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1. Preliminaries

The beginning of spectral theory ascends to the works of H. Weyl [9] (1909),
F. Rellich [7] (1936) and K. Friedrichs [4] (1938). Particularly, the theorem on
the invariance of the continuous part of the spectrum of self-adjoint operator
under completely continuous perturbation belongs to H. Weyl [9]. In the works
of T. Kato [6] and M. Rozenblum [8] it is shown that absolutely continuous part
of the spectrum is invariant with respect to finite-dimensional perturbations.

In the paper, the perturbations of the linear self-adjoint operators in the
Hilbert space are studied assuming that the spectrum of the original operator is
absolutely continuous. It is shown how the spectral measure corresponding to
absolutely continuous spectrum is changed. The inverse theorem on the recov-
ering of the rank-one perturbation by the spectra of the original and perturbed
operators is proved.

Let A be a linear self-adjoint operator in a Hilbert space H. We consider the
perturbation of the operator A,

B −A = −ϕ∗σϕ, (1)
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where E is a Hilbert space, ϕ, σ are bounded operators, ϕ : H → E, σ : E →
E(σ = σ∗). Let us find the resolvent of the operator B. Obviously,

(B − λI) = (A− λI)− ϕ∗σϕ.

Assuming that λ does not belong to σ(A) ∪ σ(B) (where σ(A) and σ(B) are the
spectra of the operators A and B, respectively), multiply the right-hand side of
this equality by Rλ(B) = (B−λ)−1 and its left-hand side by Rλ(A) = (A−λ)−1

to obtain
Rλ(B) = Rλ(A) + Rλ(A)ϕ∗σϕRλ(B). (2)

Applying the operator ϕ to both sides of the equality, we get

ϕRλ(A) = (I − ϕRλ(A)ϕ∗σ)ϕRλ(B).

Denote by N(λ) the operator function in E

N(λ) = ϕRλ(A)ϕ∗. (3)

We obtain
(I −N(λ)σ)−1ϕRλ(A) = ϕRλ(B),

where λ is such that the operator (I −N(λ)σ)−1 exists and it is bounded.
Substituting ϕRλ(B) in (2), we get the representation of the resolvent of the

operator B

Rλ(B) = Rλ(A) + Rλ(A)ϕ∗σ(I −N(λ)σ)−1ϕRλ(A). (4)

Thus, we proved the theorem.

Theorem 1. Let A be a linear self-adjoint operator in a Hilbert space H,
and the perturbed operator B have the form of (1). Then the resolvent of the
operator B has the form of (4), where λ does not belong to σ(A) ∪ σ(B) and is
such that the operator (I −N(λ)σ)−1 exists and it is bounded.

Denote by W (λ) the operator function in E,

W (λ) = σ(I −N(λ)σ)−1. (5)

Theorem 2 The function W (λ) is the Nevanlinna function (the function of
class N [2, p. 120]) admitting the representation W (λ) = σ(I − N(λ)σ)−1 =
σ +

∫
R

dwt
t−λ , where dw(t) is the finite measure.
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P r o o f. Obviously, N(λ) is the Nevanlinna function and sup‖yN(iy)‖ < ∞
when y ≥ 1. Thus [3, p. 118],

N(λ) =
∫

R

dFx

x− λ
, (6)

where Fx = ϕExϕ∗, and Ex is the resolution of the identity of the operator A.
Let us estimate that the function W (λ) is the Nevanlinna function

W (λ)−W ∗(λ)
λ− λ̄

=
σ(I −N(λ)σ)−1 − (I − σN∗(λ))−1σ

λ− λ̄

= (I − σN∗(λ))−1

{
(I − σN∗(λ))σ − σ(I −N(λ)σ)

λ− λ̄

}
(I −N(λ)σ)−1

= (I − σN∗(λ))−1σ

{
N(λ)−N∗(λ)

λ− λ̄

}
σ(I −N(λ)σ)−1

= W ∗(λ)
{

N(λ)−N∗(λ)
λ− λ̄

}
W (λ).

Since N(λ) is the Nevanlinna function, then W (λ) is also the Nevanlinna
function. Besides

W (λ)− σ = σ − σ(I −N(λ)σ)−1 = (σ(I −N(λ)σ)− σ)(I −N(λ)σ)−1

= −σN(λ)σ(I −N(λ)σ)−1.

For y ≥ 1,

sup ‖y(W (iy)− σ)‖ ≤ sup‖σyN(iy)σ‖‖(1−N(iy)σ)−1‖ < ∞.

Therefore

W (λ) = σ(I −N(λ)σ)−1 = σ +
∫

R

dwt

t− λ
. (7)

In (2), multiplying by ϕ∗ the right-hand side of the equality, and by σϕ its
left-hand side, we obtain

σϕRλ(B)ϕ∗ = σϕRλ(A)ϕ∗ + σϕRλ(A)ϕ∗σϕRλ(B)ϕ∗.

Transforming the expression, we get

−I + (I + σϕRλ(B)ϕ∗) = σϕRλ(A)ϕ∗(I + σϕRλ(B)ϕ∗),
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(I + σϕRλ(B)ϕ∗)(I − σϕRλ(A)ϕ∗) = I,

(I + σϕRλ(B)ϕ∗) = (I − σN(λ))−1.

Multiplying by σ the right-hand side of the equality, we obtain

(I + σϕRλ(B)ϕ∗)σ = W (λ).

Thus, the ”restriction” of the resolvent of the operator B on E by the operator
ϕ can be expressed as the operator function W (λ) (5).

Let us recall the well-known fact [1, p. 95].

Theorem (M. Riesz). Suppose the function ft(−∞ < t < ∞) is measurable
and belongs to Lp(−∞,∞). Then the principal value of the integral

f̃x = v.p.

∫

R

ft

x− t
dt

exists and f̃x ∈ Lp(−∞,∞).

2. Direct problem

Theorem 3. Suppose Ft from (6) is a completely continuous operator func-
tion and σ is an operator of trace class and it is reversible. Then the function wt

from (7) is completely continuous, and if it holds
∫
R
‖F ′

t‖2dt < ∞,
∫
R
‖w′t‖2dt < ∞,

then wt satisfies W+
t F ′

tW
+
t − w′t = 2πiw′tF ′

tW
+
t , where W+

x is the limit value of
Wλ on the real axis in the semiplane C+.

P r o o f. Obviously, the operator function wt from (7) is completely continu-
ous because Ft is a completely continuous operator function and the perturbation
is an operator of trace class [2, p. 345].

For ∀λ ∈ C \ R from (7) we obtain

σ =


σ +

∫

R

dwt

t− λ





1−

∫

R

dFt

t− λ
σ


 . (8)

Then
0 = −

∫

R

dσFtσ

t− λ
+

∫

R

dwt

t− λ
−

∫

R

dwt

t− λ

∫

R

dFs

s− λ
σ.
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Transform the double integral. According to Fubini’s theorem,
∫

R

dwt

t− λ

∫

R

dFs

s− λ
σ =

∫

R2

∫
dwtdFsσ

(t− λ)(s− λ)
.

By the conditions of the theorem
∫
R
‖F ′

t‖2dt < ∞,
∫
R
‖w′t‖2dt < ∞, so it holds

by Riesz’s theorem
∫

R2

∫
dwtdFsσ

(t− λ)(s− λ)
=

∫

R2

∫
dwtdFsσ

(s− t)(t− λ)
−

∫

R2

∫
dwtdFsσ

(s− t)(s− λ)

=
∫

R

dwt

t− λ
Φt +

∫

R

Ψs
dFsσ

s− λ
,

where
Φt =

∫

R

dFsσ

s− t
, Ψs =

∫

R

dwt

t− s
.

The integrals Φt and Ψt are treated as the principal value of the improper
integral and exist by the Riesz theorem.

Hence from (8) we obtain
∫

R

d(σFtσ − wt)
t− λ

= −
∫

R

dwt

t− λ
Φt −

∫

R

Ψs
dFsσ

s− λ
,

∫

R

dt

[
σFtσ +

t∫
0

w′sΦsds +
t∫
0

ΨsF
′
sσds

]

t− λ
=

∫

R

dwt

t− λ
.

Thereby, taking into account the properties of the Hilbert transform [3], we
have

σF ′
tσ + w′tΦt + ΨtF

′
tσ = w′t

or
(σ + Ψt)F ′

tσ = w′t(I − Φt). (9)

From Wλ = σ(I−Nλσ)−1 it follows that Wλ(I−Nλσ) = σ. Direct λ to the real
axis in the semiplane C+. By the conditions of the theorem, there exist W+

x , N+
x

which are the limits of Wλ and Nλ, respectively. Thus, W+
x (I − N+

x σ) = σ
[5, p. 57].
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By the Sokhotski formulas, we get

W+
x = πiwx + v.p.

∫

R

w′t
t− x

dt,

N+
x = πiFx + v.p.

∫

R

F ′
t

t− x
dt.

By the definition of Φt and Ψt, we have

σ + Ψt = W+
t − πiw′t,

I − Φt = I −N+
t σ + πiF ′

tσ.

Substituting the obtained expression into (9), we get

(W+
t − πiw′t)F

′
tσ = w′t(I −N+

t σ + πiF ′
tσ).

Since σ is reversible, then W+
x
−1

σ = I −N+
x σ and we obtain

W+
t F ′

tσ − πiw′tF
′
tσ = w′tW

+
x
−1

σ + πiw′tF
′
tσ.

Finally we get the expression which connects two measures

W+
t F ′

t − w′tW
+
t
−1 = 2πiw′tF

′
t . (10)

3. Inverse problem

Suppose dimE = 1 and the operator ϕ : H → E acts in the following way:
ϕh =< h, g > f, where f ∈ E, ‖f‖ = 1, g ∈ H, h ∈ H.

The next theorem allows to recover the perturbation by the two measures of
the operator functions Nλ and Wλ for the rank-one perturbation.

Theorem 4. Let A be a linear self-adjoint operator with absolutely continuous
spectrum and let there be given two completely continuous nondecreasing scalar
functions Ft,wt such that

∫
R
|F ′

t |2dt < ∞,
∫
R
|w′t|2dt < ∞. If there exists a solution

W+
t of (10) in the class of the Nevanlinna functions such that W+

t −πiw′t+
∫
R

dws
s−t ≡

const and F ′
tw

′
t ≤ 1/π2, then there exists a perturbation of the form of (1), where

dimE = 1, ϕh =< h, g > f , f ∈ E, ‖f‖ = 1, g, h ∈ H, moreover

N(λ) =
∫

R

dFt

t− λ
= ϕRλ(A)ϕ∗,

Journal of Mathematical Physics, Analysis, Geometry, 2013, vol. 9, No. 3 397



A.N. Syrovatsky

W (λ) = σ +
∫

R

dwt

t− λ
= σ(I −N(λ)σ)−1.

P r o o f. Let us take ∀f : ‖f‖ = 1. Define the function N(λ) =
∫
R

dFt
t−λ .

Let g be the desired vector in the representation for ϕ. Then the following
relation holds:

< Etg, g >= Ft,

where Et is the resolution of the identity of the operator A.
Since the spectrum of the operator A is simple, then there exists a generating

vector ξ ∈ H such that
x∫

−∞
|gt|2dρt = Fx,

where ρt =< Etξ, ξ > [2, p. 282].
Taking the derivative of the equality, we obtain

|gx|2ρ′x = F ′
x.

Therefore for ∀x ∈ R : ρ′x 6= 0 we have |gx|2 = F ′x
ρ′x

, for other x′s one can
assume gx = 0.

Taking an arbitrary function gt, which satisfies the obtained condition, we get

g =
∫

R

gtdEtξ.

Thus the function N(λ) =< Rλ(A)g, g >= ϕRλ(A)ϕ∗.
By the conditions of the theorem, there exists a solution W+

t of (10),

W+
t

2
F ′

t − w′t = 2πiw′tF
′
tW

+
t .

Solving the equation, we obtain

W+
t = πiw′t ±

√
w′t
F ′

t

− π2w′t
2. (11)

Since F ′
tw

′
t ≤ 1/π2, then

ImW+
t = πw′t ≥ 0.

Define σ by the following expression:

σ = W+
t − πiw′t +

∫

R

dws

s− t
.
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Note that the defined σ is a constant by the conditions of the theorem and
σ ∈ R.

Define the function W (λ) = σ(I−N(λ)σ)−1. By Theorem 2, it holds W (λ) =
σ +

∫
R

dνt
t−λ , where dνt is some finite measure.

From the conditions on the limit value of the function W (λ) on real axis (11),
by using the Stieltjes–Perron inversion formula [3], we can get that dνt = dwt

and, consequently,

W (λ) = σ +
∫

R

dwt

t− λ
= σ(I −N(λ)σ)−1.
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