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This paper is a continuation of our papers [12–14] in which the limiting
laws of fluctuations were found for the linear eigenvalue statistics Trϕ(M (n))
and for the normalized matrix elements

√
nϕjj(M (n)) of differentiable func-

tions of real symmetric Wigner matrices M (n) as n →∞. Here we consider
another spectral characteristic of Wigner matrices, ξA

n [ϕ] = Tr ϕ(M (n))A(n),
where {A(n)}∞n=1 is a certain sequence of non-random matrices. We show
first that if M (n) belongs to the Gaussian Orthogonal Ensemble, then ξA

n [ϕ]
satisfies the Central Limit Theorem. Then we consider Wigner matrices
with i.i.d. entries possessing the entire characteristic function and find the
limiting probability law for ξA

n [ϕ], which in general is not Gaussian.
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1. Introduction

The asymptotic behavior of spectral characteristics of n×n random matrices
M (n), as their size n tends to infinity, is of great interest in random matrix theory
and its applications. One of the main questions under study is the validity of
the Central Limit Theorem (CLT) for various spectral characteristics. In the
last two decades there was obtained a number of results on the CLT for linear
eigenvalue statistics Trϕ(M (n)) and other spectral characteristics (see [1, 3, 5,
7–9, 16, 17, 19–22] and references therein). It was found that in many cases the
fluctuations of various spectral characteristics of eigenvalues of random matrix
ensembles are asymptotically Gaussian (see [1, 3, 8, 9, 17, 19, 21, 22] ). But the
CLT is not always the case. For instance, it was shown in [16] that the CLT for
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linear eigenvalue statistics is not necessarily valid for so-called hermitian matrix
models, for which in certain cases there appear non-Gaussian limiting laws.

Another example of the non-Gaussian limiting behavior is presented in works
[14, 18, 19] dealing with the normalized individual matrix elements

√
nϕjj(M (n))

of functions of real symmetric Wigner random matrix. The particular case of the
matrix elements

√
nϕjj(M̂ (n)) with M̂ (n) belonging to the Gaussian Orthogonal

Ensemble (GOE) was considered earlier in [13], where it was proved that the
centered

√
n(ϕjj(M̂ (n))) satisfies the CLT. But in [14, 18, 19] it was shown that in

general case of Wigner matrices the limiting law of fluctuations for
√

n(ϕjj(M (n)))
is not Gaussian but the sum of the Gaussian law and probability law of the entries
of
√

nM (n) modulo a certain rescaling, and to obtain the CLT, one has to impose
a certain condition on the test function.

In particular, the fact that, in contrast to the linear statistics of eigenvalues,
individual matrix elements in general do not satisfy the CLT shows the influ-
ence of eigenvectors and gives some information about asymptotic properties of
eigenvectors. Indeed, in the case of the Gaussian random matrices (GOE, null
Wishart) the eigenvectors are rotationally invariant and according to recent works
[2, 6, 10] the eigenvectors of the non-Gaussian random matrices (Wigner, sam-
ple covariance) are similar in several aspects to the eigenvectors of the Gaussian
random matrices. On the other hand, the results of [13] and [14, 18, 19] imply
that there are asymptotic properties of eigenvectors of the non-Gaussian random
matrices which are different from those for the Gaussian random matrices.

This paper continues the investigations of [12–14]. Here we consider the ran-
dom variable

ξA
n [ϕ] = Trϕ(M (n))A(n), (1.1)

where ϕ is a smooth enough test function and {A(n)}∞n=1 is a sequence of n × n
non-random matrix satisfying

(i) lim
n→∞n−1TrA(n)T A(n) = 1, (1.2)

(ii) ∃ lim
n→∞n−1TrA(n) = TA. (1.3)

Here are some examples of choices of A(n):
1. Linear eigenvalue statistics. If A(n) = I(n), then TA = 1 and

ξA
n [ϕ] = Trϕ(M (n)). (1.4)

2. Matrix elements. If A
(n)
lm =

√
nδjlδjm, then TA = 0 and

ξA
n [ϕ] =

√
nϕjj(M (n)). (1.5)
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3. Bilinear forms. If A
(n)
lm =

√
nηlηm, where

η(n) = (η(n)
1 , . . . , η(n)

n )T , lim
n→∞

n∑

l=1

(η(n)
l )2 = 1, (1.6)

then TA = 0 and

ξA
n [ϕ] =

√
n(ϕ(M (n))η(n), η(n)). (1.7)

Denote
ξA◦
n [ϕ] = ξA

n [ϕ]−E{ξA
n [ϕ]}. (1.8)

Our main result is Theorem 5.1 below, where the limiting expression for the
characteristic function of ξA◦

n [ϕ] is given and written via the cumulants of ma-
trix entries and quantities depending on a sequence {A(n)}∞n=1. Let us note that
the corresponding theorems for linear eigenvalue statistics (1.4) and matrix ele-
ments (1.5) of [12–14, 18] can be obtained from Theorem 5.1 as particular cases
(however, under much stronger conditions).

The paper is organized as follows. Section 2 contains definitions, some known
facts and technical means used throughout the paper. In Section 3, we consider
the case of the GOE and prove the CLT for ξA

n [ϕ] (see [13] for the analogous
statements for matrix elements). Then we find the limiting variance (Section 4)
and the limiting probability law (Section 5) for ξA◦

n [ϕ] for Wigner matrices. Sec-
tion 6 contains auxiliary results. We confine ourselves to real symmetric matrices,
although our results as well as the main ingredients of proofs remain valid in the
hermitian case with natural modifications.

2. Definitions and Technical Means

To make the paper self-consistent, we present several definitions and technical
facts that will be often used below. We start with the definition of the Wigner
real symmetric matrix M (n) and put

M (n) = n−1/2W (n), W (n) = {W (n)
jk ∈ R, W

(n)
jk = W

(n)
kj }n

j,k=1, (2.1)

where {W (n)
jk }1≤j≤k≤n are independent random variables satisfying

E{W (n)
jk } = 0, E{(W (n)

jk )2} = w2(1 + δjk). (2.2)

The case of the Gaussian random variables obeying (2.2) corresponds to the GOE:

M̂ (n) = n−1/2Ŵ (n), Ŵ (n) = { Ŵjk = Ŵkj ∈ R, Ŵjk ∈ N (0, w2(1 + δjk))}n
j,k=1.
(2.3)

538 Journal of Mathematical Physics, Analysis, Geometry, 2013, vol. 9, No. 4



On Non-Gaussian Limiting Laws for Certain Statistics of Wigner Matrices

Here for simplicity’s sake we define the Wigner matrix so that the first two mo-
ments of its entries match those of the GOE. It can be shown that if E{(W (n)

jj )2} =
w2w2, then the corresponding expressions for the limiting variance and charac-
teristic function have additional terms proportional to (w2− 2) (see Remarks 4.5
and 5.2). In what follows, we will assume additional conditions on the distribu-
tions of W

(n)
jk , mostly in the form of the existence of certain moments of W

(n)
jk

whose order will depend on the problem under study.
The next proposition presents certain facts on Gaussian random variables.

Proposition 2.1. Let ζ = {ζl}p
l=1 be the independent Gaussian random vari-

ables of zero mean, and Φ : Rp → C be a differentiable function with polynomially
bounded partial derivatives Φ′l, l = 1, . . . , p. Then we have

E{ζ lΦ(ζ)} = E{ζ2
l }E{Φ′l(ζ)}, l = 1, . . . , p, (2.4)

Var{Φ(ζ)} ≤
p∑

l=1

E{ζ2
l }E

{|Φ′l(ζ)|2} . (2.5)

The first formula is a version of the integration by parts. The second one is a
version of the Poincaré inequality (see, e.g., [4]). Formula (2.4) is a particular case
of a more general formula. To write it, we recall some definitions. If a random
variable ζ has a finite pth absolute moment, p ≥ 1, then we have the expansions
as t → 0 :

E{eitζ} =
p∑

j=0

µj

j!
(it)j + o(tp), log E{eitζ} =

p∑

j=0

κj

j!
(it)j + o(tp), (2.6)

where ” log ” denotes the principal branch of logarithm. The coefficients in the
expansion of E{eitζ} are the moments {µj} of ζ, and the coefficients in the ex-
pansion of logE{eitζ} are the cumulants {κj} of ζ. In particular, if µ1 = 0,
then

κ1 = 0, κ2 = µ2 = Var{ζ}, κ3 = µ3, κ4 = µ4 − 3µ2
2, . . . (2.7)

We have [9, 12, 17]:

Proposition 2.2. (i) Let ζ be a random variable such that E{|ζ|p+2} < ∞
for a certain non-negative integer p. Then for any function Φ : R → C of the
class Cp+1 with bounded partial derivatives Φ(l), l = 1, . . . , p + 1, we have

E{ζΦ(ζ)} =
p∑

l=0

κl+1

l!
E{Φ(l)(ζ)}+ εp, (2.8)
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where

|εp| ≤ CpE{|ζ|p+2} sup
t∈R

|Φ(p+1)(t)|, Cp ≤ 1 + (3 + 2p)p+2

(p + 1)!
. (2.9)

(ii) If the characteristic function E{eit|ζ|} is entire and Φ ∈ C∞, then

E{ζΦ(ζ)} =
∞∑

l=0

κl+1

l!
E{Φ(l)(ζ)} (2.10)

provided that for some a > 0

|E{Φ(l)(ζ)}| ≤ al, (2.11)

and for some R = ca, c > 1,
∞∑

l=0

|κl+1|Rl

l!
< ∞. (2.12)

The next proposition presents simple facts of linear algebra.

Proposition 2.3. Let M and M ′ be n × n matrices, and t ∈ R. Then we
have the following:

(i) the Duhamel formula

e(M+M ′)t = eMt +

t∫

0

eM(t−s)M ′e(M+M ′)sds, (2.13)

(ii) if for a real symmetric n× n matrix M (n) we put

U(t) = U (n)(t) := eitM(n)
, t ∈ R, (2.14)

then U(t) is a symmetric unitary matrix satisfying

U(t1)U(t2) = U(t1 + t2), ||U(t)|| = 1,
n∑

j=1

|Ujk(t)|2 = 1, (2.15)

(iii) if Dlm = ∂/∂Mlm, then

DlmUab(t) = iβlm (Ual ∗ Ubm + Ubl ∗ Uam) (t), (2.16)

where symbol ”∗” is a convolution sign, and

βlm = (1 + δlm)−1 = 1− δlm/2, (2.17)
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(iv) if A(n) is an n× n matrix, C(n) = A(n) + A(n)T , and

ξA
n (t) = TrA(n)U(t) (2.18)

is a particular case of ξA
n [ϕ] corresponding to ϕ(λ) = eitλ, then

Dlm(A(n)U)ab(t) = iβlm

(
(A(n)U)al ∗ Ubm + Ubl ∗ (A(n)U)am

)
(t), (2.19)

DlmξA
n (t) = iβlm(U ∗ C(n)U)lm(t), (2.20)

D2
lmξA

n (t) = −β2
lm

(
Ull ∗ (U ∗ C(n)U)mm + Umm ∗ (U ∗ C(n)U)ll

+ 2Ulm ∗ (U ∗ C(n)U)lm

)
(t), (2.21)

Dlm(U ∗A(n)U)jk(t) = iβlm

(
Ujl ∗ (U ∗A(n)U)mk + Ujm ∗ (U ∗A(n)U)lk

+ Ulk ∗ (U ∗A(n)U)jk + Umk ∗ (U ∗A(n)U)jl

)
(t), (2.22)

Dlm(U ∗A(n)U)lm(t) = iβlm

(
Ull ∗ (U ∗A(n)U)mm + Umm ∗ (U ∗A(n)U)ll

+ 2Ulm ∗ (U ∗A(n)U)lm

)
(t). (2.23)

It follows from the above that if A(n) satisfies (1.2)–(1.3) and

CA : TrA(n)T A(n) ≤ CAn, ∀n ∈ N, (2.24)

then

|(A(n)U (n))lm| ≤ (A(n)T A(n))1/2
ll ≤ O(n1/2), (2.25)

|(U (n)A(n)U (n))lm| ≤ (TrA(n)T A(n))1/2 ≤ CAn1/2, (2.26)
n∑

l,m=1

|(U (n)A(n)U (n))lm|2 = TrA(n)T A(n) = O(n), n →∞, (2.27)

|ξA
n (t)| ≤ (nTrA(n)T A(n))1/2 = O(n), n →∞, (2.28)

|Dp
lmξA

n (t)| ≤ n1/2cp|t|p, cp = CA2p+1/p! (2.29)

At last in the next proposition we will summarize some facts concerning the
integral equations we need, which were proved in [13, 17] by using the generalized
Fourier transform.

Proposition 2.4. Consider

v(t) =

2w∫

−2w

eitλρsc(λ)dλ, (2.30)
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where ρsc is the density of the semicircle law

ρsc(λ) = (2πw2)−1
(
(4w2 − λ2)1/2I[−2w,2w]

)1/2
. (2.31)

Then the unique differentiable solutions of the integral equations

F1(t) + w2

t∫

0

dt1

t1∫

0

v(t1 − t2)F1(t2)dt2 = 1, (2.32)

F2(t) + w2

t∫

0

dt1

t1∫

0

v(t1 − t2)F2(t2)dt2 =

t∫

0

R(t1)dt1, (2.33)

F3(t1, t2) + w2

t1∫

0

dt3

t3∫

0

v(t3 − t4)F3(t4, t2)dt4

= −w2

t1∫

0

dt3

t2∫

0

v(t2 − t4)v(t3 + t4)dt4, (2.34)

F4(t1, t2) + 2w2

t1∫

0

dt3

t3∫

0

v(t3 − t4)F4(t4, t2)dt4 = −2w2t2

t1∫

0

v(t2 + t3)dt3,

(2.35)

are given by

F1(t) = v(t), F2(t) =

t∫

0

v(t− t1)R(t1)dt1, F3(t1, t2) = v(t1 + t2)− v(t1)v(t2),

(2.36)

F4(t1, t2) =
1

2π2

2w∫

−2w

2w∫

−2w

∆e(t1)∆e(t2)
(λ1 − λ2)2

4w2 − λ1λ2√
4w2 − λ2

1

√
4w2 − λ2

2

dλ1dλ2, (2.37)

where we denote ∆e(t) = eitλ2 − eitλ1.

3. The Case of Gaussian Orthogonal Ensemble

In this section we consider ξA
n [ϕ] corresponding to the GOE matrix M (n) =

M̂ (n) of (2.3). We find the limiting variance of ξA
n [ϕ] and prove the CLT for its

fluctuations.
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In view of the orthogonal invariance of the GOE probability measure, we have

E{Ujk(t)} = δjkE{vn(t)}, (3.1)

so that
n−1E{ξA

n (t)} = E{vn(t)}n−1TrA(n),

where ξA
n (t) is defined in (2.18), and

vn(t) = n−1ξI
n(t) = n−1TrU(t). (3.2)

Since for any bounded continuous ϕ

lim
n→∞n−1E{Trϕ(M (n))} =

2w∫

−2w

ϕ(λ)ρsc(λ)dλ,

where M (n) is the Wigner matrix and ρsc is the density of the semicircle law
(2.31) (see, e.g., [15] and references therein), then we have

lim
n→∞E{vn(t)} = v(t), (3.3)

where v is defined in (2.30). Hence,

lim
n→∞n−1E{ξA

n (t)} = TA · v(t), (3.4)

where TA is defined in (1.3). We also have:

Lemma 3.1. Let M̂ (n) be the GOE matrix (2.3). Then for any test function
ϕ : R→ C, whose Fourier transform

F [ϕ](t) =
1
2π

∫
e−itλϕ(λ)dλ (3.5)

satisfies the condition ∫
(1 + |t|)|F [ϕ](t)|dt < ∞, (3.6)

we have the bound

Var{ξA
n [ϕ]} : = E{|ξA◦

n [ϕ]|2} ≤ c
( ∫

(1 + |t|)|F [ϕ](t)|dt
)2

. (3.7)
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P r o o f. It follows from Poincaré inequality (2.5) and (2.20) that

Var{ξA
n (t)} ≤ w2

n

∑

1≤l≤m≤n

β−1
lm E{|DlmξA

n (t)|2}

≤ 2w2

n

n∑

l,m=1

E{|(U ∗A(n)U)lm(t)|2} =
2w2|t|2

n
TrAA(n)T ,

so that

Var{ξA
n (t)} ≤ 2CAw2|t|2, (3.8)

where CA is defined in (2.24). Writing the Fourier inversion formula

ϕ(λ) =
∫

eiλtF [ϕ](t)dt (3.9)

and using the spectral theorem for symmetric matrices, we obtain

ξA
n [ϕ] =

∫
ξA
n (t)F [ϕ](t)dt. (3.10)

By (3.10) and the Schwarz inequality,

Var{ξA
n [ϕ]} ≤

(∫
Var1/2{ξA

n (t)}|F [ϕ](t)|dt

)2

. (3.11)

This, (3.6), and (3.8) yield (4.3).

We have two theorems:

Theorem 3.2. Let M̂ (n) be the GOE matrix (2.3), and ϕ1,2 : R→ R be the
test functions satisfying (3.6). Denote

Cov{ξA
n [ϕ1], ξA

n [ϕ2]} = E{ξA◦
n [ϕ1]ξA

n [ϕ2]}.
Then we have

CGOE [ϕ1, ϕ2] : = lim
n→∞Cov{ξA

n [ϕ1], ξA
n [ϕ2]}

=
T 2

A

2π2

2w∫

−2w

2w∫

−2w

∆ϕ1

∆λ

∆ϕ2

∆λ

4w2 − λ1λ2√
4w2 − λ2

1

√
4w2 − λ2

2

dλ1dλ2

+ (TA(A+AT )/2− T 2
A)

2w∫

−2w

2w∫

−2w

∆ϕ1∆ϕ2ρsc(λ1)ρsc(λ2)dλ1dλ2,

(3.12)
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where TA is defined in (1.3),

∆ϕ = ϕ(λ1)− ϕ(λ2), ∆λ = λ1 − λ2, (3.13)

and ρsc is the density of the semicircle law (2.31).

Theorem 3.3. Let M̂ (n) be the GOE matrix (2.3), and ϕ : R→ R satisfies
(3.6). Then the random variable ξA◦

n [ϕ] converges in distribution to the Gaussian
random variable with zero mean and the variance given by

VGOE [ϕ] =
T 2

A

2π2

2w∫

−2w

2w∫

−2w

(∆ϕ

∆λ

)2 4w2 − λ1λ2√
4w2 − λ2

1

√
4w2 − λ2

2

dλ1dλ2

+ (TA(A+AT )/2− T 2
A)

2w∫

−2w

2w∫

−2w

(
∆ϕ

)2
ρsc(λ1)ρsc(λ2)dλ1dλ2. (3.14)

R e m a r k 3.4. Note that VGOE [ϕ] can be written in the form

VGOE [ϕ] = T 2
A · V Nn

GOE [ϕ] + (TA(A+AT )/2− T 2
A) · V jj

GOE [ϕ], (3.15)

where

V N
GOE [ϕ] =

1
2π2

2w∫

−2w

2w∫

−2w

(∆ϕ

∆λ

)2 4w2 − λ1λ2√
4w2 − λ2

1

√
4w2 − λ2

2

dλ1dλ2, (3.16)

V jj
GOE [ϕ] =

2w∫

−2w

2w∫

−2w

(
∆ϕ

)2
ρsc(λ1)ρsc(λ2)dλ1dλ2 (3.17)

are the limiting variances corresponding to the linear eigenvalue statistics (1.4)
and matrix elements (1.5), respectively (compare with the results of [12] and
[13]).

Besides, for the limiting variance V
(Mη,η)
GOE [ϕ] corresponding to the bilinear

form (1.7), we have

V
(Mη,η)
GOE [ϕ] = V jj

GOE [ϕ] =

2w∫

−2w

2w∫

−2w

(
∆ϕ

)2
ρsc(λ1)ρsc(λ2)dλ1dλ2. (3.18)

P r o o f of Theorem 3.2. Here we follow the scheme proposed in [17], Section
3.2. Since Cov{ξA

n [ϕ1], ξA
n [ϕ2]} is linear in ϕ1,2, it suffices to consider the real

valued ϕ1,2. Writing the Fourier inversion formula (3.9) and using the linearity
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of Cov{ξA
n [ϕ1], ξA

n [ϕ2]} in ϕ1,2 and the spectral theorem for symmetric matrices,
we obtain

Cov{ξA
n [ϕ1], ξA

n [ϕ2]} =
∫ ∫

Cov{ξA
n (t1), ξA

n (t2)}F [ϕ1](t1)F [ϕ2](t2)dt1dt2

(3.19)
with ξA

n (t) of (2.18). Similarly to (3.8), with the help of Poincaré inequality (2.5)
it can be shown that Var{ξA′

n (t)} ≤ ct2, where ξA′
n (t) = iTrA(n)M̂eit1M̂ . This,

(3.8), and the Schwarz inequality imply the bounds
∣∣Cov{ξA

n (t1), ξA
n (t2)}

∣∣≤c|t1||t2|,
∣∣∂ Cov{ξA

n (t1), ξA
n (t2)}/∂ti

∣∣≤c|t1||t2|, i = 1, 2.
(3.20)

Hence, in view of (3.6), the integrand in (3.19) admits an integrable and n-
independent upper bound, and by the dominated convergence theorem it suffices
to prove the pointwise in t1,2 convergence of Cov{ξA

n (t1), ξA
n (t2)} to a certain

limit as n → ∞, implying (3.12). It also follows from (3.20) that there exists
a convergent subsequence {Cov{ξA

nj
(t1), ξA

nj
(t2)}}∞j=1. We will show that every

such a subsequence has the same limit leading through (3.19) to (3.12). Evidently,
we can confine ourselves to t1,2 ≥ 0. Consider

Cov{ξA
n (t1), ξB

n (t2)} = E{ξA
n (t1)ξB◦

n (t2)}, (3.21)

putting in appropriate moment A(n) = B(n). Here ξA,B
n (t1) correspond to A(n),

B(n) satisfying (1.2), (1.3). By using Duhamel formula (2.13), we can write

Cov{ξA
n (t1), ξB

n (t2)} = i

t1∫

0

n∑

l,m=1

E{M̂lm(A(n)U)lm(t3)ξB◦
n (t2)}dt3.

Applying differentiation formula (2.4) with (2.2) written in the form

E{(W (n)
lm )2} = w2β−1

lm (3.22)

(see (2.17)), and then (2.19), (2.20), we obtain

Cov{ξA
n (t1), ξB

n (t2)}

= iw2

t1∫

0

1
n

n∑

l,m=1

β−1
lm E{Dlm[(A(n)U)lm(t3)ξB◦

n (t2)]}dt3

= −w2

n

t1∫

0

dt3

t3∫

0

E{[ξI
n(t3 − t4)ξA

n (t4) + ξA
n (t3)]ξB◦

n (t2)}dt4

−w2

n

t1∫

0

dt3

t2∫

0

E{TrA(n)U(t3 + t4)(B(n) + B(n)T )U(t2 − t4)}dt4. (3.23)
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Putting

HA,C
n (t1, t2) = TrA(n)U(t1)C(n)U(t2), C(n) = B(n) + B(n)T , (3.24)

ξA
n = ξA◦

n + ξ
A
n , ξ

A
n = E{ξA

n }, (3.25)

from (3.23) we get

Cov{ξA
n (t1), ξB

n (t2)} =− w2

t1∫

0

dt3

t3∫

0

vn(t3 − t4)E{ξA
n (t4)ξB◦

n (t2)}dt4

− w2

n

t1∫

0

dt3

t3∫

0

ξ
A
n (t3 − t4)E{ξI

n(t4)ξB◦
n (t2)}dt4

− w2

n

t1∫

0

dt3

t2∫

0

E{HA,C
n (t3 + t4, t2 − t4)}dt4 + rn(t1, t2),

(3.26)

where

rn(t1, t2) = −w2

t1∫

0

E{[(v◦n ∗ ξA◦
n )(t3) + t3n

−1ξA
n (t3)]ξB◦

n (t2)}dt3.

By using Poincaré inequality (2.5) it can be shown that Var
{
v◦nξA◦

n

}
= O(n−2),

n →∞, which, together with (3.8), yields

rn(t1, t2) = O(n−1), n →∞. (3.27)

Consider the convergent subsequences

{Cov{ξA
nj

(t1), ξB
nj

(t2)}}∞j=1, {HA,C
nj

(t1, t2)}∞j=1,

and denote

CA,B(t1, t2) := lim
nj→∞

Cov{ξA
nj

(t1), ξB
nj

(t2)}, HA,C(t1, t2) := lim
nj→∞

E{HA,C
nj

(t1, t2)}.
(3.28)

It follows from (3.3), (3.4), and (3.26), (3.27) that CA,B(t1, t2) satisfies the equa-
tion

CA,B(t1, t2) + w2

t1∫

0

(v ∗ CA,B(·, t2))(t3)dt3 = −w2TA

t1∫

0

(v ∗ CI,B(·, t2))(t3)dt3

− w2

t1∫

0

dt3

t2∫

0

HA,C(t3 + t4, t2 − t4)}dt4. (3.29)
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In particular, putting here A(n) = I, we get

CI,B(t1, t2) + 2w2

t1∫

0

(v ∗ CI,B(·, t2))(t3)dt3 = −w2TCt2

t1∫

0

v(t2 + t3)dt3, (3.30)

so that by (2.37)

CI,B(t1, t2) =
TB

2π2

2w∫

−2w

2w∫

−2w

∆e(t1)∆e(t2)
(λ1 − λ2)2

4w2 − λ1λ2√
4w2 − λ2

1

√
4w2 − λ2

2

dλ1dλ2. (3.31)

Now let us calculate the second term in the r.h.s. of (3.29). By (3.1), we have

E{HA,C
n (t1, t2)} = TACvn(t1)vn(t2) + Fn(t1, t2), (3.32)

Fn(t1, t2) = n−1
n∑

j,l=1

E{(UC(n))jl(t1)(U◦A(n))lj(t2)}.

Repeating the steps leading from (3.21) to (3.29) and using consequently (2.13),
the differentiation formulas (2.4) and (2.19), (2.20), and applying (3.8) to estimate
the vanishing terms, one can easily get

Fn(t1, t2) + w2

t1∫

0

(vn ∗ Fn(·, t2))(t3)dt3

= −w2

t1∫

0

dt3

t2∫

0

n−1ξ
A
n (t3 + t4) · n−1ξ

C
n (t2 − t4)dt4 + O(n−1), n →∞.

This, (3.3), and (3.4) yield for F = limnj→∞ Fnj :

F (t1, t2) + w2

t1∫

0

(v ∗ F (·, t2))(t3)dt3

= −w2TATC

t1∫

0

dt3

t2∫

0

v(t3 + t4)v(t2 − t4)dt4.

Hence, by (2.36), we get F (t1, t2) = TATC

(
v(t1 + t2) − v(t1)v(t2)

)
. This, (3.3),

and (3.32) yield for HA,C of (3.28):

HA,C(t1, t2) = TATCv(t1 + t2) +
(
TAC − TATC

)
v(t1)v(t2). (3.33)
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Putting (3.31) and (3.33) in (3.29), we obtain the equation

CA,B(t1, t2) + w2

t1∫

0

(v ∗ CA,B(·, t2))(t3)dt3

= −w2

t1∫

0

[
TA(v ∗ CI,B(·, t2))(t3) + 2TATBt2v(t3 + t2)

+
(
TA(B+BT ) − 2TATB

) t2∫

0

v(t3 + t4)v(t2 − t4)dt4

]
dt3,

solving which with the help of Lemma 2.4, we finally get

CA,B(t1, t2) =
TATB

2π2

2w∫

−2w

2w∫

−2w

∆e(t1)∆e(t2)
(λ1 − λ2)2

4w2 − λ1λ2√
4w2 − λ2

1

√
4w2 − λ2

2

dλ1dλ2

+
(
TA(B+BT )/2− TATB

) 2w∫

−2w

2w∫

−2w

∆e(t1)∆e(t2)ρsc(λ1)ρsc(λ2)dλ1dλ2.

Putting this expression with TB = TA in (3.19), we obtain (3.12) and hence the
theorem.

P r o o f of Theorem 3.3. The detailed proofs of the CLTs for linear
eigenvalue statistics (1.4) and for matrix elements (1.5) are given in [11, 12] and
[13], respectively (see also [17], Section 3.2). The proof of Theorem 3.3 follows
the same scheme, and here we only outline its main steps. According to this
scheme it suffices to show that if

ZA
n (x) = E

{
eixξA◦

n [ϕ]
}
, (3.34)

then for any converging subsequences {ZA
ni
}i≥1 and {ZA

ni

′}i≥1 there exists ZA(x)
such that

lim
i→∞

ZA
ni

(x) = ZA(x), (3.35)

and

lim
i→∞

ZA
ni

′(x) = −xVGOE [ϕ]ZA(x). (3.36)

We obtain (3.35), (3.36), and hence the theorem for a class of test functions
satisfying the condition

∫
(1 + |t|2)|F [ϕ](t)|dt < ∞ (3.37)
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(cf (3.6)). Then the theorem can be extended to the class of the functions satis-
fying (3.6) by using a standard approximation procedure (see, e.g., [17], Section
3.2). We denote

en(x) = exp{ixξA◦
n [ϕ]}, (3.38)

and according to (3.9) and (3.34), write

ZA′
n (x) = iE

{
ξA◦
n [ϕ]eixξA◦

n [ϕ]
}

= i

∫
F [ϕ](t)Y A

n (x, t)dt, (3.39)

where
Y A

n (x, t) = E
{
ξA
n (t)e◦n(x)

}
, (3.40)

and ξA
n (t) is defined in (2.18). It follows from the Schwarz inequality and (3.8)

that
|Y A

n (x, t)| ≤ c|t|.
This and (3.37) yield that the sequence ZA′

n is uniformly bounded. Hence, there
is a convergent subsequence ZA

ni
, and by the dominated convergence theorem to

find its limit as n →∞ it suffices to find the pointwise limit of the corresponding
subsequence Y A

ni
. With the help of Poincaré inequality (2.5) and (3.37) it also can

be shown that the sequences {∂Y A
n /∂x} and {∂Y A

n /∂t} are uniformly bounded
in (t, x) ∈ K ⊂ R2

+, n ∈ N, for any bounded K, so that the sequence {Y A
n }

is equicontinuous on any finite set of R2
+ and contains convergent subsequences.

Hence, for any converging subsequence {ZA
ni
} (see (3.35)) there is a converging

subsequence {Y A
n′i
} and a continuous function Y A (which obviously depends on

{ZA
ni
}) such that

lim
n′i→∞

Y A
n′i

= Y A, lim
n′i→∞

ZA
n′i

= ZA. (3.41)

We will show now that Y A satisfies certain integral equation leading through
(3.39) to (3.35), (3.36). Applying consequently (2.13) and differentiation formula
(2.4) with (3.22), we get

Y A
n (x, t) =

iw2

n

t∫

0

n∑

j,k=1

β−1
jk E{Djk

(
(UA(n))kj(t1)e◦n(x)

)}dt1,

where Djk = ∂/∂Mjk. It follows from (2.20) that

Djken(x) = −βjkxen(x)
∫

(U ∗ C(n)U)jk(θ)F [ϕ](θ)dθ. (3.42)
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This, (2.19), (3.24), (3.25), and the relation en = e◦n + ZA
n yield

Y A
n (x, t) = −w2

t∫

0

[
vn ∗ Y A

n (x, ·) + ξn ∗ Y I
n (x, ·)](t1)dt1

−iw2xZA
n (x)

t∫

0

dt1

∫
F [ϕ](θ)dθ

θ∫

0

n−1E
{
HA,C

n (θ − θ1, θ1 + t1)
}

dθ1 + O(n−1)

as n →∞, where the vanishing term can be estimated with the help of (2.5).
This, (3.4), and (3.33) lead to the pair of equations with respect to Y A =

limnj→∞ Y A
nj

and Y I :

Y A(x, t) + w2

t∫

0

(v ∗ Y A(x, ·))(t1)dt1 = −w2TA

t∫

0

(v ∗ Y I(x, ·))(t1)dt1

−iw2xZA(x)

t∫

0

dt1

∫
F [ϕ](θ)dθ

θ∫

0

H(θ − θ1, θ1 + t1)dθ1,

Y I(x, t) + 2w2

t∫

0

(v ∗ Y I(x, ·))(t1)dt1

= −2iw2xZA(x)TA

t∫

0

dt1

∫
F [ϕ](θ)θv(θ + t1)dθ.

Comparing these equations and (3.29), (3.30), one can see that

Y A(x, t) = ixZA(x)
∫

CA,A(t, θ)F [ϕ](θ)dθ,

where CA,A is given by (3.21) with A = B. This and (3.39) yield

lim
i→∞

ZA
ni

′(x) = −xZA(x)
∫ ∫

CA,A(t, θ)F [ϕ](t)F [ϕ](θ)dtdθ = −xZA(x)VGOE [ϕ]

(see (3.14) and (3.19), and thus lead to (3.35), (3.36) and complete the proof of
the theorem.

4. Covariance of ξA
n [ϕ] in Wigner Case

We show first that if M (n) is the Wigner matrix (2.1)–(2.2) with uniformly
bounded eighth moments of its entries, and the test-function ϕ is essentially of
class C4, then the variance of ξA

n [ϕ] is of the order O(1) as n →∞. We have:
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Lemma 4.1. Let M (n) = n−1/2W (n) be the real symmetric Wigner matrix
(2.1), (2.2). Assume that the third moments of its entries, µ3 = E

{
(W (n)

jk )3
}
, do

not depend on j, k, and n, and the eighth moments are uniformly bounded

w8 := sup
n∈N

max
1≤j,k≤n

E
{
(W (n)

jk )8
}

< ∞. (4.1)

Then for any test function ϕ : R→ C, whose Fourier transform (3.5) satisfies
the condition ∫

(1 + |t|)4|F [ϕ](t)|dt < ∞, (4.2)

we have the bound

Var{ξA
n [ϕ]} : = E{|ξA◦

n [ϕ]|2} ≤ c
(∫

(1 + |t|)4|F [ϕ](t)|dt
)2

. (4.3)

The proof of (4.3) follows from (3.11), (4.2), and the bound (see (6.7))

Var{ξA
n (t)} ≤ c(1 + |t|)8. (4.4)

Theorem 4.2. Let M (n) = n−1/2W (n) be the real symmetric Wigner matrix
(2.1), (2.2), whose third and fourth moments, µl = E

{
(W (n)

jk )l
}
, l = 3, 4, do not

depend on j, k, and the eighth moments are uniformly bounded (see (4.1)). Let
{A(n)}∞n=1 satisfy (1.2), (1.3), C(n) = A(n) + A(n)T , and there exist

K
(1)
A = lim

n→∞n−3/2
n∑

l,m=1

A
(n)
ll C

(n)
lm (4.5)

K
(2)
A = TA lim

n→∞n−3/2
n∑

l,m=1

C
(n)
lm , (4.6)

K
(3)
A = lim

n→∞n−1
n∑

m=1

A(n)
mm

(
A(n)

mm − n−1TrA(n)
)
. (4.7)

Then for any ϕ1,2 : R→ R satisfying (4.2), we have

lim
n→∞Cov{ξA

n [ϕ1], ξA
n [ϕ2]} =CGOE [ϕ1, ϕ2] + Cκ3 [ϕ1, ϕ2] + Cκ4 [ϕ1, ϕ2], (4.8)
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where CGOE [ϕ1, ϕ2] is defined in (3.12),

Cκ3 [ϕ1, ϕ2] =
κ3

w6

2w∫

−2w

2w∫

−2w

λ1

(
K

(1)
A

(
λ2

2 − w2
)

+ K
(2)
A

( 2w4

4w2 − λ2
2

− λ2
2

))

× (ϕ1(λ1)ϕ2(λ2) + ϕ1(λ2)ϕ2(λ1))
2∏

j=1

ρsc(λj)dλj , (4.9)

Cκ4 [ϕ1, ϕ2] =
κ4

w8

[
K

(3)
A

2∏

j=1

2w∫

−2w

ϕj(λ)(w2 − λ2)ρsc(λ)dλ

+
T 2

A

2π2

2∏

j=1

2w∫

−2w

ϕj(λ)
2w2 − λ2

√
4w2 − λ2

dλ

]
, (4.10)

κ3 = µ3, and κ4 = µ4 − 3w4 are the third and the fourth cumulants of the off-
diagonal entries (see (2.7)). In particular,

VW [ϕ] := lim
n→∞Var{ξA

n [ϕ]} = VGOE [ϕ] + Cκ3 [ϕ,ϕ] + Cκ4 [ϕ,ϕ] (4.11)

with VGOE [ϕ] of (3.14).

R e m a r k 4.3. Note that for the limiting variances V N
W [ϕ] and V jj

W [ϕ] of
linear eigenvalue statistics (1.4) and matrix elements (1.5) we get

V N
W [ϕ] = V N

GOE [ϕ] +
κ4

2π2w8

∣∣∣
2w∫

−2w

ϕ(λ)
2w2 − λ2

√
4w2 − λ2

dλ
∣∣∣
2
, (4.12)

V jj
W [ϕ] = V jj

GOE [ϕ] +
κ4

w8

∣∣∣
2w∫

−2w

ϕ(λ)(w2 − λ2)ρsc(λ)dλ
∣∣∣
2
, (4.13)

respectively (see (3.16), (3.17)). This coincides with the results of [12] and [14].

R e m a r k 4.4. In the case of bilinear forms (1.6), (1.7), TA = 0 and the
coefficients K

(j)
A , j = 1, 2, 3 of (4.5)–(4.7) are

K
(1)
A = 2 lim

n→∞n−1/2
n∑

m=1

η(n)
m

n∑

l=1

(η(n)
l )3, K

(2)
A = 0, K

(3)
A = lim

n→∞

n∑

m=1

(η(n)
m )4.
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In particular, if for all m = 1, . . . , n η
(n)
m = O(n−1/2), n → ∞, then K

(j)
A = 0,

j = 1, 2, 3, and for the limiting variance (see (3.18)) we get

V
(Mη,η)
W [ϕ] = V

(Mη,η)
GOE [ϕ] =

2w∫

−2w

2w∫

−2w

(
∆ϕ

)2
ρsc(λ1)ρsc(λ2)dλ1dλ2. (4.14)

R e m a r k 4.5. We choose here the Wigner matrix so that its first two
moments match the first two moments of the GOE matrix (see (2.2)). It allows
to use the known properties of the GOE and lies at the basis of interpolation
procedure widely used in the proof of Lemma 6.1 below. In fact, this condition
is a pure technical one, and we can replace condition (2.2) with a more general
one and consider the Wigner matrix M̃ = n−1/2W̃ satisfying

E{W̃ (n)
jk } = 0, 1 ≤ j ≤ k ≤ n, (4.15)

E{(W̃ (n)
jk )2} = w2, j 6= k, E{(W̃ (n)

jj )2} = w2w
2, w2 > 0.

In this case there arise additional terms in (4.8) and (4.11) proportional to w2−2.
In particular, for the corresponding limiting variance we have

V w2

W̃
[ϕ] =VW [ϕ] + (w2 − 2)w−2

(
K

(3)
A

( 2w∫

−2w

ϕ(µ)µρsc(µ)dµ
)2

+ T 2
A

( 1
2π

2w∫

−2w

ϕ(µ)µ√
4w2 − µ2

dµ
)2

)
, (4.16)

where VW [ϕ] is given by (4.11).

P r o o f of Theorem 4.2. It follows from (4.2) and (4.4) that the integrand
in (3.19) admits an integrable and n-independent upper bound. Thus, by the
dominated convergence theorem it suffices to prove the pointwise in t1,2 conver-
gence of Cov{ξA

n (t1), ξA
n (t2)} to a certain limit as n → ∞ implying (4.8). To

do this we use the known result for the GOE matrix (see Theorem 3.2) and the
interpolating procedure proposed in [9].

Let M̂ (n) = n−1/2Ŵ (n) be the GOE matrix (2.3) independent of M (n), and

Û(t) = Û (n)(t) := eitM̂(n)
, ξ̂A

n (t) = TrA(n)Û(t). (4.17)

Consider the ”interpolating” random matrix

M (n)(s) = s1/2M (n) + (1− s)1/2M̂ (n), 0 ≤ s ≤ 1, (4.18)
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viewed as the matrix defined on the product of probability spaces of the matri-
ces W (n) and Ŵ (n) (cf (2.18)). We denote again by E{. . . } the corresponding
expectation in the product space. Since M (n)(1) = M (n), M (n)(0) = M̂ (n), then
putting

U(t, s) = U (n)(t, s) := eitM(n)(s), ξA
n (t, s) = TrA(n)U(t, s), (4.19)

we can write

C∆
n (t1, t2) : = Cov{ξA

n (t1), ξA
n (t2)} −Cov{ξ̂A

n (t1), ξ̂A
n (t2)}

=

1∫

0

∂

∂s
E{ξA

n (t1, s)ξA◦
n (t2, s)}ds = c∆

n (t1, t2) + c∆
n (t2, t1), (4.20)

c∆
n (t1, t2) : =

1∫

0

E
{ ∂

∂s
(ξA

n (t1, s)) · ξA◦
n (t2, s)

}
ds

=
i

2

1∫

0

( 1√
ns

n∑

l,m=1

E
{

W
(n)
lm Φlm

}
− 1√

n(1− s)

n∑

l,m=1

E
{

ŴlmΦlm

})
ds,

(4.21)

where

Φlm = Φlm(t1, t2, s) = (U ∗A(n)U)ml(t1, s)ξA◦
n (t2, s). (4.22)

A simple algebra based on (2.15)–(2.26) allows to obtain

|Dq
lmΦlm| ≤ Cq(1 + |t1|+ |t2|)q+1n3/2, (4.23)

with Cq depending only on q ∈ N. Besides, since ∂/∂W
(n)
lm =

√
s/nDlm(s),

Dlm(s) = ∂/∂M
(n)
lm (s), then every derivative with respect to W

(n)
lm gives the factor

n−1/2. Therefore, applying differentiation formula (2.8) with ζ = W
(n)
lm , p = 6,

and Φ = Φlm to every term of the first sum and differentiation formula (2.4) to
every term of the second sum in the r.h.s. of (4.21), we obtain (see also (2.10))

c∆
n (t1, t2) =

i

2

1∫

0

[ 6∑

j=2

s(j−1)/2T
(n)
j + ε6

]
ds, (4.24)

where

T
(n)
j =

1
j!n(j+1)/2

n∑

l,m=1

κj+1,lmE
{
Dj

lmΦlm

}
, j = 2, . . . , 6, (4.25)
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and by (2.9) and (4.23),

|ε6| ≤ C6w8

n4

n∑

l,m=1

sup
M∈Sn

|D7
lmΦlm| ≤ c(1 + |t1|+ |t2|)8n−1/2. (4.26)

Now it follows from Lemma 4.6 below that

∫ ∫ [ i

2

1∫

0

s1/2 lim
n→∞(T (n)

2 (t1, t2) + T
(n)
2 (t2, t1))ds

] 2∏

j=1

F [ϕj ](tj)dtj = Cκ3 [ϕ1, ϕ2],

(4.27)
∫ ∫ [ i

2

1∫

0

s lim
n→∞(T (n)

3 (t1, t2) + T
(n)
3 (t2, t1))ds

] 2∏

j=1

F [ϕj ](tj)dtj = Cκ4 [ϕ1, ϕ2],

(4.28)

and

lim
n→∞T

(n)
j = 0, j = 4, 5, 6, (4.29)

with Cκ3 [ϕ1, ϕ2], Cκ4 [ϕ1, ϕ2] of (4.9), (4.10). This, (4.24), (4.20), (3.19), and
(3.12) lead to (4.8)–(4.10) and complete the proof.

Lemma 4.6. Under the conditions of Theorem 4.2, the statements (4.27)–
(4.29) are valid.

P r o o f. Consider T
(n)
2 of (4.25). Note that by (2.7), κ3,lm = µ3 = κ3, and

we have

T
(n)
2 (t1, t2, s) =

κ3

2n3/2

n∑

l,m=1

E{ξA◦
n (t2, s)D2

lm(U ∗A(n)U)ml(t1, s)

+ 2Dlm(U ∗A(n)U)ml(t1, s)DlmξA
n (t2, s)

+ (U ∗A(n)U)ml(t1, s)D2
lmξA

n (t2, s)} =: κ3[T
(n)
21 + T

(n)
22 + T

(n)
23 ].
(4.30)

Consider T
(n)
21 . It follows from (2.16) and (2.22) that D2

lm(U ∗ A(n)U)ml of T
(n)
21

gives the terms of the form

T
1(n)
21 = n−3/2

n∑

l,m=1

UlmUlm(UA(n)U)lm, (4.31)
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T
2(n)
21 = n−3/2

n∑

l,m=1

UlmUll(UA(n)U)mm, (4.32)

T
3(n)
21 = n−3/2

n∑

l,m=1

UllUmm(UA(n)U)lm. (4.33)

Here for shortness we omit the sign of conjugation ” ∗ ” and the arguments of
U . Besides, we replace βlm with 1 (this, in view of (2.27), gives error terms of
the order O(n−1/2), n →∞). It follows from the Schwarz inequality, (2.15), and
(2.26) that T

1(n)
21 = O(n−1/2), n →∞, and from (2.15), (2.27) that

T
2(n)
21 ≤ n−3/2||U || · ||(U11, . . . , Unn)T || · ||((UA(n)U)11, . . . , (UA(n)U)nn)T ||

= O(n−1/2), n →∞.

This and (4.4) yield

∣∣E{(T 1(n)
21 + T

2(n)
21 )ξA◦

n }∣∣ ≤ cn−1/2Var{ξA
n }1/2 = O(n−1/2), n →∞. (4.34)

We also have
T

3(n)
21 = O(1), n →∞. (4.35)

Let us show that
E{T 3(n)

21 ξA◦
n } = O(n−1/2), n →∞. (4.36)

For this purpose consider

Rn = n−3/2
n∑

l,m=1

E{Ull(t1)Umm(t2)(UA(n)U)lmξA◦
n }.

Putting here Ujj = E{Ujj}+ U◦
jj and using (6.7), we get

Rn = v(t1)v(t2)n−3/2
n∑

l,m=1

E{(UA(n)U)lmξA◦
n }

+ v(t1)n−3/2
n∑

l,m=1

E{U◦
mm(t2)(UA(n)U)lmξA◦

n }

+ n−3/2
n∑

l,m=1

E{U◦
ll(t1)Umm(t2)(UA(n)U)lmξA◦

n }+ o(1), n →∞. (4.37)

It follows from the Schwarz inequality, (6.7) and (6.8) that the first term in the
r.h.s. of (4.37) is of the order O(n−1/2), n →∞. In view of (1.2) and (2.15), we
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also have

n−3/2
∣∣∣

n∑

l,m=1

U◦
mm(t2)(UA(n)U)lm

∣∣∣ ≤ n−1||UAU || · ||(U◦
11, . . . , U

◦
nn)T ||

≤ n−1/2
( n∑

m=1

|U◦
mm(t2)|2

)1/2
.

Hence, by the Schwarz inequality and (6.7),
∣∣∣n−3/2

n∑

l,m=1

E{U◦
mm(t2)(UA(n)U)lmξA◦

n }
∣∣∣

≤ n−1/2
( n∑

m=1

Var{Umm(t2)}
)1/2

Var{ξA
n }1/2 = O(n−1/2), n →∞.

Thus, the second and the third terms in the r.h.s. of (4.37) are of the order
O(n−1/2), n →∞, and we get (4.36). Now (4.34)–(4.36) yield for T

(n)
21 of (4.30):

T
(n)
21 = O(n−1/2), n →∞. (4.38)

Applying (2.20)–(2.23) to calculate T
(n)
22 and T

(n)
23 of (4.30), we get the terms of

the form

n−3/2
n∑

l,m=1

Ulm(UA(n)U)lm(UA(n)U)lm,

n−3/2
n∑

l,m=1

Ull(UA(n)U)mm(UA(n)U)lm, (4.39)

where, as it follows from the Schwarz inequality and (2.27), the first term is of
the order O(n−1/2), and the second one is of the order O(1), n →∞. Hence, we
are left with

T
(n)
22 + T

(n)
23 =− 1

n3/2

n∑

l,m=1

E{2(Ull ∗ (U ∗A(n)U))mm(t1)(U ∗ C(n)U)lm(t2)

+ ((U ∗ C(n)U))lm(t1)(Umm ∗ (U ∗ C(n)U)ll)(t2)/2}+ O(n−1/2),
(4.40)

n →∞. Now it follows from (4.30), (4.38), (4.40), and (6.13) that

lim
n→∞T

(n)
2 (t1, t2) = κ3 lim

n→∞(T (n)
22 + T

(n)
23 )(t1, t2) = −κ3

[
2T2(t1, t2) + T2(t2, t1)

]
,

(4.41)

T2(t1, t2) =
[
(K(1)

A −K
(2)
A )(v ∗ v ∗ v)(t1) + K

(2)
A (v ∗ tv)(t1)

] · (v ∗ v)(t2) (4.42)
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with K
(1)
A , K

(2)
A of (4.5)–(4.6) and v of (2.30). We also have

(v ∗ v)(t) = −iw−2

2w∫

−2w

eiµtµρsc(µ)dµ, (4.43)

(v ∗ tv)(t) = w−2

2w∫

−2w

eiµt
[
1− 2w2

4w2 − µ2

]
ρsc(µ)dµ, (4.44)

(v ∗ v ∗ v)(t) = w−4

2w∫

−2w

eitµ(w2 − µ2)ρsc(µ)dµ. (4.45)

Putting (4.43)–(4.45) in (4.42) and plugging the result in the l.h.s. of the r.h.s.
of (4.27), after some calculations, we get (4.27). Consider now T

(n)
3 of (4.25),

T
(n)
3 =

1
6n2

n∑

l,m=1

κ4,lmE
{
D3

lm

(
(U ∗A(n)U)ml(t1, s)ξA◦

n (t2, s)
)}

, (4.46)

where, in view of (2.7), κ4,lm = κ4 − 9δlmw4. It follows from (2.27) and (4.4)
that in (4.47) we can replace κ4,lm with κ4, which gives error terms of the order
O(n−1/2), n →∞. Hence,

T
(n)
3 =

κ4

6n2

n∑

l,m=1

E
{
ξA◦
n ·D3

lm(U ∗A(n)U)ml + 3DlmξA
n ·D2

lm(U ∗A(n)U)ml

+ 3D2
lmξA

n ·Dlm(U ∗A(n)U)ml + (U ∗A(n)U)ml ·D3
lmξA

n

}

=: κ4[T
(n)
31 + T

(n)
32 + T

(n)
33 + T

(n)
34 ] + O(n−1/2), n →∞. (4.47)

Treating T
(n)
31 similarly to T

(n)
21 of (4.30) (see (4.36)–(4.38)), one can get

T
(n)
31 = O(n−1/2), n →∞. (4.48)

Besides, it can be shown with the help of (2.26), (2.27) and (4.4) that all terms
containing off-diagonal entries Ulm or (UA(n)U)lm vanish in the limit n → ∞.
Thus,

T
(n)
32 + T34 = O(n−1/2),

and we are left with

T
(n)
3 =− iκ4

n2

n∑

l,m=1

E
{(

Ull ∗ (U ∗A(n)U)mm

)
(t1)

× (
Ull ∗ (U ∗ C(n)U)mm + Umm ∗ (U ∗ C(n)U)ll

)
(t2)

)}
+ O(n−1/2),
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as n →∞. Now it follows from (6.11) that

lim
n→∞T

(n)
3 = −2iκ4

[
K

(3)
A (v ∗ v ∗ v)(t1)(v ∗ v ∗ v)(t2) + 2T 2

A(v ∗ tv)(t1)(v ∗ tv)(t2)
]
.

This and (4.44), (4.45) yield (4.28) after some calculations.
It remains to show (4.29). It is much simpler to do because in this case we

have additional factors n−1/2 (see (4.25)), so that treating Tj , j = 4, 5, 6 similarly
to Tj , j = 2, 3, one can easily get (4.29). This completes the proof of the lemma.

5. Limiting Probability Law of Fluctuations of ξA
n [ϕ]

Theorem 5.1. Consider the real symmetric Wigner random matrix of the
form

M (n) = n−1/2W (n), W (n) = {Wjk ∈ R, Wjk = Wkj = (1 + δjk)1/2Vjk}n
j,k=1,

(5.1)
where {Vjk}1≤j≤k<∞ are i.i.d. random variables such that

E{V11} = 0, E{V 2
11} = w2,

and the functions lnE{eitV11} and E{eit|V11|} are entire.
Let {A(n)}∞n=1 satisfy (1.2), (1.3), C(n) = A(n) + A(n)T , and there exist

Ap = lim
n→∞n−p/2

( n∑

l,m=1

(C(n)
lm )p + (2(2−p)/2 − 1)

n∑

m=1

(C(n)
mm)p

)
/2, p ≥ 3. (5.2)

Then for any ϕ : R→ R satisfying (4.2), the random variable ξA◦
n [ϕ] converges

in distribution as n →∞ to the random variable ξA[ϕ] such that

lnE{eixξA[ϕ]} = −x2VW [ϕ]/2 +
∞∑

p=3

κpAp

p!
(ix∗)p, (5.3)

x∗ =
x

w2

2w∫

−2w

ϕ(µ)µρsc(µ)dµ, (5.4)

where ρsc is the density of the semicircle law (2.31), and VW [ϕ] is given by (4.11).

R e m a r k 5.2. It can be shown that in the case of the matrix M̃ (n) =
n−1/2{Vjk}n

j,k=1, Theorem 5.1 holds true with

lnE{eixξA[ϕ]} = −V 1
W̃

[ϕ]x2/2 +
∞∑

p=3

κpÃp

p!
(ix∗)p,

560 Journal of Mathematical Physics, Analysis, Geometry, 2013, vol. 9, No. 4



On Non-Gaussian Limiting Laws for Certain Statistics of Wigner Matrices

where V 1
W̃

[ϕ] is given by (4.16) with w2 = 1, and

Ãp = lim
n→∞n−p/2

( n∑

l,m=1

(C(n)
lm )p + (2(−2p+1)/2 − 1)

n∑

m=1

(C(n)
mm)p

)
/2.

R e m a r k 5.3. For matrix elements (1.5), Ap = 2p/2, and we obtain Theorem
3.4 of [14]. In the case of bilinear forms (1.6), (1.7), we have for Ap of (5.2):

Ap = lim
n→∞

(( n∑

l=1

(η(n)
l )p

)2 + (2(2−p)/2 − 1)
n∑

l=1

(η(n)
l )2p

)
, p ≥ 3.

In particular, if for all m = 1, . . . , n, η
(n)
m = O(n−1/2), n → ∞, then Ap = 0,

p ≥ 3, and the random variable (ϕ(M (n))◦η(n), η(n)) converges in distribution
to the Gaussian random variable with zero mean and the variance V

(Mη,η)
GOE [ϕ] of

(3.18).

R e m a r k 5.4. It follows from Theorem 5.1 that if ϕ is even, then the random
variable ξA◦

n [ϕ] converges in distribution to the Gaussian random variable with
zero mean and the variance VGOE [ϕ] + Cκ4 [ϕ,ϕ] (see (4.9)–(4.11)).

P r o o f of Theorem 5.1 We prove the theorem for a class of test functions
satisfying the condition

∫
|F [ϕ](t)||t|ldt < Cϕl! ∀l ∈ N, (5.5)

where F [ϕ] is given by (3.5) and Cϕ is an absolute constant. Then the theorem
can be extended to the class of the functions satisfying (4.2) by using a standard
approximation procedure (see, e.g., [17], Section 3.2). Consider the characteristic
functions

ZA
n (x) = E

{
eix(ξA

n [ϕ])◦
}

, ẐA
n (x) = E

{
eix(ξ̂A

n [ϕ])◦
}

,

where ξ̂A
n [ϕ] corresponds to the GOE matrix M̂ (n) = n−1/2Ŵ (n) (2.3). In view of

Theorem 3.3, (4.11), and (5.3), it suffices to prove that for any x ∈ R

lim
n→∞ lnZA

n (x)/ẐA
n (x) = −(Cκ3 [ϕ,ϕ] + Cκ4 [ϕ,ϕ])x2/2 +

∞∑

p=3

κpAp

p!
(ix∗)p. (5.6)

Following the idea of the proof of Theorem 3.2, we introduce the ”interpolating”
random matrix M (n)(s) of (4.18), put

ZA
n (x, s) = E {en(x, s)} , en(x, s) = exp{ix(ξA,s

n [ϕ])◦}, (5.7)

ξA,s
n [ϕ] = Trϕ(M (n)(s))A(n), ξA,s

n (t) = TrU(t, s)A(n), U(t, s) = eitM(s),
(5.8)
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and write

ln ZA
n (x)/ẐA

n (x) =− x

2

1∫

0

ds

ZA
n (x, s)

∫ ( 1√
ns

n∑

l,m=1

E
{

W
(n)
lm Ψlm

}

− 1√
n(1− s)

n∑

l,m=1

E
{

ŴlmΨlm

})
F [ϕ](t)dt, (5.9)

Ψlm =Ψlm(t, x, s) = (U ∗A(n)U)ml(t, s)e◦n(x, s) (5.10)

(cf (4.20)–(4.22)). Let us note that unlike the functions Φlm of (4.22), having all
the derivatives Dp

lmΦlm of the order O(n3/2) (see (4.23)), here we have Dp
lmΨlm =

O(n(p+1)/2), and there is no such finite p ∈ N that εp of (2.8) vanishes as n →∞.
Hence, instead of (2.8), used while treating (4.20), here for every term of the first
sum of the r.h.s. of (5.9) we apply the infinite version of (2.8) given by (2.10). To
do this, we check first that Ψlm(x, t) satisfies condition (2.11). Using the Leibnitz
rule, we obtain

Dp
lmΨlm(x, t, s) =

p∑

q=0

(
p

q

)
Dp−q

lm (U ∗A(n)U)ml(t, s)D
q
lme◦n(x, s), (5.11)

where
Dq

lmen(x, s) = ixDq−1
lm

(
en(x, s)DlmξA,s

n [ϕ]
)

(5.12)

(see (5.7)), so that

Dq
lmen(x, s) = en(x, s)

q∑

r=1

(ix)r
∑

q = (q1, . . . , qr) :
q1 + . . . + qr = q

Cq,r

r∏

t=1

Dqt

lmξA,s
n [ϕ],

∑

q,r

Cq,r ≤ 2q.

Hence,

|Dq
lmen(x, s)| ≤ (

2(1 + |x|))q max
1≤r≤q,

∑r
t=1 qt=q

r∏

t=1

|Dqt

lmξA,s
n [ϕ]|,

where
Dq

lmξA,s
n [ϕ] =

∫
F [ϕ](θ)Dq

lmξA,s
n (θ)dθ (5.13)

with ξA,s
n of (5.8), and in view of (2.29) and (5.5),

|Dq
lmξA,s

n [ϕ]| ≤
∫
|F [ϕ](θ)||Dq

lmξA,s
n (θ)|dθ ≤ CACϕ2q+1, (5.14)
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so that
|Dq

lmen(x, s)| ≤ (
c
√

n(1 + |x|))q
. (5.15)

Here and in what follows, c depends only on A(n) and ϕ. This, (2.26), and (5.11)
yield

|Dp
lmΨlm(x, t, s)| ≤ (c

√
n(1 + |x|+ t))p+1, x ∈ R, t > 0. (5.16)

Thus, Ψlm satisfies (2.11) for every x ∈ R, t > 0. Besides, since lnE{eitV11} is
entire, then we have

∞∑

p=1

xp|κp+1|
p!

< ∞, ∀x > 0, (5.17)

where κp is the p th cumulant of V11. This implies (2.12), ∀x ∈ R, t > 0. Applying
differentiation formula (2.10) with ζ = W

(n)
lm = β

−1/2
lm Vlm and Φ = Ψlm to every

term of the first sum and differentiation formula (2.4) to every term of the second
sum in the r.h.s. of (5.9), we get

ln ZA
n (x)/ẐA

n (x) = −x

2

1∫

0

ds

ZA
n (x, s)

∫ ∞∑

p=2

s(p−1)/2 κp+1

p!
S(n)

p (x, t, s)F [ϕ](t)dt,

(5.18)

S(n)
p (x, t, s) =

1
n(p+1)/2

n∑

l,m=1

β
−(p+1)/2
lm E{Dp

lmΨlm(x, t, s)}. (5.19)

It was shown in [14] that in the case of matrix elements (1.5), the series in (5.18)
converges uniformly in n ∈ N, (t, x) ∈ K for any compact set K ⊂ {(x, t) ∈
R2 : t > 0}. For the general case, the proof is almost the same with the obvious
modifications. It is based on (5.17), the estimate

Ap ≤ 2p/2, ∀p ∈ N, (5.20)

following from (5.2) and (1.2), and on the uniform bound

|S(n)
p (x, t, s)| ≤ (CK)l, ∀(t, x) ∈ K, n ∈ N, s ∈ [0, 1], (5.21)

which can be obtained with the help of (2.19)–(2.29). Here CK is an absolute
constant depending only on K. In view of the uniform convergence of the series,
to perform the limiting transition as n →∞ in (5.18), it suffices to find the limits
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Sp = limn→∞ S
(n)
p for every fixed p ∈ N. We have

S(n)
p =

1
n(p+1)/2

n∑

l,m=1

β
−(p+1)/2
lm E

{
(U ∗AU)lmDp

lme◦n + pDlm(U ∗AU)lmDp−1
lm e◦n

+ D2
lm(U ∗AU)lmDp−2

lm e◦n · p(p− 1)/2 + D3
lm(U ∗AU)lmDp−3

lm e◦n

×p(p− 1)(p− 2)/6 + δ1,2,3

p−4∑

q=0

(
p

q

)
Dp−q

lm (U ∗A(n)U)mlD
q
lme◦n

}

= S
(n)
p1 + S

(n)
p2 + S

(n)
p3 · p(p− 1)/2 + S

(n)
p4 ·p(p− 1)(p− 2)/6 + δ1,2,3 · S(n)

p5 ,

(5.22)

where δ1,2,3 = 0, if p = 1, 2, 3. It follows from (2.26)–(2.27) and (5.15) that
S

(n)
p5 = O(n−1/2), n →∞. Since

Dq
lmen(x, s) = en(x, s)

(
ixDlmξA,s

n [ϕ]
)q + O(n(q−1)/2)

= en(x, s)
(− xβlm

∫
ϕ̂(θ)(U ∗ C(n)U)lm(θ)dθ

)q + O(n(q−1)/2), n →∞,

(5.23)

then

S
(n)
p4 =

1
n(p+1)/2

n∑

l,m=1

β
−(p+1)/2
lm E

{
D3

lm(U ∗A(n)U)lm

× (− xβlm

∫
ϕ̂(θ)(U ∗ C(n)U)lm(θ)dθ

)p−3
en

}
+ O(n−1/2), p > 3,

and by (2.26), (2.27) S
(n)
p4 = O(n−1/2), n →∞, p > 3. If p = 3, then

S
(n)
34 =

1
n2

n∑

l,m=1

β−2
lm E

{
D3

lm(U ∗A(n)U)lme◦n(x, s)
}

(compare with Tn
31 of (4.47)), and in addition to (2.26), (2.27), we use (6.10)

to show that Var
{
n−2

∑n
l,m=1 D3

lm(U ∗ A(n)U)lme
}

= O(n−1), and so S
(n)
34 =

O(n−1/2), n →∞. Thus,

S
(n)
p4 = O(n−1/2), n →∞, p ≥ 3. (5.24)
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Consider now S
(n)
p3 of (5.22). Applying (5.23), we can write

S
(n)
p3 =

1
n(p+1)/2

×
n∑

l,m=1

β
(p−5)/2
lm E{D2

lm(U ∗A(n)U)lm

(− x

∫
ϕ̂(θ)(U ∗ C(n)U)lm(θ)dθ

)p−2
en}

+O(n−1/2), n →∞, p > 2.

There arise the sums of three types:

S
1(n)
p3 =

1
n(p+1)/2

n∑

l,m=1

β
(p−1)/2
lm UllUmm(UA(n)U)lm(UC(n)U)p−2

lm ,

S
2(n)
p3 =

1
n(p+1)/2

n∑

l,m=1

β
(p−1)/2
lm UlmUlm(UA(n)U)lm(UC(n)U)p−2

lm ,

S
3(n)
p3 =

1
n(p+1)/2

n∑

l,m=1

β
(p−1)/2
lm UllUlm(UA(n)U)mm(UC(n)U)p−2

lm ,

where we omit the arguments of U and put (UC(n)U)q
lm =

∏q
j=1(U(tj1)C

(n)U(tj2))lm.

If p = 2, then treating S
(n)
23 similarly to T

(n)
21 of (4.30) (see (4.30)–(4.38)), we get

S
(n)
23 = O(n−1/2), n → ∞. In the case p > 2, we use the asymptotic relations

following from (2.25)–(2.27):

n∑

l,m=1

|Ulm||(UA(n)U)lm| = O(n), (5.25)

n∑

l,m=1

|(UA(n)U)lm||(UA(n)U)lm| = O(n), (5.26)

n∑

l,m=1

|(UA(n)U)mm||(UA(n)U)lm| = O(n
√

n), (5.27)

n∑

m=1

|(UA(n)U)mm||(UA(n)U)mm| = O(n) (5.28)

as n → ∞. They, together with (2.26), allow to show that S
j(n)
p3 , j = 1, 2, 3 are

of the order O(n−1/2), n →∞, so that

S
(n)
p3 = O(n−1/2), n →∞. (5.29)
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Consider S
(n)
p2 of (5.22). Applying (2.23) and (5.12), we can write

S
(n)
p2 = − 2px

n(p+1)/2

×
n∑

l,m=1

β
−(p−1)/2
lm E{(Ull ∗ (U ∗A(n)U)mm + Ulm ∗ (U ∗A(n)U)lm

)
(t, s)

×Dp−2
lm

(
en(x, s)DlmξA,s

n [ϕ]
)} = S

1(n)
p2 + S

2(n)
p2 . (5.30)

Since

Dq
lm

(
en(x, s)DlmξA,s

n [ϕ]
)

= Dq
lmen(x, s) ·DlmξA,s

n [ϕ]

+ qDq−1
lm en(x, s) ·D2

lmξA,s
n [ϕ] + O(n(q−1)/2), n →∞, (5.31)

where

DlmξA,s
n [ϕ] = iβlm

∫
(U ∗ C(n)U)lm(θ, s)F [ϕ](θ)dθ, (5.32)

D2
lmξA,s

n [ϕ] =− β2
lm

∫ (
Ull ∗ (U ∗ C(n)U)mm + Umm ∗ (U ∗ C(n)U)ll

+ 2Ulm ∗ (U ∗ C(n)U)lm

)
(θ, s)F [ϕ](θ)dθ,

then putting (5.31) with q = p− 2 in S
2(n)
p2 of (5.30) and applying (5.15), (5.26),

and (5.28), we get as n →∞

S
2(n)
p2 = O(n−1/2), (5.33)

S
1(n)
p2 =− 2px

∫
F [ϕ](θ)dθ

1
n(p+1)/2

n∑

l,m=1

β
−(p+1)/2
lm E{(Ull ∗ (U ∗A(n)U)mm

)
(t, s)

× [
Dp−2

lm en(x, s) · i(U ∗ C(n)U)lm(θ, s)

− (p− 2)Dp−3
lm en(x, s) · (Ull ∗ (U ∗ C(n)U)mm

+ Umm ∗ (U ∗ C(n)U)ll

)
(θ, s)

]}+ O(n−1/2).

It follows from (5.23) and (5.25)–(5.28) that S
1(n)
p2 does not vanish only if p = 2

or p = 3. Hence, putting en(x, s) = ZA
n (x, s) + e◦n(x, s) and using (6.10), (6.12),
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and (5.33), we get

S
(n)
p2 = xZA

n (x, s)

×
∫ [

− 4iδp2

n3/2

n∑

l,m=1

E{(Ull ∗ (U ∗A(n)U)mm

)
(t, s)(U ∗ C(n)U)lm(θ, s)}

+
6δp3

n2

n∑

l,m=1

E{(Ull ∗ (U ∗A(n)U)mm

)
(t, s)

(
Ull ∗ (U ∗ C(n)U)mm

+Umm ∗ (U ∗ C(n)U)ll

)
(θ, s)}

]
F [ϕ](θ)dθ + O(n−1/2) (5.34)

as n → ∞. Such expressions were considered in the proof of Theorem 4.2 (see
Lemma 4.6). Treating S

(n)
p2 , p = 2, 3 in the same way and using (6.11), (6.13) and

(4.43)–(4.45), we get

lim
n→∞−

x

2

1∫

0

ds

ZA
n (x, s)

∫ [κ3
√

s

2
S

(n)
22 (x, t, s) +

κ4s

6
S

(n)
32 (x, t, s)

]
F [ϕ](t)dt

= −
(2

3
Cκ3 [ϕ,ϕ] + Cκ4 [ϕ, ϕ]

)
x2/2 (5.35)

with Cκ3 [ϕ,ϕ], Cκ4 [ϕ,ϕ] of (4.9), (4.10) (see also (5.6), (5.18)).
At last consider S

(n)
p1 of (5.22):

S
(n)
p1 =

ix

n(p+1)/2

n∑

l,m=1

β
−(p+1)/2
lm E{(U ∗A(n)U)lm(t, s)Dp−1

lm

(
en(x, s)DlmξA,s

n [ϕ]
)}

=
ix

n(p+1)/2

n∑

l,m=1

β
−(p+1)/2
lm E{(U ∗A(n)U)lm(t, s)

[
Dp−1

lm en(x, s) ·DlmξA,s
n [ϕ]

+ (p− 1)Dp−2
lm en(x, s) ·D2

lmξA,s
n [ϕ]

]}+ O(n−1/2) = S
1(n)
p1 + S

2(n)
p1 + O(n−1/2),

(5.36)

n → ∞. Here we used (5.12), (5.31), and then (2.29), (5.15), and (5.25)–(5.28)
to estimate the vanishing term. It follows from (5.23) and (5.26)–(5.28) that if
p > 2, then

S
2(n)
p1 = O(n−1/2), n →∞, p > 2. (5.37)

If p = 2, we have

S
2(n)
21 =− ix

∫
1

n3/2

n∑

l,m=1

E
{
en(x, s)(U ∗A(n)U)lm(t, s)

(
Ull ∗ (U ∗ C(n)U)mm

+ Umm ∗ (U ∗ C(n)U)ll

)
(θ, s)

}
F [ϕ](θ)dθ + O(n−1/2)
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and, similarly to (5.35),

lim
n→∞−

x

2

1∫

0

ds

ZA
n (x, s)

∫
κ3
√

s

2
S

2(n)
21 (x, t, s)F [ϕ](t)dt = −

(1
3
Cκ3 [ϕ,ϕ]

)
x2/2.

(5.38)

Using (5.23) with q = p− 1 and (5.32), for S
1(n)
p1 of (5.36) we get

S
1(n)
p1 =

1
n(p+1)/2

n∑

l,m=1

β
(p−1)/2
lm E{(U ∗A(n)U)lm(t, s)en(x, s)

× (− x

∫
ϕ̂(θ)(U ∗ C(n)U)mm(θ)dθ

)p}+ O(n−1/2), n →∞, (5.39)

where we estimate the vanishing term with the help of (5.26) and (5.28). Putting
here

β
(p−1)/2
lm = 1 + δlm(2(1−p)/2 − 1)

and en(x, s) = ZA
n (x, s) + e◦n(x, s), and then applying first parts of (6.14), (6.15),

we get

S
1(n)
p1 =

ZA
n (x, s)

n(p+1)/2

n∑

l,m=1

E{(U ∗A(n)U)lm(t, s)
(− x

∫
ϕ̂(θ)(U ∗ C(n)U)lm(θ)dθ

)p}

+ 2(2(1−p)/2 − 1)
ZA

n (x, s)
n(p+1)/2

n∑

m=1

E{(U ∗A(n)U)mm(t, s)

× (− x

∫
ϕ̂(θ)(U ∗ C(n)U)mm(θ)dθ

)p}+ O(n−1/2), n →∞.

This and second parts of (6.14), (6.15) yield for p ≥ 2

lim
n→∞−

x

2
κp+1

p!

1∫

0

ds

ZA
n (x, s)

∫
s(p−1)/2S

1(n)
p1 (x, t, s)F [ϕ](t)dt =

κp+1Ap+1

(p + 1)!
(ix∗)p+1

(5.40)
with Ap and x∗ defined in (5.2) and (5.4). Now putting (5.35), (5.38), and (5.40)
in (5.9), we get (5.6) and finish the proof of the theorem.

6. Auxiliary Results

Lemma 6.1. Consider a matrix A(n) satisfying (1.2), (1.3), C(n) = A(n) +
A(n)T , and a unitary matrix U(t) = U (n)(t) = eitM(n)

with the Wigner matrix
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M (n) of (2.1), (2.2). Denote U j = U(tj), t(p) = (t1, . . . , tp), f = E{f}, and
define

ηA
n (t1, t2) = n−3/2

n∑

l,m=1

(U1A(n)U2)lm, (6.1)

vI
n(t1, t2, t3) = n−1

n∑

m=1

U1
mm(U2A(n)U3)mm, (6.2)

vC
n (t(4)) = n−1

n∑

m=1

(U1C(n)U2)mm(U3A(n)U4)mm, (6.3)

ωn(t(5)) = n−3/2
n∑

l,m=1

U1
ll(U

2A(n)U3)mm(U4C(n)U5)lm, (6.4)

γ(1)
n (t(2p+2)) = n−(p+1)/2

∑

l,m=1

(U1A(n)U2)lm

p+1∏

j=2

(U2j−1C(n)U2j)lm, (6.5)

γ(2)
n (t(2p+2)) = n−(p+1)/2

∑

m=1

(U1A(n)U2)mm

p+1∏

j=2

(U2j−1C(n)U2j)mm, (6.6)

p ≥ 2. Then under the conditions of Theorem 4.2, we have

(i) Var{ξA
n (t)} ≤ c(1 + |t|)8, lim

n→∞ ξ
A
n (t) = TA · v(t), (6.7)

(ii) Var{ηA
n (t1, t2)} = O(n−1) lim

n→∞ ηA
n (t1, t2) = K

′(2)
A · v(t1)v(t2), (6.8)

(iii) Var{vI
n(t1, t2, t3)} = O(n−1), lim

n→∞ vI
n(t1, t2, t3) = TA · v(t1)v(t2 + t3),

(6.9)

(iv) Var{vC
n (t(4))} = O(n−1), (6.10)

lim
n→∞ vC

n (t(4)) = 2K(3)
A

4∏

j=1

v(tj) + 2T 2
A · v(t1 + t2)v(t3 + t4), (6.11)

(v) Var{ωn(t(5))} = O(n−1/2), (6.12)

lim
n→∞ωn(t(5)) = (K(1)

A −K
(2)
A )

5∏

j=1

v(tj) + K
(2)
A v(t1)v(t4)v(t5)v(t2 + t3), (6.13)

(vi) Var{γ(1)
n (t(2p+2))} = O(n−1/2), lim

n→∞ γ(1)
n (t(2p+2)) = K

(4)
A

p+1∏

j=1

v(tj), (6.14)
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(vii) Var{γ(2)
n (t(2p+2))} = O(n−1/2), lim

n→∞ γ(2)
n (t(2p+2)) = K

(5)
A

p+1∏

j=1

v(tj), (6.15)

where O(nα), n → ∞, can depend on t(p), v and K
(1,2,3)
A are defined in (2.30),

(4.5)–(4.7), and

K
′(2)
A = lim

n→∞n−3/2
n∑

l,m=1

A
(n)
lm , (6.16)

K
(4)
A = lim

n→∞n−(p+1)/2
n∑

l,m=1

A
(n)
lm (C(n)

lm )p, K
(5)
A = lim

n→∞n−(p+1)/2
n∑

m=1

A(n)
mm(C(n)

mm)p.

(6.17)

R e m a r k 6.2. All the statements of the lemma remain valid under the
conditions of Theorem 5.1.

P r o o f. 1. Firstly we prove the lemma supposing that the matrix M (n)

belongs to the GOE.
(i) Statement (i) in the GOE case was proved in Lemma 2.3.

(ii) By Poincaré inequality (2.5), we have

Var{ηA
n (t1, t2)} ≤ w2

n4

∑

1≤j≤k≤n

β−1
jk E

{∣∣Djk

n∑

l,m=1

(U1A(n)U2)lm

∣∣2}.

This and (2.22) show that it suffices to estimate

Tn =
1
n4

n∑

j,k=1

∣∣
n∑

l,m=1

U1
lj(U

2A(n)U3)km

∣∣2.

We have

Tn =
1
n4

n∑

j,k=1

n∑

l,l′,m,m′=1

U1
ljU

1
jl′(U

3
A(n)T U2)mk(U2A(n)U3)km

=
1
n3

n∑

m,m′=1

(U3
A(n)T A(n)U3)mm′ =

1
n3

∣∣∣
n∑

m,p=1

(A(n)U3)pm

∣∣∣
2

≤ 1
n2

TrAA(n)T = O(n−1),

and hence Var{ηA
n (t1, t2)} = O(n−1), n → ∞. Now applying (2.13), (2.4), and

(2.23), and then estimating the error terms with the help of (3.8), one can get as
n →∞
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ηA
n (t1, t2) =n−3/2

n∑

l,m=1

E{(A(n)U(t2))lm}

−w2

t1∫

0

dt3

t3∫

0

vn(t3 − t4)ηA
n (t3, t2)dt4 + o(1),

where by (3.1) and (2.30),

lim
n→∞n−3/2

n∑

l,m=1

E{(A(n)U(t2))lm} = lim
n→∞ vn(t2)n−3/2

n∑

l,m=1

A
(n)
lm = K

′(2)
A v(t2)

with K
′(2)
A of (6.16). Thus, for ηA = limn→∞ ηA

n , we have

ηA(t1, t2) + w2

t1∫

0

dt3

t3∫

0

v(t3 − t4)ηA(t4, t2)dt4 = K
′(2)
A v(t1),

and by (2.36),

ηA(t1, t2) = K
′(2)
A v(t1)v(t2). (6.18)

(iii) Putting Umm = U◦
mm + Umm and using (3.1), we get

vI
n(t1, t2, t3) = vn(t1)ξ

A
n (t2 + t3) + rn, rn = n−1

n∑

m=1

(U1
mm)◦(U2A(n)U3)mm.

(6.19)

By the Schwarz inequality and (2.27), we have

|rn| ≤
( n∑

m=1

|(U2A(n)U3)mm|2
)1/2( n∑

m=1

|(U1
mm)◦|2

)1/2

= O(n−1/2)
( n∑

m=1

|(U1
mm)◦|2

)1/2
, (6.20)

where, as it follows from (3.8),

E
{ n∑

m=1

|(U1
mm)◦|2

}
= O(1), n →∞. (6.21)
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This and the Schwarz inequality for the expectations yield

|rn| = O(n−1/2), n →∞. (6.22)

Now (6.7), (6.19), and (6.22) give limn→∞ vI
n(t1, t2, t3) = TA · v(t1)v(t2 + t3). We

also have

Var{vI
n} = E

{
n−1

n∑

m=1

U1
mm(U2A(n)U3)mm · vI◦

n

}

= vn(t1)E
{
n−1ξA

n (t2 + t3)vI◦
n

}
+ E

{
rnvI◦

n

}

with rn of (6.19). It follows from the Schwarz inequality, (3.8) and (6.20)–(6.22)
that Var{vI

n} ≤ O(n−1/2)Var{vI
n}1/2, n →∞, which finishes the proof of (6.9)

(iv) The proof of (6.10) repeats with the obvious modifications that one of
(6.8). Let us prove (6.11). Applying Duhamel formula (2.13), differentiation
formulas (2.4), (2.19)–(2.23), and then estimating the error terms with the help
of (3.8), one can get as n →∞:

n−1
n∑

m=1

E{(U1A(n)U2)mm(U3C(n)U4)mm}

= n−1
n∑

m=1

E{(A(n)U2)mm(U3C(n)U4)mm}

− w2

t1∫

0

dt5

t5∫

0

E
{

vn(t5 − t6)n−1
n∑

m=1

(U6A(n)U2)mm(U3C(n)U4)mm

}
dt6

− w2

t1∫

0

dt5

t5∫

0

E
{

n−1ξA
n (t5 + t6)n−1

n∑

m=1

Umm(t2 − t6)(U3C(n)U4)mm

}
dt6 + o(1),

(6.23)

n−1
n∑

m=1

E{(A(n)U2)mm(U3C(n)U4)mm} = n−1
n∑

m=1

A(n)
mmE{(U3C(n)U4)mm}

− w2

t2∫

0

dt5

t5∫

0

E
{

vn(t5 − t6)n−1
n∑

m=1

(A(n)U6)mm(U3C(n)U4)mm

}
dt6 + o(1),

(6.24)

n−1
n∑

m=1

A(n)
mmE{(U3C(n)U4)mm} = n−1

n∑

m=1

A(n)
mmE{(C(n)U4)mm}
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− w2

t3∫

0

dt5

t5∫

0

E
{

vn(t5 − t6)n−1
n∑

m=1

A(n)
mm(U6C(n)U4)mm

}
dt6

− w2

t3∫

0

dt5

t4∫

0

E
{

n−1ξC
n (t5 + t6)n−1

n∑

m=1

A(n)
mmUmm(t4 − t6)

}
dt6 + o(1), (6.25)

where by (3.1),

lim
n→∞n−1

n∑

m=1

A(n)
mmE{(C(n)U4)mm} = 2DA · v(t4), DA = lim

n→∞n−1
n∑

m=1

(A(n)
mm)2.

(6.26)
Denote

vC(t(4)) = lim
n→∞ vC

n (t(4)), H(t3, t4) = lim
n→∞n−1

n∑

m=1

A(n)
mmE{(U3C(n)U4)mm},

G(t2, t3, t4) = lim
n→∞n−1

n∑

m=1

E{(A(n)U2)mm(U3C(n)U4)mm}.

It follows from (6.23)–(6.26), (6.7) and (6.9) that vC , G, and H satisfy the integral
equations:

vC(t(4))+w2

t1∫

0

dt5

t5∫

0

v(t5 − t6)vC(t6, t2, t3, t4)dt6

= G(t2, t3, t4)− 2w2T 2
Av(t3 + t4)

t1∫

0

dt5

t5∫

0

v(t5 + t6)v(t2 − t6)dt6,

G(t2, t3, t4)+w2

t2∫

0

dt5

t5∫

0

v(t5 − t6)G(t6, t3, t4)dt6 = H(t3, t4),

H(t3, t4)+w2

t3∫

0

dt5

t5∫

0

v(t5 − t6)H(t6, t4)dt6

= 2DA · v(t4)− 2w2T 2
A

t3∫

0

dt5

t4∫

0

v(t5 + t6)v(t4 − t6)dt6.

Solving the equations with the help of (2.36), we get

H(t3, t4) = 2K
(3)
A v(t3)v(t4) + 2T 2

Av(t3 + t4), G(t2, t3, t4) = v(t2)H(t3, t4),

vC(t(4)) = v(t1)G(t2, t3, t4) + 2T 2
A(v(t1 + t2)− v(t1)v(t2))v(t3 + t4).
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This leads to (6.11) and finishes the proof of (iv).

(v) Similarly to (6.19)–(6.22), we have

ωn(t(5)) = vn(t1)Γn(t2, t3, t4, t5) + rn, (6.27)

Γn(t2, t3, t4, t5) = n−3/2
n∑

l,m=1

(U2A(n)U3)mm(U4C(n)U5)lm, (6.28)

rn(t(5)) = n−3/2
n∑

l,m=1

(U1
ll)
◦(U2A(n)U3)mm(U4C(n)U5)lm,

where by (2.15), the Schwarz inequality, (2.27), and (6.21),

|rn| ≤ n−3/2||C(n)||

×
(
E

{ n∑

l=1

|(U1
ll)
◦|2

})1/2(
E

{ n∑

m=1

|(U2A(n)U3)mm|2
})1/2

= O(n−1/2),

(6.29)

n →∞. Applying (2.13), (2.4), (2.19)–(2.23) and then estimating the error terms
with the help of (3.8), one can get for Γn as n →∞ (cf (6.23)–(6.25)):

Γn(t2, t3, t4, t5) = Bn(t3, t4, t5)

− w2

t2∫

0

dt6

t6∫

0

E
{
vn(t6 − t7)Γn(t7, t3, t4, t5)

}
dt7

− w2

t2∫

0

dt6

t3∫

0

E
{
n−1ξA

n (t6 + t7)Dn(t3 − t7, t4, t5)
}
dt7 + o(1),

Bn(t3, t4, t5) = n−3/2
n∑

l,m=1

(A(n)U3)mm(U2C(n)U3)lm,

Dn(τ, t4, t5) = n−3/2
n∑

l,m=1

Umm(τ)(U2C(n)U3)lm.

Similarly to (6.27)–(6.29), it can be shown that Dn(τ, t4, t5) = vn(τ)ηC
n (t4, t5) +

O(n−1/2), n →∞, where ηC
n is defined in (6.1), so that by (6.8),

lim
n→∞Dn(τ, t4, t5) = 2K

′(2)
A v(τ)v(t4)v(t5). (6.30)
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For Bn, we also have

Bn(t3, t4, t5) = vn(t3)n−3/2
n∑

l,m=1

E
{

A(n)
mm(U4C(n)U5)lm

}
+ Rn, (6.31)

|Rn| ≤ n−1||A(n)||
(
E

{ n∑

m=1

|(AU3)◦mm|2
})1/2

.

By the standard argument based on Poincaré inequality (2.5), one can easily get

Var{(AU)mm(t)} ≤ C|t|2n−1(AA(n)T )mm,

and hence

Rn = O(n−1/2), n →∞. (6.32)

Besides, repeating with the obvious modifications the steps leading to (6.18), we
get

lim
n→∞n−3/2

∑

l,m=1

E
{

A(n)
mm(U4C(n)U5)lm

}
= K

(1)
A v(t4)v(t5).

This and (6.31), (6.32) yield

B(t3, t4, t5) := lim
n→∞Bn(t3, t4, t5) = K

(1)
A v(t3)v(t4)v(t5). (6.33)

Plugging (6.30), (6.33) in (6.28), we get the equation with respect to Γ =
limn→∞ Γn,

Γ(t2, t3, t4, t5) + w2

t2∫

0

dt6

t6∫

0

v(t6 − t7)Γ(t7, t3, t4, t5)dt7

= B(t3, t4, t5)− w2K
(2)
A v(t4)v(t5)

t2∫

0

dt6

t3∫

0

v(t6 + t7)v(t3 − t7)dt7,

where we put K
(2)
A = 2TAK

′(2)
A (see (4.6), (6.16)). Hence, by (2.36),

Γ(t2, t3, t4, t5) = v(t2)B(t3, t4, t5) + K
(2)
A (v(t2 + t3)− v(t2)v(t3))v(t4)v(t5)

= (K(1)
A −K

(2)
A )

5∏

j=1

v(tj) + K
(2)
A v(t2 + t3)v(t4)v(t5).

Journal of Mathematical Physics, Analysis, Geometry, 2013, vol. 9, No. 4 575



A. Lytova

This and (6.27)–(6.29) lead to (6.13).

(vi) It follows from Poincaré inequality (2.5) that

Var{γ(1)
n (t(2p+2))}

≤ w2

n(p+2)

∑

1≤j≤k≤n

β−1
jk E

{∣∣∣Djk

n∑

l,m=1

(U1A(n)U2)lm

p+1∏

j=2

(U2j−1C(n)U2j)lm

∣∣∣
2}

.

Taking into account (2.22), it is seen that to get the first part of (6.14), it suffices
to show that

Rn :=
1

n(p+2)

n∑

j,k=1

∣∣∣
n∑

l,m=1

U0
jl(U

1A(n)U2)km

p+1∏

j=2

(U2j−1C(n)U2j)lm

∣∣∣
2

= O(n−1)

as n →∞ (here U0 = U(t0)). Since by (2.15),

n∑

j=1

UjlUjl′ = δll′ ,

n∑

k=1

(U2A(n)T U1)mk(U1A(n)U2)km′ =
n∑

k=1

(U2A(n)T )mk(A(n)U2)km′ ,

then

Rn =
1

n(p+2)

n∑

k,l=1

∣∣∣
n∑

m=1

(A(n)U2)km

p+1∏

j=2

(U2j−1C(n)U2j)lm

∣∣∣
2

≤ 1
n(p+2)

n∑

k,l=1

n∑

m=1

|(A(n)U2)km|2
n∑

m′=1

∣∣∣
p+1∏

j=2

(U2j−1C(n)U2j)lm′
∣∣∣
2
.

By (2.26), (2.27), we have

n∑

l,m′=1

∣∣∣
p+1∏

j=2

(U2j−1C(n)U2j)lm′
∣∣∣
2

= O(np−1)
n∑

l,m′=1

∣∣∣(U3C(n)U4)lm′
∣∣∣
2

= O(np), n →∞.

This and (2.27) yield Rn = O(n−1), n →∞. Therefore,

Var{γ(1)
n (t(2p+2))} = O(n−1), n →∞. (6.34)
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To prove (6.14), we must show that every U(t) in

γ(1)
n (t(2p+2)) = n−(p+1)/2

n∑

l,m=1

E
{

(U(t1)A(n)U(t2))lm

p+1∏

j=2

(U(t2j−1)C(n)U(t2j))lm

}

(6.35)

can be replaced with vn with the error term that vanishes as n → ∞. For this
purpose it suffices to show that

γ(1)
n (t(p)) = vn(t1)δn(t2, . . . , t2p+2) + o(1), n →∞, (6.36)

δn(t2, . . . , t2p+2) = n−(p+1)/2
n∑

l,m=1

(A(n)U(t2))lm

p+1∏

j=2

(U(t2j−1)C(n)U(t2j))lm.

(6.37)

Applying (2.13) and then (2.4), (2.19)–(2.23), we get

γ(1)
n (t(p)) = δn(t2, . . . , t2p+2)

−w2

t1∫

0

dτ1

τ1∫

0

v(τ1 − τ2)γ(1)
n (τ2, t2, . . . , t2p+2)dτ2 − w2

∫ t1

0
Rn(τ1, t2, . . . , t2p+2)dτ1,

Rn(τ1, t2, . . . , t2p+2) =

τ1∫

0

E
{
v◦n(τ2)γ(1)

n (τ1 − τ2, t2, . . . , t2p+2)
}
dτ2

+

τ1∫

0

(vn(τ2)− v(τ2))γ(1)
n (τ1 − τ2, t2, . . . , t2p+2)dτ2

+ n−1τ1γ
(1)
n (τ1, t2, . . . , t2p+2) + n−1

t2∫

0

γ(1)
n (τ1 + τ2, t2 − τ2, . . . , t2p+2)dτ2

+

t2∫

0

E
{

n−1ξA
n (τ1 + τ2)

1
n(p+1)/2

n∑

l,m=1

Ulm(t2 − τ2)
p+1∏

j=2

(U(t2j−1)C(n)U(t2j))lm

}
dτ2

+
1
n
· 1
n(p+1)/2

n∑

l,m,k=1

β−1
lk E

{
(U(τ1)A(n)U(t2))kmDlk

p+1∏

j=2

(U(t2j−1)C(n)U(t2j))lm

}
.

(6.38)

It follows from (2.32), (2.33), (2.36) that

γ(1)
n (t(p)) = v(t1)δn(t2, . . . , t2p+2)− w2

∫ t1

0
v(t1 − τ1)Rn(τ1, t2, . . . , t2p+2)dτ1.
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In fact, to get (6.36), it suffices to show that Rn = o(1), n → ∞. Indeed, the
first four terms of the r.h.s. of (6.38) vanish because of (6.7), the fifth term is
of the order O(n−1/2), n →∞, because of (2.26), (2.27) and the boundedness of
n−1ξA

n (τ1 + τ2). Besides, the last term after differentiation gives the terms of the
form n−1γ

(1)
n or

1
n
· 1
n(p+1)/2

n∑

l,m=1

E
{

(UA(n)UC(n)U)lm

p+1∏

j=2

(UC(n)U)lm

}
,

which are of the order O(n−1/2), n →∞ (see (2.26), (2.27)). Hence, Rn = o(1),
n →∞, and thus (6.36) is proved. It remains to note that (6.36) holds true for

γ(1)
n (t(2p+2)) = n−(p+1)/2

n∑

l,m=1

E
{

(V (t1)A(n)V (t2))lm

p+1∏

j=2

(V (t2j−1)C(n)V (t2j))lm

}

(cf (6.35)), where V is equal to U or identity matrix In. In the limit n → ∞,
we can replace all U of (6.35) with v to get (6.14). The proof of (vii) repeats
essentially that one of (vi). This finishes the proof of the lemma for the case
when the matrix M (n) belongs to the GOE.

2. Consider now the general case of the Wigner matrix M (n) satisfying the
conditions of the lemma. For the general case, the proofs of all statements (i)–
(vii) follow the same scheme based on the known facts for the GOE matrices
and interpolation procedure proposed in the proofs of Theorems 4.2 and 5.1. We
demonstrate this scheme by proving (i).

Consider Vn(t) := Var{ξA
n (t)} and note that

Vn(t) = Var{ξ̂A
n (t)}+ C∆

n (t,−t), (6.39)

where ξ̂A
n and C∆

n are defined in (4.17) and (4.20), respectively. By (4.4), we have

Var{ξ̂A
n (t)} ≤ ct2. (6.40)

Repeating the steps leading from (4.20) to (4.24)–(4.26), but using here (2.8)
with p = 5 instead of p = 6 in (4.24), we get

c∆
n (t,−t) =

i

2

1∫

0

[ 5∑

j=2

s(j−1)/2T
(n)
j + ε5

]
ds (6.41)

with T
(n)
j of (4.25), and

|ε5| ≤ C5w
7/8
8

n7/2

n∑

l,m=1

sup
M∈Sn

|D6
lmΦlm| ≤ c(1 + |t|)7. (6.42)
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Consider T
(n)
1 . It is given by (4.30) with t1 = t, t2 = −t. Since T

j(n)
21 , j = 1, 2, 3

of (4.31)–(4.36) are bounded uniformly in n ∈ N, and every derivative Dlm of
U(t) = eitM(n)

gives the factor t, then

∣∣∣n−3/2
n∑

l,m=1

D2
lm(U ∗A(n)U)lm

∣∣∣ ≤ c(1 + |t|)3.

By the Schwarz inequality, for T
(n)
21 of (4.30), we have

|T (n)
21 | =

∣∣∣E
{

n−3/2
n∑

l,m=1

D2
lm(U ∗A(n)U)lm · ξA◦

n (t)
}∣∣∣ ≤ c(1 + |t|)3V 1/2

n .

We also have for T
(n)
22 and T

(n)
23 of (4.30) (see (4.40) and (2.27)):

|T (n)
22 + T

(n)
23 | ≤ c(1 + |t|)3.

Hence,

|T (n)
2 | ≤ c(1 + |t|)3(V 1/2

n + 1). (6.43)

Treating T
(n)
3 of (4.47) and T

(n)
j , j = 4, 5 of (4.25) in the similar way, one can get

|T (n)
3 | ≤ c(1 + |t|)4(V 1/2

n + 1), (6.44)

|T (n)
j | ≤ c(1 + |t|)j+1, j = 4, 5. (6.45)

Putting (6.42)–(6.45) in (6.41), and then together with (6.40) in (6.39), we get
the quadratic inequality with respect to V

1/2
n

Vn − c(1 + |t|)4V 1/2
n − c(1 + |t|)7 ≤ 0,

solving which we get Vn ≤ c(1 + |t|)8. To finish the proof of (i), it remains to
show that

lim
n→∞n−1E{ξA

n (t)} = TAv(t). (6.46)

Similarly to (6.41), (6.42), we have

n−1E{ξA
n (t)} − n−1E{ξ̂A

n (t)} =
i

2

1∫

0

[
s1/2T

′(n)
2 + ε2

]
ds,

T
′(n)
2 =

κ3

j!n5/2

n∑

l,m=1

E
{
D2

lm(U ∗A(n)U)lm(t, s)
}

= O(n−1), n →∞,
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|ε3| ≤
C3
√

w8

n6

n∑

l,m=1

sup
M∈Sn

|D4
lm(U ∗A(n)U)lm(t, s)| = O(n−1/2), n →∞.

Hence, n−1E{ξA
n (t)} − n−1E{ξ̂A

n (t)} = O(n−1/2), n → ∞. This and (3.4) yield
(6.46).
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