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Introduction

The Tanaka—Webster connecton is a unique affine connection on a non-dege-
nerate pseudo-Hermitian C'R manifold which associates with the almost contact
structure ([17, 18]). Tanno [17] introduced the generalized Tanaka—Webster (in
short, the g-Tanaka—Webster) connection for contact Riemannian manifolds gene-
ralizing it for non-degenerate integrable C'R manifolds. For a real hypersurface in
Kéhler manifolds with almost contact metric structure (¢,&,1, g), the g-Tanaka—
Webster connection V*) for a non-zero real number k was given in [5] and [10].
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In particular, if a real hypersurface satisfies pA + A¢ = 2k¢, then the g-Tanaka—
Webster connection V) coincides with the Tanaka—Webster connection.

For a real hypersurface in complex space form M, (c) with constant holomor-
phic sectional curvature ¢, many geometers have studied some characterizations
by using the g-Tanaka-Webster connection. For instance, when ¢ > 0, that is,
M,(c) is a complex projective space CP™, Kon [10] proved that if the Ricci
tensor S of the g-Tanaka—Webster connection V*) vanishes identically, then a
real hypersurface in CP” is locally congruent to a geodesic hypersphere with
k? > 4n(n —1).

Now let us denote by the complex two-plane Grassmannian Go(C™1?) a set
of all complex two-dimensional linear subspaces in C"™*2. This Riemannian sym-
metric space has a remarkable geometric structure. It is the unique compact
irreducible Riemannian manifold equipped with both a Kéahler structure J and
a quaternionic Kéhler structure J not containing J. In other words, Go(C™*?2)
is the unique compact irreducible Kéahler, quaternionic Kéhler manifold which is
not a hyper-Kahler manifold. The almost contact structure vector field £ defined
by £ = —JN is said to be a Reeb vector field, where N denotes a local unit
normal vector field of M in Go(C™*2). The almost contact 3-structure vector
fields {£1,&2,&3} for the 3-dimensional distribution D+ of M in Go(C™*2) are
defined by &, = —J,N (v = 1,2,3), where J, denotes a canonical local basis of
a quaternionic Kahler structure J, such that T,M = © @ ®+, x € M. Then,
naturally we could consider two geometric conditions for a hypersurface M in
G2(C™*+2) that a 1-dimensional distribution [¢] = Span{¢} and a 3-dimensional
distribution ®1 = Span{&;, &, &3} are both invariant under the shape operator A
of M ([3]).

By using these two geometric conditions and the results of Alekseevskii [1],
Berndt and Suh [3] proved the following:

Theorem A. Let M be a connected real hypersurface in Go(C™+2), m > 3.
Then both [£] and D+ are invariant under the shape operator of M if and only if

(A) M is an open part of a tube around a totally geodesic Go(C™F1) in Go(C™*2),
or

(B) m is even, say m = 2n, and M is an open part of a tube around a totally
geodesic HP™ in Go(C™+2).

When the Reeb flow on M in G5(C™*2) is isometric, we say that the Reeb
vector field £ on M is Killing. This means that the metric tensor ¢ is invariant
under the Reeb flow of £ on M. Berndt and Suh gave a characterization of real
hypersurfaces of Type (A) in Theorem A in terms of the Reeb flow on M as
follows (see [4]):
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Theorem B. Let M be a connected orientable real hypersurface in Go(C™+?),
m > 3. Then the Reeb flow on M 1is isometric if and only if M is an open part
of a tube around a totally geodesic Go(C™H1) in Go(C™+2).

Besides, Lee and Suh [11] gave a new characterization of real hypersurfaces
of Type (B) in G2(C™*2) in terms of the Reeb vector field ¢ as follows:

Theorem C. Let M be a connected orientable Hopf real hypersurface in
G2(C™*2), m > 3. Then the Reeb vector field & belongs to the distribution ©
if and only if M is locally congruent to an open part of a tube around a totally
geodesic HP™ in Go(C™*2), where m = 2n.

On the other hand, using the Riemannian connection, in [13] Suh gave a
non-existence theorem of Hopf hypersurfaces in G2(C™*?) with parallel shape
operator. Moreover, Suh proved a non-existence theorem for Hopf hypersurfaces
in Go(C™*2) with the §-parallel shape operator, where § = [¢] U D (see [14]).

In particular, Jeong, Lee and Suh [5] considered a g-Tanaka—Webster parallel
shape operator for a real hypersurface in the complex two-plane Grassmannian
G2(C™*2). In other words, the shape operator A is called g-Tanaka-Webster
parallel if it satisfies (@g’;)A)Y = 0 for any tangent vector fields X and Y on
M. Using this notion, the authors gave a non-existence theorem for Hopf hyper-
surfaces in Go(C™*2). Also, the authors considered a more generalized notion
weaker than the parallel shape operator in the g-Tanaka—Webster connection of
M. When the shape operator A of M in Go(C™"2) satisfies (@ék)A)Y = 0 for
any tangent vector field Y on M, we say that the shape operator is g-Tanaka—
Webster Reeb parallel. Using such a notion, the authors gave a characterization
of the real hypersurfaces of Type (A) in Go(C™*?) as follows (see [6]):

Theorem D. Let M be a connected orientable Hopf hypersurface, o # 2k, in
G2(C™*2) 'm > 3. If the shape operator A is generalized Tanaka—Webster Reeb
parallel, then M is locally congruent to an open part of a tube around a totally

geodesic Go(C™Y) in Go(C™F2).

Moreover, Jeong, Lee and Suh [7] introduced a notion of the g-Tanaka—
Webster ®+-parallel shape operator for M in Go(C™+2). It means that the
shape operator A of M satisfies (@E?)A)Y =0 for any X in ® and Y on M.
Naturally, we can see that the g-TanakaWebster ®1-parallel is weaker than
the g-Tanaka—Webster parallel. By using such a notion of ®'-parallel in the
g-Tanaka—Webster connection, the authors gave a characterization of the real
hypersurface of Type (B) in Go(C™*?).
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Specially, Suh [15] asserted a characterization of the real hypersurfaces of type
(A) in Theorem A by another geometric Lie invariant, that is, the shape operator
A of M in Go(C™*2) is invariant under the Reeb flow on M.

On the other hand, we considered another Lie invariant of the shape operator
in G(C™*2), namely, a g-Tanaka-Webster invariant shape operator, that is,

&P Ay =0

for any vector fields X and Y on M in Go(C™2), where £*) denotes the
g-Tanaka—Webster Lie derivative induced from the g-Tanaka—Webster connection
V&), Usually, the notion of the g-Tanaka—Webster invariant is different from any
Levi-Civita Lie invariants and gives us much more information than usual covari-
ant parallelisms in the g-Tanaka—Webster connection. By using such a notion of
Lie invariant in g-Tanaka—Webster connection, we gave a non-existence theorem
for the real hypersurface in G5(C™*2) as follows (see [9]):

Theorem E. There does not exist any Hopf hypersurface, o # 2k, in Go(C™2)
with g-Tanaka—Webster invariant shape operator.

Meanwhile, we consider a new notion of g-Tanaka—Webster Reeb invariant
shape operator for M in Go(C™*2), that is, (,Sék)A)X = 0 for any tangent vector

field Y on M. Since (f}ék)A)X = (@ék)A)X = 0, from Theorem D we obtain the

following Remark.

Remark. Let M be a connected orientable Hopf hypersurface, o # 2k, in
G2(C™*2), m > 3. If the shape operator A is generalized Tanaka-Webster Reeb
invarint, then M is locally congruent to an open part of a tube around a totally
geodesic Go(C™T1) in Go(C™+2).

In this paper, we consider a generalized condition named g-Tanaka—Webster
DL -invariant shape operator, that is, S(glA = 0, where D+ = Span{¢y, &, &3}
This condition is weaker than the Lie invariant in the g-Tanaka—Webster con-
nection mentioned in Theorem E. By using such a notion of the g-Tanaka—

Webster ®-invariant, we give a classification theorem for the real hypersurface
in Go(C™*2) as follows:

Main Theorem. Let M be a connected orientable Hopf hypersurface, o # 2k,
in Go(C™*2), m > 3. If the shape operator A is g-Tanaka—Webster D' -invariant
shape operator, then M is locally congruent to an open part of a tube around a
totally geodesic HP™ in Go(C™*2) with o = k and ¢;(X) = 0 for any tangent
vector field X € ® and i = 1,2,3, where m = 2n.
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1. Riemannian Geometry of Go(C™"?)

In this section we summarize basic material about Go(C™*2), for details we
refer to [2, 3] and [4]. By G2(C™"?) we denote the set of all complex two-dimen-
sional linear subspaces in C"™*2. The special unitary group G = SU(m + 2) acts
transitively on G2(C™%2) with stabilizer isomorphic to K = S(U(2)xU(m)) C G.
Then G5(C™*2) can be identified with the homogeneous space G /K. Moreover,
we equip it with the unique analytic structure for which the natural action of G
on Go(C™*2) becomes analytic. Denote by g and € the Lie algebra of G and K,
respectively, and by m the orthogonal complement of £ in g with respect to the
Cartan—Killing form B of g. Then g = ¢ ® m is an Ad(K)-invariant reductive
decomposition of g. We put o = eK and identify 7,Go(C™*?) with m in the
usual manner. Since B is negative definite on g, its negative restricted to m x m
yields a positive definite inner product on m. By the Ad(K)-invariance of B
this inner product can be extended to a G-invariant Riemannian metric g on
G2(C™*+2). In this way, G2(C™*2) becomes a Riemannian homogeneous space,
even a Riemannian symmetric space. For computational reasons we normalize g
such that the maximal sectional curvature of (G(C™%2), g) is eight.

When m = 1, G3(C3?) is isometric to the two-dimensional complex projective
space CP? with constant holomorphic sectional curvature eight. When m = 2, we
note that the isomorphism Spin(6) ~ SU(4) yields an isometry between G(C*)
and the real Grassmann manifold G (R%) of the oriented two-dimensional linear
subspaces in RY. In this paper, we will assume m>3.

The Lie algebra £ has the direct sum decomposition € = su(m) @ su(2) @ R,
where R is the center of €. Viewing £ as the holonomy algebra of Go(C™*2),
the center R induces a Kéhler structure J and the su(2)-part a quaternionic
Kihler structure J on Go(C™*2). If .J, is any almost Hermitian structure in J,
then J.J, = J,J, and J.J, is a symmetric endomorphism with (.J.J,)? = I and
tr(JJ,) =0 forv=1,2,3.

A canonical local basis {Ji, Jo, J3} of J consists of three local almost Hermi-
tian structures J, in J such that J,J,+1 = Jy42 = —Jy11J,, where the index v
is taken modulo three. Since J is parallel with respect to the Riemannian con-
nection V of (Go(C™*2), g), there exist for any canonical local basis {.J1, J, J3}
of J three local one-forms g1, g2, g3 such that

6XJZ/ = QV+2(X)J1/+1 - QV+1(X)JV+2 (11)

for all vector fields X on Go(C™*2).
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The Riemannian curvature tensor R of Go(C™12) is locally given by

R(X,Y)Z =g(Y,2)X — g(X,Z2)Y + g(JY,Z)JX
- g(JX Z)JY —29(JX,Y)JZ

+Z{ (LY, 2)0,X = g(J,X, 2)1Y =29(J,X,Y) 1,2} (12)

+ Z{ (J,JY, Z)J,JX — g(J,JX, Z)JJY}

where {J1, Jo, J3} denotes a canonical local basis of J.

Now we derive some basic formulas and the Codazzi equation for a real hy-
persurface in Go(C™%2) (see [3, 4], [11-14]).

Let M be a real hypersurface of Go(C™*2), that is, a hypersurface of G (C™*2)
with real codimension one. The induced Riemannian metric on M will also be
denoted by g, and V denotes the Riemannian connection of (M, g). Let N be a
local unit normal vector field of M and A the shape operator of M with respect
to N.

Now let us put

JX = X +n(X)N, J,X = 6, X + 1, (X)N (13)

for any tangent vector field X of a real hypersurface M in G5(C™*2), where N
denotes a unit normal vector field of M in Go(C™*2). From the Kihler structure
J of G5(C™*+?) there exists an almost contact metric structure (¢, £, 7, g) induced
on M in such a way that

P’X =-X+n(X)E, nE) =1, ¢¢=0, n(X)=g(X¢)

for any vector field X on M. Furthermore, let {Ji, Jo, J3} be a canonical local
basis of J. Then the quaternionic Kéhler structure J, of Go(C™*2), together
with the condition JyJy11 = Jyyo = —Jy411J, from Sec. 1, induces an almost
contact metric 3-structure (¢, &,, M, 9) on M as follows:

oo X ==X +m,(X)&, m(&)=1, ¢ =0,
qu—f—lfy = _€V+27 ¢V§V+1 = €V+27

v py11X = bup2 X + M1 (X)E,

Pur190 X = —Pur2X + 1, (X)E 11

(1.4)

for any vector field X tangent to M. Moreover, from the commuting property
of J,J = JJ,, v =1,2,3 from Sec. 1 and (1.3), the relation between these two
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contact metric structures (¢,&,n,9) and (¢, &, M0, 9), v = 1,2,3, can be given
by

¢¢VX = ¢I/¢X + 771/(X)§ - n(X)§w

m(6X) = (¢ X), o€ = . (1.5)

On the other hand, from the K&hler structure J, that is, VJ = 0 and the
quaternionic Kéhler structure .J,,, together with the Gauss and Weingarten equa-
tions, it follows that

(Vxo)Y =n(Y)AX — g(AX,Y)S, Vx&=oAX, (1.6)

VX&/ = qu+42 (X)El/-i-l - QV+1(X)§V+2 + ¢VAX, (17)

(Vxou)Y == qui1(X)bui2Y + qui2(X)dp 1Y

L (V)AX — g(AX, V)6, (18)

Using expression (1.2) for the curvature tensor R of Go(C"*2), the equation of
Codazzi becomes :

(VxA)Y — (Vy A)X = n(X)oY —n(Y)oX —29(6X,Y)¢
3
+> {nu(X)qf)uY — (V)9 X — 29(¢, X, y)gu}
v=1

> (1.9)
+ 3 (@X)0u6Y — 0 (Y )6,6X |
v=1

3
3 {nOm(@Y) — n(¥m(¢X) 6
v=1

Now we introduce the notion of the g-Tanaka—Webster connection (see [10]).

As stated above, the Tanaka—Webster connection is the canonical affine con-
nection defined on a non-degenerate pseudo-Hermitian CR-manifold (see [16,
18]). In [17], Tanno defined the g-Tanaka—Webster connection for contact metric
manifolds by the canonical connection. It coincides with the Tanaka—Webster
connection if the associated CR-structure is integrable.

From now on, we will introduce the g-Tanaka—Webster connection due to
Tanno [17] for real hypersurfaces in Kahler manifolds by naturally extending the
canonical affine connection to a non-degenerate pseudo-Hermitian CR manifold.

Now let us recall that the g-Tanaka-Webster connection V was defined by
Tanno [17] for contact metric manifolds as follows:

VxY = VxY + (Vxn) (V)¢ —n(Y)Vx€ —n(X)pY
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for all vector fields X and Y.
By taking (1.6) into account, the g-Tanaka—Webster connection V&) for real
hypersurfaces of Kahler manifolds is defined by

VRY = VxY +g(0AX. Y)E ~n(Y)$AX — kn(X)Y  (1.10)

for a non-zero real number k (see [5] and [10]) (Note that V*) is invariant under
the choice of the orientation. Namely, we may take —k instead of k£ in (1.10) for
the opposite orientation —N).

2. Key Lemmas

In this section, we will prove that the Reeb vector field £ belongs to either the
distribution ® or the distribution ®+ for M in G5 (C™*?2) with g-Tanaka—Webster
D-invariant shape operator.

In [9], from the definition of the g-Tanaka—Webster connection (1.10), we have
the following:

(EPA)Y = (VXA + g(pAX, AY)E — n(AY)$AX — kn(X)pAY
— g(PAX,Y)AE + n(Y)APAX + kn(X)AsY
— Var X — g(6A%Y, X)E + n(X)pA%Y + kn(AY)pX
+ AVy X + g(@AY, X)AE — n(X)APAY — kn(Y)ApX

for any tangent vector fields X and Y on M.

The shape operator A is said to be generalized Tanaka—Webster ®+-invariant
if (f}g];)A)Y = 0 for any tangent vector fields X € ®+ and Y € TM. Let M be a
Hopf hypersurface in Go(C™*+2) with generalized Tanaka-Webster ®--invariant
shape operator. This becomes

0=(£WAa)y
= (VxA)Y + g(¢AX, AY ) — an(Y)pAX — kn(X)pAY
—ag(pAX, Y)E+n(Y)APAX + kn(X)AgY (2.1)
— VayX — g(pA%Y, X)€ + n(X)pA%Y + akn(Y)pX
+ AVy X + ag(¢AY, X)€ — n(X)ApAY — kn(Y)ApX
for any tangent vector fields X and Y on M.
Applying X =¢, € DL and Y = X in (2.1), we get
0= (£ A)X
= (Ve, A)X + g(p AL, AX)E — an(X)PAE, — kn(§u)pAX
— ag(pA&,, X)§ + n(X)APAL, + kn(§u) A X (2:2)
= Vax€u — 9(0A* X, €€ + n(§)9A* X + akn(X) g€,
+ AVx &y + ag(pAX, §,)€ — n(Eu) APAX — kn(X)AgE,,.
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Using (2.2), we can assert the following:

Lemma 2.1. Let M be a Hopf hypersurface in Go(C™+2). If M has the
g- Tanaka—Webster ®'-invariant shape operator, then the principal curvature o =
g(AE,€) is constant along the direction of &, p=1,2,3.

Proof. Replacing X by £ in (2.2), we have
0= (£ A)¢
= (Ve, A&+ g(9 ALy, AQE — an(§) 9 AL, — kn(§u)pAL
— ag(PAL, §)€ + n(§) APAL, + kn(Eu) AdE

— Vagu — 9(9AE, €4)E + n(Eu) pA*E + akn(€) &,
+ Avfgu + ag(¢A§, éu)g - n(&M)AQZ’Aé - k‘ﬁ(ﬁ)Adﬁu-

Then using A¢ = a&, we obtain
0=(Ve,A)¢
— apAE, + APAE, — aV £, + akgl, + AV, — kAPE,
=— APAE, + (f,uo‘)g + O‘¢A§u
— apAE, + APAE, — aV £, + akgl, + AV, — kAPE,
:(fua)f - avégu + ak¢§u + Avffu - kA¢§u-
Taking inner product with £, we get
§ua=0

for = 1,2,3. Thus we have our assertion. [

Now we introduce the lemma as follows:

Lemma 2.2. Let M be a Hopf hypersurface in Go(C™+2). If M has the
g-Tanaka—Webster ©+-invariant shape operator, then the Reeb vector field & be-
longs to either the distribution ® or the distribution D .

Proof. We assume that

£ =n(Xo)Xo + n(&1)é1 (*)

for some unit vector field Xy € ©, and n(&1)n(Xo) # 0.
By Berdnt and Suh (see [3], p. 6), under the assumption that M is Hopf, we
know

3
Ya=(Ea)nY) —4> n,(En.(¢Y) (2.3)
v=1
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for any tangent vector field Y on M. Applying Y =§,, p = 1,2,3 in (2.3), we
get

3
Sua = (504)"7(@) - 42771/(5)771/@55#)
v=1
Using Lemma 2.1 and (*), this equation can be reduced to

(Ea)n(€y) — 4m(E)ni(P€u) = 0. (2.4)

On the other hand, we obtain

M (&) = —9(&u, p1(n(Xo) Xo +n(€1)61))

= 1(Xo0)g(p1£, Xo)
=0

because of X € ®. Therefore, we rewrite (2.4) in the form

(fa)n(gu) = 0 fOI’ H= 13 27 37

that is, o = 0 or n(§,) = 0 for p=1,2,3.
Case I: n(¢,) =0 for p=1,2,3.
Since the assumptions of (*), n(£2) = 0 and n(&3) = 0 are obvious.

Case II: ¢a=0.
Substituting X for ¥ in (2.3) and using (*), we have

Xoa = —4n1(&)m (¢ Xp) = 0.

Thus we obtain Xga = 0.

Subcase II-1: a = 0.
Applying o = 0 and (*) in (2.3), we get

—4n1(§)m (oY) = 0.

Since 71 (§) # 0, we obtain

0=m(aY)
= —g(Y, d1(n(X0) X0 + n(£1)&1))
= —n(Xo)g(Y, $1Xo)

for any tangent vector field Y on M. Because of n(Xy) # 0, we have ¢ Xy = 0.
It gives us a contradiction.
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Subcase II-2: a # 0.
Using (1.9) and (2.2), we get

0= (£ 4)X

= (VxA)E, + (&)X — n(X) o€, — 29(dE, X)E

+Z{m (E)dp X — (X )¢u§u—2g(¢V5M,X)§V}
v=1
+ 3" {06606 X — (X606,
v (2.5)

3
3 {n(€m (6X) = n(X)m (96 f&

+ 9(SAE, AX)E — an(X)$AE, — kn(€,)$AX
— ag(PALy, X)& +n(X)APAE, + kn(§u) ApX
— Vax€u — 9(pA* X, .)€ + n(E) A X + akn(X)¢é,,
+ AVx&u + ag(pAX, §,)€ — n(§u) APAX — kn(X)AgE,
for any tangent vector field X on M.
n [8], Jeong, Machado, Perez and Suh introduced the following
Lemma A. Let M be a Hopf real hypersurface in Go(C™+2). If the principal

curvature o is constant along the direction of &, then the distribution © or D+
component of the structure vector field & is invariant by the shape operator.

Since éa = 0, the distribution ® or ©+ component of the structure vector
field £ is invariant by the shape operator. Thus we write

a(n(Xo)Xo +n(&1)&1) = af
— At
= n(Xo)AXo +n(&1) A&y

Therefore, we get
AXO = O[XQ and Afl = afl. (26)

Applying X = Xy and g =1 in (2.5), we have
0= (& 4)X,
= (Vx,A)&1 +n(&1)pXo — n(Xo)d&1 — 29(dé1, Xo)€

3
+ 3 {m(€)dnXo — m(Xo)dnés — 20(0nér, X0l }
v=1

Journal of Mathematical Physics, Analysis, Geometry, 2013, vol. 9, No. 4 465



L Jeong, E. Pak, and Y.J. Suh

3

+ Z {nV(¢€1)¢V¢X0 - nu(¢X0)¢V¢§1}
v=1

3
+ 3 (a6 (0Xo) (ol 06 f&,

+ 9(9A&, AXo)E — an(Xo)pA& — kn(&1)pAXo
— ag(pA&r, Xo)€ +n(Xo) ApA& + kn(&1)ApXo
— Vaxoér — 9(¢A* X0, £1)€ 4+ 1(61) ¢ A Xo + akn(Xo) o
+ AV, &1 + ag(@AXo, §1)§ — n(&1) ApAXo — kn(Xo) Apr.
Since g(¢€1, Xo) = 0, 7 (¢€1) = (¢ Xo) = 0for v = 1,2, 3 and ¢p&1 = n(Xo)$1Xo,
by using (2.6), the above equation can be reduced to
0= (Vx,A)é1 +n(&1)oXo — 0 (Xo)$1 X0 + ¢1Xo
+a?g(¢¢1, Xo)& — a®n?(Xo)$1Xo — akn(€1)$Xo
— ag(¢€1, Xo)§ + an’(Xo) Ag1 Xo + kn(&1) A Xo
— aVx,&1 — a?g(¢ X0, &) + a?n(€1)9Xo + ok (Xo)¢1 Xo
+ AV x,&1 + a?g(¢ X0, &1)E — an(€1)ApXo — kn*(Xo) Ad1 Xo.
Using the assumption & = 7(Xo)Xo + n(&1)&1 such that n(Xo)n(&1) # 0, we get
?»Xo = —1n(&1)P1Xo. Then we rewrite
0= (Vx,A)é1 — n*(&)d1X0 — n*(Xo)d1Xo + ¢1X0
— a®n*(Xo)p1Xo + akn® (&)1 Xo
+ an?(Xo)Ag1 Xo — kn?(&1) Ad1 X0
— aVix, &1 — &0 (&) ¢1Xo + okn?(Xo) 1 X0
+ AV x,&1 + an’ (&) Ag1 Xo — kn? (Xo) Ag1 Xo.

Because of 7%(Xo) + 7%(&1) = 1, we get

0= (Vx,A)& — a’¢1 X0 + akd1 Xo + (a — k) Ad1 X
—aVx,&1 + AVix, &
= —o(a—k)p1Xo+ (o — k)Ap1 X

2 2
= (a— /‘C){ —a+ CY—HZW}%XO,

where A¢1Xg = $1Xo, due to Berndt and Suh [4].

o? 4 4n*(Xo)
«

Thus we have

4n (Xo)

(a— k) $1 X0 = 0.
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Therefore we obtain
o=k, where k£ is a nonzero real number. (2.7)
Applying (2.7) in (2.3), we get

—4m (§)m(¢Y) =0

for any tangent vector field Y on M.
Then, by using the assumption & = n(Xo)Xo+n(&1)&1 such that n(&)n(Xo) # 0,
we write

m(eY) = —g(¢61,Y) =0
for any tangent vector field Y on M. Thus we get

#&1 = n(Xo)o1 X0 = 0,

that is, ¢1 Xy = 0. This gives a contradiction. Hence we complete the proof of
this lemma. ]

3. The Proof of the Main Theorem

From now on, let us assume that M is a Hopf hypersurface in Go(C™1?)
with g-Tanaka-Webster ®+-invariant shape operator, that is (flg;)A)X =0 for
w = 1,2,3. Then, by Lemma 2.2, we consider the following two cases, that is,
EeDoree?.

First, we consider the case ¢ € ®. From this, without loss of generality, we
may put £ = &;. By setting u = 1, we have

0=(&MA)x = (&P ax = (VP A)x

for any tangent vector field X on M.
In [7], Jeong, Lee and Suh introduced the following:

Lemma B. Let M be a Hopf hypersurface, o # 2k, in Go(C™*2), m > 3,
with g-Tanaka- Webster ©+-parallel shape operator. If the Reeb vector & belongs
to the distribution ©*, then the shape operator A commutes with the structure
tensor ¢.

Due to Berdnt and Suh [4], the Reeb flow on M is isometric if and only if
the structure tensor field ¢ commutes with the shape operator A of M, that is,
Ap = ¢A. Thus, from Lemma B and Theorem B we have the following :

Remark 3.1. Let M be a Hopf hypersurface, a # 2k, in Go(C™*2),
m > 3 with g-Tanaka—Webster ®1-invariant shape operator. If the Reeb vector

¢ belongs to the distribution ®1, then M is locally congruent to an open part of
a tube around a totally geodesic Go(C™*1) in Go(C™*2).
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Then, by using Remark 3.1, we assume that M is a real hypersurface of
Type (A) in Go(C™2). Then let us check whether the shape operator A of
M is ®1-invariant in the g-Tanaka-Webster connection. In order to show this
problem, we introduce a proposition due to Berndt and Suh [3] as follows:

Proposition A. Let M be a connected real hypersurface of Go(C™*2). Sup-
pose that AD C D, A¢ = af, and & is tangent to D+. Let J, € J be the almost
Hermitian structure such that JN = J N. Then M has three (if r = 7/2\/8) or
four (otherwise) distinct constant principal curvatures

= V8cot(V8r), B=+V2cot(vV2r), A=-—V2tan(v2r), p=0
with some r € (0,7/v/8). The corresponding multiplicities are
m(@) =1, m(#) =2 m)=2m—2=m)
and the corresponding eigenspaces are
T, = R¢ = RJN = R¢; = Span{ ¢ } = Span{ & },
T3 =C ¢ =C'N =R& ORE = Span{ &, &),

Tn={X|X LHE, JX =X},
T,={X|X LH, JX = -/, X},

where RE, C& and HE respectively denote real, complex and quaternionic spans of
the structure vector field €, and C+¢ denotes the orthogonal complement of C£ in
HE.

Case A: (et
Applying =2 in (2.5), we get

0= (VXA)& +1(2)9X — n(X) P& — 29(dS2, X)E
v 52 X — 771/( )¢I/£2 - 29(¢V§2a X)gu}

> |
{n,, 062)0,0X — 0 (6X) 0,062 }
v=1

+Z{ (@),(6X) = n(X)m(662) J

+ g(pAS2, AX)E — an(X)pALs — kn(§2)pAX

— ag(pAS2, X)E +n(X)ApAE + kn(§2) ApX

— Vaxés — g(pAX, £)€ + 1(&)pA*X + akn(X) e

+ AVx&e + ag(dAX, §2)€ — 1(§2) APAX — kn(X)Apéa.
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By setting X € T\ and ¢ = & € ©+, we have
0= (VxA)& + ¢2X — ¢30X 4 BAg(d2, X)E — afg(d2, X)E
— AVx& — A2g(¢X, &)€ + AVx& + arg(9X, &)E.

Since X € Ty, g(¢X, &) = —g(X, ¢&2) = 0.
Using (VxA)& + AV x& = BV x&2, we obatin

0=(8—-AN)Vx&
= (68— M(@1(X)&3 — @3(X)&1 + 2 AX).
On the other hand, we know that

PAX = Vx&
=Vx&
= 3(X)& — 2(X)&3 + 91 AX.

Taking inner product with &, we have

9(PAX, &) = q3(X) + 9(914X, &2),

that is,
g3(X) = 2\g(X, &) = 0.

Because of ¢3(Y) = 0, equation (3.1) reduces to

(B =M@ (X)& + A2 X) = 0. (3-2)

Taking inner product with &3 in (3.2), we rewrite
(B =Aq(X) =0.

Since # — A > 0 by Proposition A, ¢;(X) = 0. Consequently, from (3.2) we get
(B = AAp2 X =0,

that is, ¢poX = 0. This gives a contradiction. So we give a proof of our main
theorem for £ € D+,
On the other hand, from Theorem C we have the following:

Remark 3.2. Let M be a Hopf hypersurface in G5(C™*2) with g-Tanaka—
Webster ©-- invariant shape operator. If the Reeb vector & belongs to the distri-

bution ©, then M is locally congruent to an open part of a tube around a totally
geodesic HP™ in Go(C™*2).
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Now let us consider that M is a Hopf hypersurface of Type (B) in Go(C™*2).
Then, using Remark 3.2 and Proposition B due to Berndt and Suh [3], we can
check whether the shape operator A of M satisfies ® 1 -invariant in the g-Tanaka—
Webster connection. First of all, we introduce the proposition given by Berndt
and Suh in [3] as follows:

Proposition B. Let M be a connected real hypersurface in Go(C™+2). Sup-
pose that AD C D, AE = &, and & is tangent to ©. Then the quaternionic
dimension m of Go(C™%2) is even, say m = 2n, and M has five distinct constant
principal curvatures

a = —2tan(2r), [=2cot(2r), 7=0, A=cot(r), p=—tan(r)
with some r € (0,7/4). The corresponding multiplicities are
mi@) =1, m(B)=3=m(r), m(\)=4n—1=m()
and the corresponding eigenspaces are

To = RE = Span{ ¢},

Ts =3JJ§ =Span{& | v =1,2,3},
T, =3¢ =Span{ ¢,¢| v =1,2,3},
Ty, 1T,

where
heT, = (H(C.S)J‘, IJIN=T\, JT,=T, JI\=T,.

The distribution (HCE)* is the orthogonal complement of HCE, where HCE =
REDRIE D JE D JJIE.

Case B: £e€®.
Applying £ € © in (2.5), we get

0= (&M A4)X
= (VXA)é,u - n(X)¢£u - 29(¢§ua X)€E+ ouX
3
+ 3 { = mX)B — 20(008 XN = m(6X)Bu08, } 33)
v=1

+ g(PAE, AX)E — an(X)PAE, — ag(dAE,, X)E +n(X)APAE,
— Vaxé, — 9(pA* X, €,)€ + akn(X) g,
+ AV x&u + ag(pAX, &,)E — kn(X)ApE,

for any tangent vector field X on M.
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Case B-1: X =¢eT7,.
By putting X = ¢ in (3.3), we have

0= (V§A)£u - ¢§u + Cbuf - Oéd)Ag,u + Ad)Ag,u
— Vae&u + akogy, + AngH — kA®E,.

Using A¢ = of, AE, = €, and ApE, = v¢¢,, = 0, it can be reduced to
(VeA)E, — apol, — aVe&, + akpl, + AV, = 0.

Since (Ve A)E, + AVel, = BVe&, and Ve, = quy2(6)€ur1 — Qurt1 (§)€pra + 9L AL,

we rewrite
(8= ) {Gur2(ur = qur1 (6usa | + alk — @) = 0.
Consequently, we get

(B—a)gu1(§) =0, (B —@)qus2(§) =0 and a(k—a)=0.

From constant principal curvatures of Proposition B, that is, 3 — a > 0 and
a < 0, we obtain

qu+1(§) =0, gu42(§) =0 and a =k,
that is, « = k and ¢;(§) =0, 1 =1,2,3.
Case B-II: X € Tp, where T3 = Span{§;|i=1,2,3}.
By setting X =&, i =1,2,3 in (3.3), we have

0= (V§ )5# (§Z)¢§,u - 29<¢£,u7 gz)f + (ﬁufz
+ Z { = (€8s — 20(b06 )60 — (06:)D00, )

+ g(qufu, A&)E — an(&)pAE, — ag(pA&,, &)E + (&) APAE,
— BVe,6u — 9(9A%E, )€ + akn (&) P,
+ AVg gu + ag((bA&, f,u)g k‘ﬁ(ﬁz)A@%u

= (Ve >£u+¢ufz+§j{ ()86 — 20(60 )50 |

- Bv&gu + Avfigﬂ'

Since (V¢ A)§, + AV, = BV, &y, it can be reduced to

¢M§Z+Z{ M&)0un — 29(00, 6)6 | = 0. (3.4)
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Subcase II-1: ¢ = p in (3.4).
¢u§u + Z { Ty gu ¢V£/J (¢V§m gu)fu} =0.
Subcase I1-2: i = p+ 1 in (3.4).

3
Suit + D { = (€108 — 200006 Eur1)E |
v=1

= fu+2 - ¢,u+1§,u - 25u+2
=0.

Subcase II-3: ¢ = p+ 2 in (3.4).

3
¢,u,£p,+2 + Z { - 77V(£p+2)¢1/£u - 29(9251/5;“ §u+2)£u}
v=1

= _fu—i-l - ¢u+2§u + 25;1—1—1
=0.

Summing up the above three subcases, we note that the shape operator A of
M is ®*-invariant on T, 1 in the g-Tanaka—Webster connection.

Case B-II1: X €T, where T, = Span{ ¢;¢| i =1,2,3}.
By putting X = ¢;¢ in (3.3), we have

0= (VueA)Gu = ()96, ~29(060, HOE + 6u6:8
+Z{ MAGi€) D — 29(6u80, 6i€)80 — M(601€) D08, |

+ (AL, Adi€)E — an(9i§) PAL, — ag(dALy, di§)S + n(¢if) APAL,

— Vg€ — 9(9A%$:&, £4)E + akn(d:€)dE,,
+ AV 8 + ag(dAPiE, §,)E — kn(d:i&) AE,..

Since v = 0, (V@gA)fu + Avqﬁiﬁg# = ﬁvqﬁi&g# and v¢i§£ﬂ = qu+2(¢if)§u+l -
Qur1(0i&)Eur2 + ¢ AP;iE, this equation reduces to

B 2(0i) €1 — i (6682 | — 29(66, i€

3
+ oudi& = > m(0i8) b 08 — aBg($Eu, $i£)€ = 0.

v=1

472 Journal of Mathematical Physics, Analysis, Geometry, 2013, vol. 9, No. 4



Generalized Tanaka—Webster Lie invariant Shape Operator

Subcase ITI-1: i = p in (3.5).
Baut2(0u€) €1 — Bur1(Du)ura — 26 + o€ + $26 — aft
= Baut2(dul)€ut1 — Bau+1(9pé)&ur2 — (@B +4)E = 0.
Since # > 0 and af + 4 = 0, we have
Q/L+1(¢u£) =0 and Q/Hr?(qbug) =0, pn=12,3.
Subcase I1I-2: ¢ = p+ 1 in (3.5).
6QM+2(¢M+1§)£M+1 - ﬂQ;H-l (¢u+1§)£u+2 + ¢u¢u+1§ + ¢u+1¢u§
= Bu+2(Dp+18)Eut1 — Baur1(dp+1€)Eus2 = 0,

because of ¢u¢,u+1§ = ¢u+2§ + 77#—&-1(5)5/1 and ¢u+1¢y§ = _¢u+2£ + nu(£)§u+1-
Since 8 > 0, we obtain

Qur1(Pp16) =0 and  gui2(du+16) =0, p=1,2,3.
Subcase II1-3: i = p+ 2 in (3.5).
/BQ;L+2(¢;L+2‘S)§;L+1 - ﬁQu+1(¢u+2§>€p+2 + ¢,u¢u+2§ + ¢u+2¢u§
= ﬁQp+2(¢u+2§)§u+1 - ﬁ%L+1(¢u+2f)£u+2 =0.

Since 8 > 0, we rewrite

Q,LL+1(¢,U«+2£) =0 and QIJ«+2(¢M+2§) = 07 n = 17 27 3.

From the above three subcases, we get ¢;(X) =0, i = 1,2,3 for any tangent
vector field X € 7.

Case B-1IV: X eT).
By putting X € T} in (3.3), we have

0= (VXA)S,u + ¢uX — AVx&, + AVxE,
= ﬂngu + %X - )\ngu

= (B - )‘){qM+2(X)§u+1 - qM-&—l(X)f/H-Q + QbuAX} —+ ¢uX
= (8= Nagu2(X)&ur1 — (B = Ngus1(X)&up2 — (A = BA — 1)¢ X.

Since  — A = 2cot(2r) — cot(r) = —tan(r) = p < 0 with some r € (0, %) and
A2 — B\ — 1 = 0, we obtain

Q/L-‘rl(X) =0 and Q/L+2(X) = 07 w= 172737

that is, ¢;(X) =0, i = 1,2, 3 for any tangent vector field X € T}.

Journal of Mathematical Physics, Analysis, Geometry, 2013, vol. 9, No. 4 473



L Jeong, E. Pak, and Y.J. Suh

Case B-V: X cT,.

By setting X € T}, in (3.3), we get

0= (VXA)é,u + Qb,uX - MVX&L + Angu
= Bngu + Qqu - Hngu
= (8= W ur2(X)&ur1 — (B — 1) g (X)éura — (02 — Bu — 1) X.

Since 3 — p = X = cot(r) > 0 with some r € (0, %) and p* — B —1 = 0, we have

Q/H-I(X) =0 and Q,LH-Z(X) =0, p=1,2,3,

that is, ¢;(X) =0, i = 1,2, 3 for any tangent vector field X € T,.

Hence, summing up all the cases mentioned above, we give a complete proof

of our Main Theorem in Introduction.
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