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1. Introduction

It is known that the structure of integral transforms, which can be used
to solve the boundary value problems, is determined by the type of differential
equation. A number of transforms have appeared in mathematical literature since
the 70th of the last century in the works by Y.S. Uflyand [1, 2], M.P. Lenuk [3, 4],
L.S. Nayda [4], V.S. Protsenko [5], etc. In particular, the author and I.I. Bavrin
[7] have proposed integral transforms with non-separated variables for solving
multidimensional problems.

Let V ⊂ Rn+1 be the half-space

V =
{
(y1, . . . , yn, x) ∈ Rn+1 : x > 0

}
.

Then the solution of the Dirichlet problem is expressed via the Poisson formula [8],

u(x, y) = Γ
(

n + 1
2

)
π−

n+1
2

∫

y=0

x
[
(y − η)2 + x2

]n+1
2

f(η)dη.
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Obviously the Poisson kernel has the form of the Laplace transform

Γ
(

n + 1
2

)
π−

n+1
2

x
[
x2 + (y − η)2

]n+1
2

=
(

1
2π

)n
2

∫ ∞

0
λ

n
2 e−λx

Jn−1
2

(λ |y − η|)
|y − η|n−2

2

dλ,

where Jν is the Bessel function of order ν [8]. Reproducing property of the
Poisson kernel is obtained from the expansion of the function f(y) with respect
to the Laplace operator ∆ eigenfunctions:

f(y) = lim
τ→0

∞∫

0

λ
n
2 e−λτ


 1(√

2π
)n

∫

Rn

Jn−2
2

(λ |y − η|)

|y − η|
n−2

2

f (η) dη


 dλ.

On the basis of this expansion we can conclude that the integral transforms
with non-separated variables are defined as follows [7]: direct integral Fourier
transform

F [f ] (y, λ) =
1(√
2π

)n

∫

Rn

Jn−2
2

(λ |y − η|)

|y − η|
n−2

2

f (η) dη ≡ f̂ (y, λ) , (1)

inverse Fourier integral transform

F−1[f̂ ](y) = lim
τ→0

∞∫

0

λ
n
2 e−λτ f̂(y;λ)dλ ≡ f(y). (2)

The goal of the paper is to construct multi-dimensional analogues of integral
transforms (1), (2) appropriate for the differential equations with discontinuous
coefficients.

2. One-dimensional Integral Transforms with Discontinuous
Coefficients

In the paper, the integral transforms with discontinuous coefficients are con-
structed in accordance with author’s work [10]. Let ϕ (x, λ) and ϕ∗ (x, λ) be
eigenfunctions of the direct and the dual Sturm–Liouville problems for the Fourier
operator on piecewise-homogeneous axis In,

In =
{

x : x ∈ n+1
U

j=1
(lj−1, lj) , l0 = −∞, ln+1 = ∞, lj < lj+1, j = 1, n

}
.
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The eigenfunction ϕ (x, λ),

ϕ (x, λ) =
n∑

k=2

θ (x− lk−1) θ (lk − x) ϕk (x, λ)

+ θ (l1 − x) ϕ1 (x, λ) + θ (x− ln) ϕn+1 (x, λ) ,

is the solution of the system of separated differential equations
(

a2
m

d2

dx2
+ λ2

)
ϕm (x, λ) = 0, x ∈ (lm, lm+1) ; m = 1, . . . , n + 1,

the coupling conditions
[
αk

m1

d

dx
+ βk

m1

]
ϕk =

[
αk

m2

d

dx
+ βk

m2

]
ϕk+1,

x = lk, k = 1, . . . , n; m = 1, 2,

and the boundary conditions

ϕ1|x=−∞ = 0 , ϕn+1|x=∞ = 0.

Similarly, the eigenfunction ϕ∗ (x, λ),

ϕ∗ (ξ, λ) =
n∑

k=2

θ (ξ − lk−1) θ (lk − ξ) ϕ∗k (ξ, λ)

+ θ (l1 − ξ) ϕ∗1 (ξ, λ) + θ (ξ − ln) ϕ∗n+1 (ξ, λ) ,

is the solution of the system of separated differential equations
(

a2
m

d2

dx2
+ λ2

)
ϕ∗m (x, λ) = 0, x ∈ (lm, lm+1) ; m = 1, . . . , n + 1,

the coupling conditions

1
∆1,k

[
αk

m1

d

dx
+ βk

m1

]
ϕ∗k =

1
∆2,k

[
αk

m2

d

dx
+ βk

m2

]
ϕ∗k+1, x = lk,

where

∆i,k = det
(

αk
1i βk

1i

αk
2i βk

2i

)
k = 1, . . . , n; i,m = 1, 2,

and the boundary conditions

ϕ1|x=−∞ = 0 , ϕn+1|x=∞ = 0.
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We normalize the eigenfunctions as follows:

ϕn+1 (x, λ) = eia−1
n+1xλ. ϕ∗

n+1 (x, λ) = e−ia−1
n+1xλ.

Let Fn and F−1
n be the direct and the inverse Fourier transforms on the

Cartesian axis with n division points defined as (see [10]) :

Fn [f ] (λ) =
n+1∑

m=0

lm∫

lm−1

u∗m (ξ, λ) fm (ξ) dξ ≡ f̂ (λ) , (3)

fk (x) =
1
πi

∞∫

0

uk (x, λ) f̂ (λ) λdλ. (4)

3. The Main Result

We will use the method of delta-like functions [4].
This means that we are looking for the solution of the problem, defined by

the separated matrix systems (n + 1) of parabolic equations
(

∂

∂t
−A2

j

∂2

∂x2
−∆y

)
Uj (t, x, y) = 0, (t, x, y) ∈ D+ ×Rm, j = 1, n + 1 (5)

bounded on the set D ×Rm, D+ = (0,∞)× In, where

In =
{

x : x ∈ n+1
U

j=1
(lj−1, lj) , l0 = −∞, ln+1 = ∞, lj < lj+1, j = 1, n

}

∆y =
∂2

∂y2
1

+ . . . +
∂2

∂y2
m

,

Aj =
(
aj

kl

)
is a positive-definite matrix r × r by the initial conditions

Uj (t, x, y) |t=0 = gj (x, y) , x ∈ In, y ∈ Rm, (6)

by the edge conditions

U1|x=−∞ = 0 , Un+1|x=∞ = 0, (7)

and by the coupling conditions
[
αk

m1

∂

∂x
+ βk

m1

]
Uk =

[
αk

m2

∂

∂x
+ βk

m2

]
Uk+1, (8)
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x = lk, k = 1, n; m = 1, 2.

Here Uj(t, x, y) is an unknown vector-function, gj(x, y) is a given vector-
function, αk

mi, βk
mi, γ

k
mi, δk

mi are the matrices r × r.
By using the Fourier integral with discontinuous coefficients of Section 2 and

the Fourier integral with non-separated variables (1), (2), we obtain the repre-
sentation for the solution of (3)–(6):

Uk (t, x, y) = − 1
πi

1(√
2π

)m

∫

Rm

n+1∑

j=1

lj∫

lj−1

lim
τ→0




∞∫

0

Jm−2
2

(λ |y − η|)

|y − η|
m−2

2

e−λτλ
m
2 dλ

×
∞∫

−∞
e−β2tϕk (x, β)ϕ∗j (ξ, β) dβ


 fj (ξ, η) dξdη, k = 1, n + 1, (9)

where ϕk (x, β) , ϕ∗j (ξ, β) are the eigenfunctions of the direct and the dual Sturm
–Liouville problems, respectively.

We write the integral

∞∫

0

Jm−2
2

(λ |y − η|)

|y − η|
m−2

2

e−λτλ
m
2 dλ

∞∫

−∞
e−β2tϕk (x, β) ϕ∗j (ξ, β) dβ

in the polar coordinates

λ = ρ sinϕ, β = ρ cosϕ, 0 ≤ ρ < ∞, 0 ≤ ϕ ≤ π

to obtain
∞∫

0

ρ
m
2 ρdρ

π∫

0

e−ρ2t cos2 α sin
m
2 α

Jm−2
2

(ρ sinα |y − η|)

|y − η|
m−2

2

e−ρτ sin α

ϕk (x, ρ cosα) ϕ∗j (ξ, ρ cosα) dα.

We carry out the limit τ → 0 in (9) yielding

Uk (t, x, y) = − 1
πi

(
1
2π

)m
2

∫

Rm

n+1∑

j=1

lj∫

lj−1

ρ
m
2 dρ




π∫

0

e−ρ2t cos2 α sin
m
2 α

×
Jm−2

2
(ρ sinα |y − η|)
|y − η|m−2

2

φk (x, ρ cosα) φ∗j (ξ, ρ cosα) dα

)
fj (ξ, η) dξdη.
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If, in addition, we assume that we can carry out the limit t → 0 in the expan-
sion of the eigenfunctions for multidimensional direct Sturm–Liouville problem
fk (x, y) of Sec. 2, we obtain

fk (x, y) = − 1
πi

1(√
2π

)m

∫

Rm

n+1∑

j=1

lj∫

lj−1

∞∫

0

ρ
m
2 ρdρ




π∫

0

si n
m
2 α

Jm−2
2

(ρ sinα |y − η|)

|y − η|
m−2

2

×ϕk(x, ρ cosα)ϕ∗j (ξ, ρ cosα)dα

)
fj (ξ, η) dξdη. (10)

Let us denote

ϕk,j ≡ ϕk,j (ρ, x, ξ, |y − η|) =

π∫

0

sin
m
2 α

Jm−2
2

(ρ sinα |y − η|)

|y − η|
m−2

2

×ϕk (x, ρ cosα) ϕ∗j (ξ, ρ cosα) dα.

It is clear then that formula (10) can be written as

fk (x, y) =
1
π

∞∫

0

ρ
m+1

2 dρ
1(√

2π
)m

∫

Rm

n+1∑

j=1

lj∫

lj−1

ϕk,jfj (ξ, η) dξdη. (11)

Equation (11) allows us to write down the direct and the inverse multidimensional
Fourier transforms with discontinuities on the planes x = lk:

Fn [f ] (x, y, λ) =
1(√

2π
)m

∫

Rm

n+1∑

j=1

lj∫

lj−1

ϕk,j (λ, x, ξ, |y − η|) fj (ξ, η) dξdη, (12)

f(x, y) =

∞∫

0

λ
m
2

+1Fn [f ] (x, y, λ) dλ. (13)

Now we can prove the basic integral identity for differential operator

B = θ (l1 − xt)
(

A2
1

d2

dx2
+ ∆y

)
+

n∑

k=1

θ (x− lk−1) θ (lk − x)
(

A2
k

d2

dx2
+ ∆y

)

+ θ (x− ln)
(

A2
n+1

d2

dx2
+ ∆y

)
.
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Theorem 1. Let

f (x, y) = θ (l1 − x) f1 (x, y) +
n∑

k=2

θ (x− lk−1) θ (lk − x) fk (x, y)

+ θ (x− ln) fn+1 (x, y)

be a twice continuously differentiable on D+ ×Rm vector-function, in which

fn+1(x, y),
∂fn+1(x, y)

∂x

vanishes as x → +∞ and y is fixed,

f1(x, y),
∂f1(x, y)

∂x

vanishes as x → −∞ and y is fixed,

fi(x, y),
∂fi(x, y)

∂yj

vanishes as yj → ±∞ and x, y1, y2, . . . , yj−1, yj+1, . . . , ym are fixed.
Assume also that the coupling conditions (8) are valid.
Then the following holds true:

Fn [B (f)] = −λ2Fn [f ] .

P r o o f. Integrate twice by parts with respect to each of the variables on the
left, taking into account the conditions of the theorem. As a result, the operator
B acts on the kernel:

Fn [B(f)] (x, y, λ) =
1(√

2π
)m

∫

Rm

n+1∑

j=1

lj∫

lj−1

Bj [ϕk,j (λ, x, ξ, |y − η|)] fj (ξ, η) dξdη.

Let us prove the equality Bj [ϕk,j ] = −λ2ϕk,j . We have

Bj [ϕk,j ] =

π∫

0

sin
m
2 α∆η


Jm−2

2
(ρ sinα |y − η|)

|y − η|
m−2

2




×ϕk (x, ρ cosα)
(
ϕ∗j (ξ, ρ cosα)

)
dα

+

π∫

0

sin
m
2 α


Jm−2

2
(ρ sinα |y − η|)

|y − η|
m−2

2



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×ϕk (x, ρ cosα) a2
j

∂2

∂ξ2

(
ϕ∗j (ξ, ρ cosα)

)
dα

= −ρ2 sin2 α

π∫

0

sin
m
2 α


Jm−2

2
(ρ sinα |y − η|)

|y − η|
m−2

2




×ϕk (x, ρ cosα)
(
ϕ∗j (ξ, ρ cosα)

)
dα

−ρ2 cos2 α

π∫

0

sin
m
2 α


Jm−2

2
(ρ sinα |y − η|)

|y − η|
m−2

2




×ϕk (x, ρ cosα)
(
ϕ∗j (ξ, ρ cosα)

)
dα = −ρ2ϕk,j .

We have used above that ϕ∗j (ξ, ρ cosα) are the eigenfunctions of the dual Sturm–
Liouville problems and the relation

∆η


Jm−2

2
(ρ sinα |y − η|)

|y − η|
m−2

2


 = −ρ2 sin2 α


Jm−2

2
(ρ sinα |y − η|)

|y − η|
m−2

2


 .

By using the basic identity [9], we conclude

ρ
m
2 Jm−2

2
(ρ |y|)

|y|
m−2

2

=
1

(2π)
m
2

∫

Sρ

ei<y,ξ>dSρ.

This completes the proof.

The above formulas for the direct and the inverse Fourier transforms with
non-separated variables are significantly simpler in the case of ideal coupling
conditions on one surface. This case is widely known in engineering practice.
Consider, for the sake of simplicity, the scalar case, assuming that the ideal
coupling conditions are in the plane x = 0,

ϕ1 (x, y) = ϕ2 (x, y) , x = 0, y ∈ Rm;

ϕ′1x (x, y) = νϕ′2x (x, y) , x = 0, y ∈ Rm; ν =
λ2

λ1
.

The one-dimensional components of eigenfunctions are given in [4]:

ϕ1 (x, λ) =
(

cosλ
x

a1
+ i

1√
δ0

sinλ
x

a1

)
(1 + δ0) ;

ϕ2 (x, λ) =
(

cosλ
x

a2
+ i

√
δ0 sinλ

x

a2

)
(1 + δ0) ;
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ϕ∗k (x, λ) = rkϕk (x, λ), k = 1, 2, r1 =
a2

ν0a2
1

, r2 =
1
a2

, δ0 =
a2

ν0a1
.

The multidimensional components of eigenfunctions with non- separated variables
ϕkj have the form:

ϕ11 =
1 + δ0

a1

Jm−1
2

(
ρ

√
(x−ξ)2

a2
1

+ |y − η|2
)

(
(x−ξ)2

a2
1

+ |y − η|2
)m−1

2

−1− δ0

a1

Jm−1
2

(
ρ

√
(x+ξ)2

a2
1

+ |y − η|2
)

(
(x+ξ)2

a2
1

+ |y − η|2
)m−1

2

,

ϕ12 =
1 + δ0

a2

√
δ0

Jm−1
2

(
ρ

√(
x
a2
− ξ

a1

)2
+ |y − η|2

)

((
x
a2
− ξ

a1

)2
+ |y − η|2

)m−1
2

+
1− δ0

a2

√
δ0

Jm−1
2

(
ρ

√(
x
a2

+ ξ
a1

)2
+ |y − η|2

)

((
x
a2

+ ξ
a1

)2
+ |y − η|2

)m−1
2

,

ϕ21 =
√

δ0
1 + δ0

a1

Jm−1
2

(
ρ

√(
x
a1
− ξ

a2

)2
+ |y − η|2

)

((
x
a1
− ξ

a2

)2
+ |y − η|2

)m−1
2

+
√

δ0
1− δ0

a1

Jm−1
2

(
ρ

√(
x
a1

+ ξ
a2

)2
+ |y − η|2

)

((
x
a1

+ ξ
a2

)2
+ |y − η|2

)m−1
2

,

ϕ22 =
1 + δ0

a2δ0

Jm−1
2

(
ρ

√
(x−ξ)2

a2
2

+ |y − η|2
)

(
(x−ξ)2

a2
2

+ |y − η|2
)m−1

2

−1− δ0

a2δ0

Jm−1
2

(
ρ

√
(x+ξ)2

a2
2

+ |y − η|2
)

(
(x+ξ)2

a2
2

+ |y − η|2
)m−1

2

.

Now the integral transforms given by formulas (12), (13) are constructed.
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4. Conclusion

Let us remark that integral transforms (12), (13) can be used to solve problems
of mathematical physics by using the standard algorithm: find the solution in the
images then return to the originals. An advantage of our formulas is that they
involve just one spectral parameter contained in the final formulas while the
integral transforms with separated variables contain m parameters.
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