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Introduction

We consider either on a finite or an infinite interval the operator differential
equation of arbitrary order

lλ[y] = m[f ], t ∈ Ī, I = (a, b) ⊆ R1 (1)

in the space of the vector-functions with values in the separable Hilbert space H,
where

lλ[y] = l[y]− λm[y]− nλ[y], (2)
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Analogs of Generalized Resolvents

l[y],m[y] are symmetric operator differential expressions. The order of lλ[y] is
equal to r > 0. For the expression m[y], the subintegral quadratic form m{y, y}
of its Dirichlet integral m[y, y] =

∫
I m{y, y}dt is nonnegative for t ∈ Ī. The

leading coefficient of the expression m[y] may not have the inverse one from
B(H) for any t ∈ Ī and it may even vanish on some intervals. For the operator
differential expression nλ[y], the form nλ{y, y} depends on λ in the Nevanlinna
manner for t ∈ Ī. Therefore the order s ≥ 0 of m[y] is even and ≤ r.

In the Hilbert space L2
m(I) with metrics generated by the form m[y, y], for

equation (1)-(2) we construct the analogs R(λ) of the generalized resolvents which
in general are non-injective and which possess the following representation:

R(λ) =
∫

R1

dEµ

µ− λ
, (3)

where Eµ is a generalized spectral family for which E∞ is less or equal to the
identity operator. (Abstract operators possessing this representation were studied
in [16].)

The construction is based on a special reduction of the equation

l[y] = m[f ] (4)

to the first order system with weight. Here l and m are the operator differential
expressions which are not necessarily symmetric (in contrast to (2)). For the
construction of R(λ) we also introduce the characteristic operator of the equation

lλ[y] = −(=lλ)[f ]
=λ

, t ∈ Ī, (5)

where (=lλ)[f ] = 1
2i(l[f ]− l∗[f ]).

In the case r = 1, nλ[y] = Hλ(t)y (here the mentioned reduction is not
needed), the resolvents R(λ) were constructed in [21].

Further we consider the boundary value problem obtained by adding to equa-
tion (1)–(2) the dissipative boundary conditions depending on a spectral pa-
rameter. We prove that for some boundary conditions, the solutions of these
problems are generated by the operators R(λ) if, in contrast to the case s = 0,
nλ[y] = Hλ(t)y, the boundary conditions contain the derivatives of the vector-
function f(t) that are taken at the ends of the interval.

In the case nλ[y] ≡ 0, the results listed above are known [24], and R(λ) is the
generalized resolvent of the minimal relation generated by the pair of expressions
l[y] and m[y]. For this case, we show that in the regular case the set of all
generalized resolvents coincide with the set of all operators R(λ), and thereby by
virtue of Theorem 3.2 their full description is given with the help of the boundary
conditions. A review of other results for the case nλ[y] ≡ 0 is contained in [23].

Journal of Mathematical Physics, Analysis, Geometry, 2013, vol. 9, No. 4 497



V. Khrabustovskyi

In [9] and [10], the conditions for holomorphy and continuous reversibility
of the restrictions of maximal relations generated by lλ[y] (2) with m[y] ≡ 0,
nλ[y] = Hλ(t)y in L2

=Hλ0
(t)/=λ0

(=λ0 6= 0) and also by the integral equation with
the Nevanlinna matrix measure were studied (using some of the results from
[22]). We remark that the relations inverse to those considered in [9, 10] do not
possess representation (3). Also we note that the resolvent equation (1)–(2) is
not reduced to the equations considered in [9, 10].

Many questions concerning differential operators and relations in the space
of vector-functions are considered in the monographs [2, 4, 5, 18, 27, 28, 34,
35] containing an extensive literature review. The method of studying these
operators and relations, based on the use of the abstract Weyl function and its
generalization (Weyl family), was proposed in [12–14].

A preliminary version of the results obtained in this paper is contained in
preprint [25]. The expansion formulae for homogeneous equation (1) will be
obtained in our next paper.

We denote by ( . ) and ‖ · ‖ the scalar product and the norm in various spaces
with special indices if it is necessary. For the differential operation l, we denote
<l = 1

2(l + l∗), =l = 1
2i(l − l∗).

Let an interval ∆ ⊆ R1, f (t) (t ∈ ∆) be a function with values in some Ba-
nach space B. The notation f (t) ∈ Ck (∆, B) , k = 0, 1, . . . (we omit the index
k if k = 0) means that at any point of ∆, f (t) has continuous in the norm ‖ · ‖B

derivatives of order up to and including l that are taken in the norm ‖ · ‖B; if
∆ is either semi-open or closed interval, then on its ends belonging to ∆ there
exist one-sided continuous derivatives. The notation f (t) ∈ Ck

0 (∆, B) means
that f (t) ∈ Ck (∆, B) and f (t) = 0 in the neighbourhoods of the ends of ∆.

1. The Reduction of Equation (4) to the First Order System
of Canonical Type with Weight. The Green Formula

In the separable Hilbert space H we consider Eq. (4), where l [y] and m [f ]
are differential expressions (that are not necessarily symmetric) with sufficiently
smooth coefficients from B (H) and of orders r > 0 and s, respectively. Here
r ≥ s ≥ 0, s is even and these expressions are presented in the divergent form.
Namely,

l [y] =
r∑

k=0

iklk [y] , (6)

where l2j = Djpj (t) Dj , l2j−1 = 1
2Dj−1 {Dqj (t) + sj (t) D}Dj−1, pj (t), qj (t),

sj (t) ∈ Cj
(Ī, B (H)

)
, D = d/dt; m [f ] is defined in a similar way with s instead

of r, and p̃j (t) , q̃j (t) , s̃j (t) ∈ B (H) instead of pj (t) , qj (t) , sj (t).
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In the case of even r = 2n ≥ s, p−1
n ∈ B (H), we denote

Q (t, l) =
(

0 iIn

−iIn 0

)
= J/i, S (t, l) = Q (t, l) , (7)

H (t, l) = ‖hαβ‖2
α, β=1 , hαβ ∈ B (Hn) , (8)

where In is the identity operator in Hn; h11 is a three-diagonal operator ma-
trix whose elements under the main diagonal are equal to

(
i
2q1, . . . , i

2qn−1

)
,

the elements over the main diagonal are equal to
(− i

2s1, . . . , − i
2sn−1

)
, the ele-

ments on the main diagonal are equal to
(−p0, . . . , −pn−2,

1
4snp−1

n qn − pn−1

)
;

h12 is an operator matrix with the identity operators I1 under the main di-
agonal, the elements on the main diagonal are equal to

(
0, . . . , 0, − i

2snp−1
n

)
,

all the rest elements are equal to zero; h21 is an operator matrix with iden-
tity operators I1 over the main diagonal, the elements on the main diagonal
are equal to

(
0, . . . , 0, i

2p−1
n qn

)
, all the rest elements are equal to zero; h22 =

diag
(
0, . . . , 0, p−1

n

)
.

In this case, we also denote∗

W (t, l, m) = C∗−1 (t, l)
{
‖mαβ‖2

α, β=1

}
C−1 (t, l) ,mαβ ∈ B (Hn) , (9)

where m11 is a three-diagonal operator matrix whose elements under the main
diagonal are equal to

(− i
2 q̃1, . . . , − i

2 q̃n−1

)
, the elements over the main diagonal

are equal to
(

i
2 s̃1, . . . , i

2 s̃n−1

)
, the elements on the main diagonal are equal to

(p̃0, . . . , p̃n−1); m12 = diag
(
0, . . . , 0, i

2 s̃n

)
, m21 = diag

(
0, . . . , 0, − i

2 q̃n

)
, m22 =

diag (0, . . . , 0, p̃n).
The operator matrix C (t, l) is defined by the condition

C (t, l) col
{

f (t) , f ′ (t) , . . . , f (n−1) (t) , f (2n−1) (t) , . . . , f (n) (t)
}

= col
{

f [0] (t|l) , f [1] (t|l) , . . . , f [n−1] (t|l) , f [2n−1] (t |l ) , . . . , f [n] (t |l )
}

, (10)

where f [k] (t |L) are quasi-derivatives of the vector-function f (t) that correspond
to the differential expression L.

The quasi-derivatives corresponding to l are equal (cf. [33]) to

y[j] (t |l ) = y(j) (t) , j = 0, . . . ,
[r

2

]
− 1, (11)

∗ W (t, l, m) is given for the case s = 2n . If s < 2n, one has to set the corresponding
elements of the operator matrices mαβ to be equal to zero. In particular, if s < 2n, then
m12 = m21 = m22 = 0, and therefore W (t, l, m) = diag (m11, 0) in view of (14).
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y[n] (t |l ) =
{

pny(n) − i
2qny(n−1), r = 2n

− i
2qn+1y

(n), r = 2n + 1
, (12)

y[r−j] (t |l ) = −Dy[r−j−1] (t |l ) + pjy
(j) +

i

2

[
sj+1y

(j+1) − qjy
(j−1)

]
, (13)

j = 0, . . . ,

[
r − 1

2

]
, q0 ≡ 0.

Then, l [y] = y[r] (t |l ). The quasi-derivatives y[k] (t |m) corresponding to m are
defined in the same way with even s instead of r, and p̃j , q̃j , s̃j instead of pj , qj , sj .

It is easy to see that

C (t, l) =
(

In 0
C21 C22

)
, Cαβ ∈ B (Hn) , (14)

where C21, C22 are the upper triangular operator matrices with diagonal elements(− i
2q1, . . . , − i

2qn

)
and

(
(−1)n−1 pn, (−1)n−2 pn, . . . , pn

)
, respectively.

In the case of odd r = 2n + 1 > s, we denote

Q (t, l) =

{
J/i⊕ qn+1,

q1,
S (t, l) =

{
J/i⊕ sn+1, n > 0,

s1, n = 0,
(15)

H (t, l) =

{
‖hα β‖2

α, β=1 , n > 0,

p0, n = 0,
(16)

where B (Hn) 3 h11 is a three-diagonal operator matrix whose elements under
the main diagonal are equal to

(
i
2q1, . . . , i

2qn−1

)
, the elements over the main

diagonal are equal to
(− i

2s1, . . . , − i
2sn−1

)
, the elements on the main diagonal

are equal to (−p0, . . . , −pn−1), all the rest of the elements are equal to zero.
B

(Hn+1, Hn
) 3 h12 is an operator matrix whose elements with numbers j, j−1

are equal to I1, j = 2, . . . , n, the element with number n, n + 1 is equal to 1
2sn,

all the rest of the elements are equal to zero. B
(Hn, Hn+1

) 3 h21 is an operator
matrix whose elements with numbers j − 1, j are equal to I1, j = 2, . . . , n,
the element with number n + 1, n is equal to 1

2qn, all the rest elements are
equal to zero. B

(Hn+1
) 3 h22 is an operator matrix whose last row is equal

to (0, . . . , 0, −iI1, −pn), last column is equal to col (0, . . . , 0, iI1, −pn), all the
rest elements are equal to zero.

In this case, we also denote∗

W (t, l, m) = ‖mαβ‖2
α, β=1 , (17)

where m11 is defined in the same way as m11 (9). B
(Hn+1, Hn

) 3 m12 is an
operator matrix whose elements with number n, n + 1 are equal to −1

2 s̃n, all

∗ See the previous footnote
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the rest elements are equal to zero. B
(Hn, Hn+1

) 3 m21 is an operator matrix
whose elements with number n+1, n are equal to −1

2 q̃n, all the rest elements are
equal to zero. B

(Hn+1
) 3 m22 = diag (0, . . . , 0, p̃n).

Obviously, for H (t, l) (8), (16) and W (t, l,m) (9), (17) one has

H∗ (t, l) = H (t, l∗) , W ∗ (t, l, m) = W (t, l, m∗) . (18)

Lemma 1.1. Let the order of =l be even. Then

=H (t, l) = W (t, l, −=l) = W (t, l∗, −=l) . (19)

P r o o f. Let us prove the first equality in (19) for even r = 2n. Let us
represent H (t, l) (8) in the form

H (t, l) = A (t, l) + B (t, l) , (20)

where A(t, l) = H(t, l)−B(t, l) and

B (t, l) = ‖Bjk‖2
j, k=1 , Bjk ∈ B (Hn) , (21)

B11 = diag
(
0, . . . , 0, snp−1

n qn/4
)
, B12 = diag

(
0, . . . , 0, −isnp−1

n /2
)
, (22)

B21 = diag
(
0, . . . , 0, ip−1

n qn/2
)
, B22 = diag

(
0, . . . , 0, p−1

n

)
. (23)

In view of (14), (21)–(23), one has

B (t, l) C (t, l) = ‖ujk‖2n
j, k=1 , ujk ∈ B (H) , (24)

un2n = −isn/2, u2n 2n = I1, the rest ujk = 0.
Hence

C∗ (t, l) B (t, l) C (t, l) = ‖vjk‖2n
j,k=1 , vjk ∈ B (H) ,

vn 2n = − i
2 (sn − q∗n), v2n 2n = p∗n, rest vjk = 0.

Thus, C∗ (t, l)=H (t, l) C (t, l) = C∗ (t, l) W (t, l,−=l)C (t, l) in view of (8),
(9), (10), (20) and the divergent form of the expression −=l that follows from
(6). The first equality in (19) for even r is proved. Its proof for odd r follows
from (16), (17).

From the proof one can see that

W (t, l,=l) = −=H (t, l) . (25)

The second equality in (19) is a corollary of (25) and (18). Lemma 1.1 is
proved.
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For the sufficiently smooth vector-function f (t) we will denote (if f(t) has a
subscript, then the same subscript should be added to F )

Hr 3 F (t, l, m)

=





(
s/2∑
j=0

⊕f (j) (t)

)
⊕ 0⊕ . . .⊕ 0, r = 2n, r = 2n + 1 > 1, s < 2n,

(
n−1∑
j=0

⊕f (j) (t)

)
⊕ 0⊕ . . .⊕ 0⊕ (−if (n) (t)

)
, r = 2n + 1 > 1, s = 2n,

f (t) , r = 1,(
n−1∑
j=0

⊕f (j) (t)

)
⊕

(
n∑

j=1
⊕f [r−j] (t |l )

)
, r = s = 2n.

(26)

Similar notation (with corresponding capital letter) we will also use for vector-
functions which are denoted by another letter and for another differential opera-
tions instead of l, m. For example for vector-function y1(t) ∈ H and differential
operations l2, m2 we denote by Y1(t, l2,m2) vector-function (26) with y1(t), l2,
m2, r2, s2 instead of f(t), l, m, r, s respectively, where r2 and s2 are the orders
of l2 and m2 (r2 ≥ even s2).

From now on in Eq. (4)

p−1
n (t) ∈ B (H) (r = 2n) ; (qn+1 (t) + sn+1 (t))−1 ∈ B (H) (r = 2n + 1) .

Theorem 1.1. Equation (4) is equivalent to the first-order system

i

2

(
(Q (t) ~y)

′
+ S (t) ~y ′

)
+ H (t) ~y = W (t) F (t) (27)

with the coefficients Q (t) = Q (t, l), S(t) = S(t, l) (7), (15), H(t) = H(t, l) (8),
(16), weight W (t) = W (t, l∗, m), and with F (t) = F (t, l∗,m) that are obtained
from (9), (17) and (26), respectively, with l∗ instead of l. Namely, if y (t) is a
solution of equation (4), then

~y (t) = ~y (t, l, m, f)

=





(
n−1∑
j=0

⊕y(j) (t)

)
⊕

(
n∑

j=1
⊕ (

y[r−j] (t |l )− f [s−j] (t |m)
)
)

, r = 2n,

(
n−1∑
j=0

⊕y(j) (t)

)
⊕

(
n∑

j=1
⊕ (

y[r−j] (t |l )− f [s−j] (t |m)
)
)

⊕ (−iy(n) (t)
)
, r = 2n + 1 > 1,

(here f [k] (t |m) ≡ 0 as k < s
2)

y (t) , r = 1,

(28)
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is a solution of (27) with the coefficients, weight and F (t) mentioned above. Any
solution of Eq. (27) with these coefficients, weight and F (t) is equal to (28),
where y (t) is some solution of Eq. (4).

Let us notice that different vector-functions f(t) can generate different right-
hand sides of Eq. (27), but only the unique right-hand side of Eq. (4).

Below we will use notation similar to to (28) for another vector-functions
instead of y(t), f(t) and another differential operations instead of l, m. For
example for vector-functions y1(t), g(t) ∈ H and differential operations l2, m2

we denote by ~y1 (t, l2, m2, g) vector-function (28) with y1(t), g(t), l2, m2, r2, s2

instead of y(t), f(t), l, m, r, s respectively, where r2 and s2 are the orders of l2
and m2 (r2 ≥ even s2).

P r o o f. We need the following three lemmas.

Lemma 1.2. Let Lα[y] be a differential expression of l[y] (6) type and of order
α. Let us add to Lα[y] the expressions of iklk[y] type, where k = α + 1, . . . , β,
with the coefficients equal to zero. We obtain the expressions Lβ[y] which formally
have order β, but in fact, Lβ and Lα coincide. Then, for sufficiently smooth
vector-function f (t),

f [β−j] (t |Lβ ) =

{
f [α−j] (t |Lα ) , j = 0, . . . ,

[
a+1
2

]
,

0, j =
[

a+1
2

]
+ 1, . . . ,

[
β
2

]
,

(here f [0](t|L1) is defined by (12) with r = 1).

P r o o f. The proof of Lemma 1.2 follows from formulae (12)–(13) for
quasi-derivatives.

Lemma 1.3. Let f (t) ∈ Cs ([α, β] ,H) , y (t) be a solution of the correspond-
ing Eq. (4). Then the sequence fk (t) ∈ C∞ ([α, β] , H) and the solutions yk (t)
of equation (4) with f (t) = fk (t) exist such that

fk (t)
Cs([α,β],H)−→ f (t) , yk (t)

Cr([α,β],H)−→ y (t) .

This is a trivial consequence of the Weierstrass theorem for vector-functions
[36] and formula (1.21) from [11].
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Lemma 1.4. Let the vector-function f (t) ∈ Cs
(Ī, H)

. Then

W (t, l∗, m) F (t, l∗,m)

=





(
s/2−1∑
j=0

⊕
(
f [s−j] (t |m) +

(
f [s−j−1] (t |m)

)′)
)

⊕f [s/2] (t |m)⊕ 0⊕ . . .⊕ 0, r = 2n + 1, r = 2n, 0 < s < 2n,(
s/2−1∑
j=0

⊕
(
f [s−j] (t |m) +

(
f [s−j−1] (t |m)

)′)
)

⊕0⊕ . . . +⊕0⊕ (−if [n] (t |m)
)
, r = 2n + 1, s = 2n > 0,

p̃0 (t) f (t)⊕ 0⊕ . . .⊕ 0, s = 0,[ (
s/2−1∑
j=0

⊕
(
f [s−j] (t |m) +

(
f [s−j−1] (t |m)

)′)
)

⊕0⊕ . . .⊕ 0
]

+ H (t, l)
(
0⊕ . . .⊕ 0⊕ f [n] (t |m)

)
, r = s = 2n.

(29)

Notice that W (t, l∗,m)F (t, l∗,m) does not change if the null-components in
F (t, l∗,m) are changed by any H-valued vector-functions.

P r o o f. Let us prove Lemma 1.4 for r = s = 2n. It is sufficient to verify
that

(
‖mαβ (t)‖2

α,β=1

)
col

{
f (t) , f ′ (t) , . . . , f (n−1) (t) , f (2n−1) (t) , . . . f (n) (t)

}

= C∗ (t, l∗)











n−1∑

j=0

(
f [r−j] (t |m) +

(
f [r−j−1] (t |m)

)′)

⊕ 0⊕ . . .⊕ 0




+H (t |l )
(
0⊕ 0⊕ . . .⊕ 0⊕ f [n] (t |m)

)}
. (30)

But in view of (9), (12), (13), the left-hand side of equality (30) is equal to



n−1∑

j=0

⊕
(
f [r−j] (t |m)

)
+

(
f [r−j−1] (t |m)

)′

⊕O⊕ . . .⊕O⊕ f [n] (t |m) .

Hence equality (30) is true since C (t, l∗) [. . .] = [. . .] and the last column of
C∗ (t, l∗) H (t, l) is equal to col (0, . . . , 0, I1) in view of (8), (14).

The proof for r = 2n+1, s = 2n is carried out via direct calculation by using
(17), (12), (13).

The proof for s < 2n follows from the case s = 2n considered above, Lemmas
1.2, 1.3 and the fact that the elements ujk ∈ B (H) of the matrix W (t, l∗,m) are
equal to zero if s < 2n and i > s/2 or j > s/2. Lemma 1.4 is proved.
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Let us return to the proof of Theorem 1.1. Let y (t) be a solution of Eq. (4).
Then

i

2

{
(Q (t, l) ~y (t, l, m, 0))

′
+ S (t, l) ~y ′ (t, l, m, 0)

}
−H (t, l) ~y (t, l, m, 0)

= diag
(
y[r] (t |l ) , 0, . . . , 0

)
(31)

in view of formulae that are analogues to formulae (4.10), (4.11), (4.24), (4.25)
from [26]. Using (31) and Lemma 1.4, via direct calculation we can show that
~y (t, l,m, f) (28) is a solution of (27) for r = s = 2n, r = 2n + 1, s = 2n.
Therefore, in view of Lemmas 1.2, 1.3 , ~y (t, l, m, f) is a solution of (27) for
s < 2n.

Conversely, let ~̃y (t) = col (y1, . . . , yr) be a solution of (27). Let y (t) be a solu-
tion of the Cauchy problem obtained by adding the initial condition ~y (0, l, m, f) =
~̃y (0) to Eq. (4). Then ~̃y (t) = ~y (t, l,m, f) in view of the existence and uniqueness
theorem. Theorem 1.1 is proved.

Notice that Theorem 1.1 remains valid if the null-components of F (t, l∗,m)
are changed by any H-valued vector-functions.

For the differential expression L[y] =
R∑

k=0

ikLk[y], where L2j = DjPj (t) Dj ,

L2j−1 = 1
2Dj−1 {DQj (t) + Sj (t) D}Dj−1, Pj(t), Qj(t), Sj(t) ∈ Cj(I, B(H)) we

denote by

L [f, g] =
∫

I
L {f, g} dt (32)

the bilinear form which corresponds to its Dirichlet integral. Here

L {f, g} =
[R/2]∑

j=0

(
Pj (t) f (j) (t) , g(j) (t)

)

+
i

2

[R+1
2 ]∑

j=1

(
Sj (t) f (j) (t) , g(j−1) (t)

)
−

(
Qj (t) f (j−1) (t) , g(j) (t)

)
. (33)

Theorem 1.2. (On the relationships between bilinear forms) Let f (t), y (t),
fk (t), yk (t), k = 1, 2, be sufficiently smooth vector-functions. Then:
1.

(W (t, l, m) F1 (t, l, m) , F2 (t, l, m)) = m {f1, f2} . (34)

2. a) If the order of =l is even, then

(W (t, l,−=l) ~y (t, l, m, f) , ~y (t, l, m, f))
−= (W (t, l∗,m∗) ~y (t, l, m, f) , F (t, l∗,m))

= − (=l) {y, y} − = (m∗ {y, f}) ; (35)
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b)

m {y1, f2} −m {f1, y2} = (W (t, l, m) ~y1 (t, l,m, f1) , F2 (t, l, m))
− (W (t, l∗,m) F1 (t, l∗,m) , ~y2 (t, l∗, m∗, f2)) , (36)

although for r = s the corresponding terms in the right- and left-hand sides of
(35) and (36) do not coincide.

P r o o f. Statement 1 follows from (9), (17), (26), (33).
2. Let r = s = 2n. For more convenience, when using notations of (26) type,

we omit the argument m. For example, by F (t, l∗) we denote F (t, l∗, m).
a) We denote

F (t,m) = col
{

0, . . . , 0, f [2n−1] (t |m) , . . . , f [n] (t |m)
}
∈ Hr. (37)

One has

(W (t, l,−=l) ~y (t, l,m, f) , ~y (t, l,m, f)) = (W (t, l,−=l) Y (t, l) , Y (t, l))
− (W (t, l,−=l) Y (t, l) ,F (t,m))− (W (t, l,−=l)F (t,m) , Y (t, l))

+ (W (t, l,−=l)F (t,m) ,F (t, m))− (=l) [y, y]

+ 2<
(
p∗−1

n y[n] (t|=l) , f [n] (t|m)
)

+ =
(
p−1

n f [n] (t|m) , f [n] (t|m)
)

. (38)

Here the last equality follows from (18), (34), (29), (8). On the other hand, we
have

= (W (t, l∗,m∗) ~y (t, l, m, f) , F (t, l∗)) = = (W (t, l∗,m∗) Y (t, l∗) , F (t, l∗))
+ = (W (t, l∗,m∗) ((Y (t, l)− Y (t, l∗))−F (t, m)) , F (t, l∗)) = = (m∗ {y, f})

+ 2<
(
p∗−1

n y[n] (t|=l) , f [n] (t|m)
)

+ =
(
p−1

n f [n] (t|m) , f [n] (t|m)
)

. (39)

We prove the last equality similarly to (38) taking into account that y[n] (t|l) −
y[n] (t|l∗) = 2iy[n] (t|=l). Comparing (38) and (39), we obtain (35).

b) In view of (28), (34), (18) and Lemma 1.4, we have

(W (t, l, m) ~y1 (t, l, m, f1) , F2 (t, l)) = m {y1 (t, l,m, f1) , f2}
−

(
F1 (t,m) ,H (t, l∗) col

{
0, . . . , 0, f

[n]
2 (t |m∗ )

})

= m {y1, f2} −
(
p−1

n f
[n]
1 (t |m) , f

[n]
2 (t |m∗ )

)
, (40)

where F1 (t, m) is defined by (37) with f1(t) instead of f(t). Similarly,

(W (t, l∗,m) F1 (t, l∗) , ~y2 (t, l∗,m∗, f2))

=m {f1, y2} −
(
p−1

n f
[n]
1 (t |m) , f

[n]
2 (t |m∗ )

)
. (41)
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Comparing (40) and (41), we obtain (36).
For r = 2n + 1, s = 2n or r = 2n + 1 ∨ 2n, s < 2n, the corresponding terms

in (35), (36) coincide in view of (9), (17), (26), (28), (34). For example, in these
cases

(W (t, l,−=l) ~y (t, l,m, f) , ~y (t, l, m, f)) = ((W (t, l,−=l))Y (t, l) , Y (t, l))
= − (=l) {y, y} .

Theorem 1.2 is proved.

Notice that Theorem 1.2 remains valid if the null-components in Fk(t, l, m),
F (t, l∗, m), F1(t, l∗, m) are changed by any H-valued vector-functions.

Theorem 1.3. (The Green formula) Let lk[y], mk[y], k = 1, 2, be the differen-
tial expressions of l[y] (6), m[y] types, respectively. The orders of lk are equal to r,
the orders of mk are different in general, even and are equal to sk ≤ r. The coeffi-
cients of lk at the highest derivative has the inverse from B(H) for t ∈ [α, β]. Let
yk (t) ∈ Cr ([α, β] , H), fk (t) ∈ Csk ([α, β] , H), and lk [yk] = mk [fk] , k = 1, 2.
Then

β∫

α

m1 {f1, y2} dt−
β∫

α

m∗
2 {y1, f2} dt−

β∫

α

(l1 − l∗2) {y1, y2} dt

=
(

i

2
(Q (t, l1) + Q∗ (t, l2)) ~y1 (t, l1, m1, f1) , ~y2 (t, l2, m2, f2)

)∣∣∣∣
β

α

, (42)

where Q(t, lk), are defined by (7), (15) with lk instead of l.

P r o o f. We need the following.

Lemma 1.5. For the sufficiently smooth vector-functions g1 (t) , g2 (t) , one
has

((H (t, l1)−H (t, l∗2))~g1 (t, l1, m1, 0) , ~g2 (t, l2, m2, 0))

=

{
− (l1 − l∗2) {g1, g2} , r = 2n,

− (l1 − l∗2) {g1, g2}+
(
l12n+1 − l2

∗
2n+1

) {g1, g2} , r = 2n + 1,
(43)

where lk2n+1 are the analogs of l2n+1 for lk.
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P r o o f. Let r = 2n. Then, in view of (20)–(24), (28), (10), (18), we have

((H (t, l1)−H (t, l∗2))~g1 (t, l1,m1, 0) , ~g2 (t, l2,m2, 0))
= ((A (t, l1)−A (t, l∗2))~g1 (t, l1, m1, 0) , ~g2 (t, l2, m2, 0))

+
(
C∗ (t, l2) B (t, l1) C (t, l1) col

{
g1, g

′
1, . . . , g

(n−1)
1 , g

(2n−1)
1 , . . . , g

(n)
1

}
,

, col
{

g2, g
′
2, . . . , g

(n−1)
2 , g

(2n−1)
2 , . . . , g

(n)
2

})
−

(
col

{
g1, g

′
1, . . . , g

(2n−1)
1 , . . . , g

(n)
1

}
,

, C∗ (t, l1) B (t, l2) C (t, l2) col
{

g2, g
′
2, . . . , g

(n−1)
2 , g

(2n−1)
2 , . . . , g

(n)
2

})

= − (l1 − l∗2) {f, g} .

The proof of (43) for r = 2n + 1 follows directly from (16), (28). Lemma 1.5
is proved.

Now the Green formula (42) can be obtained from the following Green formula
for the Eq. (27) which correspond to the equations lk [y] = mk [f ]:

β∫

α

(W (t, l∗1,m1) F1 (t, l∗1, m1) , ~y2 (t, l2, m2, f2)) dt

−
β∫

α

(W (t, l∗2,m
∗
2) ~y1 (t, l1, m1, f1) , F2 (t, l∗2, m2)) dt

+

β∫

α

((H (t, l1)−H (t, l∗2)) ~y1 (t, l1, m1, f1) , ~y2 (t, l2,m2f2)) dt

−
β∫

α

i

2
{(

(S (t, l1)−Q∗ (t, l2))~y ′1 (t, l1, m1, f1) , ~y2 (t, l2,m2, f2)
)

− (
(Q (t, l1)− S∗ (t, l2)) ~y1 (t, l1, m1, f1) , ~y ′2 (t, l2, m2, f2)

)}
dt

=
(

i

2
(Q (t, l1) + Q∗ (t, l2)) ~y1 (t, l1, m1, f1) , ~y2 (t, l2,m2, f2)

)∣∣∣∣
β

α

. (44)

Let r = sk = 2n. For more convenience, by Fk (t, l∗k) , Yk(t, lk) we denote
Fk (t, l∗k, mk) , Yk(t, lk,mk), respectively. Then, in view of (8), (28), (29), (34),
(43), one has:

(W (t, l∗1, m1) F1 (t, l∗1) , ~y2 (t, l2, m2, f2)) = m1 {f1, y2}
+

(
H (t, l1) col

{
0, . . . , 0, f

[n]
1 (t |m1 )

}
,

, col
{

0, . . . , 0, y
[n]
2 (t |l2 )− y

[n]
2 (t |l∗1 )− f

[n]
2 (t |m2 )

})
; (45)
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(W (t, l∗2, m
∗
2) ~y1 (t, l1, m1, f1) , F2 (t, l∗2)) = m∗

2 {y1, f2}
+

(
H (t, l∗2) col

{
0, . . . , 0, y

[n]
1 (t |l1 )− y

[n]
1 (t |l∗2 )− f

[n]
1 (t |m1 )

}
,

, col
{

0, . . . , 0, f
[n]
2 (t |m2 )

})
; (46)

((H (t, l1)−H (t, l∗2)) ~y1 (t, l1,m1, f1) , ~y2 (t, l2, m2, f2)) = − (l1 − l∗2) {y1, y2}
−((H (t, l1)−H (t, l∗2))Y1 (t, l1) ,F2 (t, m2))−((H (t, l1)−H (t, l∗2))F1 (t,m1) , Y2 (t, l2))

+
(
(H (t, l1)−H (t, l∗2)) col

{
0, . . . , 0, f

[n]
1 (t |m1 )

}
, col

{
0, . . . , 0, f

[n]
2 (t |m2 )

})
,

(47)

where Fk(t,mk) are define by (37) with fk(t) instead of f(t).
Let us denote by pk

j , q
k
j , sk

j the coefficients of lk. In view of (8),

(
H (t, l1) col

{
0, . . . , 0, f

[n]
1 (t |m1 )

}
, col

{
0, . . . , 0, y

[n]
2 (t |l2 )− y

[n]
2 (t |l∗1 )

})

=
(
(p1

n)−1f
[n]
1 (t |m1 ) , y

[n]
2 (t |l2 )− y

[n]
2 (t |l∗1 )

)
, (48)

and
(
col

{
0, . . . , 0, y

[n]
1 (t |l1 )− y

[n]
1 (t |l∗2 )

}
,H (t, l2) col

{
0, . . . , 0, f

[n]
2 (t |m2 )

})

=
(
y

[n]
1 (t |l1 )− y

[n]
1 (t |l∗2 ) , (p2

n)−1f
[n]
2 (t |m2 )

)
. (49)

On the other hand, in view of (8), (12), we have

− ((H (t, l1)−H (t, l∗2))Y1 (t, l1) ,F2 (t,m2))

= −
(((

i(p1
n)−1q1

n

/
2− i(p2∗

n )−1s2∗
n

/
2
)
y

(n−1)
1 +

(
(p1

n)−1 − (p2∗
n )−1

)
y

[n]
1 (t |l1 )

)
,

, f
[n]
2 (t |m2 )

)
=

((
p2∗

n

)−1
(
y

[n]
1 (t |l1 )− y

[n]
1 (t |l∗2 )

)
, f

[n]
2 (t |m2 )

)
, (50)

where the last equality is a corollary of (12) and of its modification

(p1
n)−1y

[n]
1 (t |l1 ) = y

(n)
1 − i

2
(p1

n)−1q1
ny

(n−1)
1 .

Analogously, it can be proved that

((H (t, l1)−H (t, l∗2))F1 (t, m1) , Y2 (t, l2))

=
(
f

[n]
1 (t |m1 ) , (p1∗

n )−1
(
y

[n]
2 (t |l2 )− y

[n]
2 (t |l∗1 )

))
. (51)
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Comparing (44)–(51), we get (42) since the last
∫ β
α in the left-hand side of

(44) is equal to zero if r = 2n in view of (7).
For sk < r = 2n, the proof of (42) easy follows from (26), (28), (34), (43),

(44) in view of the first footnote.
Now let r = 2n + 1. Then the last

∫ β
α in the left-hand side of (44) is equal to∫ β

α

(
l12n+1 − l2∗2n+1

) {y1, y2} dt. Hence the proof of (42) for sk ≤ 2n < r = 2n + 1
follows from (17), (26), (28), (34), (43), (44). Theorem 1.3 is proved.

R e m a r k 1.1. In view of Lemmas 1.2, 1.3 all results of this section are valid
if the condition of eveness of sk is changed by the condition sk ≤ 2

[
r
2

]
.

2. Characteristic Operator

We consider an operator differential equation in the separable Hilbert spaceH1

i

2

(
(Q (t)x (t))

′
+ Q∗ (t) x′ (t)

)
−Hλ (t)x (t) = Wλ (t) F (t) , t ∈ Ī, (52)

where Q (t) , [<Q (t)]−1 , Hλ (t) ∈ B (H1) , Q (t) ∈ C1
(Ī, B (H1)

)
; the operator

function Hλ (t) is continuous in t and is Nevanlinna’s in λ. Namely, the following
condition holds:

(A) The set A ⊇ C\R1 exists, every its points has a neighbourhood indepen-
dent of t ∈ Ī, in this neighbourhood, Hλ (t) is analytic ∀t ∈ Ī; ∀λ ∈ AHλ (t) =
H ∗̄

λ
(t) ∈ C

(Ī, B (H1)
)
; the weight Wλ (t) = =Hλ (t) /=λ ≥ 0 (=λ 6= 0).

In view of [22], ∀µ ∈ A⋂
R1 : Wµ (t) = ∂Hλ (t) /∂λ|λ=µ is a Bochner locally

integrable function in the uniform operator topology.
For the convenience, we suppose that 0 ∈ Ī and denote <Q (0) = G.
Let Xλ (t) be the operator solution of homogeneous equation (52) satisfying

the initial condition Xλ (0) = I, where I is an identity operator in H1. Since
Hλ(t) = H ∗̄

λ
(t), then

X ∗̄
λ(t)[<Q(t)]Xλ(t) = G, λ ∈ A. (53)

For any α, β ∈ Ī, α ≤ β, we denote ∆λ (α, β) =
∫ β
α X∗

λ (t) Wλ (t) Xλ (t) dt,
N = {h ∈ H1 |h ∈ Ker∆λ (α, β) ∀α, β} , P is the ortho-projection onto N⊥. N is
independent of λ ∈ A [22].

For x (t) ∈ H1 or x (t) ∈ B (H1), we denote U [x (t)] = ([<Q (t)]x (t) , x (t))
or U [x (t)] = x∗ (t) [<Q (t)]x (t), respectively.

As in [21, 22], we introduce the following.

Definition 2.1. An analytic operator-function M (λ) = M∗ (
λ̄
) ∈ B (H1) of

non-real λ is called a characteristic operator of Eq. (52) on I if for =λ 6= 0 and
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for any H1 — valued vector-function F (t) ∈ L2
Wλ

(I) with compact support, the
corresponding solution xλ (t) of Eq. (52) of the form

xλ (t, F ) = RλF =
∫

I
Xλ (t)

{
M (λ)− 1

2
sgn (s− t) (iG)−1

}
X ∗̄

λ (s) Wλ (s) F (s) ds

(54)
satisfies the condition

(=λ) lim
(α,β)↑I

(U [xλ (β, F )]− U [xλ (α, F )]) ≤ 0 (=λ 6= 0) . (55)

Notice that in [22] the characteristic operator was defined when Q(t) = Q∗(t).
Our case is equivalent to this one since equation (52) coincides with equation of
(52) type with <Q(t) instead of Q(t) and with Hλ(t)− 1

2=Q′(t) instead of Hλ(t).
The properties of the characteristic operator and sufficient conditions for the

existence of characteristic operators are obtained in [21, 22].
For the case dimH1 < ∞, Q(t) = J = J ∗ = J −1, −∞ < a = 0, the

description of the characteristic operators was obtained in [31] (the results of [31]
were specified and supplemented in [23]). For the case dimH1 = ∞ and I is
finite, the description of the characteristic operators was obtained in [22]. These
descriptions were obtained under the condition that

∃λ0 ∈ A, [α, β] ⊆ I : ∆λ0(α, β) À 0. (56)

Definition 2.2. [21, 22] Let M (λ) be the characteristic operator of equation
(52) on I. We say that the corresponding condition (55) is separated for nonreal
λ = µ0 if for any H1-valued vector function f (t) ∈ L2

Wµ0 (t) (I) with compact
support the following inequalities hold simultaneously for the solution xµ0 (t) (54)
of equation (52):

lim
α↓a

=µ0U [xµ0 (α)] ≥ 0, lim
β↑b

=µ0U [xµ0 (β)] ≤ 0. (57)

Theorem 2.1. [21, 22] Let P = I, M (λ) be the characteristic operator of
equation (52), P(λ) = iM(λ)G + 1

2I, such that we get the representation

M (λ) =
(
P (λ)− 1

2
I

)
(iG)−1 . (58)

Then condition (55) corresponding to M (λ) is separated for λ = µ0 if and
only if the operator P (µ0) is the projection, i.e.,

P (µ0) = P2 (µ0) . (59)
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Definition 2.3. [21, 22] If the operator-function M (λ) of the form (58) is
the characteristic operator of equation (52) on I and, moreover, P (λ) = P2 (λ),
then P (λ) is called a characteristic projection of equation (52) on I.

The properties of the characteristic projections and sufficient conditions for
their existence are obtained in [22]. Also, [22] contains the description of the
characteristic projections and the abstract analogue of Theorem 2.1.

The following statement gives the necessary and sufficient conditions for the
existence of the characteristic operator which corresponds to the separated bound-
ary conditions such that the corresponding boundary condition at a regular point
is self-adjoint. This statement follows from Theorem 2.1.

Let us denote by H+ (H−) the invariant subspace of the operator G which
corresponds to the positive (negative) part of σ(G).

Theorem 2.2. Let −∞ < a. If P = I, then for the existence of the charac-
teristic operator M(λ) of equation (52) on (a, b) such that

∃µ0 ∈ C \ R1 : U [xµ0(a, F )] = U [xµ̄0(a, F )] = 0 (60)

(and therefore condition (55) is separated on λ = µ0, λ = µ̄0) it is necessary that

dimH+ = dimH−. (61)

(In (60) xλ(t, F ) is a solution (54) of (52) which corresponds to the characteristic
operator M(λ), L2

wµ0 (t)(a, b) 3 F = F (t) is any H1-valued vector-function with
compact support).

If condition (56) holds, then condition (61) is also sufficient for the existence
of such characteristic operator.

P r o o f. Necessity. Since P = I, we obtain

U [Xµ0(a)(I − P(µ0))] = U [Xµ̄0(a)(I − P(µ̄0))] = 0 (62)

in view of the proof of n◦2◦ of Theorem 1.1 from [22].
Let, for definiteness, =µ0 > 0. Then, in view of Theorem 2.4 and formula

(1.69) from [22], (59), (62) and the fact that

=λ(X∗
λ(a)[<Q(a)]Xλ(a)−G) ≤ 0, λ ∈ A, (63)

we conclude that Xµ0(a)(I−P(µ0))H1 and Xµ̄0(a)(I−P(µ̄0))H1 are correspond-
ingly maximal <Q(a)-nonnegative and maximal <Q(a)-nonpositive subspaces
which are <Q(a)-neutral and <Q(a)-orthogonal in view of Remark 3.2 from [22],
Theorem 2.1 and (53). Hence

(Xµ0(a)(I − P(µ0))H1)
[⊥] = Xµ̄0(a)(I −P(µ̄0))H1
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in view of [3, p. 73] (here by [⊥] we denote the <Q(a)-orthogonal complement).
Therefore Xµ0(a)(I−P(µ0))H1 is hypermaximal <Q(a)-neutral subspace in view
of [3, p. 43]. Thus, in view of [3, p. 42], we obtain that dimH+(a) = dimH−(a),
where H±(a) are analogs of H± for <Q(a). In view of (63), X−1

µ0
(a)H+(a) and

X−1
µ̄0

(a)H−(a) are correspondingly maximal uniformly G-positive and maximal
uniformly G-negative subspaces. Therefore H1 is equal to the direct and G-
orthogonal sum of these subspaces in view of (53) and [3, p. 75]. Hence we
obtain (61) in view of the law of inertia [3, p. 54].

Sufficiency follows from Theorem 4.4. from [22]. The theorem is proved.

It is obvious that in Theorem 2.2 the point a can be replaced by the point b
if b < ∞, but cannot be replaced by the point b if b = ∞ as the example of the
operator id/dt on the semi-axis shows. Also this example shows that condition
(60) is not necessary for the fulfilment of the condition U [xµ0(a, F )] = 0 only.

In the case of self-adjoint boundary conditions, the analogue of Theorem 2.2
for the regular differential operators in the space of vector-functions was proved
in [32] (see also [34]). For the finite canonical systems depending on spectral
parameter in a linear manner the analogue was proved in [29]. These analogs
were obtained in a different way comparing with Theorem 2.2.

From this point and till the end of Remark 2.1 we suppose that H1 = H2n,
Q(t) = J/i (7), I = (0, b), b ≤ ∞, and condition (56) hold. Let condition (55)
be separated and P(λ) be a corresponding characteristic projection. In view of
[22, p. 469], the Nevanlinna pair {−a (λ) , b (λ)} , a(λ), b(λ) ∈ B (Hn) (see, for
example, [13]) and the Weyl function m (λ) ∈ B (Hn) of equation (52) on I [22]
exist such that

P (λ) =
(

In

m (λ)

) (
b∗

(
λ̄
)− a∗

(
λ̄
)
m (λ)

)−1 (
a∗2

(
λ̄
)
, −a∗1

(
λ̄
))

, (64)

I − P (λ) =
(

a (λ)
b (λ)

)
(b (λ)−m (λ) a (λ))−1 (−m (λ) , In) , (65)

(
b∗

(
λ̄
)− a∗

(
λ̄
)
m (λ)

)−1
, (b (λ)−m (λ) a (λ))−1 ∈ B (Hn) .

Conversely, P (λ) (64) is a characteristic projection for any Nevanlinna pair
(−a (λ) , b (λ)) and any Weyl function m (λ) of equation (52) on I.

Let the domain D ⊆ C+ be such that ∀λ ∈ D : 0 ∈ ρ (a (λ)− ib(λ)) (for
example, D = C+ if ∃λ± ∈ C± such that a∗ (λ±) b (λ±) = b∗ (λ±) a (λ±)). Let
the domain D1 be symmetric to D with respect to the real axis. Then, in view
of [22, p. 166] or Lemma 2.1 (see below), Corrolary 3.1 from [22] and (56), (64),
(65), the operator RλF (54) for λ ∈ D

⋃
D1 can be represented in the following

form with using the operator solution Uλ (t) ∈ B
(Hn, H2n

)
of Eq. (52), (F = 0)

satisfying the accumulative (or dissipative) initial condition and the operator
solution Vλ (t) ∈ B

(Hn, H2n
)

of Weyl type of the same equation.
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R e m a r k 2.1. Let λ ∈ D
⋃

D1 and H1-valid F (t) ∈ L2
Wλ

(I)?. Then
solution (54), (58), (64) of Eq. (52) is equal to

RλF =

t∫

0

Vλ (t) U ∗̄
λ (s) Wλ (s) F (s) ds +

b∫

t

Uλ (t)V ∗̄
λ (s) Wλ (s) F (s) ds,

where the integrals converge strongly if the interval of integration is infinite. Here

Uλ (t) = Xλ (t)
(

a (λ)
b (λ)

)
, Vλ (t) = Xλ (t)

(
b (λ)
−a (λ)

)
K−1 (λ) + Uλ (t) ma,b (λ) ,

(66)
where

K (λ) = a∗
(
λ̄
)
a (λ) + b∗

(
λ̄
)
b (λ) , K−1 (λ) ∈ B (Hn) , (67)

ma,b (λ) = m∗
a,b

(
λ̄
)

= K−1 (λ)
(
a∗

(
λ̄
)

+ b∗
(
λ̄
)
m (λ)

) (
b∗

(
λ̄
)− a∗

(
λ̄
)
m (λ)

)−1
,

(68)

Vλ (t) h ∈ L2
Wλ(t) (I)∀h ∈ Hn. (69)

Moreover, if a (λ) = a
(
λ̄
)
, b (λ) = b

(
λ̄
)

as =λ 6= 0, then we can set D = C+ and
∀[0, β] ⊆ Ī

β∫

0

V ∗
λ (t) Wλ (t) Vλ (t) dt ≤ =ma,b (λ)

=λ
(=λ 6= 0) .

For the construction of the solutions of Weyl type and the description of the
Weyl function in various situations, see [1, 22] and references in [1].

Let us consider the operator differential expression lλ[y] of (6) type with the
coefficients pj = pj (t, λ), qj = qj (t, λ) , sj = sj (t, λ) and of order r. Let −lλ
depend on λ in Nevanlinna manner. Namely, from now on the condition below
holds.

(B) The set B ⊇ C \ R1 exists, every its point has a neighbourhood inde-
pendent of t ∈ Ī, in this neighbourhood, the coefficients pj = pj (t, λ) , qj =
qj (t, λ) , s = sj (t, λ) of the expression lλ are analytic ∀t ∈ Ī; ∀λ ∈ B, pj (t, λ),
qj (t, λ), sj (t, λ) ∈ Cj

(Ī, B (H)
)

and

p−1
n (t, λ) ∈ B (H) , r = 2n,

(qn+1 (t, λ) + sn+1 (t, λ))−1 ∈ B (H) , r = 2n + 1, t ∈ Ī; (70)

these coefficients satisfy the following conditions:

pj (t, λ) = p∗j
(
t, λ̄

)
, qj (t, λ) = s∗j

(
t, λ̄

)
, λ ∈ B (71)

?The norms ‖ · ‖L2
Wλ

(I) are equivalent for λ ∈ A [22].
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(
(71) ⇐⇒ lλ = l∗̄

λ
⇐⇒

in view of (18)
H(t, lλ) = H(t, l∗̄

λ
), λ ∈ B)

. ∀h0, . . . , h[ r+1
2 ] ∈ H :

=

[r/2]∑

j=0
(pj (t, λ) hj , hj) + i

2

[ r+1
2 ]∑

j=1
{(sj (t, λ) hj , hj−1)− (qj (t, λ) hj−1, hj)}




=λ
≤ 0,

t ∈ Ī, =λ 6= 0. (72)

Thus the order of expression =lλ is even and therefore if r = 2n + 1 is odd,
then qm+1, sm+1 are independent of λ and sn+1 = q∗n+1.

Condition (72) is equivalent to the condition (=lλ) {f, f} /=λ ≤ 0, t ∈ Ī,
=λ 6= 0.

Hence =H(t,lλ)
=λ = W

(
t, lλ,−=lλ

=λ

)
≥ 0, t ∈ Ī, =λ 6= 0 due to Lemma 1.1

and Theorem 1.2, and therefore H (t, lλ) satisfies condition (A) with A = B.
Therefore ∀µ ∈ B ∩ R1 W (t, lµ,−=lµ

=µ ) = ∂H(t,lλ)
∂λ

∣∣∣
λ=µ

is Bochner locally in-

tegrable in the uniform operator topology. Here, in view of (8), (16) ∀µ ∈
B⋂

R1 ∃=lµ
=µ

def
= =lµ+i0

=(µ+i0) = ∂lλ
∂λ

∣∣∣
λ=µ

, where the coefficients ∂pj(t,µ)
∂λ , ∂qj(t,µ)

∂λ , ∂sj(t,µ)
∂λ

of the expression ∂lµ/∂µ are Bochner locally integrable in the uniform operator
topology.

In H1 = Hr, let us consider the equation

i

2

(
(Q (t, lλ) ~y (t))

′
+ Q∗ (t, lλ) ~y ′ (t)

)
−H (t, lλ) ~y (t) = W

(
t, lλ,−=lλ

=λ

)
F (t) .

(73)
This equation is an equation of (52) type. Equation (5) is equivalent to Eq. (73)
with F (t) = F

(
t, lλ̄,−=lλ

=λ

)
due to Theorem 1.1 and (19).

Definition 2.4. Every characteristic operator of Eq. (73) corresponding to
Eq. (5) is said to be a characteristic operator of Eq. (5) on I.

Let m[y] be the same as in the n◦1 differential expression of even order s ≤
r with the operator coefficients p̃j (t) = p̃∗j (t) , q̃j (t) , s̃j (t) = q̃∗j (t) that are
independent of λ. Let ∀h0, . . . , h[ r+1

2 ] ∈ H :

0 ≤
s/2∑

j=0

(p̃j (t)hj , hj) + =
s/2∑

j=1

(q̃j (t)hj−1, hj)
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≤ −
=


[r/2]∑

j=0
(pj (t, λ) hj , hj) + i

2

[ r+1
2 ]∑

j=1
((sj (t, λ) hj , hj−1)− (qj (t, λ) hj−1, hj))




=λ
,

t ∈ Ī, =λ 6= 0. (74)

Condition (74) is equivalent to the condition 0 ≤ m {f, f} ≤ −(=lλ) {f, f} /=λ,
t ∈ Ī, =λ 6= 0. Hence

0 ≤ W (t, lλ,m) ≤ W

(
t, lλ,−=lλ

=λ

)
=
=H (t, lλ)

=λ
t ∈ Ī, =λ 6= 0, (75)

due to Theorem 1.2 and Lemma 1.1.
In view of Theorem 1.1, Eq. (1) is equivalent to the equation

i

2

(
(Q (t, lλ) ~y (t))

′
+ Q∗ (t, lλ) ~y ′ (t)

)
−H (t, lλ) ~y (t) = W (t, lλ̄, m) F (t, lλ̄,m) ,

(76)
where Q (t, lλ) , H (t, lλ) are defined by (7), (8), (15), (16) with lλ instead of l,
and W (t, lλ̄, m), F (t, lλ̄,m) are defined by (9), (17) (26) with lλ̄ instead of l, and
~y (t) = ~y (t, lλ,m, f) is defined by (28) with lλ instead of l.

In some cases we will suppose additionally that ∃λ0 ∈ B; α, β ∈ Ī, 0 ∈ [α, β],
the number δ > 0:

−
β∫

α

(=lλ0

=λ0

)
{y (t, λ0) , y (t, λ0)} dt ≥ δ ‖P~y (0, lλ0 ,m, 0)‖2 (77)

for any solution y (t, λ0) of (5) as λ = λ0, f = 0, where P ∈ B(Hr) is the
orthoprojection onto subspace N⊥ which corresponds to Eq. (73). In view of
Theorem 1.2, this condition is equivalent to the fact that for the equation (73)

∃λ0 ∈ A = B; α, β ∈ Ī, 0 ∈ [α, β], the number δ > 0:

(∆λ0 (α, β) g, g) ≥ δ ‖Pg‖2 , g ∈ Hr. (78)

Therefore, in view of [22], the fulfillment of (77) implies its fulfillment with
δ (λ) > 0 instead of δ for all λ ∈ B.

Lemma 2.1. Let M (λ) be a characteristic operator of Eq. (5) for which
condition (77) holds with P = Ir if I is infinite. Let =λ 6= 0, Hr-valued
F (t) ∈ L2

W (t,lλ̄,m) (I) (in particular, one can set F (t) = F (t, lλ̄,m), where
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f (t) ∈ Cs (I,H) ,m [f, f ] < ∞). Then the solution

xλ (t, F ) = RλF

=
∫

I
Xλ (t)

{
M (λ)− 1

2
sgn (s− t) (iG)−1

}
X ∗̄

λ (s)W (s, lλ̄,m) F (s) ds

(79)

of Eq. (76), with F (t) instead of F (t, lλ̄,m), satisfies the following inequality:

‖RλF‖2
L2

W

(
t,lλ,−=lλ=λ

)(I) ≤ = (RλF, F )L2

W(t,lλ̄,m)
(I) /=λ, =λ 6= 0, (80)

where Xλ (t) is the operator solution of homogeneous equation (76) such that
Xλ (0) = Ir, G = RQ (0, lλ); integral (79) converges strongly if I is infinite.

P r o o f. Let us denote

K (t, s, λ) = Xλ (t)
{

M (λ)− 1
2

sgn (s− t) (iG)−1

}
X ∗̄

λ (s) .

If (77) holds with P = Ir when I is infinite, then, in view of (75) and [22,
p.166], there exists a locally bounded on s and on λ constant k (s, λ) such that

∀h ∈ Hr : ‖K (t, s, λ) h‖L2

W(t,lλ̄,m)
(I) ≤ k (s, λ) ‖h‖ . (81)

Hence integral (79) converges strongly if I is infinite.
Let F (t) have a compact support and suppF (t) ⊆ [α, β].
Then, in view of (42),

β∫

α

(
W

(
t, lλ,−=lλ

=λ

)
RλF,RλF

)
dt− = ∫ β

α (W (t, lλ̄,m)RλF, F ) dt

=λ

=
1
2

([<Q (t, lλ)]RλF,RλF )
=λ

∣∣∣∣
β

α

≤ 0, (82)

where the last inequality is a corollary of n◦2 Theorem 1.1. from [22, p. 162] and
the lemma below.

Lemma 2.2. Let Fλ be the set of the Hr-valued functions from L2
W (t,lλ̄,m) (α, β),

Iλ (α, β) F =

β∫

α

X ∗̄
λ (t) W (t, lλ̄,m) F (t) dt, F (t) ∈ Fλ. (83)
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Then

Iλ (α, β) F ∈


Ker

β∫

α

X ∗̄
λ (t) W (t, lλ̄,m)Xλ̄ (t) dt





⊥

⊆ N⊥. (84)

P r o o f. Let h ∈ Ker
∫ β
α X ∗̄

λ
(t) W (t, lλ̄,m) Xλ̄ (t) dt⇒ W (t, lλ̄,m) Xλ̄ (t) h =

0 ⇒ Iλ (α, β) F⊥h. The second enclosure in (84) is a corollary of condition (75).
Lemma 2.2 and inequality (82) are proved.

Thus Lemma 2.1 is proved if I is finite. Let us prove it for the infinite I.
Let the finite intervals (αn, βn) ↑ I, Fn = χnF , where χn is a characteristic
function of (αn, βn). If (α, β) ⊆ (αn, βn), then

‖RλFn‖L2

W

(
t,lλ,−=lλ=λ

) (α, β) ≤
‖F‖L2

W(t,lλ̄,m)
(I)

|=λ|

in view of (82), (75). But local uniformly on t: (RλFn) (t) → (RλF ) (t) in view
of (81). Hence,

‖RλF‖L2

W

(
t,lλ,−=lλ=λ

)(α,β) ≤
‖F‖L2

W(t,lλ̄,m)
(I)

|=λ| (85)

for any finite (α, β). Thus (85) holds with I instead of (α, β). In view of the last
fact, RλFn → RλF in L2

W
(
t,lλ,−=lλ

=λ

) (I). Hence (80) is proved since it is proved

for Fn. Lemma 2.1 is proved.

Let us notice that in view of [22], PM (λ) P is a characteristic operator of Eq.
(5), if M (λ) is its characteristic operator. Obviously the closures of operators
Rλ corresponding to the characteristic operators M (λ) and PM (λ) P are equal

in B

(
L2

W (t,lλ̄,m) (I) , L
W

(
t,lλ,−=lλ

=λ

) (I)
)

.

Let us notice that in view of (74), lλ can be a represented in the form of (2),
where

l = <li, nλ = lλ − l − λm;=nλ {f, f} /=λ ≥ 0, t ∈ Ī, =λ 6= 0. (86)

From now on we will suppose that lλ has representation (2), (86), and there-
fore the order of nλ is even.
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3. Main Results

We consider the pre-Hilbert spaces
◦
H and H of the vector-functions y (t) ∈

Cs
0

(Ī,H)
and y (t) ∈ Cs

(Ī,H)
, m [y (t) , y (t)] < ∞, respectively, with a scalar

product
(f (t) , g (t))m = m [f (t) , g (t)] ,

where m [f, g] is defined by (32) with the expression m[y] from condition (74)
instead of L[y]. Namely,

m [f, g] =
∫

I
m {f, g} dt, (87)

where

m {f, g} =
s/2∑

j=0

(p̃j (t) f (j)(t), g(j)(t))

+
i

2

s/2∑

j=1

(
(q̃∗j (t) f (j)(t), g(j−1)(t))− (q̃j (t) f (j−1)(t), g(j)(t))

)
.

The null elements of H are given by

Proposition 3.1. Let f (t) ∈ H. Then

m [f, f ] = 0 ⇔ m [f ] = f [s] (t) = ... = f [s/2] (t) = 0, t ∈ Ī.

P r o o f. Let us denote by m (t) ∈ B
(Hn+1

)
the operator matrix cor-

responding to the quadratic form in the right-hand side of first inequality (74).
Since m (t) ≥ 0, one has in view of (12), (13)

m [f, f ]=0 ⇔ m (t) col
{

f (t) , . . . , f (s/2), 0, . . . , 0
}

=0 ⇔ f [s] (t)= . . .=f [s/2] =0.

E x a m p l e 3.1. Let dimH = 1, s = 2, p̃1 (t) > 0, |q̃1 (t)|2 = 4p̃1 (t) p̃0 (t).
Then for the expression m[y] the first inequality (74) holds, and m {f0, f0} ≡ 0
for f0 (t) = exp

(
i
2

∫ t
0 q̃1/p̃1dt

)
6= 0 in view of Proposition 3.1.

By
◦

L2
m (I) and L2

m (I) we denote the completions of the spaces
◦
H and H in

the norm ‖ • ‖m =
√

( •, •)m, respectively. By
◦
P , we denote the orthoprojection

in L2
m (I) onto

◦
L2

m (I).
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Theorem 3.1. Let M (λ) be a characteristic operator of Eq. (5) for which
condition (77) with P = Ir holds if I is infinite. Let =λ 6= 0, f (t) ∈ H, and

col {yj (t, λ, f)} =
∫

I
Xλ (t)

{
M (λ)− 1

2
sgn (s− t) (iG)−1

}

×X ∗̄
λ (s)W (s, lλ̄,m) F (s, lλ̄,m) ds, yj ∈ H (88)

be a solution of Eq. (76) which corresponds to Eq. (1), where Xλ (t) is the
operator solution of homogeneons Eq. (76) such that Xλ (0) = Ir; G = <Q (0, lλ)
(if I is infinite, then integral (88) converges strongly). Then the first component
of vector function (88) is a solution of Eq. (1). It defines densely defined in
L2

m (I) integro-differential operator

R (λ) f = y1 (t, λ, f) , f ∈ H, (89)

which has the following properties after closing:
1◦

R∗ (λ) = R
(
λ̄
)
, =λ 6= 0, (90)

2◦

R (λ) is holomorphic on C \ R1, (91)

3◦

‖R (λ) f‖2
L2

m(I) ≤
= (R (λ) f, f)L2

m(I)

=λ
, =λ 6= 0, f ∈ L2

m (I) . (92)

Notice that the definition of the operator R (λ) is correct. Indeed, if f (t) ∈ H,
m [f, f ] = 0, then R (λ) f ≡ 0 since W (t, lλ̄,m) F (t, lλ̄,m) ≡ 0 due to (34), (75).

P r o o f. In view of Lemma 2.1, integral (88) converges strongly if I is
infinite. In view of Theorem 1.1, y1 (t, λ, f) (89) is a solution of Eq. (1).

In view of (74), (35),

‖R (λ) f‖L2
m(α,β) −

= (R (λ) f, f)L2
m(α,β)

=λ
≤ ‖R (λ) f‖L2

−=lλ=λ

(α,β)

−
= (R (λ) f, f)L2

m(α,β)

=λ
= ‖RλF (t, lλ̄, m)‖L2

W

(
t,lλ,−=lλ=λ

)(α,β)

−
= (RλF (t, lλ̄,m) , F (t, , lλ̄,m)L2

W(t,lλ̄,m)
(α,β)

=λ
. (93)
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In view of Lemma 2.1, a nonnegative limit of the right-hand side of (93) exists,
when (α, β) ↑ I. Hence (92) is proved.

Let Hr-valued F (t) ∈ L2
W (t,lλ̄,m)(I). Then, in view of (75), Lemma 2.1, (19),

one has

‖RλF‖2
L2

W(t,lλ,m)
(I) ≤ ‖RλF‖2

L2

W(t,lλ,− =l
=λ)

(I)
≤
= (RλF, F )L2

W(t,lλ̄,m)
(I)

=λ
, (94)

‖RλF‖2
L2

W(t,lλ̄,m)
(I) ≤ ‖RλF‖L2

W

(
t,lλ̄,−=lλ=λ

)(I) = ‖RλF‖L2

W

(
t,lλ,−=lλ=λ

)(I) . (95)

In view of (94), (95), we have

‖RλF‖L2
W(t,lλ,m)

(I) ≤ ‖F‖L2

W(t,lλ̄,m)
(I)

/
|=λ|, (96)

‖RλF‖L2

W(t,lλ̄,m)
(I) ≤ ‖F‖L2

W(t,lλ̄,m)
(I)

/
|=λ|. (97)

Let F (t) ∈ L2
W (t,lλ̄,m) (I), G (t) ∈ L2

W (t,lλ,m) (I) be the Hr-valued functions
with a compact support. We have

(RλF, G)L2
W(t,lλ,m)

(I) = (F,Rλ̄, G)L2

W(t,lλ̄,m)
(I) (98)

since M (λ) = M∗ (
λ̄
)
. Due to inequalities (96), (97), equality (98) is valid for

F (t) , G (t) with a non-compact support.
Now it follows from (36), (98) that ∀f (t) , g (t) ∈ H,

m [R (λ) f, g]−m
[
f,R

(
λ̄
)
g
]

= (RλF (t, lλ̄,m) , G (t, lλ,m))L2
W(t,lλ,m)

(I)

− (F (t, lλ̄,m) ,Rλ̄G (t, lλ,m))L2

W(t,lλ̄,m)
(I) = 0.

Thus the closure of the operator R (λ) f in L2
m (I) possesses property (90).

Since in view of (92) for any f (t) , g (t) ∈ H,

(R (λ) f, g)L2
m(α,β) → (R (λ) f, g)L2

m(I) as (α, β) ↑ I

uniformly in λ from any compact set from C\R1, we can see that, in view of the an-
alyticity of the operator function M (λ) and vector-function W (t, lλ̄,m) F (t, lλ̄)
(see (29) with l = lλ), the operator R (λ) depends analytically on the non-real λ
in view of [19, p. 195]. Theorem 3.1 is proved.
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For r = 1, nλ[y] = Hλ(t)y, Theorem 3.1 is known [21].

Notice that if L2
m(I) =

◦
L2

m(I), then Theorem 3.1 is valid with f(t) ∈
◦
H

instead of f(t) ∈ H and without condition (77) with P = Ir for infinite I.
The following theorem establishes a relationship between the resolvents R(λ)

given by Theorem 3.1 and the boundary value problems for Eq. (1), (2) with
the boundary conditions depending on the spectral parameter. Similarly to the
case nλ [y] ≡ 0 [24], the pair {y, f} satisfies the boundary conditions that contain
both y and f derivatives of the corresponding orders at the ends of the interval.

Theorem 3.2. Let the interval I = (a, b) be finite and condition (77) with
P = Ir hold.

Let the operator-functions Mλ,Nλ ∈ B (Hr) depend analytically on the non-
real λ,

M∗̄
λ [<Q (a, lλ)]Mλ = N ∗̄

λ [<Q (b, lλ)]Nλ (=λ 6= 0) , (99)

where Q (t, lλ) is the coefficient of Eq. (76) corresponding by Theorem 1.1 to Eq.
(1),

‖Mλh‖+ ‖Nλh‖ > 0 (0 6= h ∈ Hr, =λ 6= 0) , (100)

the lineal {Mλh⊕Nλh |h ∈ Hr } ⊂ H2r is a maximal Q-nonnegative subspace if
=λ 6= 0, where Q = (=λ) diag (<Q (a, lλ) , −<Q (b, lλ)) (and therefore

=λ (N ∗
λ [<Q (b, lλ)]Nλ −M∗

λ [<Q (a, lλ)]Mλ) ≤ 0 (=λ 6= 0)) . (101)

Then:
1◦. For any f (t) ∈ H, the boundary problem obtained by adding the boundary

conditions

∃h = h (λ, f) ∈ Hr : ~y (a, lλ,m, f) = Mλh, ~y (b, lλ,m, f) = Nλh (102)

to Eq. (1), where ~y (t, lλ, m, f) is defined by (28) with lλ instead of l, has the
unique solution R (λ) f in Cr(Ī,H) as =λ 6= 0. It is generated by the resolvent
R (λ) constructed, as in Theorem 3.1, by using the characteristic operator

M (λ) = −1
2

(
X−1

λ (a)Mλ + X−1
λ (b)Nλ

) (
X−1

λ (a)Mλ −X−1
λ (b)Nλ

)−1 (iG)−1 ,

(103)
where (

X−1
λ (a)Mλ −X−1

λ (b)Nλ

)−1 ∈ B (Hr) (=λ 6= 0) ,

Xλ(t) is an operator solution of the homogeneous Eq. (76) such that Xλ (0) = Ir.
2◦. For any operator R(λ) from Theorem 3.1, the vector-function R(λ)f

(f ∈ H) is a solution of some boundary problem as in 1◦.
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Notice that if f (t) H= g (t) , then in boundary conditions (102): ~y (t, l, m, f) =
~y (t, l,m, g) in view of (28) and Proposition 3.1.

P r o o f. The proof of Theorem 3.2 follows from Theorems 1.1, 3.1 and from
[22, Remark 1.1].

For the case nλ [y] ≡ 0, Theorem 3.2 is known (see [22], [24]).
The example below shows that the following is possible: for some resolvent

R (λ) from Theorem 3.1 ∃f0 (t)
H
6=0 such that m [f0] = 0 and therefore the ”resol-

vent” Eq. (1) for R (λ) f0 is homogeneous but R (λ) f0

H
6=0, =λ 6= 0.

E x a m p l e 3.2. Let r = 2n, m[f ] in (1) be an expression such that

the equation m [f ] = 0 has a solution f0 (t)
H
6=0. Let in Theorem 3.2: Mλ =(

In 0
0 0

)
, Nλ =

(
0 In

0 0

)
, R (λ) be the corresponding resolvent. Then

R(λ)f0 6= 0,=λ 6= 0, while if Mλ =
(

0 0
In 0

)
, Nλ =

(
0 0
0 In

)
, then for

the corresponding resolvent R (λ) f0
H=0, =λ 6= 0 (and therefore in view of [16, p.

87], E∞f0 = 0 for the generalized spectral family Eµ which corresponds to R(λ)
by (3)).

It is known [16, p. 86] that the operator-function R (λ) (90)–(92) can be
represented in the form

R (λ) = (T (λ)− λ)−1 , (104)

where T (λ) is a linear relation such that

=T (λ) ≤ 0 (max) , T
(
λ̄
)

= T ∗ (λ) , λ ∈ C+,

the Cayley transform Cµ (T (λ)) defines a holomorphic function in λ ∈ C+ for
some (and hence for all) µ ∈ C+. The applications of abstract relations of T (λ)
type (Nevanlinna families) to the theories of boundary relations and of generalized
resolvents are proposed in [12, 13].

The description of T (λ) corresponding to R (λ) from Theorem 3.1 in the
regular case gives

Corollary 3.1. Let I be finite and condition (77) with P = Ir hold. Let us
consider the relation T (λ) = T ′ (λ) as =λ 6= 0, where

T ′ (λ) =
{ {

ỹ (t) , f̃ (t)
}∣∣∣ ỹ (t)

L2
m(I)
= y (t) ∈ Cr

(Ī)
, f̃ (t)

L2
m(I)
= f (t) ∈ H,
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(l − nλ) [y] = m [f ] , ~y (t, l − nλ,m, f) satisfy the boundary condition
∃h = h (λ, f) ∈ Hr : ~y (a, l − nλ,m, f) = Mλh, ~y (b, l − nλ,m, f) = Nλh,

where the operators Mλ,Nλ satisfy the conditions of Theorem 3.2,

~y (t, l − nλ,m, f)
def
= ~y (t, lλ,m, f) |m=0 in lλ =




(
n−1∑
j=0

⊕y(j) (t)

)
⊕

n∑
j=1

⊕
(
y[s′−j] (t |l − nλ )− f [s−j] (t |m)

)
, r = 2n,

(
n−1∑
j=0

⊕y(j) (t)

)
⊕

(
n∑

j=1
⊕ (

y[r−j] (t |l − nλ )−f [s−j] (t |m)
)
)

⊕ (−iy(n) (t)
)
, r = 2n + 1 > 1,(

here s′ = order of expression l − nλ,

y[0](t|l − nλ) = − i
2(q1(t, λ) + λq̃1(t))y as s′ = 1,

y[k′] (t |l − nλ ) ≡ 0 as k′ <
[

s′+1
2

]
, f [k] (t |m) ≡ 0 as k < s

2

)

y (t) , r = 1,

}
.

(105)

Then:
1◦. (T (λ)− λ)−1 is equal to the resolvent R(λ) (88), (89) from Theorem 3.1

corresponding to the characteristic operator M (λ) (103).
2◦. Let R (λ) be resolvent (88), (89) from Theorem 3.1. Then R (λ) =

(T (λ)− λ)−1, where T (λ) is some relation as in item 1◦.

P r o o f. The proof follows from (28), Lemma 1.2, Theorem 3.2 and
Remark 1.1 from [22].

Let in (1), (2) nλ [y] ≡ 0 i.e. lλ = l − λm, where l = l∗, m = m∗, and the
coefficients of the expressions m satisfy first inequality (74).

In L2
m (I) , we consider the linear relation

L′0 =
{
{ỹ (t) , g̃ (t)} |ỹ (t)

L2
m(I)
= y (t) , g̃ (t)

L2
m(I)
= g (t) , y (t) ∈ Cr

(Ī,H)
, g (t) ∈ H,

l [y] = m [g] , ~y (t, l, m, g) is equal to zero in the end of I if this end is finite and
~y (t, l, m, g) is equal to zero in the neighbourhood of the end of I if this end

is infinite
}

(106)

where ~y (t, l, m, g) is defined (in contrast to (28)) by (105) with lλ = l − λm,
f = g.∗

∗ Let us notice that the vector-function g (t) in (106) may be non-equal to zero in the finite
end or in the neighbourhood of the infinite end of I.

524 Journal of Mathematical Physics, Analysis, Geometry, 2013, vol. 9, No. 4



Analogs of Generalized Resolvents

Below we will assume that the relation L′0 consists of the pairs of {y, g} type.
The relation L′0 is symmetric due to the following Green formula with λk = 0:
Let yk (t) ∈ Cr ([α, β] ,H), fk (t) ∈ Cs ([α, β] ,H), λk ∈ C, l [yk]− λkm [yk] =

m [fk] , k = 1, 2. Then

β∫

α

m {f1, y2} dt−
β∫

α

m {y1, f2} dt +
(
λ1 − λ̄2

) β∫

α

m {y1, y2} dt

= i ([<Q (t, lλ)]~y1 (t, lλ1 ,m, f1) , ~y2 (t, lλ2 , m, f2))|βα , (107)

where ~yk (t, lλk
,m, fk) for λk ∈ R1 is defined by (105) with lλ = l−λm and yk(t),

fk(t) instead of y(t), f(t).
This formula is a corollary of Theorem 1.3 if =λk 6= 0. For its proof, for

example, for the case λ1 ∈ R1, we need to modify (107) for the equation l [y1]−
(λ1 + iε) m [y] = m [f1 − iεy1] and then to pass to the limit in (107) as ε → +0.

In general, the relation L′0 is not closed. We denote L0 = L̄′0.
Theorem 3.3. Let lλ = l − λm and the conditions of Theorem 3.1 hold.

Then the operator R (λ) from Theorem 3.1 is the generalized resolvent of the
relation L0. Let I be finite and additionally the condition (77) hold. Then every
generalized resolvent of relation L0 can be constructed as the operator R (λ).

Notice that Theorem 3.3 together with Theorem 3.2 give in the regular case
the description of the set of all generalized resolvents of relation L0 with the help
of the boundary conditions.

P r o o f. In view of [16] and taking into account properties (90)–(92) of the
operator R (λ) , it is sufficiently to prove that R (λ) (L0 − λ) ⊆ I, where I is a
graph of the identical operator in L2

m (I). But this proposition is proved similarly
to [22, p. 453] taking into account (107) and the fact that in view of (105), (106)−−−−→
(ỹ − y)(t, l − λm, m, 0) =

−→̃
y (t, l − λm,m, g − λy) − ~y(t, l,m, g) if {y, g} ∈ L′0,

ỹ = R(λ)(g − λy).
Conversely, let I be finite and Rλ be a generalized resolvent of the relation L0.

We denote Nλ = {y (t) ∈ Cr (I,H) | l [y]− λm [y] = 0} as λ ∈ B. We need the
following.

Lemma 3.3. Let condition (77) hold. Then the lineal Nλ is closed in L2
m (I).

P r o o f. The proof of Lemma 3.3 follows from (34).

Lemma 3.4. Let λ ∈ B. Then R
(L′0 − λ̄

)
= N⊥

λ .
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P r o o f. Let x (t) ∈ Nλ, f (t) ∈ H, y (t) be a solution of the following
Cauchy problem:

l [y]− λ̄m [y] = m [f ] , ~y (a, lλ̄,m, f) = 0. (108)

Then
m [f, x] = i (<Q (b, lλ) ~y (b, lλ̄,m, f) , ~x (b, lλ, m, 0)) (109)

in view of Green formula (107). Therefore R
(L′0 − λ̄

) ⊆ N⊥
λ .

Let g (t) ∈ N⊥
λ . Then ∃ H 3 gn

L2
m(I)→ g, gn = xn ⊕ fn, xn ∈ Nλ, fn ∈ N⊥

λ ⇒
fn ∈ H. Let yn be a solution of problem (108) with fn instead of f . In view
of (109) with f = fn, one has ~yn (b, lλ̄,m, fn) = 0 ⇒ fn ∈ R

(L′0 − λ̄
)
. But

fn
L2

m(I)→ g. Therefore R
(L′0 − λ̄

) ⊇ N⊥
λ . Lemma 3.4 is proved.

Lemma 3.5. Let condition (77) hold, λ ∈ B. Let
{

ỹ, f̃
}
∈ L∗0 − λ, f̃

L2
m(I)
=

f ∈ H. Then ỹ
L2

m(I)
= y ∈ Cr

(Ī,H)
, and y (t) satisfies Eq. (1).

P r o o f. Let Cr
(Ī,H) 3 y0 be a solution of (1). Let {ϕ,ψ}∈L′0 − λ̄. Then

~ϕ (a, lλ̄, m, ψ) = ~ϕ (b, lλ̄,m, ψ) = 0 in view of (105), (106). Hence m [ϕ, f ] =
m [ψ, y0] due to Green formula (107). But m [ϕ, f ] = (ψ, ỹ)L2

m(I) in view of
the definition of the adjoint relation. Hence (ψ, ỹ − y0) =

L2
m(I)

0. Therefore ỹ −

y0
L2

m(I)
= y − y0 ∈ Nλ in view of Lemmas 3.3, 3.4. Hence ỹ

L2
m(I)
= y ∈ Cr

(Ī,H)
,

and y is a solution of (1). Lemma 3.5 is proved.

We return to the proof of Theorem 3.3.

Let f ∈ H. Then, in view of Lemma 3.5, Rλf
L2

m(Ī)
= y ∈ Cr

(Ī,H)
, and y

satisfies equation (1). Therefore, taking into account Theorem 1.1, [11, p. 148]
and (53), we have

y (t)=[Xλ (t)]1



h− 1

2
(iG)−1




b∫

a

sqn(s− t)X ∗̄
λ (s)W (s, lλ̄,m) F (s, lλ̄,m) ds





 ,

(110)
where [Xλ (t)]1 ∈ B (Hr,H) is the first row of the operator solution Xλ (t) from
Theorem 3.1 written in the matrix form, h = hλ (f) ∈ N⊥ is defined in the unique
way in view of (34) and condition (77).

Let us prove that h depends on Iλf
def
=

∫ b
a X ∗̄

λ
(s) W (s, lλ̄,m)F (s, lλ̄,m) ds in

the unique way. The operator Iλ : H → N⊥ in view of Lemma 2.2. Moreover,
IλN⊥ = N⊥, i.e., ∀h0 ∈ N⊥∃f0 ∈ H : h0 = Iλf0. For example, we can set

f0 = f0(t, λ) = [Xλ̄ (t)]1 {∆λ̄ (I) |N⊥ }−1 h0 (111)
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and utilize the equality

W (s, lλ̄,m) F0 (s, lλ̄, m) = W (s, lλ̄, m) Xλ̄ (s) {. . .}−1 h0.

If f (t) , g (t) ∈ H are such functions that Iλf = Iλg, then, in view of (110),

=λ
(
(<Q (t, lλ))

−→
∆y (t, lλ,m, f − g) ,

−→
∆y (t, lλ,m, f − g)

)∣∣∣
β

α

= =λ ((<Q (t, lλ))Xλ (t) (hλ (f)− hλ (g)) , Xλ (t) (hλ (f)− hλ (g)))|βα , (112)

where ∆y = Rλ [f − g]. But in view of (107), the left-hand side of (112) is
nonpositive since Rλ has a property of (92) type. The right-hand side of (112)
is nonnegative in view of (42). Hence hλ (f) = hλ (g) in view of (42), (77). Thus
h depends on Iλf in the unique way and obviously in the linear way. Therefore

h = M (λ) Iλf, (113)

where M (λ) : N⊥ → N⊥ is a linear operator, and thus Rλf (f ∈ H) can be
represented in the form (89).

Further, for definiteness, we will consider the most complicated case r = s =
2n.

Let us prove that M (λ) ∈ B
(
N⊥)

, =λ 6= 0. Let h0 ∈ N⊥, y = Rλf0, where
f0 = f0 (t, λ) (111). Then, in view of (110) and Theorem 1.1, we have

Xλ (t) M (λ) h0 = Y (t, lλ,m)−F0 (t,m)− 1
2
Xλ (t) (iG)−1 (Iλ (a, t)− Iλ (t, b))F0,

(114)
where Y (t, lλ, m) , F0 = F0 (t, lλ̄,m) are defined by (26), with y and f0 instead
of f , while F0 (t,m) is defined by (37) with f0 instead of f and Iλ (0, t) F0 is
defined by (83). Therefore,

∆λ (a, b) M(λ)h0

= Iλ̄y − Iλ̄ (a, b)
(
F0 (t,m) +

1
2
Xλ (t) (iG)−1 (Iλ (a, t)− Iλ (t, b))F0

)
, (115)

where Iλ̄y, Iλ̄ (a, b) (. . .) ∈ N⊥ in view of (84). But

∀g ∈ Hr : |(Iλ̄y, g)| ≤ max
t∈Ī

‖Xλ (t)‖
{∫

I
‖W (t, lλ,m)‖ dt

}1/2

‖Rλf0‖L2
m(I) ‖g‖

in view of the Cauchy inequality and (34). Therefore,

∃ constant c (λ) : |(Iλ̄y, g)| ≤ c (λ) ‖y‖ ‖g‖ (116)

since
‖Rλf0‖L2

m(I) ≤ ‖∆λ̄ (a, b)‖1/2
∥∥∥(∆λ̄ (a, b) |N⊥ )−1

∥∥∥ ‖h0‖ / |=λ|
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in view of (34), (116) and the inequality ‖Rλf0‖L2
m(I) ≤ ‖f0‖L2

m(I)

/
|=λ|.

Obviously, |(Iλ̄ (a, b) (. . .) , g)| satisfies the estimate of type (116). Therefore
M (λ) ∈ B(N⊥).

Now we have to prove that M(λ) is a characteristic operator of Eq. (73).
To prove that M (λ) is strongly continuous for nonreal λ, it is enough to

prove that (a, b) M (λ) is strongly continuous for ∆λ. The strong continuity of
the last one obviously follows from the strong continuity of the vector-function
Iλ̄Rλf0(t, λ).

In view of (34), we have ∀g ∈ Hr

(Iλ̄Rλf0 (t, λ)− IµRµ̄f0 (t, µ) , g)
= m [Rλf0 (t, λ) , [Xλ (t)]1 g]−m

[
Rµf0 (t, µ) , [Xµ (t)]1 g

]
.

Then the required statement can be derived from the equality

m
{
[Xλ (t)−Xµ (t)]1 g, [Xλ (t)−Xµ (t)]1 g

}

=
(
W (t, lλ,m) ((Xλ (t)−Xµ (t)) g + (λ− µ)F(t, m)) ,

(Xλ (t)−Xµ (t)) g + (λ− µ)F(t,m)
)
,

where F(t,m) is defined by (37) with f(t) = [Xµ (t)] 1 g, ‖Xλ (t)−Xµ (t)‖ →
µ→λ

0

uniformly in t ∈ [a, b], and from the analogous equality for m{f0(t, λ)− f0(t, µ),
f0(t, λ)− f0(t, µ)}.

Let us prove that M (λ) is analytic for non real λ. To prove this fact, it
is enough, in view of the strong continuity of M(λ), to prove the analyticity of
(IλµM (λ) Iλf, g) in λ, where f (t) ∈ Cr

(Ī,H)
, g ∈ Hr, (=λ)(=µ) > 0,

Iλµ =

b∫

a

X∗
µ (t) W (t, lµ, m) Xλ (t) dt ∈ B

(
N⊥

)
,

I−1
λµ ∈ B

(
N⊥)

if |λ− µ| is sufficiently small. In view of (115), (89), Theorem 1.1,
(34), (29), (8), we have

(IλµM (λ) Iλf, g)=m
[
Rλf, [Xµ (t)] 1 g

]
+(λ− µ)

b∫

a

(
(Rλf)[n] (t |m) , g(n) (t)

)
dt

+ terms independent of Rλf and analytic in λ, (117)

where g(n) (t)
def
= (pn − µ̄p̃n)−1 (

[Xµ] 1 g
)[n] (t |m).
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For the scalar or vector function F (λ) , let us denote

∆kmF (λ) =
F (λ + ∆kλ)− F (λ)

∆kλ
− F (λ + ∆mλ)− F (λ)

∆mλ
.

Let us also denote

Rn (λ) =

b∫

a

(
p̃n (Rλf)[n] (t|m), g(n)

)
dt.

In view of (12), (74), we have

|∆kmRn (λ)| ≤ (m [∆kmRλf, ∆kmRλf ])
1
2




b∫

a

(p̃ng(n), g(n))dt




1/2

. (118)

Therefore Rn (λ) depends analytically on nonreal λ in view of the analyticity
of Rλ, and thus the analyticity of M (λ) is proved in view of (117).

Let us consider the solution xλ (t, F ) = RλF (79) of Eq. (73). Let us prove
that xλ (t, F ) satisfies condition (55). Let us denote y(t) = Rλf . Then, in view
of Green formula (42),

m [y, y]− =m [y, f ]
=λ

=
1
2

([<Q (t, lλ)]~y (t, lλ,m, f) , ~y (t, lλ,m, f))
∣∣∣∣
b

a

/=λ. (119)

But the left-hand side of (119) is ≤ 0 since Rλf is a generalized resolvent.
Consequently,

∀f ∈ H : ([< (Q (t, lλ)]~y (t, lλ,m, f) , ~y (t, lλ, m, f))|ba /=λ ≤ 0. (120)

But in view of (77), (84) for every Hr-valued F (t) ∈ L2
W (t,lλ̄,m)

(Ī)
, there ex-

ists a vector-function f (t) ∈ H such that xλ (a, F ) = ~y (a, lλ,m, f), xλ (b, F ) =
~y (b, lλm, f). Finally, (55) is proved in view of (120).

To prove that M(λ) is a characteristic operator of Eq. (73) it remains to show
that M(λ̄) = M∗(λ).

Let us consider the following operator M̃ (λ) ∈ B
(
N⊥)

:

M̃ (λ) = M (λ) , M̃
(
λ̄
)

= M∗ (λ) , =λ > 0,

which is a characteristic operator of equation (73) in view of [22]. By Theorem
3.1, this characteristic operator generates the operator R (λ) (89).
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But R (λ) = Rλ, =λ > 0 ⇒ R
(
λ̄
)

= R∗ (λ) = R∗
λ = Rλ̄, =λ > 0 ⇒ ∀f ∈ H:

∥∥∥∥∥∥
[Xλ̄ (t)] 1

(
M∗ (λ)−M

(
λ̄
)) b∫

a

X∗
λ (s) W (s, lλ,m) F (s, lλ,m) ds

∥∥∥∥∥∥
m

= 0

⇒ ∀h ∈ N⊥ : ∆λ̄ (a, b)
(
M

(
λ̄
)−M∗ (λ)

)
h = 0 ⇒ M

(
λ̄
)

= M∗ (λ) .

Theorem 3.3 is proved.

Let Ik, k = 1, 2 be finite intervals, I1 ⊂ I2. Then, in spite of the fact that
f (t) ∈ Cs

(Ī2,H
)

but χI1f (t) /∈ Cs
(Ī2,H

)
, where χI1 is the characteristic

function of I1, one has.

Corollary 3.2. Let 0 ∈ I1 and condition (77) with I = I2 hold. Let Rλ

be the generalized resolvent of the relation L0 in L2
m (I) with I = I2. Then, by

Theorems 3.1, 3.3, there exists the characteristic operator M (λ) of Eq. (5) such
that Rλf = y1 (t, λ, f) (88), t ∈ I = I2, f ∈ H (= H (I2)). Let us define the
operator y1

1 (t, λ, f) = R1
λf, t ∈ I = I1, f ∈ H (= H (I1)) by the same formula

(88) as operator Rλf , but with I = I1 instead of I = I2. Then this operator is
(after closing) the generalized resolvent of the relation L0 in L2

m (I) with I = I1.

For the generalized resolvents of differential operators, a representation of (89)
type was obtained in [37] for the scalar case, and in [6] for the case of the operator
coefficients. For the generalized resolvents for (1), (2) with s = 0, nλ[y] ≡ 0, the
representation of this type was obtained in [7, 8, 20].

Therefore the characteristic operator of equation (5) is an analogue of the
characteristic matrix from [37].

The resolvents of the self-adjoint scalar differential operator in [17, p. 528],
[30, p. 280] are represented in another form. Let us transform (89) to the form
analogous to [17, p. 528], [30, p. 280]. (The integrals in (121), (122) converge
strongly if the interval of integration is infinite.)

R e m a r k 3.1. Let us represent the characteristic operator M (λ) from
Theorem 3.1 in the form (58). Then R(λ)f (89) can be represented in the form

R (λ) f =

t∫

a

r∑

j=1

yj (t, λ)
s/2∑

k=0

(
x

(k)
j

(
s, λ̄

))∗
mk [f (s)] ds

+

b∫

t

r∑

j=1

xj (t, λ)
s/2∑

k=0

(
y

(k)
j

(
s, λ̄

))∗
mk [f (s)] ds, (121)

530 Journal of Mathematical Physics, Analysis, Geometry, 2013, vol. 9, No. 4



Analogs of Generalized Resolvents

where xj (t, λ) , yj (t, λ) ∈ B (H) are the operator solutions of equation (1) as f=0
such that (x1 (t, λ) , . . . , xr (t, λ)) is the first row [Xλ (t)]1∈B(Hr,H) of the ope-
rator matrix Xλ (t) , (y1 (t, λ) , . . . , yr (t, λ)) = [Xλ (t)]1 P (λ) (iG)−1, mk [f (s)] =

p̃k (s) f (k) (s) + i
2

(
q̃∗k+1 (s) f (k+1) (s)− q̃k (s) f (k−1) (s)

) (
q̃0 ≡ 0, q̃ s

2
+1 ≡ 0

)
.

P r o o f. In view of Theorem 1.2, one has

∀h ∈ Hr :
(
X ∗̄

λ (t) Wλ̄ (t) Fλ̄ (t) , h
)

= m
{
f (t) , [Xλ̄ (t)]1 h

}

=
((

[Xλ (t)]1
∗, [Xλ (t)]′1

∗
, . . . , [Xλ (t)](s/2)

1

∗)

× col
{
m0[f(t)], m1[f(t)], . . . , ms/2[f(t)]

}
, h

)
.

Now Remark 3.1 follows from (88)–(89) since (P (λ)− Ir) (iG)−1=
(
P (

λ̄
)
(iG)−1

)∗

in view of [22, p. 451].

Remark 3.1 shows that (P (λ)− Ir) (iG)−1 is an analogue of the matrix trans-
posed to the matrix

∥∥∥θ−ij (λ)
∥∥∥ from [17, p. 528] and is an analogue of the char-

acteristic matrix from [30, p. 280], (P (λ) (iG)−1 is an analogue of the matrix
transposed to the matrix

∥∥∥θ+
ij (λ)

∥∥∥ from [17, p. 528]).
If r is even, I = (0, b), b ≤ ∞, and condition (55) is separated, then formula

(89) can be transformed to the form analogues to that from [30, p. 275–279].

R e m a r k 3.2. Let r = 2n, I = (0, b), b ≤ ∞ and condition (78) hold with
P = Ir. (Therefore, for Eq. (73) condition (56) holds.) Let for the characteristic
operator M (λ) of Eq. (5) condition (55) be separated. (Therefore M (λ) has
representation (58), where characteristic projection P (λ) can be represented in
the form (64), (65) with the help of some Nevanlinna pair {−a(λ), b(λ)} and
some Weyl function m(λ) of equation (76); this equation with F (t) = 0 has an
operator solution Uλ (t) , Vλ (t) (66)–(68)). Let the domains D, D1 be the same
as in Remark 2.1. Then R(λ)f (89) for λ ∈ D

⋃
D1 can be represented in the

form

R (λ) f =

t∫

0

n∑

j=1

vj (t, λ)
s/2∑

k=0

(
u

(k)
j

(
s, λ̄

))∗
mk [f (s)] ds

+

b∫

t

n∑

j=1

uj (t, λ)
s/2∑

k=0

(
v

(k)
j

(
s, λ̄

))∗
mk [f (s)] ds, (122)
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where uj (t, λ) , vj (t, λ) ∈ B (H) are the operator solutions of equation (1) as

f = 0 such that (u1 (t, λ) , . . . un (t, λ)) = [Xλ (t)]1

(
a (λ)
b (λ)

)
,

(v1 (t, λ) , . . . , vn (t, λ))

= [Xλ (t)]1

(
b (λ)
−a (λ)

)
K−1 (λ) + (u1 (t, λ) , . . . , un (t, λ))ma,b (λ) , (123)

K (λ) , ma,b (λ) see (67), (68); (v1 (t, λ) , . . . , vn (t, λ))h ∈ L2
m (I) ∀h ∈ Hn.

Moreover, if a (λ) = a
(
λ̄
)
, b (λ) = b

(
λ̄
)

as =λ 6= 0, then we can set D = C+

and

‖(v1 (t, λ) , . . . , vn (t, λ))h‖2
m ≤ = (ma,b (λ) h, h)

=λ
(=λ 6= 0) .

P r o o f. The proof of Remark 3.2 follows from Remark 2.1 and
Theorem 1.2.

Remark 3.2 shows that the operator-function ma,b (λ) from (122), (123) is an
analogue of the characteristic matrix from [30, p. 278] since for any self-adjoint
operator initial condition (in particular, the condition of the type given in [30, p.
277]), the resolvent (122) exists such that the solution-row (u1 (t, λ) , . . . , un (t, λ))
satisfies this condition. For example, if a (λ) = In, b (λ) = b = b∗, then mIn,b (λ)
is equal to the characteristic matrix of [30, p. 276] type minus b(In + b2)−1.

Let us note that the connection between the generalized resolvents of the
minimal operator, corresponding to the self-adjoint extension in the Krein space,
and the boundary value problem with boundary conditions depending on the
spectral parameter locally holomorphic in some set ⊂ C \ R1 was studied in [15]
for the scalar symmetric Sturm–Liouville operator on the semi-axis in the limit
point case.
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