S3 3—&-60831—1—008324—00833'
T3 T3

As it is seen, we have 0 < a < b < 1 and 2a < b. We now consider the following
subsets in 2 for the case v =3 :

Qi ={w:p(s) >0, —p(s) <q(s) <0}, Qz={w:p(s) >0, 0<q(s) < p(;)h

Q3 ={w:p(s) <0, p(35) <q(s) <0}, Qi={w:p(s) <0, 0<q(s)<—p(s)},

—— <q(s) < —p(s), Qs ={w:p(s) <0,

Theorem 3. (i) Ifw € Q1 JQ2UQ3JQ4, then the operator H; has no
LIS.

(ii) If w € Qs UQs (w € Q7UQs), then the operator Hy has a single LIS ¢
with the energy z < ms (z > Ms3). The energy level is of multiplicity one.
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(131) If w € Qo Q1o (w € Q11U RQ12), then the operator Hy has two LIS’s,
1 and pa, with the energy levels z1 and z2 (z3 and z4), where z; < ms, i = 1,2
(zj > M3, j = 3,4). Furthermore, the energy level z1 (z3) is of multiplicity one,
while z2 (z4) is of multiplicity two.

() Ifw € Q13U Qua (w € Qi15J Q16), then the operator Hj has exactly three
LIS’s, p1,2 and s, with the energies z1, zo and z3 (24, z5 and zg) satisfying the
inequalities z; < mg, i = 1,2,3 (z; > Ms, j = 4,5,6). Moreover, the energy
level z1 (z4) is of multiplicity one, z2 (z5) is of multiplicity two, and z3 (zg) is of
multiplicity three.

Theorem 3 is proved basing on the monotonicity of the functions

1-— - — - in2
gp(z):/( costy)(3 — cost] — costay costg)dt’¢(z):/p(81n tidt

p(s)h(t) — = p(s)h(t) —z°
T3 T3

[ (costy —cos to)?dt
0= [ e

for z ¢ [ms; Ms]. Further we will use the values of the Watson integral [3]. It
should be taken into account that the measure is normalized in the case under
consideration.

It can be similarly proved that in the vr— dimensional lattice, the system
has at most three types of LIS’s (not counting the degeneracy multiplicities of
their energy levels) with the energies z; ¢ [m,; M,|. Furthermore, for i = 1,2,3,
the corresponding energy levels are of multiplicity one, of multiplicity v and of
multiplicity (v — 1). The domains of these LIS’s can also be found.

We now consider the case p(s) = 0. If p(s) =0 and J, # 0,n = 1,2,...,2s,
then the function A, (z) = 0 takes the form A, (z) = detA x detB, where A =

al b1 b1 cee bl bg 0 0 s 0
ag b 0 --- 0 0 b O 0
az 0 b2 -+ 0 |isa(v+1)x(v+1) matrix, B=| 0 0 b2 0
a9 0 0 s bg 0 0 0 bQ

is a diagonal v X v matrix. Here

q(s)

VQ(S) a2:®761:7,b2:1—

—1- .
“ 2z 2z z 2z

_ Theorem 4. Ifp(s) =0, and J, # 0,n = 1,2,...,2s, then the operator
H;y has exactly two LIS’s (not counting the multiplicities of degeneration of their
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energy levels), p1 and @a, with the energies z1 = @ and zg = %q(s). The

energy z1 is of multiplicity (2v — 1)—, while z9 is of multiplicity one. Moreover,
zi <my,i1=1,2, (z; > M,,i=1,2), if q(s) <0 (g(s) > 0).

Proof The equation A,(z) = 0 is equivalent to the system of two
equations,
bt =0 (15)
and
a1b2 — I/a2b1 =0. (16)

Equation (15) has a root equal to z = @, and it is clear that its multiplicity

is 2v—1, while equation (16) has a solution z = z3. Consequently, for the arbitrary
values of v, the system has at most three types of LIS’s.

2. Two-Magnon States

The Hamiltonian of a two-magnon system has the form

2s
H' = _szn(gmngrT)n» (17)

m,T n=1

where J, > 0 are the parameters of the multipole exchange interaction be-
tween the nearest-neighbor atoms in the lattice. Hamiltonian (17) acts on the
symmetric Fock space s#. The vector 5,5, ¢o describes the state of a sys-
tem of two magnons with spin s located at the sites m and n. The vectors

{ 7 2+(412 oY S-S o} form an orthonormal system. Denote the Hilbert
S S§7—48)0m,n

space spanned by these vectors by 73. It is called the space of two-magnon
states of the operator H'. By H}, we denote the restriction of the operator H’ to
S Hy = H' | .

We find the action of operator (17) on the space l2(Z x ZV), i.e., the coordi-
nate representation for the spin values s = 1,5 =3/2,s = 2, s = 5/2, and obtain
the momentum representation of these operators in the space Lo(T" x T"). Fi-
nally, we generalize these formulas for the arbitrary values of s. The operator ﬁé
in the momentum representation acts on the space /4 according to the formula

(Hyf)(z;y) = h(x;y) f(2iy) + /hl(ﬂf; yit) f(t; o +y — t)dt, (18)
ks

where
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and ,
hi(x;y;t) = BZ[l — 2cos ;yl cos =1 ; Yy cos(z; + ;)]
i=1
- Ti — Yi Ti + Yi TitY o, v
CZ[COS 5 cos — | cos( 5 ti), =y, tel”.
Here
8(Jy — 2Ja), if s=1,
A— 12(J1 —3J2—|—9J3), if 323/2,

- ( —4Jy + 16J3 — 64J4) if s =2,
20(Jy — 5o + 2505 — 1250, + 625.05), i s =5/2,
4T, if s=1,

5 —12(J — 8.J3), if s=3/2,
—24(Jy — 11.J5 + 93.J4), if s=2.
—40(J5 — 15J5 + 151y — 1484J5), if s =5/2,
—4(J; — Ja), if s=1,
C— (J1+J2—23J3) if s=13/2,
(Jl + 5Jy — 83J3 + 773J4) if s =2,
—4(Jy + 11J5 — 19905 + 2291.J; — 23119J5), if s =5/2.

Proposition 4. The space S is invariant with respect to the operator H'.
The operator HYy = H'/ 4 is a bounded self-adjoint operator generating a bounded
self-adjoint operator H'y acting on the space lo(ZY x ZV). The operator HY in the
momentum representation in the space Lo(T" X TV) acts according to the formula

(Hyf)(w;y) = h(x;y) f (a3 y) + /hl(x; y;8)f(s;z +y — s)ds, (19)
P

where

12
h(x;y) = 8sA ;[1 — cos 2 ; L ; yk],

iL“/chkaOS:Ek*yk}

hi(z;y;t) = —4s(2s — 1)B Z{l + cos(zk, + yi) — 2 cos 5 5

k=1

v
_402{008 L2yk _ cog 2k ; yk}cos(xk ; Ik _ ty), xzy,teT”,

here A = Jy —2sJo + (28)2J5+ ...+ (—=1)*HJsg, B = Jy — (65— 1)J3 + (28s% —
1054 1)Jy — (12083 — 6852 + 145 — 1) J54..., C = Jy + (45> — 65+ 1).Jo — (245> —
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3252 +10s — 1)J3 + (1125* — 16053 + 7252 — 145 + 1) J4 — (4805° — 7685% 4 44853 —
12852 +18s —1)J5 + ...

The spectra and bound states of the energy operator of two-magnon systems
in the isotropic non-Heisenberg ferromagnetic model of arbitrary spin s with
impurity were studied in [4]. We consider the manifolds I'y = {(z;y) : z4+y = A}.

The following fact is important for further studying of the spectrum of the
operator H's.

Let the total quasi-momentum of the system x +y = A be fixed. By La(T'y),
we denote the space of functions that are square integrable over the manifold

= {(z;y) : @ +y = A}. It is known [5] that the operators H’g and the space
ffé can be decomposed into the direct integrals H ’2 = &b fTV H oAdA, %”2
&P fT,, %AdA of the operators H ‘90 and the space 4, such that the spaces

S are invariant under H o’ oA, and the operator H 2L oA acts on the space S\ as

(Hiosf1)(@) = (@) (o) — [ buaCast) fa(0)de
T
where hy(z) = h(z; A — ), hia(x;t) = hi(x; A — 25 t) and fa(x) = f(z; A — x).

It is known that the continuous spectrum of the operator .,F\I—;Q is independent
of the functions hia(x;t) and it consists of the intervals Gy = [ma; M|, where
mp = mingha(z), My = mazghp(x).

The eigenfunction op € Lo(T") of the operator I?Q corresponding to an eigen-
value zp ¢ Gy is called the bound state of the operator j?flg, and zp s called the
energy of this BS.

Denote the 2s—th (Ji;Jo;...;Jas) by P and introduce the following subsets
of the 2s—th P forv =1

Q1={P:A<0,B<0,C<0}, Q2={P:A>0,B>0,C >0},
Q3={P:A>0,B>0,C<0}, Q1={P:A<0,B<0,C >0},
Qs ={P:A<0,B>0,C<0}, Qg={P:A>0,B<0,C >0},
Qr={P:B=0,A=C>0}, Qs={P:B=0,A=C <0}.
Let A% (2) = detD, where

di dy2 dig - dips
da do o daz - doyqr
ds d3 2 dsz -+ d3u41
D= . . . 5
du,l du,? dy,3 e du,u—i—l
dyy11 dys12 duy13 o dugip4l
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and
ga(s)ds

J ha(s) —

dik+1 = _40/ faifen)ds Sk ds k=1v,

dl,l =1- 48(25 — 1)B

N, (8k)ga(s)ds
d = —4s(2s—-1)B | ———————"— k=1
k+1,1 8( S ) / hA(S) . ) , Vy
Tv
ds
di1k+1=1— 4C’/ (8 Sf;k(?) , k=1v,

i)d
dirin = —40/% Mnlsdds 4 15 i-Tw, ki

(s)— =z

In these formulas

- A A
ga(s) = Z[l + cos Ay, — 2 cos ?k cos(—k —si)],

2
k=1

A A A
fa(sk) = cos(% — S) — Ccos ?k, k=1,v, na(sk)= cos(7k —sk), k=1,v.

Lemma 3. A number z = zp ¢ Gy is an eigenvalue of the operator ﬁé/\ if
and only if it is a zero of the function A% (z), i.e., AX(z9) = 0.

The proof of Lemma 3 is similar to that of Lemma, 2.
In the case when v = 1, the change of the energy spectrum is described by
the theorems below.

Theorem 5. 1. Let P € Q1 and A €]0;7[ (A €]m; 27).

a) If C # 2s(2s — 1)B, then the operator f[é has two BS’s, p1 and s, with
the energy levels z1 < mp and zo > My.

b) If C = 2s(2s—1)B, then the operator f]é has only one BS ¢ with the energy
level z < mp.

2. Let P € Q2 and A €]0; 7] (A €]m; 27[).

a) If 2sA < C < 2s(2s — 1)B, cos% > m, (C >2s2s—1)B, A<
(2s — 1)B), then the operator ffé has three BS’s, ;i = 1,2,3; with the energy
values zp, < mp, k=1,2; and z3 > M.

b) If C < 25A < 25(2s — 1)B, cos§y > gpeyp, (C > 25(2s —1)B, A =
(2s — 1)B), then the operator ﬁé has two BS’s, v;,i = 1,2, corresponding to the
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energy values z1 < mp and zo > My. In this case the third BS vanishes because
1t 1s absorbed by the continuous spectrum.

¢) If C < 25(2s = 1)B < (25 — 1)A, cos§ > gpimyps (C > 25(25 — 1)B,
A > (2s — 1)B), then the operator ﬁé has only one BS ¢ with the energy value
z > Mjy.

d) If C = 2s(2s — 1)B, then the operator H} has only one BS ¢ with the
energy value z < my.

e) If C > 2s5(2s—1)B (C < 25(25 —1)B), then the operator H} has two BS’s,
©1, @, corresponding to the energy values z1 < mp, zo > Mjy.

3. Let P € Q3 and A €]0; 7] (A €]m; 2x)).

a) If C > —2s(2s — 1) B, then the operator ﬁé has two BS’s, p1 and @2, with
the energy values z1 and zo, where z1 < ma, and zo > Mjy.

b) If C < 2s(2s — 1)B, then the operator Hj has only one BS o with the
energy value z < my.

4. Let P € Q4 and A €]0; [ (A €]m; 27[).

a) If 2sA—2s(2s—1)B—C >0, COS% > 3A- 28(26; n5=C (cos% # ﬁ)
then the operator H2 has three (two) BS’s, ¢;, i =1,2,3 (¢j,7 = 1,2) correspon-
ding to the energy values zi, < mpa,k =1,2;23 > Mp(z1 < mp, z9 > My).

b) If 2sA—2s(2s—1)B—-C >0, —m < cos% < 25A—25(2Cs—1)B—C or
2sA — 25(2s — 1)B — C < 0 (cos & 5 = m), then the operator H} has only
one BS ¢ with the energy value z > M.

5. Let P € Q5 and A €)0; 7| (A €]m; 27).

a) If cos 3 > —m, C > 2sA (cosy < m, C > 2sA), then the

operator ﬁé has three BS’s, @1,p2 and 3, corresponding to the energy values
zi <mp, 1 =1,2; and z3 > Mjy.
A
b) If C < 25A,25A = 25(2s = 1)B — C < 0,c08 3 > ygmempc (C <

2sA,2sA —2s(2s—1)B—-C <0, cos% < _QSA—25(2CS—1)B—C’)’ then the operator

ﬁé has three BS’s, p1, 2 and @3, corresponding to the energy values z; < mp,i =
1,2; and z3 > Mjy.

c) If C < 2sA,2sA —2s(2s —1)B—-C < 0, —m < cos% < ﬁ

c c
(C <254, 2sA—25(25s —1)B—C <0, —55— 553 B0 < 085 < 25(23—1)3)
or C <2sA,2sA—2s(2s—1)B—C >0 (C > 2s4, 2sA—25(2s—1)B—-C > 0),
then the operator HY has only one BS ¢ with the energy value z > Mjy.
A

d) If COS§~ = m7 C > 2814 (COSQ = m7 C > 2814) then
the operator H} has two BS’s, @1 and 2, with the energy values z1 < my and
29 > MA. ~

e) If cos% < —m (COS% > m), then the operator H) has two
BS’s, 1 and po, with the energy values z1 < mp and zo > M.

Journal of Mathematical Physics, Analysis, Geometry, 2013, vol. 9, No. 2 253



S.M. Tashpulatov

f) If COS% = —m, C < 28A (COS% > m, C < 2814), then the

operator ﬁé has only one BS ¢ with the energy value z > M.

6. Let P € Qg and A €]0; 7] (A €]m; 27[). )

a) If cos% < —ﬁ (COS% > m), then the operator H) has two
BS’s, ¢1 and @2, with the energy values z1 < mp, and zo > Mjy. )

b) If cos% > —m (cos% < m), then the operator H) has only
one BS ¢ with the energy value z < my.

7. Let P € Q7 Qs and A # 0.
Then the operator H) has two BS’s, w1 and 2, with the energy values z; <
mp, and zo > My.

In the case where v = 1 and A = 0, the change of the energy spectrum is
described by the following theorems.

Theorem 6. Let A = 0. a) If P € Q1, C > 2s(2s — 1)B, then the operator
flé has two BS’s, ¢1 and @a, with the energy values z1 < mp, and zo > M.

b) If P € Qq, C < 2s(2s — 1)B, then the operator H} has only one BS ¢ with
the energy value z < my.

2.a) If P € @2, 2sA < C < 2s(2s —1)B, then the operator ﬁé has three BS’s,
@i 1 = 1,2,3; with the energy values z; < mp, j = 1,2; and z3 > M.

b) If P € Q2, C <2sA, C <2s(2s—1)B or P € @2, 2sA < 2s(2s—1)B < C,
then the operator ijé has two BS’s, @i, i = 1,2 with the energy values z1 < my
and zo > M.

¢) If P € Qa, C =25(2s—1)B > 2sA, then the operator ﬁé has only one BS
@ with the energy value z < my.

d) If P € Qq2, C =2sA >2s(2s —1)B or P € 2, 25(2s — 1)B < 2sA < C,
then the operator lffé has only one BS ¢ with the energy value z > Mjy.

e) If Pe Qa, C =2s(2s—1)B <2sA or P € @2, 25(2s —1)B < 2sA < C,
then the operator H} has no BS.

3.a) If P Q3, C < —2s5(2s—1)B, A > (2s — 1)B, then the operator ﬁé has
two BS’s, v;, i = 1,2, with the energy values z1 < mp and zg > M.

b) If P € Q3, A < (25 — 1)B, then the operator H} has only one BS ¢ with
the energy value z > Mjy.

¢) If PeQs, C>—2s(2s—1)B, A > (2s — 1)B, then the operator szé has
only one BS ¢ with the energy value z < my.

4.0) If P € Qq, C > —25(2s — 1)B, then the operator H} has two BS’s, o1
and @2, with the energy values z; < mp, 1 = 1,2.

b) If P € Qq, C < —2s(2s — 1)B, then the operator ffé has only one BS ¢
with the energy value z < my.

¢) If P € Qq, C = —2s(2s — 1)B, then the operator H} has no BS.

5.a) If P € Q5, —2s5(2s —1)B < C < 2sA, C > sA — s(2s — 1)B, then the
operator ﬁé has two BS’s, @1 and po, with the energy values z; < my, i =1,2.
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b) If P € Q5, —2s5(2s — 1)B < C < 2sA, C < sA—5s(2s—1)B or P € Qs,
C = —2s(2s — 1)B < 2sA, then the operator I:Ié has no BS.

c) If PeQs, C=-252s—1)B >2sA or P € Qs5, C < —2s(2s — 1)B, then
the operator ﬁé has only one BS ¢ with the energy value z < my.

6.a) If P € Qg, 2sA < C < —25(25—1)B, then the operator H) has two BS’s,
p1 and o, with the energy values z; > My, 1 = 1,2.

b) If P € Qp, C = 2sA > —2s5(2s —1)B or P € Qg, C < —25(2s — 1)B,
C < 2sA, then the operator ﬁé has no BS.

¢) If P e Qg, C = —25(2s — 1)B < 2sA or P € Qg, C > —2s(2s — 1)B,
C +# 2sA, then the operator ﬁé has only one BS ¢ with the energy value z > My.

7. If P € Q7 (P € Qs), then the operator I:IQ has only one BS ¢ with the
energy value z > My (z < mp).

A sketch of the proofs of Theorems 5, 6 is given below. In the case under con-
sideration, the equation for eigenvalues is an integral equation with a degenerate
kernel. It is therefore equivalent to a system of the linear homogeneous algebraic
equations. The system is known to have a nontrivial solution if and only if its
determinant is equal to zero. In this case, the equation A (z) = 0 is therefore
equivalent to the equation stating that the determinant of the system is zero. In
the case where v = 1, the determinant has the form

A} (z) = detD,
dig1 di2
p=( o G2
< doy1 da2 >

d11:1—4s(2s—1)3/9A(8)dS, dm:_w/fA(SMS’
’ ’ ha(s) — =
T

where

da1 = —4s(2s — 1)/(829(’ dz2 =1 _40/W’

T T
A A A
ga(s) = 1+cosA—QCos§cos(§ s), fA(s)—cos(g—s)—cosg,
A
na(s) = COS(§ — ).

Expressing all integrals in the equation A} (z) = 0 via the integral
dt
)= [
&= [

T
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we can see that the equation Al (z) = 0 is equivalent to the equation
2 2 A 3 2 4 A
{C(z—8sA)*+8sA[25(2s — 1) B+ C]cos E(z —8sA)+128s°(2s — 1) A*B cos 5}

X J*(z) = —=C(z — 8sA) + 8sA[2sA — C — 25(2s — 1) B] cos % (20)

1
Because ———— is a continuous function for z ¢ [my; M| and
ha (t) —Z
N = [ g >0
S lhalt) =22 =

the function J*(z) is an increasing function of z for z ¢ [ma; Ma]. Moreover,
J(z) — 0as z —» —o00,J*(2) — 400 as z — mp — 0,J"(2) — —oc0 as z —
My + 0, and J*(z) — 0 as z — +oo. Analyzing equation (20) outside the set
Ga = [ma; My], we get the proof of Theorems 5, 6.

The energy spectrum of the operator ﬁé in the case where v = 2 for the total
quasi-momentum of the form A = (A1;A2) = (Ao; Ao) is described below. It is
easy to see that if the parameters J,,n = 1,2s and Ay satisfy the conditions of
Theorems 5, 6, then the statements of the theorems are true. Only one additional
BS ¢ appears, whose energy value is Z, because Z < mp (2 > Mp)ifC >0 (C <
0). If C = 0, the operator ﬁé does not have an additional BS.

The proof of this statement is based on the fact that if v = 2 and A = (Ag; Ay),
then the function AX(z) has the form

[cos(% —t1) — COS(A20 — t2)]?dt1dty
Al =[1-2C v 21
() =20 [ T A, (1)
T2
where
Up(z) ={1—4s(2s —1) / ————dt1dta}[1 — 4C
tl,tg —z
T2
falt)na(tist2) /
dt dta] — 32s( 1)BC dt dt
“J haltt—2)— 2] = 325 B tl,tQ 2
T2
fa(t)ga(t) 2
2 dtydte, t € TN € TV,
hA(tl;tQ)—Z 1at2,t € ) €
T2
Here gp(t) = 2+2COSA0—2CO 2 [cos (70— )—l—cos(%—tg)], falt) = cos(%—
t1), na(ti;ta) = cos( —t1)—+cos % 2)—2cos %, Ealty) = cos(%—tl)—cos %

256 Journal of Mathematical Physics, Analysis, Geometry, 2013, vol. 9, No. 2



Spectrum of Two-Magnon non-Heisenberg Ferromagnetic Model

Therefore the equation A% (z) = 0 holds if either the equation

A 2
cos( — cos(52 — t1)]*dt1dts
1- 20/ =0 22
hA(tl,tQ)—Z ( )
or
Ua(z) =0 (23)
holds.

It is easy to see that equation (22) has the unique solution Z < my if C' > 0;
if C' < 0, then this solution satisfies the condition Z > M. If C = 0, equation
(22) has no solution. Expressing the integrals in (23) via the integral

dtidts
hA tl,tg — Z

we obtain
na(2)J7(2) = €a(2),
where
na(z) = C(z — 16sA4)% + 165A[25(2s — 1)B + C]
X cos? A2 (z — 16sA) 4 5125%(2s — 1) A% B cos® Ao
and

A
En(z) = —C(z — 165A) + 165A[2sA — C — 2s(2s — 1)B] cos? 70

In its turn, for na(z) # 0, the above last equation is equivalent to the equation

()

() = ma(z)

(24)

Analyzing equation (24) outside the set G and taking into account that the
function J*(z) is monotonic for z ¢ [ma; My], we obtain the statements similar
to those of Theorems 5, 6.

For all other quasi-momenta, A = (A1;A2),A1 # Ao, there exist the sets
G,,j = 0,5, of the parameters J,,n = 1,2s and A such that in every set G;
the operator ﬁé has exactly j BS’s (taking the multiplicity of energy levels into
account) with the corresponding energy values zi, k = 1,5, and 2, ¢ Gj.

Indeed, in this case, for v = 2, the function A% (z) has the form

AX(z) = detD,
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where
dig dip dig
D= | dy1 da2 dog3
d3q dg2 d3g3
Here

ds1d
@J:LAJ%—UB/ ;8;1” dy i1 = 40/ hk dﬁ@%k_12
A

B/ Cag ( Sk QA s)dsidsy

—Z

dpy1,1 = —4s(2 , k=12,

dirpsr = 1 _40/ Cax (Sk fAk(Sk)d31d527 k=19,
ha(s) —

Cay (8k) fa, (55)ds1dsa . .
d —4C k=1,2, 7=1,2, k .
k+1,54+1 = / hA(S) — ) y 4y J ) 4y ?é J

In these formulas

2
A, AL
S Ay, — 2cos = cos(2F
ga(s) k_l[ +cos Ay — 2 cos cos( 5 sk)]s
A A
fAk(sk) = COS(% - Sk) — COos ?k7 k=12,

A
CAk(Sk‘) = COS(?]C - Sk)a k= 172

Expressing all integrals in the equation A% (z) = 0 via J*(z) and performing
some algebraic transformations, we can reduce it to the form

0a(2)J"(2) = xa(2), (25)

where 05 (z) is the fifth-order polynomial in z, and x(z) is the lower-order poly-
nomial in z. Analyzing equation (25) outside the set G and taking into account
that the function J*(z) with z ¢ [my; My] is monotonic, we can easily verify that
the equation has no more than five solutions outside the set G .

For an arbitrary v > 3 and A = (Ay;Ag;...;Ay) = (Ao; Aos Ao ... Ag) € TV,
the change of the energy spectrum of the operator o o is similar to that observed
in the case of v = 1. In this case, if the parameters Jp, Js, ..., Jos and Ag satisfy
the conditions of Theorems 5, 6, then there exist the statements of these theorems
that are true. In this situation, the operator H’s with C' # 0 has only one
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additional BS with the energy z. Moreover, the energy level of this additional BS
z degenerates v — 1 times, and z < mp (2 > M) if C > 0 (C < 0). For all
other values of the total quasi-momentum A, the operator f{é has at most 2v + 1
BS’s (taking the multiplicity of the energy levels into account) with the energy
values lying outside the set Gj.

The proof of these statements is based on finding zeros of the function A% (z).
Expressing all integrals in AX () via J*(z), we can bring the equation A% (2) =0
to the form

Cn(2)
Ia(z)’
where Z4(z) is the (2v+ 1) th-order polynomial in z, and % (#) is also a polyno-
mial in z whose order (with respect to Z4(z)) is lower. The analyzing of equation
(26) outside the set G leads to the proof of the above statements.

J7(2) = (26)

Theorem 7. Let A =0 and v be arbitrary. Then the operator I:I§ has two
BS’s, p1 and @2, (not taking the multiplicity of energy levels into account) with
the energy values 21 = —2C —8s(2s—1)B Y_"_, cos? % and zg = —2C. Moreover,
z1 18 not degenerate, while zo is degenerative v — 1 times, and z; ¢ Gp, i = 1,2,
for all A € TV, i.e., the energy values of these BS’s lie outside the continuous
spectrum domain of the operator tildeH),. When B = 0, this BS’s vanishes
because it is incorporated into the continuous spectrum.

Proof. If A=0, then hp(s) =0, and

8s(2s —1)B>_y_, cos? % 2C
: -+ %)

MY ) = (14 2

~ 165(2s —1)BC %, cos? % !
22 '

Solving the equation A% (z) = 0, we prove the theorem.

Note. In the theorem, the zero-order degeneracy corresponds to the case
where there is no BS.

Let 7 = (m;m;...;m) € TV.

Theorem 8. Let A=7, A, 7 € TV and C # 0. Then the operator ﬁé has
only one BS ¢ with the energy value z = 8sAv — 2C, and this energy level is of

multiplicity v. In addition, if C > 0, then z < my, and if C < 0, then z > Mjy.
When C = 0, this BS vanishes because it is absorbed by the continuous spectrum.

The proof is based on the equality hy(z) = 8sAr with A = 7 and also on the

corresponding form of the function AX(z) = (1 — 883%)” with A = 7.

~ Theorem 9. Let C =0, and v be an arbitrary number. Then the operator
H), has at most one BS, the corresponding energy level is of multiplicity one, and

2z ¢ Gy.
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Proof If C =0, the relations

v Ae A
hia(z;t) = —4s(2s — 1)B ;[1 + cos Ay — 2 cos 5 cos(? — 1)),

TV
where
Y Ap A

ga(s) = [1+CosAk—2(3037cos(gk—sk)], ANeTY, se€T, ds = dsidss...ds,,
k=1

hold. Using the form of the determinant AX(z) and solving the corresponding
equation, we get the proof of Theorem 9.

Besides, the qualitative pictures of the change of the energy spectrum of
operator HY in the cases for s = 1/2 and s > 1/2 are shown to be different. We
also show that the energy spectrum of the system is the same either for integer
and half-integer values of s or for odd and even values of s.

3. Structure of Essential Spectrum of Three-Particle System

We first determine the structure of the essential spectrum of a three-particle
system consisting of two magnons and an impurity spin, and then estimate the
number of thee-particle BS’s in the system. Comparing formulas (2) and (7)
and using the tensor products of the Hilbert spaces and the tensor products of
the operators in Hilbert spaces [6], we can verify that the operator H, can be
represented in the form Hy = Hi Q EF + E Q) Hi + K1 + Ko, where E is the unit

operator in J#, and Ky and Ky are the integral operators

Uﬁﬂ@w%i/m@wﬁﬁ@w+y—ﬂﬁ

TV

(&ﬁwwz//mwwwﬁ@WMt
v TV
The kernels of these operators have the forms

TE + Yk Tk — Yk
cos }

v
hi(z;y;t) = —4s(2s — 1)B Z{l + cos(x + yi) — 2 cos 5 5

i=1

1%
—4C Z;{cos w — cos MTW}COS(MTW —tr), x,y,teT”,
P
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and

v
ha(z;y; s;t) = F Z[l + cos(z; +y; — s; — t;) + cos(s; + t;) + cos(x; + y;)
i=1

v
—cos(x; —s;—t;) —cos(y; — 8; —t;) —cos x; —cos y; ] +Q Z[cos(mi —t;)+cos(y;—s;)]
i=1

14
+M Z cos(z; — s;) +cos(y; — t;)] + N Z[cos s; + cost; + cos(x; + y; — S;)
i=1

+cos(z; + i — t;)],

here B = Jo — (65 — 1)J3 + (2852 — 10s + 1) Jy — (120s® — 685> + 145 — 1) J5 + . . .,
C = Jy + (45% — 65 + 1)Jy — (245> — 3252 + 105 — 1)J3 + (1125* — 16053 +
7252 — 145 + 1)Jy — (480s° — 768s* + 44853 — 12852 + 185 — 1)J5 + ..., F =
(25 — 452)(J9 — J2) + (25 — 1682 + 2483)(JY — J3) + ... + ..., Q = (—4s® +
25)(J9 — Jo) + (—4s + 20s% — 2483)(JY — J3) + ... + ..., M = 2[(J) — ) —
(1+ 55 +253)(J9 — Jo) + (1 — 8s + 2252 — 128%)(JY — J3) + ...+ ...], N =
—(JY = J1) + (1 —65+4sH)(J — Jo) — (1 —10s + 3252 —2483)(J — J3) + ... +. . ..

As we have already mentioned, for the fixed total quasi-momentum x + y =
A of the two-magnon subsystem the operator H) and the space %”2 can be
decomposed into direct integrals H'o 2L =& fT, H' ondA, %’é b fT, %AdA such
that the operators Kq1p become compact after the decomposition.

It can be seen from the expressions for the kernels of K7 and Ko that Kjx
and Ky are finite-rank operators, i.e., finite-dimensional operators. Therefore,
the essential spectra of HQ and H1 ®E + F ®H 1 coincide. A simple verifica-
tion shows that the spectrum of Hy is independent of A, i.e., of A and u. The
spectrum of AQ) E+ E Q) B, where A and B are densely deﬁned bounded linear
operators, was studied in [6-8]. In these papers there were also given the explicit
formulas expressing oess(AQ E + EQ B) and 04i5.(AQ E + EQ B) in terms
of G(A)v Udisc(A)v J(B)a and O'disc(B):

0aisc(AQ) E + E Q) B) = {(0(A)\0ess(A)) + (0(B)\ess(B)}\{(0ess(4)

+0(B)) U(U(A) + 0ess(B)) }

Oess(AQ) E + E Q) B) = (0ess(A) + 0(B)) | J(0(A) + 0ess(B)).

It is clear that c(AQE+EQ@B)={A\+pu: A€ o(A),u € o(B)}.

It can be seen from the results of [1] that the spectrum of H; consists of the
continuous spectrum and at most three eigenvalues of multiplicity one, multiplic-
ity (v — 1), and multiplicity v.
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First we prove the theorem on the finite-dimensional perturbations of bounded
linear operators in Banach spaces.

Theorem 10. Let A and B be the linear bounded self-adjoint operators with
the difference of the self-adjoint operator with finite rank m. Then o.ss(A) =
Oess(B), and at most m eigenvalues appear (taking into account their degeneration
multiplicities).

Proof. Let C =A—B. As C is a self-adjoint operator of rank m, the
function C(A — z)~! is analytical and it has the value of the operator of rank at
most m in C\o(A). It is meromorphic in C\oess(A) with finite-rank residues at
points in ogs(A). If z ¢ d(A), then (B — 2)~! exists if and only if there exists
(1 —C(A - 2)~1)~1. We can conclude that in every component of C\o(A) the
operator (1 — C(A — z)71)~! is somewhere reversible. The components C\c(A)
and C\oess.(A) coincide because of the discreteness of 0g;5.(A4). By the Fredholm
meromorphic theorem, the operator (1 — C(A — 2)71)7! exists on C\oess(A)
everywhere, but the discrete set D’ where it has finite rank residues. Here D' =
odisc(A) U D", where D" consists of no more than m points, since the operator
C(A — 2)~! can have an eigenvalue equal to 1 with multiplicity no more than m.
It follows that the operator B can have only a discrete spectrum in C\oess(A)
such that gess(B) C 0ess(A).

Every component of C\o.ss(B) has the points lying neither in o(A4) nor in
o(B). As C is a self-adjoint operator of rank m, the function C(B — 2z)~! is ana-
lytical and has the values of the operator of rank no more than m in C\o(B). It is
meromorphic in C\oess(B) with the finite rank residues at the points of og;s.(B).
If 2 ¢ o(B), then (A—2z)~! exists if and only if there exists (1+C(B—z)~1)~1. One
can conclude that in every component of C\o(B), the operator (1+C(B—z)~1)~1
is somewhere reversible. The components C\o(B) and C\oess(B) coincide be-
cause of the discreteness o4;s.(B). By the Fredholm meromorphic theorem, the
operator (1+C(B—z)~1)~! exists in C\oess(B) everywhere except the discrete set
D, where it has finite-rank residues. Here D1 = 04;s.(B) |J D2, where Dj consists
of at most m points, since the operator C'(B — z)~! can have an eigenvalue equal
to —1 with the multiplicities at most m. Hence the operator A can have only
a discrete spectrum in C\oess(B) such that oess(A) C 0ess(B). Consequently,
Oess(A) = 0ess(B). And we can conclude that when there are perturbations of
self-adjoint operators with rank m, the essential spectrum of the operator ex-
ists, and at most m eigenvalues appear (taking into account their degeneration
multiplicities).

Notice that the problems on the finite rank perturbations for the compact
operators were considered in [9-11].

The theorems below describe the structure of the essential spectrum
of HHQFE + E H; and give lower and upper estimations for N, the number

262 Journal of Mathematical Physics, Analysis, Geometry, 2013, vol. 9, No. 2



Spectrum of Two-Magnon non-Heisenberg Ferromagnetic Model

of points of discrete spectrum of the operator H,.

Theorem 11. If v = 1 and w € A;|J A7, then the essential spectrum of
the operator Hy consists of a single interval oess (Ha) = [0;4p(s)] or 0ess(Ha) =
[4p(s); 0], and the relation 0 < N < 12 holds for the number N of three-particle
BBs.

Theorem 12. If v = 1 and w € Ag or w € As, then the essential spec-
trum of the operator Hy consists of the union of two intervals, oess(H2) =
[0;4p(s)]Ulz1; 21 + 2p(s)] or ogess(Ha) = [4p(s); 0] U[z1; 21 + 2p(s)], and the re-
lation 1 < N < 13 holds for the number N of the three-particle operator.

Theorem 13. If v =1 and w € Az|J Az or w € A4|J As, then the essential
spectrum of the operator H, consists of the union of three intervals, UGSS(HQ)

[0 4p(s)] Ulz1; 21 + 2p(5)] Ulz23 22 + 2p(5)], or oess(Ha) = [4p(s); 0] U[z1; 21 +
2p(s)|U[22; 22 + 2p(s)], and the relation 3 < N < 15 holds for the number N
of the three-particle operator.

Theorem 14. If v = 2 and w € B1 | Ba, then the essential spectrum of
the operator Hy consists of a single interval oess(Hz) = [0;8p(s)], or 0ess(Ha) =
[8p(s); 0], and the relation 0 < N < 22 holds for the number N of the three-particle
operator.

Theorem 15. If v =2 and w € B3|J By or w € Bs|J Bs, then the essential
spectrum of the operator Hy consists of the union of two intervals, O'ess(Hz) =

[07 8p( )] U[Z'h 21+ 4]?( )]7 or UESS(HQ) = [8])( )7 O] U[Zh z1 + 4])( )]7 and the rela-
tion 1 < N < 23 holds for the number N of the three-particle operator.

Theorem 16. If v =2 and w € B7|J Bs or w € By J Bio, then the essential
spectrum of the operator Hy consists of the union of three intervals, oess(Ha) =

[058p(s)] U215 21 + 4p(s)] Ulz2: 22 + 4p(s)], or oess(Hz) = [8p(s); 0] Ulz1:21 +
4p(s)| U[z2; 22 + 4p(s)], and the relation 3 < N < 25 holds for the number N
of the three-particle operator.

Theorem 17. Ifv =2 a@d w € Bi1|JBi2 orw € Biz|J Bi, then the essen-
tial spectrum of the operator Hy consists of the union of four intervals, cess(Ha) =

(05 8p(s)] Ulz1; 21+4p(5)] U225 22+4p(s)] Ulzs; 23+4p(s)], o1 0ess (H2) = [8p(s); 0] U1 21+
4p(s)] U[z2; 22 + 4p(s)] U[23; 23 + 4p(s)], and the relation 6 < N < 28 holds for
the number N of the three-particle operator.

Theorem 18. If v =3 and w € Q1JQ2J Q3 Q4, then the essential spec-
trum of the operator Hy consists of a single interval oess(Hz) = [0;12p(s)] or
Oess(Hz2) = [12p(s); 0], and the relation 0 < N < 32 holds for the number N of
three-particle BBs.

Theorem 19. If v =3 and w € Q5| J Q¢ or w € Q7J Qs, then the essential
spectrum of the operator Hs consists of the union of two intervals, cess(Ha) =
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[0:12p(s)] Ul21: 21 4 6p(5)], or 0ess(Ha) = [12p(s);0]U[z1; 21 + 6p(s)], and the
relation 1 < N < 33 holds for the number N of the three-particle operator.

Theorem 20. Ifv =3 andw € Q9| Q10 orw € Q11U Q12, then the essential
spectrum of the operator Hy consists of the union of three intervals, O'eSS(HQ)
[0 12p(s)] U215 21 + 6p(s)] Ul22; 22 + 6p(3)], 07 0ess(Ha) = [12p(s); 0] U215 21 +
6p(s)] U[z2; 22 + 6p(s)], and the relation 3 < N < 35 holds for the number N of
the three-particle operator.

Theorem 21. If v = 3 and w € Qi3JQ14 or w € Q15U RQ16, then the
essential  spectrum of the operator H, consists of the union of four intervals,
ess(Ha) = [0;12p(s)]U[215 21 + 6p(s)] Ul22; 22 + 6p(s)] U235 23 + 6p(s)],  or
Gess (H2) = [12p(s); 0] Ulz15 21 + 6p(s)] Ulzas 2 + 6p(s)] Ulzss 2 + 6p(s)], and the
relation 6 < N < 38 holds for the number N of the three-particle operator.

P roof The proofs of Theorems 11-21 are similar. Therefore we prove
one of the theorems. As an example, we prove Theorem 21. From Theorem 3
(in statement (iv)) from [1], it is seen that for w € Q13J Q14 (w € Q15U Q16)
the operator H; has exactly three LIS’s, (1, p2 and 3, with the energies 21, 2o
and z3 (24,25 and zg) satisfying the inequalities z; < mg, i = 1,2,3 (2; > Ms,
j =4,5,6). Moreover, the level z; (z4) is of multiplicity one, the level zo (z5) is
of multiplicity two and the level 23 (26) is of multiplicity three.

The continuous spectrum of the operator Hj consists of the interval [0; 6p(s)]
or [6p(s); 0]. Therefore, the essential spectrum of the operator Ha consists of a set
[0; 6p(s)] + {[0; 6p()], 21, 22, 23}, 1.€., Oess(H2) = [0; 12p(s)] U[z1; 21 + 6p(s)] U[22;
22+ 6p(s)] Ulz3; 23 + 6p(s)]. The numbers 221,227,223, 21 + 22, 21 + 23, 22 + 23 are
the eigenvalues of the operator Hy ) £+ E @ H; and are outside the domain of
the essential spectrum of Hy @ F + E Q) H;. It is clear that the multiplicity of
their eigenvalues is at most 3 x 3 = 9. Consequently, these six eigenvalues of the
operator H1 Q E + EQ H; belong to the discrete spectrum of the considering
three-particle operator.

Then, the operator K1, in the three-dimensional case is the seven-rank ope-
rator, while the rank of the operator K5 is equal to 25. Consequently, as follows
from Theorem 10, the number N of the points of discrete spectrum of the three-
particle operator is not less than 6 and not more than 6 + 7 4+ 25 = 38.

Theorem 22. Let v be an arbitrary number, p(s) = 0, and J, # 0,n =
1,2,...,2s. Then the essential spectrum of the operator Hs consists of three
pomts UQSS(HQ) = {0; q(s : 2”+1 q(s)}, and the relation 3 < N < 10v+5 holds for
the number N of the pomts of discrete spectrum of the three-particle operator.

P roof When vis an arbitrary number, p(s) = 0, and J, # 0, n =
1,2,...,2s, by Theorem 4 from [1], the operator H; has two eigenvalues equal to

21 = @ and zp = 2”T‘Hq(s), where z1 is of multiplicity (2v — 1), while 29 is of
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multiplicity one. The essential (continuous) spectrum of the operator H consists
of a single point 0. Therefore, oess(Ha) = {0; @; 2l’—zﬂq(s)b and the points
q(s); (2v+1)q(s); (v+1)q(s) are the eigenvalues of the operator H; Q E+E &) H;.
Now, taking into account that the operators K1 and Ks are of ranks 2v + 1 and
8v + 1, respectively, we immediately obtain the proof of Theorem 22.

It should be noticed that if h(x;y) is an arbitrary 2m-periodic continuous
function, ha(x;s) = hs(x;s) is an arbitrary degenerated 2m-periodic continuous
kernel, and hq(x;y;t) and hg(x;y; s;t) are also arbitrary degenerated 2m-periodic
continuous kernels, i.e., the operators K1 and K> are arbitrary finite-dimensional
operators, then the analogous results are true.
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