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1. Introduction

The two-phase Hele-Shaw problem (the Muskat problem) describes the evo-
lution of an interface between two immiscible incompressible fluids (for example,
water and oil). The motion of fluids is governed by the Darcy law, stating that
the velocities of fluids are proportional to the pressure gradients, and the law of
mass conservation [25]. The Muskat problem with a regular initial interface was
studied by L. Jiang and Y. Chen [19], F. Yi [30, 31], F. Otto [26], S. Howison
[18], D. Ambrose [1], M. Siegel, R. Caflish and S. Howison [28], S.P. Degtyarev
[12], J. Escher and B.V. Matioc [14].

Weak and variational solutions for the one-phase Hele-Shaw problem were
studied by C. Elliott and J.R. Ockendon [13], E. Di Benedetto and A. Friedman
[6]. Y.E. Hohlov and S.Howison [17] constructed explicit solutions to the Hele—
Shaw problem. B.V. Bazaliy [4] and J. Escher and G. Simonett [15] proved
the existence of classical solutions to the Hele-Shaw problem with regular initial
data. Preliminary arguments show that if the initial interface in the one-phase
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Hele-Shaw problem has an angle point, then the behaviour of the free boundary
depends on the angle value. Moreover, J.R. King, A.A. Lacey, and J.L. Vazquez
[20] found that under certain sufficient conditions the angle value is preserved
for some time (the ”waiting time” phenomenon). In [29], N. Vasylyeva gave a
strong proof of the solvability in the weighted Holder classes for the one-phase
Hele-Shaw problem with the ”waiting time” property. The similar problem with
surface tension was considered by A. Friedman and B.V. Bazaliy [5]. We remark
that introduction of the surface tension in one- or two-phase Hele-Shaw problems
leads to the regularization of the free boundary problem. The surface tension
variation of the Muskat problem was previously studied by us in [7]. In the
present paper we apply the same method, but the model problem corresponding
to the angle point of the initial interface and the related linear equation turned out
to be more complicated. As in [7], our purpose is to formulate a set of sufficient
conditions under which the problem has a solution in the weighted Holder classes
with the ”"waiting time” property.

The paper is organized as follows. In Section 2, we formulate our problem,
reduce the problem with unknown boundary to a problem in a fixed domain,
define the weighted Holder spaces and state the main result, Theorem 2.1. In
Subsection 2.4, we represent our problem in the form Sz = f(z,t) + F1(z), where
z = (01,02,0) and ¥ is a linear operator, the vector f(z,t) is constructed by using
initial data, and F; is a nonlinear operator. Section 3 is devoted to studying the
model problems in the plane corners and in the half-spaces. Then, in Section 4,
using the technique of the regularizer for parabolic systems [22] together with
the results of Section 3, we prove the one-to-one solvability to the linear problem
Sz = f(x,t), Theorem 4.1. In Section 5, we prove the main results by using
Theorem 4.1 and the fixed point theorem.

2. The Statement of the Problem and the Main Result

2.1. The mathematical model

Let © be a double-connected bounded open domain in R? with the boundary
00 =T1 T, 1 T2 = 0 (see Figure 1 below). Let I'(t), for each t € [0, 7], be
a simple closed curve I'(t) C Q that separates € into two subdomains €2 (¢) and
Q(t) such that Q = Q1 () JI'(t) U Qa(t), and 0 =T, JT'(¢), i = 1,2.

In the two-phase Hele-Shaw problem we are looking for the fluid domain €;(¢)
and the fluid pressure p;(y,t), y € Q;(t), t € [0,T], i = 1,2, such that

Aypi =0 in Qi(t), 1=1,2, te [O,T], (21)

pr—p2=0 on I(t), (2.2)

Vem oy 2P0 92 ey (2.3)
" on on ’
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pi=vi(y) on Tir=1;x10,T], (2.4)
Q;(0), TI'(0) are given. (2.5)

Here A, = 5—;% + (%25’ n is the normal to I'(¢) directed in Q4 (¢), V,, is the velocity

k
where k = const > 0 is the permeability of the porous medium and ; is t%e
fluid viscosity in Q;(t), i = 1,2, u,; are positive constants; ¢;(y) are given positive
functions.

If we consider, for example, a physical problem where Q;(¢) is occupied by
water and Q9(t) is filled by oil, then pg > p1, and hence, k = % < 1.

of points I'(t) in the direction of n; k1 and ky are positive constants, k; =

Fig. 1. Problem (M)

We will suppose that I'(0) has an angle point of opening d, 6 € (0,7), and the
origin of the coordinate system (yi,y2) is placed at the vertex of this corner (see
Figure 1). For the sake of simplicity, we consider problem (2.1)—(2.5) under the
assumption that 2;(0) and I'(0) are symmetric with respect to the yo— axis, 1;(y)
are even functions in y;, and we seek a symmetric solution with the condition

Op;

—0=0, 71=1,2. 2.6
Selnm0=0. =1 (26

One can see that (2.1) and (2.2), together with the second equality in (2.3),
define the transition problem with the interface I'(¢), and the first equality in
(2.3) serves to find the unknown curve I'(¢) that is called the free boundary.

We denote the Muscat problem (2.1)—(2.6) as Problem (M).
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2.2. Reducing to a fixed domain

As in [5] and [7], we use the Hanzawa method [16] to reduce the free boundary
Muskat problem to a problem in a fixed domain. Let ©;(0) N {y; > 0} = Q,
' =T(0)N{y; >0}, T € C?*, p be an integer and ¢ > 3, a € (0,1), and w
be some parameter along I' (for example, the arc length of I'). The position of a
point on I" we define as m(w). Let n(w) be the normal to I" directed in €y, and

l(w) be the C?T (p > 2) vector field on I which is transversal to I' such that
l(w) = (0,—1) in the gp-neighborhood of O = (0,0) and I(w) = n(w) out of the
2ep-neighborhood of O.

For sufficiently small vy > 0, w-lines: m(w)+nl(w), |n| < 270, do not intersect
each other, and I'; UT9. The mapping (w,n) — y = y(w,n) defined by

y = (y1,92) = m(w) + nl(w)

is a diffeomorphism from M = W x (=79, o) onto

N ={y:y=m(w)+nl(w), (w,n) € M}.

The inverse mapping > : N — M is

Yy — (wy)ny)).

We assume that the free boundary in Problem (M) has the form

Lp(t) = {(y,1) : y(w, t) = m(w) + p(w, Yl(w), T € [0, TT},

where |p(w,t)| < v0/4, p(w,0) = 0. It means that the free boundary equation is
given by
(I)p(yvt) = 77(2/) - p(wat) =0, (yat) €N X [OvT] (27)

The surface I',(t) splits Q7 = Q x [0, 7] into domains Q;(¢). Let x(A\) € C§(RY),
xX(A) = 1if |A] < v/3 and x(\) = 0 if |A\| > 70, [x/| < const/7p, const < 2. We
will use the coordinates (w,n) to define the diffeomorphism

ep: (,t) — (y,t)

from X7 = R? x [0,T] onto Y7 = R? x [0,T] by setting

w(y) = w(z),
n(y) = A(Z‘) + x(A(@))p(w(@), 1), if (w(x),A(z)) € N, (2.8)
y =z, otherwise,

such that the transform e, ' maps €;(t) onto €; x [0,T] = Q7 and I',(t) onto
I' x [0,T] = 'y, the free boundary is given by e,({\(z) = 0}), and w(x), A(z) are
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the coordinates in X similar to the coordinates w(y), n(y) in Y. The change of
variables gives the new desired functions

’Ui(l‘l, ]Jz,t) = pl(y7t) © ep(l‘,t), 1= ]-) 27 (29)

which satisfy the equations

V?)’Uz‘(l‘, t) =0 1n QiT, (2.10)
vi(x,t) —va(z,t) =0 on I'p, (2.11)
v =vi(x) on Tir, (2.12)

ov;
8;)1 =0 on z1=0, (2.13)

where we take into account that y = x near I';7. Here V, = (E;)_lvx, where
E, is the Jacobi matrix of the mapping y = e,(z,t), V, = (a%l, 8%2)' It follows
from (2.7) that the unit normal to I',(t) is

P
n— Vy®, :
V@l
and therefore
9%, dp(w,t)
V,=——9ot _ o
‘vy(bﬂ‘ ’qu)p’
Now we can conclude that equation (2.3) takes the form
op(w,t
p((9 / ) _ k1 (Vyp1, Vy®,) = —ka(Vypa, V@), (2.14)
p(w,0) =0. (2.15)

Since ®, = 0 on I'(¢), we get
81)1‘ (%i
(vypi7 vy¢)9> = (vpvi7 vpép) = S(wv 12 pw)ﬁ + Sl(w7 12 pw)aiw7

where S(w, p, pw), S1(w, p, pu,) are some specific smooth functions
S(Wa P pw) = (Vp)\a va)v S1 (Wa P, pw) = (Vp"‘), Vp)‘)-

Thus our initial free boundary Muskat problem is reduced to the problem in
the fixed domain for the functions v;(x1,x2,t), i = 1,2, and p(w,t) that satisfy
equations (2.10)—(2.15). We denote this problem as (Mj):

Vavi(z,t) =0 in Qip, i=1,2,
vi(z,t) —va(z,t) =0 on I'p,
—pi(w,t) = k1(V,v1,V,®,) = kao(V 02, V,@,) on I'p,

8%‘
v; =Yi(z) on Tir, 8Tcl|“:0 =0, p(w,0)=0. (2.16)
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2.3. Weighted Holder spaces and the main result

Let D be a given domain in R? with a corner point at the origin of coordinates
and let Dy = D x [0, T]. Denote the distance from the origin of coordinates to the
point y € D by r(y). We set 7(y, ) = min{r(y),r(x)}, x,y € D. Let s be a given
number, ¢ be an integer, 0 > 0, a € (0,1). The Banach space EZT**%(Dr) is
the set of the functions u(x,t) with the finite norm

4
lull gooooppy = 3 1sup 1= (@) [ Dhu(w, £)] + (Dhulw, 1)), 1,

1j=0 Pr
H(Dhu(w, )Y, + [Dhulz, )]0 ) 1,
where
o a—s u(z,t) —u(z,t
e, - wp Bl
(z,t), (z,t) € Dr,
|l —z| < r(x,z)/2
o — ‘U(.’L’,t) B u($77)|
Wy, = sup r%(a) ol
LT (em)eDr [t — |
and
[u](o‘va) _ sup ,roz—s(l, If) ‘U(E? t) B ’U,(.Z', t) B u(ja T) + U(JJ, 7—)’
S,DT - ’ .

— o (6% _ (6%
T,x € D, t,7 €1[0,T], |7 — ||t — 7]

|z —z| <r(z,x)/2

We introduce the space EZT***(0D7) in a similar way. For the functions u(x)

independent of ¢ we use the space EZT*(D) with the finite norm
- (@
— [e%
el pgee sy = 3 lsup 1= (@) Dhaa(e)| + (Dhasle)® .
=0 D

where
u(@) — u(w)|

a—S
@3 = e

(u)np = sip 1%, 2)
Z,x €D,
|z —Z| <r(z,2)/2
If the domain D does not contain a corner point, the definition of the space
EZT*%%(Dr) remains as before with r(x) = 1. In this case we use the notation

peteaa (D).
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For the functions f(w,t) defined on I'p, we will use the weighted Holder space
NZFe(Tr) with the norm

1 lyzsoqogy = 747 L gzroa gy + el gt oy,

where v is some positive number.
We define the functions vio(x) = v;(z,0) as a solution of the transmission
problem
Avio =0 1n Qi, 1= 1,2,

0 0
v10 — v20 = 0, kl% = kz% on T,
ov;
Vio = wz(l') on Fi, 87?’351:0 =0. (2.17)

By Theorem 1.1 and Remark 3.1 from [8], there exists a unique solution
(v10(x), voo(x)) to problem (2.17), and

lvioll g+ @y < const(lvnllpstary) + Y2l parary)): (2.18)

where a € (0,1), and

1 T+30, .
76(14—5,14—271__5) if 0€(0,7/7);
30 T+30,

Theorem 2.1. Let k = 12, a € (0,1/2), ¢; € C3**([y), i = 1,2, T and
I; € C3%® satisfy the assumptions mentioned in Subsections 2.1 and 2.2; the
initial pressures (vio(z),v20(z)) be given with (2.17) and inequality (2.18) hold;

Ov;p

0<k<l and
<Kk < an an

<0 on T,i=1,2 (2.20)
by a¥ om .
s € (max{2+1/2, 25, s}, —— | if 0 € (0,7/5),
T=orm 2 — 0
i)

b* * 57‘(’ .
CRS <maX %771_7_25,% ,271__5> Zf 1) c (7'('/577'('/4),
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where numbers b3 and a}, j = 1,2, are some positive constants depending on ini-
tial data (more detailed definitions of these numbers are given in Section 3). Then
for some T there exists a unique solution (vi(x,t),ve(x,t), p(w,t)) of problem

(2.16) for t € [0,T] such that vi(x,t) € BT (Qur), i = 1,2, p(w,t) € NZte,

It should be remarked that condition (2.20) means that a more viscous fluid
is displaced by a less viscous fluid, and then the Muskat problem (2.1)—(2.5)
without surface tension is well-posed (see [28] and [1]).

Corollary 2.1. Note that under assumptions of Theorem 2.1 the initial corner
point O does not move and the geometry of the initial shape of the free boundary
near O is preserved in time. In other words, the results of Theorem 2.1 guarantee
the existence of the "waiting time” for angle § € (0,7/4) in the Muskat problem
(2.1)(2.5) in the case of zero surface tension.

2.4. A perturbation form of system (M)

In this subsection, we linearize the system M; on the initial data and rewrite
it as a system 3z = F(z), where & is a linear operator and F(z) is a nonlinear
perturbation.

From (2.14) for ¢ = 0, we have

_ 31)10 8UlO
(w,0) = —ky <S(w,0, O>aT + 51(w,0,0) R >

Op
ot

—-—kg(S@%OJD%;?—%Sﬂw,&O)i%?). (2.21)

Let a function m(w,t) be such that

om(w,t)
ot

9
lieo = 2L (w, 0).

m(w,0) =0, 9

As an example of the function m(w,t), we can take m(w,t) = t%(w, 0).
We introduce the new unknown functions in the following way:

o(w,t) = p(w,t) —m(w,t), (2.22)
Gi(x,t) = ’Ui(.T,t) — ’UZ'()(I') — (VI'UZ'(] . ég), (2.23)

where 5
€y = %)g()\)a(w,t), x = (r1,z2). (2.24)

10 Journal of Mathematical Physics, Analysis, Geometry, 2014, vol. 10, No. 1
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Now we rewrite the system (M) in terms of the functions o(w, t), 6;(z,t),i = 1,2,
and after some calculations get the problem in the form:

?929;? + ‘2;95 — Foi6s,0) in Qur, (2.25)

01(2,1) — o2, ) = Vw10 - 8y — Vavng - 85 = 0 A(x) on Ty, (2.26)
88‘; . a(:c)aail + a1(x)gz + Fi(61,0) on Ty, (2.27)

% - k% + ag(:v)g—z — Fy(61,00,0) onTr, (2.28)

o = =V ), ey =0 on T, (229)
o (w,0) aa(g‘;’t) o =0, 06i(z,0)=0. (2.30)

The properties of the functions A(z), a;(x), a(x) Fo;, @ = 1,2, F1, F» will be
described later on.

Remark 2.1. Note that F3(o) = 0 if we look for the solution in the class
of o0 € N, ffyra and take into account definition (2.24) of the vector é,.

Let
Fir,0) = F1(01,0)+k1a1(g;)‘i1:(%) o, F5(01,02,0) = F(01, 0, 0)+a2(m)ﬁu((;) o,
Ay(w) = f;(fj)) o) = jff;";

Then we can rewrite conditions (2.27) and (2.28) as

Or @O @A)
T kra(x) an ka1 () R kq AQz) o+ Fi(01,0) onTp, (2.31)
901 09 9o Au(x) 4
o~ kg, +aaa) 5= +as() A0 Fy(61,05,0) on Tr. (2.32)

After that we can find the term o, from condition (2.26) and substitute it into
(2.31), (2.32). Thus we have got the following system (M2):

0%0;  9%; , ,
922 + o2 Foi(0i,0) in Qir, i=1,2, (2.33)
O1(x,t) — O2(x,t) = A(x)o on I'p, (2.34)
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do 001 001 00 _
a —/ﬁa(l‘) on — /ﬁAl(afj) <8w — aw) + F1(91,0') on I'p, (2.35)
06, 96 90, 090,
% —kain‘i‘AQ(w) (&A)_auj> —FQ(GI,HQ,O’) on FT, (236)
0;
87.%'1|x120 == 0, 91'(13,75) =0 on FiT, (237)
w0 = 22D o p0) =0, (2.38)

ot

Now the system (M) can be written as
Sz = F(z), where z = (61,02,0). (2.39)

Note that if we freeze the functional arguments in the functions Fy;(0;, o), F1(61,0),
F5(61,02,0), then system (2.39) or (2.33)—(2.38) will be a linear system with vari-
able coefficients, which will be studied in detail in Section 4.

To illustrate the system (Ms), we describe it in a vicinity of the angle point
O = (0,0) where [(w) = (0, —1). Let yo = (y1) with ¢/(y1) > 0 be the equation
of ' =T'(0) in the mentioned above vicinity, where ¢(0) = 0 and ¢’(0) = cot %.
As a parameter along I'(0), here we take w(y) = y1, and transformation (2.8)
takes the form

Y1 = r1, Y2 = 2 — X(2)p(z1,1), 2 =22 — @(T1). (2.40)

From (2.40) it follows that

0 15)

9n_q, iy,

oy 0y
dzy 1 Oy XePPury — XPar 0T Xeep
Oy 1—x.p O L—x.p = 0y3 (1—xzp)*

0 6] 0 52 Op O 16) 6] 0 o2
82x2 _ _Xzz<37;f - 372’1)87:1/) - szTw? - Xzaizplai;i + XZ(T;? - difl)aizpl + X@TC?
8y% 1—x:p

1o] 0

o (Pr2_ 00, 90 XePOrr ~ Xouy

F\oy1  Om “0r (1—x:p)?

As before, we set

pi(y1, y2,t) = pi(z1, y2(21, 22, 1), 1) = vi(x1, T2, 1),

12 Journal of Mathematical Physics, Analysis, Geometry, 2014, vol. 10, No. 1
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and equation (2.1) becomes

82vi 82%‘ aiEz 82%’ 81‘2 2 8332 2
7 +2 o T 2] (a2
Oy 011022 0y1 025 oy 0yo

% Pxy  O%xo

Oxg | Oy? dy3

The free boundary I'(¢) in Problem (M) has the representation near O

D,(y,t) = —y2 + ©(y1) — p(y1,t) =0

(2.41)

(2.42)

such that
0%, dyr N 0P, dy, 09, . Vy®,
dyp dt ~ Oyp dt Ot |V,®,|
and hence p
Vo=Vyp;-n= L
Y [Vy @yl
On the other hand,
8}%’ vypi
on VP =g g Ve
After using the relation V,®, = (¢, — pz,, —1), boundary condition (2.3) takes
the form
ap 81)1' 8’Ui 8’Ui .
7:_ki 1 — Pz a. a3 Pz - ) :172
at |:(90 1 p 1) <ax1 3:102/) 1) ax2:| ?
Since

Ovi _0vi  pm O 1
on 0wy [T+ 2  Oxa\/T+ 42~

another form of the previous equation is (i = 1, 2),

G [ e (e ow
A kz[f)n L+ Oy (8x1+(¢x1 pzl)@@)] on Ir.

Boundary conditions (2.2) and (2.4) preserve their forms

vp—ve2 =0 I'p,

v; =i(z) on Tip,

and initial conditions are

vi(2,0) = vio(x), p(r1,0) =

Journal of Mathematical Physics, Analysis, Geometry, 2014, vol. 10, No. 1
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In this simple case, the nonlinear problem is described by equations (2.41), (2.43)—
(2.46).
Since p(x1,0) = 0 from (2.43), we get

dp B Ovip / 2

Let
m(x1,t) = ftkl%\/l + @2, = tmo(),
and
p(x1,t) = o(x1,t) + m(x,t) (2.47)
such that

Oo
0)=0, —li=0=0.
0-(3317 ) s ot |t—0
Introduce the function
wi(x,t) = vi(z,t) —vio(z), w;i(x,0)=0. (2.48)

Next we rewrite equations (2.41), (2.43)—(2.46) in the terms of w;(x,t), o(x1,1).

Equation (2.41) is transformed to
82wi 8211}@‘
Ox? Ox2

g 0%
0x9 (91'%

x(z) = goi(w;, 0). (2.49)
Below we will define the function gg;(w;, o). The form of the left-hand side here
suggests another change of unknown functions

vip
Oxo
This step explains the appearance of the last term in the right-hand side of
equation (2.23).

Finally we have

0;(x,t) = wi(z,t) + x(2) o(x1,t). (2.50)

AHZ = F()i(ei,(f) in QiT7 1= 1, 2, (2.51)
where
(%io > ( 8%‘0 > < a’l)z'o )
Foi(0;,0) = g0i(0;,0) — o—2 Opy — o,
° ( ) 90 ( ) (X 8%2 T1T1 X ax? T ' Xa:EQ T2T2
(2.52)
82’l)io H? (’Uz‘o + wi) 0xo 82%0 0xo 2 0xo 2
gOi(wivU):_az -2 a.. 2 a,. +\ 5
xl 81‘16%2 8y1 81‘2 8y1 8y2

82wi 0xo 2 0xo 2 8(1)@0 + U)Z‘) 821’2 82352 vy d%c
— —1 — — — .
03 [ i <5y1> i (392) Oy ( R ) T Oy 0a3
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R em ark 22 The function Fy;(0;,0) contains the higher derivatives of
0;(z,t) and o(x1,t) with coefficients that tend to zero as t — 0, the ”quadratic”
terms with respect to 0;(x,t) and o(x1,t), and their derivatives, and the terms
of minor differential orders of unknown functions.

2 2
For example, the factor {—1 + (g%f) + (g—’;g) } tends to zero as t — 0 by

the definition of 222, (‘332, and the equation p(z,0) = 0. It is easy to check that

the coefficient under oy, 4, in Fy;(0;,0) is

()00 1 S x@xe(m + o) G
X Oxa \1—x.(m+0) 1—x.(m+o0)

and vanishes as t — 0 due to (m(z1,t) + o(x1,t)) — 0 ast — 0.
Since wi (z,t) = wa(z,t) and x(z) =1 on I'p, condition (2.2) takes the form

OJvig  Ouoo
— =55 2.
91 (m, t) 92(.%', t) ( 81:2 8%2 > g ( 53)
By simple calculations, we transform equation (2.43) into
do 00; do 0v;
—— = —k; 1 — 1B 2.54
ot [871 + 1 83:1 8%1 * ] ( g )
where
8 ;0 81}10 do 0vg do om
gi(bi, o) = naxg \/1+90x1 +\/1+ 8$1 o1 + <a$1+61}1>
82vi0 8(91' + Uio) Ov;g
|:(91'26$1 - 81’1 + 8%‘2 O-xl] B ((le T 0n T mxl)

8(9i + UZ‘()) ({921),‘0 do om
x - o) =—+).
O Ox2 Oxr1 Oz
Remark 23. gi(0;,0) satisfies to the same properties as Fy;(0;,0), i.e.,

9i(0;,0) contains the minor terms, the ”quadratic” terms and the higher terms
with small coefficients as ¢ — 0.

In reality, (2.54) contains two conditions. The first of them is

do 2 Jo Ovig _
E_ kl <3n 1+90x1 811718561) +F1(0170)7 F1(917U)_ klgl(aha)a
(2.55)
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and the second one is
891 892 1 Jo 8’010 31}20 1
ke - o (G- k) = (kg2 — 1)
on on . /1+ ‘/’:ch Ox1 \ Oz ox1 1+ %201
= Fy(01,02,0). (2.56)

Equations (2.51), (2.53), (2.55), and (2.56) correspond to (2.25)—(2.28).
We will use the equalities

870—— 1+ 28£
ory Paorgr

Ov1g B Ovgg 11—k 1 Ov1o

0xo 0xo ok 1/1—|—<’0%1 on’
8’010 _ kavzo . 1—k 8’010

0z or, V1+¢2 o7 ’

where 7 is a tangent vector to I', and the two last equalities follow from (2.17).
Summing our calculations, we get the next problem. It is necessary to find
the functions 0;(x,t), i = 1,2, o(7,t) by the conditions
0%0;  0°%;
o 2 + 2
x{  0x3

1-k 1 Ov1g

= Foi(ei, U) mn Qz‘Ta (2.57)

91($,t> —Oy(x,t) = 3 m an oon I'r, (258)

004 004 (1—k) Oodvig
% kain \/WE 67- = FQ(Hl,QQ,U) on FT, (259)

Lo B / 5 001 do Ovyg
a——kl 1+90x1 <8’rl_a7'a$1) +F1(91,0') on FT, (260)
06; ) .

HZ(CC,t) =0 on L'ir, 87551}:“:0 = _TM(X[J:Q - ngl]O'(u),t) 83;2 )‘xl:[) = Fg(SU, t, 0)7
(2.61)
o(r,0) =0, aag, Do =0, b,(2,0) =0, (2.62)

where the functions Fu;(0;,0), F1(01,0), Fa(01,02,0) are defined in (2.54), (2.55)
and (2.56), respectively, and as it follows from Remark 2.1, F3(z,t,0) = 0 for
every (z,t) € I'r.

Our next step is to get rid of % in the left-hand sides of equations (2.59) and
(2.60). To this end, we introduce the functions

_ Fi(9 o (0 S0
Fi(61,0) = Fi(b1,0) k <”10(1+¢il)—1/2> (%:1 4 o >U7

«/1—|—<p§1_ Yor \on dvig

on
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_ o (0
Fy(61,02,0) = Fa(61,62,0) = (1 - k) 5~ ( g:lo

dvig
(1_’_()02 )—1/2> or
Then conditions (2.59) and (2.60) can be rewritten as

1 Jvig g
on

00, 002 (1—Fk) 0o dvip d (v 2 \—1/2 OgJ
A R do _q-m? ) :
on on /142 Ot Or (1=F) or \ on (14 ¢2,) g

Jvig
on

- F2(9179270) on FTa
1 do 00 do

(2.63)
do 001 o 1 v Pz, Ouig
ST o Man T <

_.I_
V1+e2, or VI+eZ, on

9 (v 2 \—1/2 . -
+k1§ (871(1 + ‘pzl) / Py T+ uio o+ F1(91,U) on I'r. (2.64)

on
From (2.58), we get

O _ kT @ (00 00\  VITE 0 (0o, oyap),
or  (1-k)%uw \or Or bus 9 \ on o :

Substituting this expression for g—f into (2.63) and (2.64), we get

a0 a0 199, 99 _
zTnl - ka—i — k2 (a; - 8:) = Fy(0y,05,0) on T'p, (2.65)
“on

1 9o 901 ko Guo\ 190, 90y -
= kit | ¥ ) (52 - 22 )+ R, Tr.
VIt 0 13n+1—k<¢1+3g;t0 or a7 ) PTG on Ty

dvyg

(2.66)
Now we can find the term lk_—gk ﬁ (% — 96

S — B2 ) from (2.65) and substitute it into
on
condition (2.66). As a result, we have

1—-k% (90' 891 302 + 891 302 1-— kZF (0 ) FQ T
Y = = — = T - — = ,0) — — on .
koIt g2, 0t on  on T \or  or Ry ! T

Thus system (2.57)—(2.62) can be represented as

920, 5%
= Foi(0:,0) in Qir, 2.67
5a2 T o~ Lol o) in Qur (2:67)

1-k 1 ov
01(z,1) = O(x,1) = — Ve a;% on I'r, (2.68)
1
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on on dvig
on

00 o6 v 796, 06 _
! k 2 _ k or (87'1 — 87’2> = F2(91,92,0') on PT, (2.69)

1-k do 00, 06, <891 892> 1—k - ol
S R AR (i I Fi(61,0) — =2 on T,
koIt g2, 0t on  on " \or  or Ry 1010 = 0:2 7;
0; ‘
0;(z,t) =0 on T'yp, a—mlmlzo =0, (2.71)
U<T7 O) = 07 80-;7; t) ’t,(] - O, Hz(x, 0) =0. (272)

Remark 24. As it follows from Remarks 2.2 and 2.3, the functions
Foi(0;,0), F1(01,0) and Fy(01,02,0) in a vicinity of the angle point O contain
the higher derivatives of 6;(z,t) and o(z1,t) with coefficients that tend to zero
as t — 0, the "quadratic” terms with respect to 0;(x,t) and o(x1,t), and their
derivatives, and the terms of minor differential orders of unknown functions.
Moreover, the same results are preserved outside the angle point O.

In the sequel we need a somewhat different form of system (2.67)—-(2.72). It
deals with the view of condition (2.70) which can be modified if we look for oy
from condition (2.68) and after that substitute this term into (2.70). Thus, after
some simple calculations we have the system

0%0;  0%0;
+

8:1‘% 871'% = FOi(0i7 O’) mn QiTa (2.73)

1-k 1 (91)10

01(x,t) — Oa(x,t) = 3 m an oon I'p, (2.74)
801 00 W 190, 96\

%—k%—k% E—E —F2(91,92,0') on FT, (275)

L (06 00\ (OB 0B\ (06 06,

o \or ot on  on) T \or  or
= 1_kF1(91,0')—§Ei1(91,92,0'> on FT, (2.76)

ko k
00;

Hi(az,t) =0on FiTv 671'1|x1:0 == 0, (277)
om0y =0, 22000 0 p(z.0) = 0. (2.78)

ot
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3. Model Problems

As is known, to construct a model problem near the boundary by using the
Schauder method, it is necessary to fix the coefficients of the original problem at
the boundary point and, if necessary, straighten the boundary in some vicinity
of the fixed point.

3.1. A model problem near a corner point
Let now the fixed point be the angle point in problem (2.67)—(2.72). Denote
G ={(z1,22) : 1 > 0, —00 < x2 < x] COt g}, Gir =Gy x (0,77,
Go = {(z1,22) : x1 > 0,21 cot% < xg < o0}, Gor =Gy x|[0,T],

g={(z1,22) 121 > 0,20 =21c0t 5}, gr =g x[0,T).

After some evident transformations made to eliminate the unknown function
o(w,t) (see (2.73)—(2.78)), we obtain the model problem in a plane corner for the
functions uq (x,t), us(z,t):

Pu; 0%y . ,
22 + a2 0 in Gir, ui(z,0) =0, i=1,2, (3.1)
Ou;  Ou Ou;  Ou ou;  Ou
—ley (221 T2 o o™ oo T2
" < ot ot > + (8n 8n> +h < or  or > J(r,t) on gz, (3.2)
Ouy Oug Our  Ouz\
U on {ar = 0,29 < 0} x 0,71 22 = 0 on {21 = 0,29 > 0} x [0, 7]
on =vUon 1 r1 =Y,T2 ) ) on =Von 1 =Y,T2 ) P

(3.4)
where r = /2% + 23,0 < k < 1, h = cot g, de(0,m),d = gﬁg;ﬁ;‘m:w:m and
is some positive number defined by (2.19). We took into account the asymptotic
behaviour of the function 3521 as z — 0 in problem (2.17), 2901 ~ Agpl*7,
A3 being a negative constant, and then assumed without loss of generality that
(—k1A3) = 1.

Note that problem (3.1)—(3.4) was studied in the recent paper [9] (see Section 3
there), where the one-valued solvability of this problem was proved under more
general assumption on the constants. In our case, we reformulate the results of

Theorems 3.1 and 3.2 and Remark 4.1 from[9] as:

Theorem 3.1. Let « € (0,1) and
f(z,t) € E;jf’a’a(g;p), f(z,t) =0if either t <0 or |z| > Ry

for some positive Ry, and
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se (max{2+1/2,7r - _’{;},25”5) if 5€(0,m/5),
p—

i)
s € (max ff(s,% a—gé} 27T5ﬂ> if 6 € (n/b,m/4),

where the numbers b; and a3, j = 1,2, are some positive constants depending on
k, h, dy, and 0. Then there exists a unique solution (uy,us) of problem (3.1)—(3.4)
such that u; € EEJFO"O"O‘(GZ-T) and the estimates hold

Z{HWHEHMQ Gy TP "0ui /O] gr+ese gy} < const ||| premang, .
=1
(3.5)
ZHWHEHMQ Gopy < const T~ max{1, Ry HS o gy, (3.6)

wherea<oz < 1.

As it is shown in [9] (see Theorem 2.1 and Remark 4.1 there), the results
of Theorem 3.1 are preserved in the case of nonhomogeneous boundary value
problem corresponding to (3.1)—(3.4),

62u,~ 62114

922 + 02 = foi in Gir, ui(x,0) =0, i=1,2, (3.7)
1 3U1 8U2 8u1 81@ 8u1 8u2
1—y (X2 P2 bl Tdat’s et S 2 R
( o ot > + <an an> +h<3r 8r> F(rt) on gr, (3.8)
duy Ous Oup  Ouz\
% — k?ai — k/'dl <87" — 6’[‘) = f1 on gr, (39)
%l:; =0on {z;1 =0,22 <0} x [0,T7; ({3‘91;2 =0on {z; =0,29 >0} x [0,T7].
(3.10)

For the sake of convenience, we reformulate this results as follows.

Theorem 3.2. Let s satisfy conditions i), ii) from Theorem 3.1, fo; €
EX%(Gir), i = 1,2, fi,f € EXXM(gr), and foi, f1,f = 0 if either t < 0
or |z| > Ro, for some positive number Ry. Then there exists a unique solution
u; € BT (Gyr), i = 1,2, of problem (3.7)~(3.10) and the estimate holds

2
; ||U1;||E§+a,a,a(G—,iT) —+ ||’l"_1_’y(au1/8t — 8u2/3t) ||E;i-;x,a,a(§T)
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2
<const [3_ | foillpogo Gy + 11l gy + 1 gy (3:11)

i=1
3.2. A model problem near a smooth part of the interface

We consider now the case when the fixed point = Z is outward to the gg-
vicinity of the corner point O. Then some evident transformations in the system
(M3) of equations (2.33)—(2.38) lead to the following problem in half-spaces. Let

R: = {(w1,29) : 71 € RY, 29 >0}, R3; = R2 x (0,7);

R? = {(x1,22) : 11 € R', 13 <0}, R%, =R~ x(0,7);

6 _1
Riy=R%x(0,T); Ry=R'x(0,T); mz—(mg?) |

We search a solution (u4(z1,x2,t), u—(x1,z2,t)) bounded at the infinity by the
conditions

Ajug = fgt n RiT; ug(r1,22,0) =0, z€ Ri; (3.12)
Ou—  Ouy Ou—  Ouy Ou_ Ouy\ _ =T
"’O(at 8t>+<8n 8n)+a1(ax1 8:1:1>_f1’ (1) € Rr:
(3.13)
Ou_ Ouy Ou_ Ouy) o1
on —k an — kay (63}1 - (91’1) = fa, (:E,t) S RT’ (3.14)

where A, is the Laplace operator with respect to (1, z2); n is the normal to R*
directed in R?; a;, i = 0,1,2, are some given constants, a; > 0; foi, fi,1=1,2,
are the given functions such that

fg—L, fi,fa =0, if either t <0 or |x| > Ry, (3.15)

for some positive number Ry. We suppose that condition (2.20) holds such that
ag > 0. It can be checked that if T is outward to the 2¢yp-vicinity of the point O,
then a; =0,7=1,2.

For the case a; =0, ¢ = 1,2, problem (3.12)—(3.14) was studied by F. Yi [30]
and the one-valued solvability of the problem was proved in the class C%'m (R%) =
C([0,T); C?*T*(R3)), a € (0,1). Here we will prove the one-to-one solvability of
(3.12)—(3.14) in the class E*T®%% if q; £ 0, i = 1, 2.

First of all, we study problem (3.12)—(3.14) in the special case

fi=rf=0, (3.16)
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and construct the integral representation to the solution (uy (x1,x2,t), u—(x1,x2,t)).
We denote by (), z2,t) the Fourier transformation of the function w(z1,x2,1t),
and by u(-, ) the Laplace transformation of u(-,¢), and use the notation ” x” in-
stead of ” ~ 7. By applying the Fourier and Laplace transformations to problem
(3.12)—(3.14), we get

= =A% =0, uh(\22,0) =0; (3.17)

vao[u® (A, z2,v) — u} (A, 22, V)] — 52 [u” (X, 22, ) — ul (A, 22, )]
+iar Au” (N, x2, v) — u (A, x2,v)] = (A, v) on x2 = 0; (3.18)

ou* (\,z2,v) ou’, ()\ :1:2,1/)

O0x2

—k

+ikasA[u™ (X, 2, v)—u’ (N, z2,v)] = 0 on xp = 0. (3.19)
To satisfy equations in (3.17), we set
ut (A, m,v) = M_(A,v)e2, uf (N g, v) = My(A,v)e M2,

and to find the unknown functions M_, M, we have two transmission equations
(3.18) and (3.19). It is easy to show that

|>\| — ia2>\ |)\| — iag)\
M_(\v)=—-k—F——M.(A d My (A 1+k—F—
( ’V) |/\|—|—zk:a2)\ +( ’V)v an +( ,V) + \)\|—|—zk‘a2)\
\)\|—ia2)\
. Al+ikag A *
X —uao—za1/\—|)\\% = fi(\v).
[A|+ikaz A

Thus, after some simple calculations in the last equation, one can get

1 1+Zk5a2|>\‘
1 k(1-— 7;6112A
M) = 50 ( i M)fi*(k,v), (3.21)
where . o
Q(\,v) = —vag + m\)\] — A <a1 + 7 f;) . (3.22)

Note that if condition(2.20) holds, then —ay < O and Re Q(\,v) < 0 in the case of
Rev > 0 and Im A = 0. Hence, the function 200 /\ ) does not have any singularities
in this case.
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Let
. JiAv) I . kff(Av) A
Fi(\v)=——"——""2(1+ikay— Fr\v)=—"<1(1—-1tias—
F) = =0 ey (BT ke ) FROW) = 0T 2N )
Ql()\, U) =V + A1|)\| + 1 Ao\, (323)
where A1 = #—ﬁl) and Ay = % (al + %’fﬁ) Then the functions M, and M_
can be rewritten as
Fi(\v) F*(\v)
M )\71/ = + ’ 5 M_ )\,l/ = ! N
=000 M =500
and the solution (u?,u’) is
Fr(\v) _ Fr(\v)
(N, wo,v) = 2 LemMw2 k(N pg, v) = L el 3.24
+( 2 ) Ql()\ay) ( 2 ) Ql()\uy) ( )

Thus, after the inverse Laplace and Fourier transformations, the solution (u* , v )
gets the form

t +o0o
ui(xl,xg,t) = /dT Fi(xl - f,t - T)Ki(f,l’g,T)df, (325)

0 —00

where Ky (x1,x9,t) are the inverse Fourier and Laplace transformations of the
PEPNED)

function £——=. Introduce the notation
Qi1(\v)

Ky (21,0,t) = K_(21,0,t) :== K(x1,t). (3.26)

As for the functions Fl(x1,t), they are the inverse Fourier and Laplace trans-
formations of F (A, v). The results of Privalov’s theorem for the singular integral
(see, e.g., Theorem 15.3 in [11] or Theorem 3.1.1 in [10]) together with the prop-
erties of the function fy(x1,t) give the following:

[ < const || f1]] (3.27)

E1+a,a,a(R7%ﬂ) E1+a,a,a(R7%)‘

To estimate the functions w4 (z1,22,t), we need the following properties of the
kernel K (x1,t).

Lemma 3.1. Let a € (0,1), t € [0,T], Ax = &1 — x1 for every Z1, r1 € R,
then the following holds:
i)
2

Ayt <1 + [W]z) |

K(:El,t) =

K(z1,t) > 0; (3.28)
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t +ooalK( ) I
Y, T | 2nt, 1=0;
0 —00
T
I = /dr ly|® a(yT) dy < const % (3.30)
0 —00
iv)
/ 0K
Iy := /dq- / ly|“ éy’ﬂ dy < const |Az|%; (3.31)
0 ly—AaT|<2|Az|

t
I3 = |Aw|/d7 / |y

0 ly—A27|>2|Az]|

o| K (y,7)
Oy?

dy < const |Azx|*.  (3.32)

The proof of this lemma is technically tedious and we place it in Appendix.

Remark 3.1. By using the method of the proof of Lemma 3.1, it is not
difficult to get analogous results for the function K (z1,x2,1).

Thus the standard arguments of Chapter 4 [22], together with Lemma 3.1,
Remark 3.1 and estimate (3.27), after routine calculations lead to the inequalities

__ Ousx — —
”ui||E2+a,a,a(RiT) + || ot |’E1+a,a,a(R%) S ConSt ||f1||E1+a,a,a(R%)’

ey < €Ot Tl (3.33)

where 0 < a < o < 1. Note that in the case of fgt = fo = 0, the uniqueness
of the solution (u_(z,t),us(x,t)) to problem (3.12)—(3.14) follows immediately
from the first inequality in (3.33). Therefore, in the case of (3.16), the one-valued
solvability of problem (3.12)—(3.13) was proved and the corresponding coercive
estimates were obtained. To extend these results to the general case, i.e., fgc #0,
f2 # 0, we look for the solution of problem (3.12)—(3.13) in the form

ug(z,t) = ux(x,t) + g (x,t),
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where @4 (z,t) is the solution of the transmission problem
S ek o P2 - _ 2.
Aty = fy in Rip, u+(x,0) =0, v € RL;

_ . Ou_ ou —
U+ = U—, 87 — kairj = f2, (x,t) S R%—v, (334)

and w4 (x,t) is the solution of problem (3.12)—(3.13) in the case (3.16) with a new
right-hand side fi.
As for uy (z,t), we apply the well-known results from [27] which give

8l era sy < NS il n sy + I ollgragary- (335)

The corresponding smoothness of the functions a4 (x,t) with respect to ¢ is ob-
tained if one considers problem (3.34) for the functions Uy = w4 (x,t1) —u(x,t2)
with new right-hand sides: fi = f5*(x,t1) — ff (z,t2); fo = fa(x,t1) — falz, ta).
Inequality (3.35) in the case of functions Uy together with the properties of the
functions fSE, f2 lead to the estimate

”u:‘:HEQ-&-a aa(RQ ) < COHSt [Hfo HCa,a,a(RTiT) + ”fQHCI-!—a,a,a(E)]' (336)

Moreover, as it follows from the third condition in (3.34),
= — =t =0if (x,t) € RL. (3.37)
Thus, the all written above proves the following results.

Theorem 3.3. Let o € (0,1), ff € E***(R%,), fi € E"****(RL), i =
1,2, and condition (3.15) hold. Then there exists a unique solution ui(z,t) €
Erroca(R2 ) of problem (3.12)-(3.14), and the estimate is true

8 - 0
- u+”E1+aaa(R1)

Hu-‘rHE2+a,a,a(RT+T) + ”u—HEQ-‘roz,a,a(R? + ||
C[Hf;”ca,a,a(@) + Hfo_”ca,a,a(RT_T) + Hfl”El‘*a’a’a(RilT) + |’f2"c1+a,a,a(flT)]v
(3.38)
where ¢ is a positive constant which is independent of the right-hand sides in
(3.12)—(3.14).
Moreover, if in addition condition (3.16) holds, then inequities (3.33) take
place.
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4. The Linear Problem

As it follows from (2.33)—(2.38), the linear system corresponding to nonlinear
system (2.39), where the right-hand sides are some fixed functions, has the form

0%0;  0°6; .
927 + a—mg = foi(z,t) in Qr, (4.1)
01(x,t) — O2(x,t) = A(x)o on I'p, (4.2)
60’ . 691 891 692
Frie —k:la(x)% — k1A (x) <@w - &u) + fi(z,t) onI'r, (4.3)
891 892 891 a92 _
00; B ' B '
a—xl|x120 =0, 0i(z,t)=0 on Typ, (4.5)
o(w,0) =0, 6;(x,0)=0. (4.6)

Here fo;(z,t), fi(x,t), a(x), A(x), Ai(x), As(z) are some given functions A(x) < 0,
and
fOi(x,O) =0, x€Qy, 1=1,2, fj(l’,O) =0,zel, 5=1,2. (47)

In the 2e¢-vicinity of the corner point O, the coefficients a(z), A(x), A1(z), Az(z)
can be represented as (see (2.65), (2.66) and (2.68))

1—-k 1 81)10 kg Bu1
A(z) = Aj(z) = —— /1 + 2 |2
(x) k 1 ¥ @%1 6” ) 1(:U> k -1 + ()0.7}1 8571L0 + (70531 ’

a(@) = \[1 12, Aolz) = kL2, (48)

on
where (see (2.18)) if x — O
ov ov
877120’FT ~ A37"1+7, TLOIFT ~ A4T1+7, (49)

where v is given in (2.19), A3 and A4 are nonzero constants, Az < 0. As it follows
from (2.18),

a(z), Ai(z) € C*T(I), i =1,2, and A(z) € E{{2(D). (4.10)

We introduce the functional spaces Hp and Hp (such that z € Hp, F(z) € Hg),

HD = Eg-{—a,a,a(QIT) X Es-i—a,oc,a(QZT) X Ni:a(fT),
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Hp = B3 ((hr) x ESS% (Qer) x BT (Tr) x B4 (Tr),

and
2l = 161,02, )1y = 1011 2wy + 102l v g + 0ty

IF(2) |y = |(fors foz, f1, f2)|log = [ forll oo @,z + o2l oo @y

Hfll grraoa gy + 1 f2ll preoca -

Theorem 4.1. Let (fo1, fo2, f1,f2) € Hr with o € (0,1/2) and s satisfy
conditions i), ii) from Theorem 2.1, conditions (2.20) and (4.7)—(4.10) hold.
Then for some T there exists a unique solution (01,62,0) € Hp to problem (4.1)-
(4.6) fort e [0,T], and

1(01, 02, o), < const [|(for, foz, f1, f2) | g (4.11)

with the constant independent of the functions fo1, fo2, f1, fo-

For the sake of simplicity, we represent the proof of Theorem 4.1 in the case
of I' = T'(0) described by the equation xo = 1 tan 3 in the 2ep-vicinity of the
corner point O. This theorem in general case (2 = ¢(z1)) is proved in the same
way and with the arguments and transformations taken from [5] and [29].

Using the results from [8], we can reduce problem (4.1)—(4.6) to the similar
one with fo1 = fo2 = f2 = 0 and a new function fi(z,t) € E1+°‘ “X(Tr). Indeed,
let ~

9i<1‘,t) = §i<l‘,t) +9_Z'($,t), (4.12)

where (61 (,t),02(z,t)) is the solution of the problem

820, 00,
% t ‘ Ql y
Ox? T o2 ox3 = foi(z,t) - in Qi
- ~ 06, 00
O1(x,t) — Oa(x,t) =0, a—nl — ka—n? = fo(x,t) on T'p,
0, - _
7|x1:0 = 0, 91'(1',25) =0on Fz‘T, 0@(1‘,0) =0. (4.13)
6.%'1

Transmission problem (4.13), as follows from Theorem 1.1 and Remark 3.1 [8],
has a unique solution 6;(z,t) € E2T%(Q,7), i = 1,2, and

\\91\|E3+a((21T) + Hé2||E§+a(Q ) < const (HfOl”EO‘ Q1)

+fo2ll e, (@0r) + Hf2||E;j;¥(fT))a (4.14)
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where s satisfies the conditions from Theorem 4.1.
As for the estimates of 6;, i = 1,2, with respect to ¢, they are a simple

consequence of (4.14) if we consider problem (4.13) for the functions [0;(x,t1) —

0i(z,t2)], i = 1,2, and use the properties of the right-hand side. Thus we have
"él“E§+a’a’a(QlT) + "92“E3+Q’Q‘Q(QQT) S const (Hf()l ”Efioé’a(ﬂm)

2

Hlfozll 2o (@) + 12l preosee ) (4.15)

For the functions 0;(z,t), i = 1,2, we get

0%0;  0°0;
— 4+ —==0 in Q, 4.16
Ox? * Ox2 AT (4.16)
01(z,t) — Oo(x,t) — A(x)o =0 on I'r, (4.17)
do 001 001 00,
ot TRl G ki) (aw - aw>
90, _ .
= fi(z,t) — k:la(:r)% = fi(z,t) on I'r, (4.18)
00, | 00, 06, 96\
00; -
87.%';|xl:0 = 0, 91'(1‘,25) =0 on FiT, (4.20)
o(w,0) =0, 6;(x,0)=0. (4.21)

Note that due to (4.15) and the properties of the function fi(x,t), the function
fi(z,t) belongs to E;ff’a’a(fT) and fi(z,0) = 0.

Therefore it is enough to prove Theorem 4.1 for problem (4.16)—(4.21). This
proof consists of two parts. The first of them is a solvability of problem (4.16)—
(4.21) which is done with the technique of the regularizer for parabolic systems
taken from [22]. As for the uniqueness of the solutions (the second part of the
proof of this theorem), it is deduced by the corresponding a priori estimates.

To show the solvability of system (4.16)—(4.21), we reduce one, similarly to
[24] or [21], to the nonlocal equation

Lo=fionTp,0li—g=0o0nT. (4.22)

The operator L is constructed in the next way. Let o be given in equation (4.17).
Then equations (4.16), (4.17), (4.19)—(4.21) formulate the transmission problem
for the functions A1 and #>. The solution of this transmission problem can be
used in equation (4.18). Thus, Lo is given by the left-hand side of (4.18).
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A nonlocal character of system (4.22) causes the difficulties requiring technical
tricks related to a suitable localization. As well as in Chapter 4 from [22] or
Section 2 from [24], or Section 4 from [21], we introduce the two collections of
open sets: {w"} and {Q"}, i = 1,2, such that

o C QM C Qy Upw!™ = U QO = €,
me:BA/Q(xm)ﬁQi; QZmZB)\@:m)ﬂQi
with m = 1,..., No and By(2™), By/2(z™) being the balls with the center in

™ and the radiuses of A\ and \/2, respectively. Denote I'"* = I" N By (z™) and
'™ =T; N Bx(z™), i = 1,2. The index m belongs to one of two sets:

meMif Q"NT=0andme N if @ NT £ .

We say that m € Ny if m belongs to N and "N B, (0) # 0 (B, (0) is the ball with
the center in O and the ¢ radius), and No = N\ N;. Moreover, No = Na; U Noag,
where m € Nap if m € Ny and T™ N Ba.,(0) # 0 (Bag,(0) is the ball with the
center in O and the 2¢( radius).

The coverings {w/"} and {Q"}, i = 1,2, define a partition of unity for the
domains ;. Let £ : Q; — [0,1], i = 1,2, be a smooth function such that

G'=1if vew, §" =0, if v € B\, §" € (0,1), if v € Q" \wi",

(3
and |VIU¢M| < const A7 1 < S7(€7)2 < M. By using the functions &7, we
m
define the function
gm
M=
>(&)?
J
By the properties of the functions £, the functions 1" vanish for x € ;\Q7"; in
addition, |VIy™| < const A7,
MM define the partition of unity by the formula

The functions n;
=1, i=1.2
m

Note that if m € N, we can choose the same functions £™ for both ¢ = 1 and
t =2, and thus 71" =n3' =n", m € N.

For each m € N, we pick out one point 2™ € w/* NI" which will be the origin
of the local coordinate system. The description of this system can be found in
Chapter 4 [22], Section 2 [24].

We introduce local coordinate systems connected with each point ™, m € Ns.
Let the curve I" be described with yo = ¥ (y;) in a small vicinity of every point
™, m € Ns, and

y=B"(z—a™), |U"(y1) < constA, (4.23)
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where B(M) = (Bi(;l))i,j:l’g is an orthogonal matrix. After that the local ”flat-
ness” of the boundary is made with the change of variables

21 =y1, 22 =y2 — V" (y1), m € Nag; 21 =y1, 22 =Y2, m € Noj. (4.24)

Thus, the variables (z1,x2) are connected with (z1,22) by the maps Z™ (see
(4.23), (4.24)) such that

&= Zn(2), and z = Z 1 (x), m € Na.

m

Definition 4.1. An operator
R: B 1% (Tp) — N2T*(Tp)

such that B
Rft=Y_ nms" (4.25)
meN

is called a reqularizer where s™ is a solution of the following problems: if m € Ny,
then

o*w™  O*w!
i w; =0 in Gir,
axf oz g o
wy(z,t) — —A"s™ =0 on gr,
% + kl 6w1 + klAm < an ) = f{n(xvt) on gr,
owi ( 8w2 ) —0 on g
on
owy? owy'
aﬁ =0on {1 =0,29 <0} x [0,T7]; (97”? =0on {r; =0,29 > 0} x [0,T],
s"™(w,0) =0, w(x,0)=0, (4.26)

where Gyr and gr are defined in Subsection 3.1;
if m € Na, then s™(w(z),t) := §™(&(Z,. (z)),t) and

m

o*wr  OPam 9
—0 in R%,
023 023 i
Mz, t) — WY (z,t) — Am8™ =0 on R,
as™ m OWT

— + k10
8t+1 B

owm  owy .
+k1Am< 8(; — &; > = f{"(z,t) on RlT,
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T a8 () =0 e
§™(w,0) =0, w*(z,0)=0, (4.27)
where © := w(z) and 1 := n(z) are the unit vectors with the coordinates {1,0}
and {0, —1}, respectively, in the plane R2, i.e., 8% = —% and a% = 8%1. Here

fit = he™, (20 = [{(Zn(2),0), o™ = a(@™), AT = A;(@™), i=1,2;

A™ = A(z™) <0, if m € Na, and for m € N; A™ = p1+74A™,
~ 1-— 1
A" = i As,
ko/1+¢z (am)

where Ag is a negative constant from (4.9).

(4.28)

Note that after simple transformations similar to those from Subsection 2.4
(see (2.65)—(2.78)), the results of Section 3 are applied to the solutions of problems
(4.26) and (4.27).

The operator R enables to construct an inverse operator to £ by the methods
used in Section 4 [21]. First, we need the following result.

- Lemma 4.1. Let the conditions of Theorem 4.1 hold, and F(z) = (0,0, f1,0),
filz,t) € BEXXO®*(Tp), fi(z,0) = 0. Then

LRf1=fi+Th, (4.29)

and the norm of the operator T is small and controlled by a quantity C(\,T). If
the time interval and X tend to zero, then C'(\,T') vanishes.

Proof  We wil use below the notation w!(z,t) := @™(Z,,}(z),1),
n =02 z)), w:=&(Z, (x)) m € N.
Let us introduce the auxiliary functions
vE =Yt i=1,2, (4.30)

meN

which are the solution of the transmission problem

Aw}l = Z 2V Vo + @ Aen™] + Z AWl (@) = goi in Qir,
meN meE Nag
(4.31)

vjl;l — vf;l = Z ATy = Z [A™ — A(z)]s"'n™ + A(x) Z s"mn™

meN meN meN
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= > [A™ = A(z)]s™n™ + A(z)Rfi = g1 on T'r, (4.32)
meN
8’01* 81}2— a—m a 8 m
f1 . fi _ m wy o ’LU2 L
on k@n_ ZAZ[(%} ] +Z 8n
meN meN
L owi" 5w2 owy*  Odwy'| .,
B Az(m)z[ﬁw ] +ZA2 [(%) o |
meN meN
a
+ Z 6777 =g2 oOn FT, (4.33)
meN
ve =0 on Tup, v (2,0)=0. (4.34)

As for solvability of problem (4.31)—(4.34), we can apply the results of Theo-
rem 1.1 and Remark 3.1 from [8] to obtain the existence of the unique solution

1 2
(Ufl’vﬁ)’
2

2
D vk llg2eeq,p < const D l9oill o ur) + 191l g2ver,y + 1921l g1+ 0]
i—1 i=1

To estimate the functions v}l, 1 = 1,2, with respect to t, we consider system
(4.30)—(4.34) for the difference [v}l (z, tl)—v}l (x,t2)] with the corresponding right-
hand side and obtain

, 2
>l llgzra (@) < const | 2 lgoill gy
i—1 =1

Hlgrllpzsanryy + g2l premo ey (4.35)

Now we study the action of the operator £ onto Rf;:

- ORfi 96, 00, 06,
LRI = =5~ Thale) g + kA )[&u_&u]
_ m a9_1 851 69_2
Z +7<31 (x )871 + k141 (z) [(%) - Gw] . (4.36)
meN
Next, making use of the third conditions in (4.26) and (4.27), we have
777—277 flxt klZAl[aw —aw:|77
meN meN, meN;
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8w o' (z,t) 0wy (z,t m
Ky Z ampmCYL Z Am|: 1"(z,t)  0wy'( )} ezt ()

ow ow
meN, meNs
m fm Z t) r
+ Z 1" [ (2 (2),8) = Z a™n™ A — ], 7702 = N1
meENa meENa
ow!  Ow m OWT"
_k»lem[ 1 2] /€1Za 1_klzam,’7m
meN meN meNa
oW (z,t) m |00 (z,t) 0wy (z,t) m
" an li=z71 (@) — F1 Z Ay o on o=zt @)™

We substitute the value of Y n™ 85? into (4.36) and get

meN
- 06, Ovy 06, vk
ERIL= Tt aale) [anl‘ n ] th@) |50 5,

™ 96,  0vj,
thia(z) Y aﬂlﬂin ~ k1A (z) [; - 75

meN

a—m 8—m a m
i 3 tno)-ap)| G - B i 3 a-an e Y ap

Ow Ow
meN meN meENa
m | 0w (x,t)  Owy(x,t) 0w (z,t) 0wy (z,t
X1 O - 0w - 0w \z:z,;l(z) + o0 \z:z,;l(z)
ot (x,t) 0wt (2,t)
+hy Y a™y" [ 1 o 1% mzt | - (4.37)
me€ N2
To evaluate the right-hand side of (4.37), we describe the properties of the func-
tions (6; — vf) i=1,2.
Let B -
Ui(z,t) :=0; — ) (x,t) € Q.

Then the simple calculations give (1f one takes into account (4.16)-(4.21) and
(4.31)—(4.33); and puts o = >, n™s™ in (4.17) as we consider LR f; now)

meN
AIUZ' = —gOi(x,t) n QiT7 (4.38)
Uy —Up= > [Alx) — A™s™)™ = gi(x,t) on T, (4.39)
meN
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8U1 8U2 8U1 8U2 —m —m 877m

—m —-m 877m m m awl an

- St - ka1 g + Y et - a3 |5 - 5

meN meN
= As( )87—142(50)2[1— 2]87_2[1_k ]87

meN meN
3 A — Ap | 200 OB e onT (4.40)
meNn 2 2 aw aw = g2\, T, .
Ul' =0 on FiTa Ui<l‘, 0) =0. (4.41)

The one-valued solvability of transmission problem (4.38)—(4.41) and the es-
timates of the solution follow from the results of Theorem 1.1 and Remark 3.1

8],

2
Z U]l g2+evan g,y < comst | D llgoill o @,
i=1
+||91||E§+avaﬂa(fT) + H§2||Eslj1a’aaa(fT)]- (4.42)

As for the estimate of the right-hand side of (4.42), we have got

ZugmuEm ey 181 gzt oy 1T ooy < CT Nl oo ey

(4.43)
with 0 < C(T,\) << 1las A — 0.

The proof of (4.43) is based on tedious calculations by using the results of
Theorems 3.1, 3.3 and the properties (4.8)—(4.10) of the functions a(x), A(x),
Ai(x),i=1,2.

Here we prove (4.43) only in the case of ||901||Ea a0 (@), the rest terms are
estimated in a similar way. Note that we use essentlally inequalities (39)—(43)
from Section 5 [3] and their weighted variants and the results of Theorems 3.1
and 3.2. In these inequalities the minor semi-norms of a function were estimated
with the major ones with small coefficients. For example, if a function W (z,t)
vanishes as t = 0, then

W) <1, tefo,1). (4.44)

x7579T -

It is easy to check that

190l - @,y < comst (sup [[|[V™ V@i || peaa(gmy + 10" An™ || gesae qm )]

meN
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+ sup || AD" || g qm ), (4.45)
meNoo
+2 —my\ ()
SQ%) =T |An™ | < const — 32 (wm>t7$70%
< const A2 ‘|f?“Eij?,a,a(f;ﬂ), (4.46)
@TA”%SS)—M’){’% < const (TQA_Q_a<w?>Es)Qm + TN “(D xwmii)—l,ﬁ?%)
< const T (A2 4 A_l_a)Hf{n”E;i—?,a,a(f‘%)7 (4.47)
(@7 Ap™ >§ v, am < const AT | grreaa o, (4.48)
and at last
[w" An™ ]i 2)Qm < const (T~ 7272 4 Ta*)\_l_a)HffIHE;j?,a,a(f%n), (4.49)
where a < o < 1 as before. Moreover, the simple calculations lead to
L™ g1+ gy < comst (1 + ATl (T2 (8| Allgitacap,)-  (4.50)

Thus, we can conclude from inequalities (4.46)—(4.50) that

a*—a

T
sup ||w An ||Ea a, O‘(Qm) < const W(l + )\TO‘)()\ + A& + )\1—201 + )\2—3(1)

meN

><”f1HE1+aa a( ) = Cl(A T)Hf1HE1+aaa(FT). (451)

If we chose the value T such that
TN =y << 1, (4.52)

then due to 0 < a < 1/2,

Ci(\T) = v(l +vaa ) oo e )(A D LD D S R | (4.53)

if X vanishes. The term sup ||Vy™ V|| poao(qm) is estimated in the same way.

Following the arguments from Chapter 4 [22], we can deduce that the ”worst”

term in sup [[n™ Apwi"|| pece qm ) is
meEN22

, me Noo
E&(Q%)

sup
meNao

T wne) e

82’182 2=t (z)
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(the other terms are evaluated either with the arguments below or with the

simpler reasonings).
k+a,0,a

Note that, as it follows from the definition of the spaces Es , H'||Ek+a,a,a(ﬁm)
s T
~ - Hokm,a,a(g%) if m € Njy. The simple calculations and inequalities (4.23),
(4.44), (4.50) drive to
2 1-2a| 7
su LY (z M < const T\~ PP 4.54
o [&Zlazz al I)LZT;I(x)n - illpygeepnyi - (459
[ alll \Ifm(z1)] n™ ” < const ' 72| fi || preavee o y; (4.55)
82’1622 . Z:Z;L1(J:) t,s—2,Q% - E.Z (I'r)
T e N <ol
21 n < cons 1| pl4esa,am v
002 "z [ sam BT (Tr)
(4.56)
(o)
O .
N (z1)> n™ < const A1 72| f1|| pi4anaa s
[(821822 o 2=Zm} (z) s—2.0m B Tr)
ame (@)
+Ala< o > : (4.57)
02102y #=%m (@) t,5—2,0m.

To evaluate the last term in the right-hand side of (4.57), we apply the next
interpolate inequality from [23]:

S%p\Di‘P(w)! < (@l czra(g)” (Sgp\@(w)l)l_e*, (4.58)

where ¢* € (0,1) and 9Q € C2.

. L ng{”(z,tl) ng{”(z,tg) 92
Putting ®(x) := [ T ] N and € = 32 we get
62@?1 (@) —m 2 _m () _a
<azlazz|zzﬁ(w) Lo am < const (|[w; ||02+a»a,a(§2;g))2+°‘(<wi >t737@%)2+a7
) »eT
or due to the results of Theorem 3.2,
82,uA)Zm >(a) 2a*—a) B
— 1 < constT  2ta A2 fill mitecam - 4.59
<621822 2=Zm () =20 I HE571 (Tr) ( )
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Then we return to inequality (4.57) and get with (4.59) and (4.52) that

()
2m
[(gz%; ‘Ifzf:(zl)) 77’”] < const [\ 72 4 p7a > ]
1 _
172 z=Zm (z) s—2,0m.
X||f1”E;jtlx,a,a(f‘T). (4.60)
Thus, (4.45), (4. 51) and (4.53), (4.54)—(4.56), (4.60) prove inequality (4.43) for

HQOZHE“%“(Q i) b =1,2.
After that, we return to the right-hand side of (4.37) and, as a consequence
of (4.42) and (4.43), we have

(Tr)’
The same arguments together with inequalities from Theorems 3.1 and 3.3 al-

low us to obtain the estimates like (4.61) for the terms ki fwma”n and
meN

1

= Avl = ov: ~ o2
kra(z)[92 — 2] + k1 Ay (2)[ D2 — 58] — kA (2)[52 — 51

14o,0,0 1
Es—? ¢ Q(F’iT)

< const C(N, T) || f1]| gr+a.aa (4.61)
s—1

kiAi(z) Y (@} — @52 in (4.37).
meN
At last, properties (4.8)—(4.10) of the functions a(x) and A;(z) give

|a(x) — a™ || crta@m) + [|A1(x) = AT"||grea(pmy < const A. (4.62)

To evaluate the rest of the terms in (4.37), we use the same reasonings as above
and inequalities (4.23), (4.62). Hence we may conclude that

with 0 < C(A,T") << 1, which completes the proof of Lemma 4.1. ]

The results of Lemma 4.1 mean that there exists an element o which satisfies

0 (4.22) and r't7o € EZT“(Ty), oy € EXT®%(Tr). Then the existence of
the functions 6;(z,t), i = 1,2, from (4.16)—(4.21) in the corresponding weighted
classes follows frorn [8] in the case of the transmission problem,

9%0;, 020,
83;% 8x2

=0 1n QiT;

01(x,t) — Oo(x,t) = A(x)o on I'r,
06, 00 As(x) <891 00

aw‘aw>:0 on I'r,
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99, ] ]
ox |x1:O =0, ai(xvt) =0 on T, ‘91($70) =0. (4.64)
1
We have B
||9¢||E§+a,a,a(QiT) S const ‘|T‘1+’70'||E§+a,a,a(l=\T), 7= 17 2. (465)

Thus, Lemma 4.1 and (4.65) lead to the following results.

Lemma 4.2. Let the conditions of Lemma 4.1 hold, then there is a so-
lution (61,02,0) to problem (4.16)-(4.21), and 0; € B2t (Qir), e €
ESt*(Tr), oy € B, (Dr).

Now we need the coercive estimates for the solution (61,0, 0) which give the
uniqueness of the solution obtained in Lemma 4.2.

Lemma 4.3. Let the conditions of Lemma 4.1 hold, then for every t € [0,T]
11,020 11 < const |l s, (4:66)
with the constant independent of fi.

Proof The standard Schauder technique and the results of Section 3 on
the properties of model problems lead to the a priori estimate

101,82, )l 11 < const (||l grssee ) + B0 g+ ONY 0 | (467)

As for the estimates of <9—i>§i)—QQT’ i = 1,2, we apply inequality (4.24) from

Lemma 4.1 in [12] which gives

7.\ (@) 0.\ (@) 3
<01>t,$—2,01'f + <02>t,8—2,QQT S COIlSt Hfl”E;i?’a’a(FT)
+const (e + C.T) (01,02, 0) || 1 - (4.68)

Choosing ¢ and T' enough small, we deduce from (4.67) and (4.68) inequality
(4.66) for t € [0,T], where T does not depend on the right-hand side of linear
problem (4.16)—(4.21). [

Now the proof of Theorem 4.1 can be deduced from the results of Lemmas
4.1-4.3.
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5. The Nonlinear Problem: the Proof of Theorem 2.1

The proof of Theorem 2.1 is based on Theorem 4.1 and representation (2.39)
of the nonlinear problem. We can rewrite problem (2.39) in the form

Sz = F(z) = f(z,t) + Fi(z), (5.1)

where z = (61,02,0), and S is the linear operator which is given by the left-hand
side of (2.39), S: Hp — Hpg; the vector f(z,t) is constructed with initial data;
F1(z) contains the elements described in Remark 2.4.

As the operator < satisfies the conditions of Theorem 4.1, nonlinear problem
(5.1) can be represented as

z=S"1f+S7Fi(z) = P(2).

Lemma 5.1. Let By, By C Hp, be a ball with the center located in the origin
and the radius of d. For z € By, the following estimates hold:

I|F1(0)|| mr, < const Ta*_a, (5.2)

IF1(21) — Fi(22)|| . < const (d+ T %)||z1 — 2ol (5.3)

where 0 < v < a™ < 1.

The proof of Lemma 5.1 repeats all the arguments from Section 5 [29] and is
based on the results of Theorems 3.1 and 4.1.

Note that inequalities (5.2) and (5.3) mean that for sufficiently small 7" and
d the nonlinear operator P(z) satisfies the conditions of the fixed point theorem
for a contraction operator. Hence, the fixed point of the operator is the solution
of problem (2.39), and thus Theorem 2.1 is proved.

6. Appendix: The Proof of Lemma 3.1

To prove the first statement in the lemma, note that the inverse Laplace
transformation of the function VJ%A, where ReA > 0, is the function e~4* (see,
for example, (5.2.(1)) in [2]). Thus,

+o0
- , 2A1t
K 1) = AT —(A1|)\H-ZA2)\)td)\ — 1
(‘Tla ) /6 € (Alt)2+(l'1—A2t)2’

and (3.28) follows immediately from this representation of K(z1,t).
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Moreover, using this representation for K (z1,t), it is easy to get

8lK($1,t)

; —0as |x1] = o0, t€[0,T], and 1 > 0, (6.1)
oz}

which proves (3.29) in the case of [ > 0. To calculate integrals (3.29) in the case

of | = 0, we change the variable ¥=227 = 7 in the inner integral and obtain
t 00 t 00
dr | K(y,r)dy=4 [ d = o
T y,7)dy = T[] a2
0 —oo 0 0
It is easy to find aK(xll’ ) from the representation of K (x1,t),
8K(J?1, t) 2 xr1 — Agt
GRILY oK) 222 6.2
Fre (z1,1) i (6.2)

Thus, to estimate [; in (3.30), we use (6.2) and change of the variable y;‘ij =z
in the inner integral. Then

t

dr ’Z+A1 «
Il—const/T1 — 17 22 < const t%,

0

which proves (3.30).
As for inequality (3.31), we use again representation (6.2) and the change of
the variable y — Ao7 = z in the integral with respect to y,

t 2|A:):|| " ‘ "
z+ AoT|%2 AT
|I5| < const / / (24 A2r2)2 dz

! 218z] 1+ A : 20 ‘|A ’a 1+ A

Z AT 2 2 A

< const /dT / dz—i—/dT / —dz
(2% + Af7?)? (2% + Afr?)?
0 0 0 0
= const (i1 + i2). (6.3)

First, we evaluate i; and change the variable 22 + A272 = u in the integral
with respect to 7. Thus, one has

2|Ax| 224(A1t)? 2| Az
: 14+o @ a—1 _ e’
i1 < const 2%z 5 < const 247 dz = const |Az|*.  (6.4)
u
0 22 0
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As for the term io, after the change of the variables z = Aj7u in the integral
with respect to 2z and then 2|Ax|(A;7)~! = v in the integral with respect to 7,
one gets

oAz
t AlT t 1
. 1 ud .
19 < CODSt/dTTa / (u2 1 const/T [ T AIAa (A7) 2 dr
0 0 0
“+oo
< const |Ax| < const |Ax|“. (6.5)
1+02
0

Hence, inequalities (6.3)—(6.5) lead to estimate (3.31).
Finally, to prove (3.32), we calculate the second derivative of the function

K (z1,t) with respect to 21
2
1-3 <.I1 A2t>
At

and change the variables y = z 4+ A7 in the integral with respect to y and then

T = A%v in the integral with respect to 7. Thus,

PK (‘Th )

= —K3(x1,t
922 (1,1)

)

+o00o t
I3 [z + AoT + Az]® 9 9
— < t d 1- A d
As cons / z/ (A17')3(1+22(A1T)_2)| 3z°(AyT) "ldr
2|Ax| 0
+o0 d +00 d
= const / zQ_ZO[ / {a _’_1:}2)2 < const \Aq:|°‘*1'
|Az] 0

These inequalities lead to estimate (3.32) which completes the proof of Lemma 3.1.
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