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Introduction

The generalized Tanaka—Webster (in short, the g-Tanaka—Webster) connec-
tion for contact metric manifolds was introduced by Tanno [16] as a generalization
of the well-known connection defined by Tanaka in [15] and, independently, by
Webster in [17]. This connection coincides with the Tanaka—Webster connection
if the associated CR-structure is integrable. The Tanaka—Webster connection is
defined as the canonical affine connection on a non-degenerate pseudo-Hermitian
CR-manifold. For a real hypersurface in a Kahler manifold with almost contact
metric structure (¢, &, 7, g), the g-Tanaka—Webster connection V*) for a non-zero
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Real Hypersurfaces in Complex Two-Plane Grassmannians

real number k was given in [5] and [9]. In particular, if a real hypersurface satis-
fies A + A¢p = 2k¢, then the g-Tanaka—Webster connection V) coincides with
the Tanaka—Webster connection.

Using the g-Tanaka—Webster connection, many geometers have studied some
characterizations of real hypersurfaces in the complex space form Mn(c) with
constant holomorphic sectional curvature c. For instance, when ¢ > 0, that
is, ]\an(c) is a complex projective space CP™, Kon [9] proved that if the Ricci
tensor S of the g-Tanaka—Webster connection V*) vanishes identically, then a
real hypersurface in CP" is locally congruent to a geodesic hypersphere with
k% > dn(n —1).

Now let us denote by Go(C™*2) the set of all complex two-dimensional lin-
ear subspaces in C™*2, This Riemannian symmetric space Go(C™*2) has a re-
markable geometric structure. It is the unique compact irreducible Riemannian
manifold equipped with both a Kéahler structure J and a quaternionic Kéhler
structure J not containing J. In other words, Go(C™*?) is the unique compact,
irreducible, Kéhler, quaternionic Kéhler manifold which is not a hyper-Kahler
manifold. Then, naturally we could consider two geometric conditions for hy-
persurfaces M in G(C™*2) that a 1-dimensional distribution [¢] = Span{¢} and
a 3-dimensional distribution ®+ = Span{{i, £2,&3} are both invariant under the
shape operator A of M (see Berndt and Suh [3]).

Here the almost contact structure vector field £ defined by £ = —JN is said
to be a Reeb vector field, where N denotes a local unit normal vector field of
M in G2(C™*2). The almost contact 3-structure vector fields {£1, &2, &3} for the
3-dimensional distribution ®+ of M in Gg(@m+2) are defined by &, = —J,N
(v = 1,2,3), where J, denotes a canonical local basis of a quaternionic Kéhler
structure J such that T,M =9 & @J-, reM.

By using these two geometric conditions and the results obtained by Alek-
seevskii [1], Berndt and Suh [3] proved the following :

Theorem A. Let M be a connected real hypersurface in Go(C™+2), m > 3.
Then both [£] and D+ are invariant under the shape operator of M if and only if

(A) M is an open part of a tube around a totally geodesic Go(C™+1) in Go(C™+2),
or

(B) m is even, say m = 2n, and M is an open part of a tube around a totally
geodesic HP™ in Go(C™+2).

When the Reeb flow on M in Go(C™*?) is isometric, we say that the Reeb
vector field £ on M is Killing. This means that the metric tensor ¢ is invariant
under the Reeb flow of £ on M. They gave a characterization of real hypersurfaces

of type (A) in Theorem A in terms of the Reeb flow on M as follows (see Berndt
and Suh [4]):
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Theorem B. Let M be a connected orientable real hypersurface in Go(C™+?2),
m > 3. Then the Reeb flow on M 1is isometric if and only if M is an open part
of a tube around a totally geodesic Go(C™1) in Go(C™F2).

On the other hand, using Riemannian connection, in [12] Suh gave a non-
existence theorem for Hopf hypersurfaces in G5(C™*2) with parallel shape oper-
ator. Moreover, Suh proved a non-existence theorem for Hopf hypersurfaces in
G2(C™*2) with F-parallel shape operator, where § = [£] U D" (see [13]).

In particular, Jeong, Lee and Suh considered the g-Tanaka—Webster paral-
lelism of A for real hypersurfaces in Go(C™*2). In other words, the shape op-
erator A is called g-Tanaka—Webster parallel if it satisfies (?g’;)A}Y = 0 for any
tangent vector fields X and Y on M. Using this notion, the authors gave a
non-existence theorem for Hopf hypersurfaces in Go(C™2) as follows (see [5]):

Theorem C. There does not exist any Hopf hypersurface in the complex two-
plane Grassmannians Go(C™+2), m > 3, with parallel shape operator in the gen-
eralized Tanaka—Webster connection if o # 2k.

Moreover, Jeong, Kimura, Lee and Suh considered a more generalized no-
tion weaker than a parallel shape operator in the g-Tanaka—Webster connection
of M in G2(C™*2). When the shape operator A of M in G3(C™*?) satisfies
(@gﬁ) A)Y = 0 for any tangent vector field Y on M, we say that the shape op-
erator is g-Tanaka—Webster Reeb parallel. Using this notion, the authors gave a
characterization of the real hypersurface of type (A) in Go(C™*?) as follows (see

[6]):

Theorem D. Let M be a connected orientable Hopf hypersurface, o # 2k, in
G2(C™*2), m > 3. If the shape operator A is generalized Tanaka—Webster Reeb
parallel, then M is locally congruent to an open part of a tube around a totally
geodesic Go(C™TL) in Go(C™+2).

Jeong, Lee and Suh introduced the notion of the g-Tanaka—Webster -
parallel shape operator for M in Go(C™%2). It means that the shape operator
A of M satisfies (@E?)A)Y =0 for any X in ®+ and Y on M. Naturally, we
can see that the notion of g-Tanaka Webster - -parallel is weaker than the
g-Tanaka-Webster parallelism. By using the notion of ®'-parallel for the g-

Tanaka—Webster connection, we gave a characterization of the real hypersurfaces
of type (B) in G2(C™*2) as follows (see [7]):

Theorem E. Let M be a connected orientable Hopf hypersurface, o # 2k,
in Go(C™+2), m > 3. If the shape operator A is g-Tanaka—Webster D+ -parallel,
then M s locally congruent to an open part of a tube around a totally geodesic
HP" in Go(C™2) where m = 2n.
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Specially, Suh asserted a characterization of the real hypersurfaces of type (A)
in Theorem A by another geometric Lie invariant, that is, the shape operator A
of M in Go(C™*2) is invariant under the Reeb flow on M as follows (see [14]):

Theorem F. Let M be a connected orientable real hypersurface in Go(C™+2),
m > 3. Then the Reeb flow on M satisfies £cA = 0 if and only if M is an open
part of a tube around some totally geodesic Go(C™+1) in Go(C™*2).

Motivated by Theorem F, let us consider another Lie invariant of the shape
operator in Go(C™*2). First of all, we consider a new notion of the generalized
Lie invariant shape operator related to the g-Tanaka—Webster connection of M
in G(C™*2), namely, the generalized Tanaka—Webster invariant (in short, the g-
Tanaka—Webster invariant) shape operator, that is, (Qgg)A)Y = 0 for any vector
fields X and Y on M in Go(C™*2). Here £¥) denotes the g-Tanaka Webster
Lie derivative induced from the g-Tanaka—Webster connection v, In general,
the notion of the g-Tanaka—Webster invariant differs from the g-Tanaka—Webster
parallel and gives us fruitful information rather than usual covariant parallelisms
in the g-Tanaka—Webster connection.

By using this notion of Lie invariant for the g-Tanaka—Webster connection, we
give a non-existence theorem for the real hypersurfaces in Go(C™*2) as follows:

Main Theorem. There does not exist any Hopf hypersurface in Go(C™+2)
with invariant shape operator in the generalized Tanaka—Webster connection if

a # 2k.

1. Riemannian Geometry of G,o(C™"?)

In this section we summarize basic material about G5(C™*2), for details we
refer to [2], [3] and [4]. By G2(C™*2), we denote the set of all complex two-
dimensional linear subspaces in C™*2. The special unitary group G = SU(m +
2) acts transitively on Go(C™*?) with stabilizer isomorphic to K = S(U(2) x
U(m)) € G. Then Go(C™*?) can be identified with the homogeneous space
G/K. Moreover, we equip it with the unique analytic structure for which the
natural action of G on Go(C™*?) becomes analytic. Denote by g and £ the Lie
algebra of G and K, respectively, and by m the orthogonal complement of ¢ in g
with respect to the Cartan—Killing form B of g. Then g = ¢ ® m is an Ad(K)-
invariant reductive decomposition of g. We put o = eK and identify T,Go(C™2)
with m in the usual manner. Since B is negative definite on g, its restriction to
m x m yields a positive definite inner product on m. By Ad(K)-invariance of
B this inner product can be extended to a G-invariant Riemannian metric g on
G2(C™*2), In this way, G2(C™*?) becomes a Riemannian homogeneous space,
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even a Riemannian symmetric space. For computational reasons we normalize g
such that the maximal sectional curvature of (G2(C™%2), g) is eight.

When m = 1, G3(C3) is isometric to the two-dimensional complex projective
space CP? with constant holomorphic sectional curvature eight. When m = 2,
we note that the isomorphism Spin(6) ~ SU(4) yields an isometry between
G2(C*) and the real Grassmann manifold G5 (R®) of oriented two-dimensional
linear subspaces in RS. In this paper, we will assume m>3.

The Lie algebra £ has the direct sum decomposition ¢ = su(m) & su(2) @ R,
where R is the center of €. Viewing £ as the holonomy algebra of Go(C™*2),
the center R induces a Kéhler structure J and the su(2)-part a quaternionic
Ké&hler structure J on Gg((CmH). If J, is any almost Hermitian structure in J,
then J.J, = J,J, and JJ, is a symmetric endomorphism with (J.J,)?> = I and
tr(JJy,) =0 for v =1,2,3.

A canonical local basis {Ji, Jo, J3} of J consists of three local almost Hermi-
tian structures J, in J such that J,J,41 = Jy42 = —Jy4+1J,, where the index v
is taken modulo three. Since J is parallel with respect to the Riemannian con-
nection V of (G2(C™*t?), g), for any canonical local basis {.J1, Ja, J3} of J there
exist three local one-forms ¢, g2, g3 such that

@XJI/ = q1/+2(X)JI/+1 - QV—i—l(X)JV—i-Q (11)

for all vector fields X on Go(C™*2).
The Riemannian curvature tensor R of G(C™*2) is locally given by

RIX.Y)Z =g(Y,2)X — g(X,2)Y + g(JY,Z)JX
— g(JX Z)JY —29(JX,Y)JZ

+ Z{ (LY, 2)J,X — g(J,X,Z)J,Y — Qg(Jl,X,Y)J,,Z}

+Z{ Y, Z) ], JX — g(JuJX,Z)JyJY}, (1.2)

where {Jy, Jo, J3} denotes a canonical local basis of J.

Now we derive some basic formulas and the Codazzi equation for a real hy-
persurface in Go(C™*2) (see [3, 4, 10-13]).

Let M be a real hypersurface of Go(C™%2), that is, a submanifold of Go(C™*2)
with real codimension one. The induced Riemannian metric on M will also be
denoted by g, and V will denote the Riemannian connection of (M,g). Let N
be a local unit normal vector field of M, and A the shape operator of M with
respect to .
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Now let us put
JX:¢X+77(X)N7 JUX:¢VX+77V(X)N (1'3)

for any tangent vector field X of a real hypersurface M in G5(C™*?), where N
denotes a unit normal vector field of M in Go(C™"2). From the Kihler structure
J of Go(C™*2) there exists an almost contact metric structure (¢, £, n, g) induced
on M in such a way that

P*X =-X+n(X)E, nE) =1, ¢¢=0, nX)=g(X¢)

for any vector field X on M. Furthermore, let {.Ji, Jo, J3} be a canonical local
basis of J. Then the quaternionic Kihler structure J, of Gao(C™?), together
with the condition J,J,4+1 = Jy42 = —Jy411J, in Sec. 1, induces an almost
contact metric 3-structure (¢,,&,,n,,9) on M as follows:

¢3X =-X+17.X)¢&, n&)=1 ¢ =0,
Gv1& = =&ty Pulut1 = o,

Gvbu1X = dpr2 X + 1 (X)Ey,

Gur190 X = —Pu 2 X + 1 (X)Ep11

(1.4)

for any vector field X tangent to M. Moreover, from the commuting property of
JyJ =JJ,, v=1,2,3in Sec. 1 and (1.3), the relation between these two contact
metric structures (¢,&,1,9) and (éy, &0, M0, 9), v = 1,2, 3, can be given by

PO X = o9 X + 771/(X)£ - 77(X)§u7
771/(¢X) = 77(¢VX)7 ®& = Pu€.
On the other hand, from the parallelism of the Kéhler structure J, that is,

VJ = 0 and the quaternionic Kahler structure J,, together with Gauss and
Weingarten equations, it follows that

(1.5)

(Vxo)Y =n(Y)AX — g(AX,Y)S, Vx&=oAX, (1.6)

Vx& = qi2(X)&s1 — qur1(X)E12 + 0L AX, (1.7)

(Vxou)Y = = qui1(X)bu12Y + qui2(X)pp 1Y

L (V)AX — g(AX.Y)6,. (18)

Using the above expression (1.2) for the curvature tensor R of Ga(C™+2), the
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equation of Codazzi becomes

(VxAY — (Vy A)X = n(X)oY — n(Y)$X — 29(6X,Y)¢
3
3 (XY —m ()6, X~ 20(6,X, V)6 )
v=1

. (1.9)
+ 3 {n(6X)6,0Y —n(0Y)duoX }
v=1

3
3 {nOm(@Y) — n(¥m(0X) 6
v=1

Now we introduce the notion of the g-Tanaka—Webster connection (see [9]).

As stated above, the Tanaka—Webster connection is the canonical affine con-
nection defined on a non-degenerate pseudo-Hermitian CR-manifold (see [15],
[17]). In [16], Tanno defined the g-Tanaka—Webster connection for the contact
metric manifolds by the canonical connection. It coincides with the Tanaka—
Webster connection if the associated CR-structure is integrable.

From now on, we introduce the g-Tanaka—Webster connection due to Tanno [16]
for real hypersurfaces in Kéahler manifolds by natural extending the canonical
affine connection to a non-degenerate pseudo-Hermitian CR manifold.

Now let us recall the g-TanakaWebster connection V defined by Tanno [16]
for the contact metric manifolds as follows:

VxY = VxY + (Vxn)(Y)E = n(Y)Vxé —n(X)gY

for all vector fields X and Y (see [16]). R
By taking (1.6) into account, the g-Tanaka-Webster connection V¥) for the
real hypersurfaces of Kahler manifolds is defined by

VY = VXY + (64X, V)¢ —n(Y)PAX — kn(X)gY (1.10)

for a non-zero real number k (see [5] and [9]). (Note that V*) is invariant under
the choice of the orientation. Namely, we may take —k instead of k£ in (1.10) for
the opposite orientation —N'.)

2. Key Lemmas

First, let us assume that the shape operator A is invariant, that is, £xA =0
for any tangent vector field X on M in the complex two-plane Grassmannian

Go ((Cm+2)_
From the definition of Lie derivative we have
(LxA)Y = £x(AY) — ALxY

2.1
= (VxA)Y —Vay X + AVy X ( )
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for any tangent vector fields X and Y on M.
By putting X = ¢ in (2.1), we obtain

(SgA)Y = (VgA)Y - VAyf + AVyf

From Theorem F [14], if M is a real hypersurface in Go(C™*2), m > 3, with
Reeb invariant shape operator, that is, £,4 = 0, then M is locally congruent to
a real hypersurface of type (A).

Now let us denote by M a real hypersurface of type (A) in Go(C™*?). Then
let us check whether the shape operator of type (A) is invariant in usual Levi-
Civita connection. In order to solve this problem, we introduce a proposition due
to Berndt and Suh [3] as follows:

Proposition A. Let M be a connected real hypersurface of Go(C™+2). Sup-
pose that AD C D, Af = of, and £ is tangent to DL. Let J; € J be the almost
Hermitian structure such that JN = JyN. Then M has three (if r = m/2V/8) or
four (otherwise) distinct constant principal curvatures

a=V8cot(V8r), B=+v2cot(V2r), A=—V2tan(v2r), pu=0
with some r € (0,7/v/8). The corresponding multiplicities are
m@) =1, m(B) =2 m()=2m—2=mu),
and the corresponding eigenspaces are

To =R =RJN =RE = Span{ﬁ} = Span{ﬁl},
Tp = C ¢ = C'N =R& © RE = Span{s, &},
T ={X|X LHE JX =1 X},
T,={X|X LH,, JX =-J1X},
where RE, CE and HE, respectively, denote real, complex and quaternionic spans

of the structure vector field €, and C+¢ denotes the orthogonal complement of C&
in HE.

Applying X =&, Y € Ty and € = & € D+ in (2.1), we get

0= (Vg A)Y —Vayée + AVy &
= (Ve A)Y — AVy& + AVy&.
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On the other hand, using (1.9) and A& = (&2, we have

(Ve, A)Y = (Vy A)éa +1(82)9Y — n(Y)pE2 — 29(d62,Y)E

~

_l’_

NE

MA&)DY —n(V)u6s — 29(062, Y )6, |

1

14

NE

+

I
—

1%

{
{n(6€)0,6Y = (676,06 }
{

NE

+ > {m&m(6Y) = n(¥)n,(66) |,

I
I

v=

= (VyA)éo + $2Y — ¢30Y
= —AVy& + BVy & + 92 — ¢p30Y. (2.2)

Thus we obtain

0= —AVy& + BVy& + ¢2Y — p30Y — AVy & + AVy &
= (B - A)Vy&
=B -N(@1(Y)& — q3(Y)& + p2AY).

On the other hand, we know

PAY = Vy¢
=Vv&
=@3(Y)é — (V)3 + ¢ AY.

Taking the inner product with &5, we have

9(9AY,&2) = q3(Y) + g(¢14Y, &2),

that is,
3(Y) = g(¢AY, &) — g(91AY, &2)
= —g(AY, ¢&2) + g(AY, $162)
= 29(AY, &3)
=2Xg(Y,&3)
=0.
It yields

0=(8—=Nq)&+ A8 — A)g2Y.
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Taking the inner product with ¢9Y in the equation above, we have

0=A(B = A)g(¢2Y, $2Y)
=B —=A\).
Consequently, we get A = 0 or § — A = 0, which contradicts the values of g
and A in Proposition A. From this, we conclude the following :

Proposition 2.1. There does not exist a hypersurface in Go(C™2) with in-
variant shape operator.

From this motivation, we consider a new notion of the g-Tanaka—Webster
invariant shape operator. By using Lie invariant for the g-Tanaka—Webster con-
nection, in Sec. 3 we will give a non-existence theorem for the real hypersurface
in GQ(Cm+2).

On the other hand, in [5] Jeong, Lee and Suh considered the notion of the
g-Tanaka—Webster parallelism of the shape operator of a real hypersurface in the
complex two-plane Grassmannians. Now in this section, let us give a new notion
of the generalized Lie invariant of the shape operator for M in Go(C™*2). As it
is well known, the Lie derivative of Y with respect to X is defined by

Y — (¢1):Y
— 2 =VyxY - VyX
¢ X YA,

LxY = lim
t—0
where V denotes the Levi-Civita connection of M in Go(C™2), and ¢, is a local
1-parameter group of the transformations generated by X. Similarly, we define
the generalized Tanaka—Webster Lie derivative )i',g];) for any direction X on M as
follows
2Py = vy - v x,
where V(¥ denotes the g-Tanaka—Webster connection of M in Go(C™*2). Since
Go(C™+2) can be regarded as a Kéhler manifold, the connection V*) can be
defined as in (1.10).
The shape operator A is said to be generalized Tanaka—Webster invariant if

()AZ(;;)A)Y = 0 for any tangent vector fields X and Y on M.

In this section, we will prove that the Reeb vector field & belongs to either
the distribution ® or the distribution ®+ of M with g-TanakaWebster invariant
shape operator.

From the definition of the g-Tanaka—Webster connection (1.10), we have

(EPAY = (VxA)Y + g(AX, AY)E — n(AY)6AX — kn(X)pAY
— g(GAX,Y)AE +1(Y)ASAX + kn(X)AdY
— Vay X — g(pA?Y, X)& + n(X)pA*Y + kn(AY)pX
+ AVy X + g(0AY, X)AE — n(X)APAY — kn(Y)ApX
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for any tangent vector fields X and Y on M.
Let M be a Hopf hypersurface in Go(C™*?2) with g-Tanaka—Webster invariant

shape operator, that is, (QE?)A)Y =0 and A = €. This becomes

0=(&¢ Ay
= (VxA)Y +g(pAX, AY)E — an(Y)pAX — kn(X)pAY
—ag(pAX,Y)E+n(Y)APAX + kn(X)AgY
— Vay X — g(¢A%Y, X)¢ +n(X)pA%Y + akn(Y)pX
+ AVy X + ag(¢AY, X )€ — n(X)ApAY — kn(Y)ApX (2.3)

for any tangent vector fields X and Y on M.
Using (2.3), we can assert the following:

Lemma 2.2. Let M be a Hopf hypersurface in Go(C™12). If M has the
g-Tanaka—Webster invariant shape operator, then the principal curvature o =
g(AE, &) is constant.

Proof. Replacing Y by £ in (2.3) and using A = af, we have

0=(2{ A
— (VxA)E — adpAX + APAX — aVeX + akdpX + AV X — kAGX
= —APAX + (Xa)E + apAX — apAX + ApAX
—aVeX + akdpX + AV X — kAGX.

Then we have
0= (Xa){ —aVeX + akpX + AV X — EAPX (2.4)

for any tangent vector field X on M.
Taking the inner product of (2.4) with &, we get

0= (Xa)g(£,&) —ag(VeX, &) + akg(pX,€) + g(AV X, §) — kg(AdX, €)
= (Xa) —ag(VeX,§) + ag(Ve X, §).

Thus we have our assertion. [ ]

Now we introduce the lemma as follows:
Lemma 2.3. Let M be a Hopf hypersurface in Go(C™*2). If M has the g-

Tanaka—Webster invariant shape operator, then the Reeb vector field & belongs to
either the distribution ® or the distribution D=,
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Proof. We assume that

§ = n(Xo)Xo +n(&1)61 (*)

for some unit vector field Xy € ® and n(&1)n(Xo) # 0.
Under the assumption that M is Hopf, Berdnt and Suh [3] gave

3

Ya= () —4> n,(En.(¢Y)

v=1

for any tangent vector field Y on M.
Using Lemma 2.2, we get

3
0="> n()m(4Y).
v=1

From this, together with (*), we obtain

0=m(E)m(eY)
= —n(£1)g(p61,Y)

for any tangent vector field Y on M. Because of n(&1) # 0, we have

0= 98
= ¢1(n(Xo)Xo +n(&1)&1)
= n(Xo) 1 Xo.

Since n(Xp) # 0, we get ¢1Xo = 0. This gives a contradiction.
Hence we complete the proof of this lemma. [

3. The Proof of the Main Theorem

From now on, let M be a Hopf hypersurface in G5(C™*?) with g-Tanaka-
Webster invariant shape operator. Then by Lemma 2.3, we consider the following
two cases, that is, £ € ® and € € D, respectively.

First, we consider the case & € ©+. From this, without loss of generality, we
may put § = &;.

Lemma 3.1. Let M be a Hopf hypersurface, o # 2k, in Go(C™2), m > 3,
with g-Tanaka—Webster invariant shape operator. If the Reeb vector & belongs
to the distribution ®1, then the shape operator A commutes with the structure
tensor ¢.
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P roof. Previously we obtained this equation

0= (2P Ay

= (VP )y - v (x) + avPx,
By putting X =¢, Y = X and using (1.10) in the equation above, we have

0

(&M Aa)x
= (V)X - VIR (©) + AV
= (VM A)X — {Vax€ + g(pA2X, )¢ — (€)pA2X — kn(AX) et}
+ A{Vx& + g(pAX, ) — n(§)pAX — kn(X)pS}
= (VPA)X — pAX + pA2X + APAX — ApAX
= (v A)x (3.1)

for any tangent vector field X on M. So we can use the proof of the lemma ([6],
Lemma 3.1). Since « # 2k, we know that the shape operator A commutes with
the structure tensor ¢. [ ]

Due to Berdnt and Suh [4], the Reeb flow on M is isometric if and only if the
structure tensor field ¢ commutes with the shape operator A of M. Thus, from
Lemma 3.1 and Theorem B we have the following:

Lemma 3.2. Let M be a Hopf hypersurface, a # 2k, in Go(C™+2), m > 3,
with g-Tanaka—Webster invariant shape operator. If the Reeb vector & belongs
to the distribution ®+, then M is locally congruent to an open part of a tube
around a totally geodesic Go(C™*!) in Go(C™+2).

Now let us denote by M a real hypersurface of type (A) in Go(C™*2). Then,
using Lemma 3.2 and Proposition A due to Berndt and Suh [3], let us check
whether the shape operator A of M is invariant for the g-Tanaka—Webster con-
nection as follows:

Case A: (€Dt
Applying X =&, Y € Ty and € = & € D+ in (2.3), we get
0= (VgAY + g(¢A&, AY)E — an(Y)9 AL — kn(&2)pAY
— ag(¢A&, Y)E +n(Y)APAL + kn(§2) AdY
— Vavés — g(pA%Y, £)€ + n(2)pA%Y + akn(Y)¢és
+ AVy & + ag(9AY, )€ — n(&2) ApAY — kn(Y)A¢Ss.
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Since Y € T), using ¢T C T, we have
9(pA&, AY) = Ag(9A&,Y)
= —N?g(¢Y, &2)
= Ng(Y, ¢&)
=0.
Similarly, we obtain g(¢A&,Y) = g(pA%Y, &) = g(pAY, &) = 0. Then we have
0= (V§2A)Y — Vayés + AVy &
= (V&A)Y — AVyé& + AVyé&s.
Thus, using (2.2), we obtain

0=—AVy& + BVy& + ¢2Y — ¢30Y — AVy & + AVy &y
=(B-MNVy&
=(B—=MN(@1(Y)& — @3(Y )& + ¢ AY).

Because of g3(Y) = 0, taking the inner product with ¢2Y", we get
0=XpB—N).

Consequently, we have A = 0 or 3 — A = 0. This gives a contradiction. So we
give a proof of the Main Theorem for £ € D+.
Now let us consider the following :

Case B: £e€9.
First of all, we introduce the proposition given by Berndt and Suh in [3] as
follows :

Proposition B. Let M be a connected real hypersurface in Go(C™+2). Sup-
pose that AD C D, A& = af, and & is tangent to ©. Then the quaternionic
dimension m of Go(C™*2) is even, say m = 2n, and M has five distinct constant
principal curvatures

a=—2tan(2r), [B=2cot(2r), =0, A=cot(r), p=—tan(r)
with some r € (0,7/4). The corresponding multiplicities are
m(@) =1, m(f)=3=mly), m())=4n—4=mu),
and the corresponding eigenspaces are

Ty =RE = Span{{},

Tg =JJE = Span{fl,\ V= 1,2,3},
T, =3¢ =Span{¢,&| v =1,2,3 },
T\, 1,
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where
heT,= (H(C{)J‘, IJIN=T\, JT,=T, JI\=T,.

The distribution (HCE)* is the orthogonal complement of HCE, where HCE =
RE @ RIS @ JE @ JJE.

Applying X = ¢ in (2.3), we get
0= (&M Ay
(V&P Ay
(VeA)Y — kpAY + kA¢Y.

Then we have
0=V¢(AY) - AV:Y — kQAY + EAQY (3.2)

for any tangent vector field Y on M.
From this, by putting Y = &, we obtain

0= V¢(AS2) — AVe&r — ko A& + kAP,
= BVe&o — AVe&o — kBoE2
= B(q1(§)& — a3(§)&1 + h2AE)
— A(q1(§)&s — a3(§)&1 + $2A8) — KBS
= afdf — aApal — kB daE.
Then we get
0= Bla —k)p2€,
that is, 3 =0 or a = k.
Subcase 1: 8 =0.
Since 8 = v/2cot(v/2r) > 0 for r € (0,7/4), it gives us a contradiction.

Subcase 2: o = k.
Using (2.3) and (1.9) , we have

0= &My
= (VeA)Y — k¢AY + kAgY
= —AGAY + (YQ)é + (a — k)AY + kAPY + oY

3
+ 3 {8 = m(Y)out + 30,67 )6 )
v=1

for any tangent vector field Y on M.
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Applying £ € ® and « = k in this equation, we get

3
0= —APAY +aAgY +9¢Y + 3 { = n(¥)en€ +3n,(0Y)5, }.

v=1

Combining Y € Ty and JT) = T},, we obtain

0= —AAQY + audY + ¢Y
= =AY + aueY + oY
= (—Au+ap+1)¢Y,
that is,
0=-+ap+1
= —(cotr)(—tanr) + (—2tan2r)(—tanr) + 1
=14 2tan2rtanr +1
= 2(1 + tan2rtanr).

Thus we know

=1+tan2rtanr

2tanr

=1+ d

1 — tan

1+ tan?r
= 2

tanr
r

for r e (0,7/4).

1 —tan?r

Consequently, we have
1+ tan’r = 0,
which contradicts 0 < tanr < 1.

Hence summing up all the cases, we have our Main Theorem from Introduc-
tion.

4. Generalized Tanaka—Webster Reeb Invariant for o = 2k

In the proof of our Main Theorem, in Sec. 3 we assumed a # 2k. But for
Hopf hypersurfaces in Go(C™*2) with a = 2k and ¢ € D, naturally the shape
operator becomes Reeb parallel for the g-Tanaka—Webster connection. From this
point of view, in this section we will show that the assumption of Reeb parallel
for the g-Tanaka—Webster connection has no meaning for o = 2k and £€®+.

Summing up the above situations, we assert the following:

Proposition 4.1. Let M be a Hopf hypersurface in Go(C™12), m > 3, such
that o = 2k and & € ©+. Then the shape operator A is g- Tanaka—Webster Reeb
parallel.
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Proof From the definition of the g-Tanaka—Webster connection (1.10),
we get

(VP Ay =vPay) - avPy
= (VxA)Y + g(¢pAX, AY ) — n(AY)pAX — kn(X)pAY
— g(¢AX,Y)AE + n(Y)APAX + kn(X)ApY

for any tangent vector fields X and Y on M.
Putting X = £, Y = X in this equation, we have

(VEA)X = (VeA)X + g(oAE, AX)E — n(AX)PAE — kn(€)pAX
— 9(PAE, X) AL + n(X)APAE + kn(§) A X.
Since M is a Hopf hypersurface of Go(C™*2), we obtain
(VI A)X = (VeA)X — kpAX + kApX

for any tangent vector field X on M.
Using (1.9), we have

3

(VEIAX = (VxA)E+0X + 3 {m()onX —n(X)6,€ — 39(006, X)6 }
— kpAX + k:AqSXV.:l (4.1)
Applying a = 2k and € = & € D+ in (4.1), we get
(TP A)X = (VXA + 06X + dr1X — 1a(X)da€ — ns(X) ¢
— 39(626, X)&2 — 39(036, X)& — SOAX + 5 AGX
= —APAX + apAX 4+ ¢ X + 01X + na(X)&s — n3(X)Ea
+303(X) & — 3ma(X)Es — %QSAX + %Ang.
Thus we have
(VP A)X = —ASAX + %¢AX X + ¢ X
— Up(X)Es + 23(X)Eo + %AQSX. (4.2)
On the other hand, we know from Berdnt and Suh [4],

QAGAX = A APX + abAX + 26X + 2 X
— 4np(X)E&s + 4n3(X)&e (4.3)

376 Journal of Mathematical Physics, Analysis, Geometry, 2013, vol. 9, No. 3



Real Hypersurfaces in Complex Two-Plane Grassmannians

for any tangent vector field X on M. Then (4.2) can be rearranged as follows :

2V A)X = —2A0AX + adAX + 20X + 261 X
—4ma(X)&3 + 4n3(X) &2 + aApX.

Therefore, from (4.3), we obtain

for any tangent vector field X on M. ]

Remark 4.2 In the paper [6] due to Jeong, Kimura, Lee and Suh,
Proposition 4.1 is also remarked.

Remark 4.3. From Proposition 4.1 together with (3.1), for the case o = 2k,
it can be easily verified that

&Py =0

for any tangent vector field Y on M. Thus the assumption of Reeb invariant for
«a = 2k has no meaning.

Accordingly, if we consider that (f)ék)A)Y = 0, that is, the g-Tanaka—Webster
Reeb invariant shape operator, it should be natural to consider the condition that

o # 2k.
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