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The Maxwell–Bloch equations have been intensively studied by many
authors. The main results are based on the inverse scattering transform and
the Marchenko integral equations. However this method is not acceptable
for mixed problems. In the paper, we develop a method allowing to linearize
mixed problems. It is based on simultaneous spectral analysis of both Lax
equations and the matrix Riemann–Hilbert problems. We consider the case
of infinitely narrow spectral line, i.e., without spectrum broadening. The
proposed matrix Riemann–Hilbert problem can be used for studying tem-
poral/spatial asymptotics of the solutions of Maxwell–Bloch equations by
using a nonlinear method of steepest descent.
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1. Introduction

The Maxwell–Bloch (MB) equations became well known after Lamb [1–4]. In
[5], Ablowitz, Kaup and Newell proposed the inverse scattering transform (IST)
to the Maxwell–Bloch equations for studying a physical phenomenon known as
self-induced transparency. A description of general solutions to the MB equations
and their classifying was done by Gabitov, Zakharov and Mikhailov in [6]. All
the authors used the IST method based on the Marchenko integral equations. In
particular, in [6], the authors gave an approximate solution of the mixed problem
to the MB equations in the domain x, t ∈ (0, L)× (0,∞). They also emphasized
that the IST method is not adopted for mixed problems. In this paper, we develop
a method allowing to linearize mixed problems in the case of infinitely narrow
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spectral line, i.e., without spectral broadening. It is based on the simultaneous
spectral analysis of both the Lax equation, associated with the Maxwell–Bloch
equations, and the matrix Riemann–Hilbert problems. The proposed matrix
RH problems will be useful for studying the long time/long distance (x ∈ R+)
asymptotic behavior of solutions to the MB equations by using the nonlinear
method of steepest descent as, for example, in [7] and [8].

We consider the Maxwell–Bloch equations in the form given in [6]:

∂E
∂t

+
∂E
∂x

= 〈ρ〉, (1)

∂ρ

∂t
+ 2iλρ = NE , (2)

∂N
∂t

= −1
2
(E∗ρ + Eρ∗). (3)

Here ∗ denotes the complex conjugation, E = E(t, x) is a complex valued function
of the space variable x and the time t, ρ = ρ(t, x, λ) and N (t, x, λ) are complex
valued and real functions of t, x and the spectral parameter λ. The angular
brackets 〈〉 mean averaging on λ with a given weight function n(λ) > 0,

〈ρ〉 =

∞∫

−∞
ρ(t, x, λ)n(λ)dλ,

∞∫

−∞
n(λ)dλ = 1. (4)

Equations (1)–(4) can be found in a number of physical models. One of
the most important is a model of the propagation of electromagnetic waves in
a medium with distributed two-level atoms. In particular, there are models of
self-induced transparency [5, 9], and quantum laser amplifier [10, 11]. For these
models, E(t, x) is the complex valued envelope of electromagnetic wave of a fixed
polarization, N (t, x, λ) and ρ(t, x, λ) are entries of the density matrix of the atom
subsystem

ρ̂(t, x, λ) =
(N (t, x, λ) ρ(t, x, λ)

ρ∗(t, x, λ) −N (t, x, λ)

)
. (5)

The parameter λ denotes a deviation of the passage frequency from its mean
value, and the function n(λ) characterizes the inhomogeneous broadening, i.e., it
describes the form of a spectral line. For short reviews on the MB equations see
[5, 6, 9].

We restrict ourselves to the case of the infinitely narrow spectral line where
n(λ) = δ(λ). Then 〈ρ〉 = ρ, and (1)–(3) takes the form

∂E
∂t

+
∂E
∂x

= ρ,
∂ρ

∂t
= NE ,

∂N
∂t

= −1
2
(E∗ρ + Eρ∗). (6)
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The mixed problem for the Maxwell–Bloch equations is defined by the following
initial and boundary conditions:

E(0, x) = E0(x), ρ(0, x) = ρ0(x), N (0, x) = N0(x), E(t, 0) = E1(t), (7)

where x ∈ (0, L) (L ≤ ∞) and t ∈ R+. The function E1(t) is a Schwartz type
function (smooth and fast decreasing at infinity). The functions E0(x), ρ0(x),
N0(x) are smooth or Schwartz type functions if x ∈ R+. If one deals with a
solution on the whole t-line, then the input pulse E1(t) should be given for t ∈ R,
and the functions ρ(t, x), N (t, x) should be given as t → −∞.

The functions ρ(t, x), N (t, x) are not independent. Indeed, Eqs. (2) and (3)
give

∂

∂t

(|ρ(t, x)|2 +N (t, x)
)

= 0,

and we put
|ρ(t, x)|2 +N (t, x) ≡ 1.

Thus we must define ρ(0, x) and

N (0, x) = ∓
√

1− |ρ(0, x)|2.

We choose the sign ”minus” to have a stable medium, the so-called attenuator ( for
example, in the model of self-induced transparency). The sign ”plus” corresponds
to an unstable medium, i.e., to a quantum laser amplifier.

Assuming that the medium is stable, we consider the functions E(t, x), ρ(t, x)
and N (t, x) which satisfy the MB Eqs. (6) in the domain x, t ∈ (0, L) × (0,∞).
We develop the IST method in the form of the matrix Riemann–Hilbert problem
in the complex z-plane and give an integral representation for E(t, x) through
the solution of a singular integral equation which is equivalent to the matrix RH
problem. This RH problem is produced by spectral functions defined via given
initial and boundary conditions for MB equations. Further, we give a formulation
of a more general matrix RH problem which has a unique solution. We prove that
the RH problem generates a compatibility system of differential equations which
is the AKNS linear Eqs. [9] for the MB equations without spectral broadening.
Thus this RH problem generates different solutions to the MB equations. Among
them there are the solutions on the whole t-axis, the solutions of the mixed
problem in the quarter tx-plane with vanishing at infinity or some periodic in t
input pulse E(t, 0).

Our approach differs from that considered in [12] for the Goursat problem
to the MB equations where a linear (but complicated) ”evolution” in x takes
place for scattering data. We develop the approach of simultaneous spectral
analysis proposed in [13–16] and in [17–20], and prove that the mixed problem is
completely linearizable by the appropriate matrix RH problem.
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2. Basic Solutions of the Ablowitz–Kaup–Newel–Segur Linear
Equations

We use the simultaneous spectral analysis of the linear t-equation

Φt + iλσ3Φ = −H(t, x)Φ, (8)

σ3 =
(

1 0
0 −1

)
, H(t, x) =

1
2

(
0 E(t, x)

−E∗(t, x) 0

)

and the linear x-equation

Φx − i
(

λσ3 +
F (t, x))

4λ

)
Φ = H(t, x)Φ, (9)

F (t, x) =
(N (t, x) ρ(t, x)

ρ∗(t, x) −N (t, x)

)
.

Here Φ(t, x, λ) is a 2 × 2 matrix-valued function and λ ∈ R is a parameter. It
is easy to verify that the over-determined system of differential Eqs. (8), (9)
(AKNS system of equations [9]) is compatible if and only if the functions E(t, x),
ρ(t, x, ) and N (t, x) satisfy the MB Eqs. (6).

Let us rewrite equations (8) and (9) in the form:

Wt = U(t, x, λ)W, (10)

Wx = V (t, x, λ)W, (11)

where U and V are the matrices:

U(t, x, λ) =− (iλσ3 + H(t, x)),

V (t, x, λ) =iλσ3 + H(t, x) +
iF (t, x)

4λ
.

Lemma 2.1. Let Eqs. (10) and (11) be compatible for all t, x, λ ∈ R. Let
W (t, x, λ) be a matrix satisfying the t-equation (10) for all x (the x-equation
(11) for all t). Assume that W (t0, x, λ) satisfies the x-equation (11) for some
t = t0 ≤ ∞ (the t-equation (10) for some x = x0 ≤ ∞). Then W (t, x, λ) satisfies
the x-equation (11) for all t (satisfies the t-equation (10) for all x).

P r o o f. See, for example, in [17] (Lemma 2.1).
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2.2. The problem on whole t-line

Let E(t, x), ρ(t, x) and N (t, x) be a smooth solution to the MB Eqs. (6).
We suppose additionally that E(t, x) and ρ(t, x) are fast decreasing as t → −∞
(hence N (t, x) → −1 as t → −∞). This problem was first studied in [5] by using
the inverse scattering transform and the Marchenko integral equation. Below we
give the formulation of the corresponding matrix Riemann–Hilbert problem.

Let Y (t, x, λ) be a product of the matrices

Y (t, x, λ) = W (t, x, λ)Φ(t, λ), (12)

where W (t, x, λ) satisfies the x-equation for all t and W (t, 0, λ) = I, and Φ(t, λ)
satisfies the t-equation for x = 0 under the initial condition lim

t→∞Φ(t, λ)eiλtσ3 = I.

Then, due to Lemma 2.1, the matrix Y (t, x, λ) is a compatible solution of the
Ablowitz–Kaup–Newel–Segur (AKNS) system of equations (8)–(9).

Let Z(t, x, λ) be a compatible solution of the AKNS system of equations (8)–
(9) such that

Z(t, x, λ) = Ψ(t, x, λ)W∞(x, λ), (13)

where Ψ(t, x, λ) satisfies the t-equation for all 0 ≤ x ≤ L ≤ ∞ under the initial
condition lim

t→−∞Ψ(t, x, λ)eiλtσ3 = I, and W∞(x, λ) satisfies the x-equation whose

coefficients are constant matrices as t → −∞. It is normalized by the initial
condition W∞(0, λ) ≡ I. It is easy to see that W (t, x, λ) is the fundamental
solution of the x-equation with fixed t ∈ R. The matrices Φ(t, λ) and Ψ(t, x, λ)
are the Jost solutions of the t-equation with any fixed x.

Lemma 2.2. Let E(t, x), ρ(t, x) and N (t, x) be smooth solutions to the MB
equations (6) such that E(t, x) and ρ(t, x) are fast decreasing as t → −∞. Let
E(t, 0) = E1(t) be smooth and fast decreasing as |t| → ∞. Then the Jost solutions
Φ(t, λ) and Ψ(t, x, λ) have the integral representations:

Φ(t, λ) = e−iλtσ3 +

∞∫

t

K+(t, τ, 0)e−iλτσ3dτ, Imλ = 0. (14)

Ψ(t, x, λ) = e−iλtσ3 +

t∫

−∞
K−(t, τ, x)e−iλτσ3dτ, Imλ = 0. (15)

The kernels K±(t, τ, .) satisfy the symmetry condition

K±∗(t, τ, .) = ΛK±(t, τ, .)Λ−1 with the matrix Λ =
(

0 1
−1 0

)
, and

[σ3,K
±(t, t, .)] = ±σ3H(t, .).

The kernels K±(t, τ, .) are smooth and fast decreasing as t + τ → ±∞.
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The proof of this lemma is well known (cf. [21]). It is also well known that
the vectors Φ[1](t, λ) and Φ[2](t, λ) of the matrix Φ(t, λ) = (Φ[1](t, λ), Φ[2](t, λ))
have the analytic continuations Φ[1](t, z) and Φ[2](t, z) to the lower and upper
half-planes of the complex z-plane (z = λ+iν), respectively. The vector columns
Ψ[1](t, x, λ) and Ψ[2](t, x, λ) of the matrix Ψ(t, x, λ) = (Ψ[1](t, x, λ), Ψ[2](t, x, λ))
have the analytic continuations Ψ[1](t, x, z) and Ψ[2](t, x, z) to the upper and
lower half-planes of the complex plane.

If H(t, x) ≡ 0 and F (t, x) ≡ −σ3, then the x-equation has an exact solution
eixη(λ)σ3 , where η(λ) = λ− 1

4λ . Taking this into account, we find that the function
W∞(x, λ) = eiη(λ)xσ3 , and the function Ŵ (t, x, λ) = e−iη(λ)xσ3W (t, x, λ) must
satisfy the integral equation

Ŵ (t, x, λ) = I +

x∫

0

e−iyη(λ)σ3(H(t, y) + i(F (t, y) + σ3)/4λ))eiyη(λ)σ3Ŵ (t, y, λ)dy.

(16)
The equation yields that W (t, x, λ) has an analytic continuation to the punctured
complex plane C \ {0}.

Lemma 2.3. Let E(t, x), N (t, x), ρ(t, x) be smooth functions. Then the solu-
tion W (t, x, λ) can be represented in the form:

W (t, x, λ) = eiη(λ)xσ3Ŵ (t, x, λ), (17)

where Ŵ (t, x, λ) is the unique solution of the Volterra integral equation (16).
The solution W (t, x, λ) is smooth in t and x, and it has an analytic continuation
W (t, x, z) where z = λ + iν ∈ C \ {0}. Moreover, the matrix W (t, x, z)e−iη(z)x is
continuous, bounded in C− ∪ R and has the asymptotics

W (t, x, z)e−iη(z)x =
(

1 0
0 e−2izx

)
+ O(z−1), Im z ≤ 0, z →∞,

and the matrix W (t, x, z)eiη(z)x is continuous, bounded in C+ ∪ R and has the
asymptotics

W (t, x, z)eiη(z)x =
(

e2izx 0
0 1

)
+ O(z−1), Im z ≥ 0, z →∞,

where the symbol O(.) means a matrix whose entries have the indicated order.

P r o o f. The solvability of the Volterra integral Eq. (16) and the smoothness
of the solution with respect to t and x can be easily proved by using the method
of successive approximations. Since the left-hand side

izσ3 + H(t, x) + i(F (t, x) + σ3)/4z
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of the x-equation is analytic for z 6= 0, the matrix W (t, x, λ) has an analytic
continuation for z = λ + iν ∈ C \ {0}, which we denote as W (t, x, z). Thus the
matrix W (t, x, z)e−iη(z)x (W (t, x, z)eiη(z)x) is analytic, continuous for z 6= 0 in
C− ∪R (C+ ∪R) and has the above asymptotics. Moreover, they are bounded as
z → 0 and, hence, we find (determine) that they are continuous also at the point
z = 0.

Formulas (12), (14), (17) and Lemmas 2.2, 2.3 imply the following properties
of the matrix Y (t, x, λ) = (Y [1](t, x, λ) Y [2](t, x, λ)):
1) Y (t, x, λ) (λ 6= 0) satisfies the t- and x-equations (8)–(9);

2) Y (t, x, λ) = ΛY ∗(t, x, λ)Λ−1, λ ∈ R \ {0}, where Λ =
(

0 1
−1 0

)
;

3) detY (t, x, λ) ≡ 1, λ ∈ R \ {0};
4) the map (x, t) 7−→ Y (t, x, λ) (λ 6= 0) is smooth in t and x;
5) the vector column Y [1](t, x, λ) has the analytic continuation Y [1](t, x, z) for
z ∈ C−, and Y [1](t, x, z)eizt−ixη(z) is continuous in z ∈ C− ∪ R, and

Y [1](t, x, z)eizt−ixη(z) =
(

1
0

)
+ O(z−1), z →∞;

6) the vector column Y [2](t, x, λ) has the analytic continuation Y [2](t, x, z) for
z ∈ C+, and Y [2](t, x, z)e−izt+ixη(z) is continuous in z ∈ C+ ∪ R, and

Y [2](t, x, z)e−izt+ixη(z) =
(

1
0

)
+ O(z−1), z →∞.

These asymptotics follow from the formulas:

Φ[1](t, z)eizt =
(

1
0

)
+ O(z−1), Im z < 0, z →∞,

Φ[2](t, z)e−izt =
(

0
1

)
+ O(z−1), Im z > 0, z →∞,

and

W [1](t, x, z)e−iη(z)x =
(

1
0

)
+ O(z−1), Im z < 0, z →∞,

W [2](t, x, z)eiη(z)x =
(

0
1

)
+ O(z−1), Im z > 0, z →∞.

Taking into account that W∞(x, λ) = eiη(λ)xσ3 and Eqs. (13), (15), we find
that:
1) Z(t, x, λ) (λ 6= 0) satisfies the t- and x-equations (8)–(9);
2) Z(t, x, λ) = ΛZ∗(t, x, λ)Λ−1, λ ∈ R \ {0};
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3) detZ(t, x, λ) ≡ 1, λ ∈ R \ {0};
4) the map (x, t) 7−→ Z(t, x, λ) (λ 6= 0) is smooth in t and x;
5) the vector column Z[1](t, x, λ) has the analytic continuation Z[1](t, x, z) for
z ∈ C+, and Z[1](t, x, z)eizt−ixη(z) is continuous in z ∈ C+ ∪ R, and

Z[1](t, x, z)eizt−ixη(z) =
(

1
0

)
+ O(z−1), z →∞;

6) the vector column Z[2](t, x, λ) has the analytic continuation Z[2](t, x, z) for
z ∈ C−, and Z[2](t, x, z)e−izt+ixη(z) is continuous in z ∈ C− ∪ R, and

Z[2](t, x, z)e−izt+ixη(z) =
(

1
0

)
+ O(z−1), z →∞.

Since the matrices Y (t, x, λ) and Z(t, x, λ) are the solutions of the t- and
x-equations (8)–(9), they are linearly dependent. Thus, there exists a transition
matrix T (λ), independent of x and t, such that

Y (t, x, λ) = Z(t, x, λ)T (λ). (18)

The transition matrix is equal to

T (λ) = Z−1(0, 0, λ)Y (0, 0, λ) = Ψ−1(0, 0, λ)Φ(0, λ)

and, hence, T (λ) = ΛT ∗(λ)Λ−1, i.e., T (λ) has the form

T (λ) =
(

a(λ) b(λ)
−b(λ) a(λ)

)
, a(λ) = a∗(λ), b(λ) = b∗(λ).

The scattering relation (18) can be written in the following form:

Y [1](t, x, λ) = a(λ)Z[1](t, x, λ)− b(λ)Z[2](t, x, λ), λ ∈ R,

Y [2](t, x, λ) = a(λ)Z[2](t, x, λ) + b(λ)Z[1](t, x, λ), λ ∈ R.

These relations give

a(λ) = det(Z[1](t, x, λ), Y [2](t, x, λ)), b(λ) = det(Y [2](t, x, λ), Z[2](t, x, λ)).

The matrices Ψ(0, 0, λ) and Φ(0, λ) have the form
(

α(λ) −β(λ)
β(λ) α(λ)

)
and

(
A(λ) B(λ)
−B(λ) A(λ)

)
,

respectively. The functions α(λ), β(λ) and A(λ), B(λ) have analytic continua-
tions in C+ and α(z) = α∗(z∗), β(z) = β∗(z∗), and A(z) = A∗(z∗), B(z) = B∗(z∗)
are analytic in C−. Thus we have

a(λ) = α(λ)A(λ)− β(λ)B(λ), b(λ) = α∗(λ)B(λ) + β∗(λ)A(λ).
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The function a(λ) has the analytic continuation a(z) for z ∈ C+, and a(z) =
a∗(z∗) is analytic in C−. The functions b(λ) and b(λ) = b∗(λ) are defined for λ ∈ R
only. The determinant of T (λ) ≡ 1 for Imλ = 0 and, hence, |a(λ)|2 + |b(λ)|2 ≡ 1.
The spectral functions have the following asymptotics: a(z) = 1 + O(z−1) as
z →∞ and Im z ≥ 0, and b(λ) = O(λ−1) as λ →∞.

If the function a(z) has zeroes zj ∈ C+, then

a(zj) = det(Z[1](t, x, zj), Y [2](t, x, zj)) = 0, j = 1, 2, ...., p.

Hence the vector columns of the determinant are linearly dependent:

Y [2](t, x, zj) = γjZ[1](t, x, zj), γj =
B(zj)
α(zj)

=
A(zj)
β(zj)

, j = 1, 2, . . . , p.

(19)
At the conjugated points z∗j ∈ C− (j = 1, 2, . . . , p), the function

a(z∗j ) = det(Y [1](t, x, z∗j ), Z[2](t, x, z∗j )) = 0.

Therefore,

Y [1](t, x, z∗j ) = γjZ[2](t, x, z∗j ), γj =
B∗(z∗j )
α∗(z∗j )

=
A∗(z∗j )
β∗(z∗j )

= γ∗j . (20)

Let us define the matrix

M(t, x, z) =





(
Z[1](t, x, z)eizt−ixη(z) Y [2](t, x, z)

a(z)
e−izt+ixη(z)

)
, z ∈ C+

(
Y [1](t, x, z)

a(z)
eizt−ixη(z) Z[2](t, x, z)e−izt+ixη(z)

)
, z ∈ C−.

(21)
The matrix is analytic for z ∈ C \ R if a(z) 6= 0, it has a jump across the real
λ-axis M(t, x, λ− i0) = M(t, x, λ + i0)J(t, x, λ), where

J(t, x, λ) =




1 + |r(λ)|2 −r(λ)e−2iθ(t,x,λ)

−r(λ)e2iθ(t,x,λ) 1


 , θ(t, x, λ) = izt− iη(z)x,

(22)
and det M(t, x, λ − i0) = detM(t, x, λ + i0) = 1. The matrix M(t, x, z) has
the asymptotics M(t, x, z) = I + O(z−1) as z → ∞. If a(z) has zeroes, then
the matrix is a meromorphic function and residues relations must be added.
Namely, if the number of zeroes is finite and they are simple, i.e., a(zj) = 0 and
ȧ(zj) = da(z)/dz|z=zj 6= 0 (j = 1, 2, . . . , p), then

res
z=zj

M [2](t, x, z) = mje
−2izjt+2ixη(zj)M [1](t, x, zj), (23)
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res
z=z∗j

M [1](t, x, z) = m∗
je

2iz∗j t−2ixη(z∗j )M [2](t, x, z∗j ), (24)

where mj = γj/ȧ(zj), m∗
j = γj/ȧ

−(z∗j ), and the numbers γj , γj = γ∗j are defined
in (19) and (20).

2.2. Mixed problem

We consider here the mixed problem (6)–(7) in the domain t ∈ R+, 0 ≤
x ≤ L ≤ ∞. Let E(t, x), N (t, x), ρ(t, x) be a smooth solution of the mixed
problem. We use the compatible solution Y (t, x, λ) ( with the restriction t ∈ R+)
of the AKNS system of equations introduced in the previous subsection. Another
compatible solution Ẑ(t, x, λ) of equations (8)–(9) is defined as follows:

Ẑ(t, x, λ) = Ψ̂(t, x, λ)w(x, λ), (25)

where Ψ̂(t, x, λ) satisfies the t-equation for all x and Ψ̂(0, x, λ) = I, and w(x, λ)
satisfies the x-equation with t = 0 under the initial condition w(L, λ) = eiLη(λ)σ3

or lim
x→∞w(x, λ)e−ixη(λ)σ3 = I if L = ∞.

Lemma 2.4. Let E(t, x), N (t, x), ρ(t, x) be smooth. The function Ψ̂(t, x, λ)
has an integral representation

Ψ̂(t, x, λ) = e−iλtσ3 +

t∫

−t

L(t, τ, x)e−iλτσ3dτ. (26)

The kernel L(t, τ, x) is smooth, it satisfies the symmetry condition L∗(t, τ, x) =

ΛL(t, τ, x)Λ−1 with the matrix Λ =
(

0 1
−1 0

)
, and

[σ3, L(t, t, x)] = H(t, x)σ3.

The proof of this lemma can be found in (cf. [17]). Integral representation (26)
gives the analyticity of the Jost solution Ψ̂(t, x, z) for z ∈ C and its asymptotic
(as z →∞) behavior:

Ψ̂(t, x, z)eizt =
(

1 0
0 e2izt

)
+ O(z−1) + O(e2iztz−1),

Ψ̂(t, x, z)e−izt =
(

e−2izt 0
0 1

)
+ O(z−1) + O(e−2iztz−1),

where the symbol O(.) means a matrix whose entries have the indicated order.
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The function ŵ(x, λ) = w(x, λ)e−iη(λ)xσ3 must satisfy the integral equation

ŵ(x, λ) = I +

L∫

x

ei(x−y)η(λ)σ3Ĥ(y, λ)ŵ(y, λ)e−i(x−y)η(λ)σ3dy, (27)

where Ĥ(y, λ) = H(0, y)+i(F (0, y)+σ3)/4λ. By using this integral equation, we
can prove that the matrix w(x, λ) is analytic everywhere and has the asymptotic
behavior

w(x, λ) =
(

eixη(λ) 0
0 e−ixη(λ)

)
+

(
χ11(x, λ)eixη(λ) χ12(x, λ)e−ixη(λ)

χ21(x, λ)eixη(λ) χ22(x, λ)e−ixη(λ)

)
,

where χ11(x, λ), χ21(x, λ) = O(λ−1) + O(λ−1e2iLλ) and χ12(x, λ), χ22(x, λ) =
O(λ−1)+O(λ−1e−2iLλ) as λ → ±∞ (0 ≤ x ≤ L < ∞). If L = ∞, then χij(x, λ) =
O(λ−1) as λ → ±∞. Due to the analytic continuation of the first vector column
to the upper half-plane and the second vector column to the lower half-plane,
we have (χ11(x, z), χ21(x, z)) = O(z−1) for Im z ≥ 0 and (χ21(x, z), χ22(x, z)) =
O(z−1) for Im z ≤ 0 as z →∞.

Formulas (25), (26), (27) and Lemmas 2.2, 2.4 imply the following properties
of the matrices Ẑ(t, x, λ) = (Ẑ[1](t, x, λ) Ẑ[2](t, x, λ)):
1) Ẑ(t, x, λ) (λ 6= 0) satisfies the t- and x-equations (8)–(9);

2) Ẑ(t, x, λ) = ΛẐ∗(t, x, λ∗)Λ−1, λ ∈ C \ {0}, where Λ =
(

0 1
−1 0

)
;

3) det Ẑ(t, x, λ) ≡ 1, λ ∈ C \ {0};
4) the map (x, t) 7−→ Ẑ(t, x, λ) (λ 6= 0) is smooth in t and x;
5) the map z 7−→ Ẑ[1](t, x, z) is analytic in z ∈ C+;
6) the map z 7−→ Ẑ[2](t, x, z) is analytic in z ∈ C−;
7) the vector functions Ẑ[1](t, x, λ)eiλt−ixη(λ), Ẑ[2](t, x, z)e−iλt+ixη(λ) are analytic,
bounded in z ∈ C±, continuous up to the boundary (R), and

Ẑ[1](t, x, z)eizt−ixη(z) =
(

1
0

)
+ O(z−1), z ∈ C+, z →∞;

Ẑ[2](t, x, z)e−izt+ixη(z) =
(

0
1

)
+ O(z−1), z ∈ C−, z →∞.

Since the matrices Y (t, x, λ), Ẑ(t, x, λ) are the solutions of Eqs. (8)–(9), they
are linearly dependent. Thus, there exists a transition matrix T (λ), independent
of x and t, such that

Y (t, x, λ) = Ẑ(t, x, λ)T (λ). (28)

The transition matrix is equal to

T (λ) = Ẑ−1(0, 0, λ)Y (0, 0, λ) = w−1(0, λ)Φ(0, λ)
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and, hence, T (λ) = ΛT ∗(λ)Λ−1, i.e., T (λ) has the form

T (λ) =
(

a(λ) b(λ)
−b(λ) a(λ)

)
.

For the convenience of further formulation of the RH problem, we use the same
notations as in the previous subsection for the transition matrix T (λ) and its

entries. It is easy to see that the matrix w(0, λ) = ŵ(0, λ) =
(

α(λ) −β(λ)
β(λ) α(λ)

)
is

the spectral function of the x-equation for t = 0. It is uniquely defined by the
given initial functions E(0, x), ρ(0, x) and N (0, x). The function Φ(0, λ) is the
spectral function of the t-equation for x = 0, uniquely defined by the boundary

condition E(t, 0), and it has the form Φ(0, λ) =
(

A(λ) B(λ)
−B(λ) A(λ)

)
. The functions

α(λ), β(λ) and A(λ), B(λ) have analytic continuations in the upper half-plane
C+, and α(λ) = α∗(λ), β(λ) = β∗(λ) and A(λ) = A∗(λ), B(λ) = B∗(λ) have
analytic continuations in the lower half-plane C−. Thus we have

a(z) = α(z)A(z)− β(z)B(z), z ∈ C+ ∪ R;

b(λ) = α∗(λ)B(λ) + β∗(λ)A(λ), λ ∈ R.

The function a(z) is analytic in C+, and a(z) = a∗(z∗) is analytic in C−. The
functions b(λ) and b(λ) = b∗(λ) are defined for λ ∈ R only. The determinant of
T (λ) ≡ 1 for Imλ = 0 and, hence |a(λ)|2 + |b(λ)|2 ≡ 1. The spectral functions
have the following asymptotics:

a(z) = 1 + O(z−1), z →∞, b(λ) = O(λ−1), λ →∞.

If a(z) (a(z)) has zeroes, then we have the relation between the vector columns
Ẑ[1](t, x, zj) and Y [2](t, x, zj) (Y [1](t, x, z∗j ) and Ẑ[2](t, x, z∗j )) (j = 1, 2, . . . , p)
similarly to (19), (20).

Further, the matrix

M(t, x, z) =





(
Ẑ[1](t, x, z)eizt−ixη(z) Y [2](t, x, z)

a(z)
e−izt+ixη(z)

)
, z ∈ C+

(
Y [1](t, x, z)

a(z)
eizt−ixη(z) Ẑ[2](t, x, z)e−izt+ixη(z)

)
, z ∈ C−

(29)
and the scattering relation (28) generate explicitly the same matrix RH problem
as in (21), (22), (23), (24).
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3. Matrix Riemann–Hilbert Problems

In this section we give a reconstruction of the solution to the MB equations in
terms of the spectral functions a(λ), b(λ), which are defined through the spectral
functions A(λ), B(λ) and α(λ), β(λ).

In the previous section we have proved that the matrices (21), (29) (due to
the scattering relations (18), (28)) are the solutions of the following matrix RH
problem RHtx:
Find the 2× 2 matrix M(t, x, z) such that

• M(t, x, z) is analytic ( if a(z) 6= 0) or meromorphic (if a(zj) = a(z∗j ) =
0, Im zj > 0, j = 1, 2, . . . , p) in z ∈ C \ R and continuous up to the real
λ-axis; RH1

• If a(zj) = a(z∗j ) = 0, j = 1, 2, . . . , p, then M(x, t, z) has poles at the points
z = zj , z = z∗j (j = 1, 2, . . . , p), and the corresponding residues satisfy the
relations:

res
z=zj

M [2](t, x, z) = mje
−2izjt+2ixη(zj)M [1](t, x, zj) RH2

res
z=z∗j

M [1](t, x, z) = m∗
je

2iz∗j t−2ixη(z∗j )M [2](t, x, z∗j ), RH3

where mj = γj/ȧ(zj), m∗
j = γj/ȧ(z∗j ), and the numbers γj , γj = γ∗j are

defined in (19) and (20);

• M−(t, x, λ) = M+(t, x, λ)J(t, x, λ), λ ∈ R, RH4

J(t, x, λ) =




1 + |r(λ)|2 −r(λ)e−2iθ(t,x,λ)

−r(λ)e2iθ(t,x,λ) 1


 , λ ∈ R, (30)

where r(λ) = b(λ)/a(λ) and θ(t, x, λ) = λt− xη(λ).

• M(t, x, z) = I + O(z−1), |z| → ∞. RH5

Taking into account the well-known fact that a(z) can have multiple zeros or
infinitely many zeros with limit points on the real λ- axis or real zeroes (the so-
called spectral singularities), we propose below a more convenient formulation of
the matrix RH problem. We introduce once more the matrix solution Z0(t, x, λ)
of the AKNS system of equations normalized by the condition Z0(0, 0, λ) = I.
It is seen that Z0(t, x, λ) = Ψ̂(t, x, λ)W (0, x, λ), where Ψ̂(t, x, λ) and W (t, x, λ)
were defined in the first section. Thus, Z0(t, x, λ) is analytic in z ∈ C \ {0},
Z0(t, x, λ)eiθ(t,x,λ)σ3 is bounded in any disk |z| ≤ R. Hence the matrix can be
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extended up to the continuous function in the disk. Then we put

M̂(t, x, z) =

{
M(t, x, z), |z| > R

Z0(t, x, λ)eiθ(t,x,λ)σ3 , |z| < R,
(31)

where R is positive and sufficiently large such that a(z) 6= 0 when |z| > R. Let
the contour ΣR = (−∞,−R]∪ [R,∞)∪ΓR, where ΓR = {z : |z| = R} is the circle
of radius R oriented clockwise. Then we obtain the equivalent RH problem:

• M̂(t, x, z) is analytic in z ∈ C \ ΣR and continuous up to the contour ΣR;
RRH1

• M̂−(t, x, z) = M̂+(t, x, z)J(t, x, z), z ∈ ΣR, RRH2

J(t, x, z) =








1 + |r(λ)|2 −r(λ)e−2iθ(t,x,λ)

−r(λ)e2iθ(t,x,λ) 1


 , z = λ ∈ R \ (−R, R),




α(z) B(z)e−2iθ(t,x,z)/a(z)

β(z)e2iθ(t,x,z) A(z)/a(z)




−1

, z ∈ ΓR ∩ C+,




A(z)/a(z) −β(z)e−2iθ(t,x,z)

−B(z)e2iθ(t,x,z)/a(z) α(z)


 , z ∈ ΓR ∩ C−.

• M̂(t, x, z) = I + O(z−1), |z| → ∞. RRH3

We will prove now the following theorem.

Theorem 3.1. Let the functions E(t, x), N (t, x) and ρ(t, x) be the solutions
to the Maxwell–Bloch equations (1)–(3) considered in the subsection 2.1 or 2.2.
There exists the matrix M(t, x, z) which is the solution of the Riemann–Hilbert
problem (RRH1)–(RRH3), and the complex electric field envelope E(t, x) is de-
fined by the relation

E(t, x) =− lim
z→∞ 4izM12(t, x, z). (32)

The entries N (t, x) and ρ(t, x) of the matrix F (t, x) are defined as follows:

F (t, x) = −m0(t, x)σ3m
−1
0 (t, x), m0(t, x) = lim

z→0
M(t, x, z). (33)
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P r o o f. The only thing we need is to prove Eq. (32). The matrix M(t, x, z)
defines the solution Φ(t, x, z) of the AKNS Eqs. (8) and (9) by the formula

Φ(t, x, z) = M(t, x, z)e−iθ(t,x,z)σ3 .

Formulas (32) follow from (8) and (RRH3). Indeed, substituting the last formula
into equation (8), we can find that

Mt + iz[σ3,M ] + HM = 0. (34)

Using (RRH3), we put

M(t, x, z) = I +
m(t, x)

z
+ o(z−1),

where
m(t, x) = lim

z→∞ z(M(t, x, z)− I).

This asymptotics and Eq. (34) give

H(t, x) = −i[σ3,m(t, x)], (35)

and hence
E(t, x) = −4im12 = − lim

z→∞ 4izM12(t, x, z).

Further, since M(t, x, z) = m0(t, x) + O(z−1), then the x-equation for M(t, x, z),

Mx − i
4z

Mσ3 = iz[σ3,M ] + HM +
iF
4z

M,

gives F (t, x) = −m0(t, x)σ3m
−1
0 (t, x).

Thus the problem to the Maxwell–Bloch equations, from subsection 2.1 on the
whole t-line and the mixed problem from subsection 2.2 in the quarter xt-plane,
is completely linearizable.

4. More General Matrix Riemann–Hilbert Problems

Now we prove that any Riemann–Hilbert problem like RRH1–RRH3 gene-
rates a solution to the Maxwell–Bloch equations. From here and below we will
consider a more general construction. Let the oriented contour Σ contain a real
line R, sufficiently large circle Γ and some finite arcs γj ∪ γj (j = 1, 2, . . . , p)
which are symmetric with respect to the real line. Thus,

Σ = R ∪ Γ ∪
p⋃

j=1

γj ∪ γj .
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This type of contours takes place when we deal with periodic initial data or/and
periodic boundary conditions. The contour Σ has the following orientation: the
real line R is oriented from the left to the right, the circle Γ is oriented clockwise,
the arcs γj ∪ γj are oriented up-down. Then the regular matrix RH problem can
be formulated as follows.

Find the 2× 2 matrix M(t, x, z) such that
• M(t, x, z) is analytic in z ∈ C \ Σ and bounded up to the contour Σ; R1

• M−(t, x, z) = M+(t, x, z)J(t, x, z), z ∈ Σ, R2

• M(t, x, z) = I + O(z−1), |z| → ∞. R3

The contour Σ and the jump matrix J(x, t, z) satisfy the Schwartz reflection
principle:

• the contour Σ is symmetric with respect to the real axis R,

• J−1(x, t, z) = J†(x, t, z∗) for z ∈ Σ and Im z 6= 0,

where † and ∗ are Hermitian and complex conjugations, respectively.

• the jump matrix J(x, t, λ) for λ ∈ R has a positive definite real part.

Theorem 4.1. Let the jump matrix J(t, x, z) satisfy the Schwartz reflection
principle and I − J(t, x, .) ∈ L2(Σ) ∩ L∞(Σ). Then for any fixed t, x ∈ R, the
regular RH problem R1, R2, R3 has a unique solution M(t, x, z).

P r o o f. Existence. Let x and t be fixed. We are to find the solution
M(t, x, z) of the RH problem in the form

M(t, x, z) = I +
1

2πi

∫

Σ

P (t, x, s)[I − J(t, x, s)]
s− z

ds, z /∈ Σ. (36)

The Cauchy integral (36) provides all properties of the RH problem (cf.[22]) if
and only if the matrix Q(t, x, λ) := P (t, x, λ) − I satisfies the singular integral
equation

Q(t, x, z)−K[Q](t, x, z) = R(t, x, z), z ∈ Σ. (37)

The singular integral operator K and the right-hand side R(t, x, z) are as follows:

K[Q](t, x, z) :=
1

2πi

∫

Σ

Q(t, x, s)[I − J(t, x, s)]
s− z+

ds,

R(t, x, z) :=
1

2πi

∫

Σ

I − J(t, x, s)
s− z+

ds.
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We consider this integral equation in the space L2(Σ) of the 2×2 matrix complex
valued functions Q(z) := Q(t, x, z), z ∈ Σ. The norm of Q ∈ L2(Σ) is given by

||Q||L2(Σ) =




∫

Σ

tr(Q†(z)Q(z))|dz|



1/2

=




2∑

j,l=1

∫

Σ

|Qjl(z))|2|dz|



1/2

.

The operator K is defined by the jump matrix J(t, x, z) and the generalized
function

1
s− z+

= lim
z′→z,z′∈side+

1
s− z′

.

Furthermore, since the jump matrix J(t, x, λ) has a positive definite real part
when λ ∈ R, then Theorem 9.3 from [23] (p. 984) guarantees the L2 invertibility
of the operator Id − K (Id is the identical operator). The function R(t, x, z)
belongs to L2(Σ) because I − J(t, x, z) ∈ L2Σ) when z ∈ Σ, and the Cauchy
operator

C+[f ](z) :=
1

2πi

∫

Σ

f(s)
s− z+

ds =
f(z)

2
+ p.v.

1
2πi

∫

Σ

f(s)
s− z

ds

is bounded in the space L2(Σ) [24]. Therefore, the singular integral Eq. (37) has
a unique solution Q(t, x, z) ∈ L2(Σ) for any fixed x, t ∈ R, and formula (36) gives
the solution of the above RH problem.

Uniqueness. The proof is as follows. Since detJ(t, x, z) ≡ 1, one can find that
detM(t, x, z) ≡ 1 by repeating step by step the proof of Theorem 7.18 from [22]
(p. 194–198). Hence the matrix M−1(t, x, z) exists and it is analytic in z ∈ C\Σ.
Let us now suppose that there is another matrix M̃(t, x, z) which solves the given
Riemann–Hilbert problem. Thus,

M̃−(t, x, z)M−1
− (t, x, z) = M̃+(t, x, z)J(t, x, z)J−1(t, x, z)M−1

+ (t, x, z)

= M̃+(t, x, z)M−1
+ (t, x, z),

and we can find that the matrix M̃(t, x, z)M−1(t, x, z) is analytic in z ∈ C
and it tends to the identity matrix as z → ∞. By Liovilles’s theorem,
M̃(t, x, z)M−1(t, x, z) ≡ I and therefore M̃(t, x, z) ≡ M(t, x, z), i.e., the matrix
M(t, x, z) is unique.

Theorem 4.2. Let M(t, x, z) be the solution of the RH problem (R1)–(R3)
given by Theorem 4.1 with a matrix J(t, x, z) such that

J(t, x, z) = e(−izt+iη(z)x)σ3J0(z)e(izt−iη(z)x)σ3 , η(z) = z − 1
4z

,
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where J0(z) is independent of t and x. If additionally M(t, x, z) is smooth in t
and x, then the matrix Φ(t, x, z) := M(t, x, z)e(−izt+iη(z)x)σ3 satisfies the AKNS
system of Eqs. (8) and (9) with the functions E(t, x), N (t, x), ρ(t, x) given by
(32) and (33). Moreover, they are smooth and satisfy the MB Eqs. (1)–(3).

P r o o f. The matrix Φ(t, x, z) := M(t, x, z)e(−izt+iη(z)x)σ3 is analytic in
z ∈ C \ Σ and has the jump across Σ:

Φ−(t, x, z) = Φ+(t, x, z)J0(z),

where J0(λ) is independent of t and x. This relation implies:

dΦ−(t, x, z)
dt

Φ−1
− (t, x, z) =

dΦ+(t, x, z)
dt

Φ−1
+ (t, x, z),

dΦ−(t, x, z)
dx

Φ−1
− (t, x, z) =

dΦ+(t, x, z)
dx

Φ−1
+ (t, x, z)

for z ∈ Σ. The last relations mean that the matrix logarithmic derivatives
Φt(t, x, z)Φ−1(t, x, z) and Φx(t, x, z)Φ−1(t, x, z) are analytic in z ∈ C\{0} except
the end points and the points of self intersection of the contour Σ. The matrix
M(t, x, z) and its derivative Mt(t, x, z) (in t) are analytic in z ∈ C\Σ. Moreover,
the Cauchy integral (36) gives the following asymptotic formulas:

M(t, x, z) = I +
m±(t, x)

z
+ O(z−2), z →∞, z ∈ C±.

Hence
Φt(t, x, z)Φ−1(t, x, z) = −izσ3 + i[σ3,m+(t, x)] + O(z−1)

= −izσ3 +i[σ3, m−(t, x)]+O(z−1), z →∞,

where [A,B] := AB −BA and

m−(t, x) = m+(t, x) = m(t, x) =
i

2π

∫

Σ

P (t, x, z)[I − J(t, x, z)]dz.

Since M(t, x, z) is bounded up to the boundary, then z = 0, and the end points
and the points of self-intersection of the contour Σ are removable singularities
for Φt(t, x, z)Φ−1(t, x, z). Therefore, by Liouville’s theorem, this derivative is a
polynomial

U(z) := Φt(t, x, z)Φ−1(t, x, z) = −izσ3 −H(t, x),

where H(t, x) := −i[σ3,m(t, x)] =
(

0 q(t, x)
p(t, x) 0

)
. Using the Schwartz symme-

try properties of the jump matrix J(t, x, z), we can show that U(z) = σ2U
∗(z∗)σ2,
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where σ2 =
(

0 −i
i 0

)
. These reductions imply H(t, x) = −H†(x, t), i.e., q(t, x) =

−p∗(t, x), and we put q(t, x) := E(t, x)/2. Thus Φ(t, x, z) satisfies Eq. (8), and
a scalar function E(t, x) is defined by (32). The function E(t, x) is smooth in t
and x because the matrix M(x, t, z), and hence m(t, x) are smooth in t and x by
supposition. In the same way as before, we can find that Φx(x, t, λ)Φ−1(x, t, λ)
is a rational matrix function

V (z) := Φx(x, t, λ)Φ−1(x, t, λ) = izσ3 + H(t, x) +
iF̂ (t, x)

4z

because the following asymptotics are true:

Φx(t, x, z)Φ−1(t, x, z) = izσ3 + H(t, x) + O(z−1), z →∞,

and

Φx(t, x, z)Φ−1(t, x, z) = − iF̂ (t, x)
4z

+ F0(t, x) + O(z), z → 0,

where F̂ (t, x) = −M(t, x, 0)σ3M
−1(t, x, 0), and F0(t, x) is some matrix. More-

over, the previous relations give: F0(t, x) ≡ H(t, x). Thus the matrix Φ(x, t, z)
satisfies two differential equations:

Φt = U(z)Φ, U(z) = −izσ3 −H(t, x) (38)

Φx = V (z)Φ, V (z) = izσ3 + H(t, x) +
iF̂ (t, x)

4z
. (39)

Their compatibility (Φxt(x, t, λ) = Φtx(x, t, λ)) gives the identity in z,

Ux(z)− Vt(z) + [U(z), V (z)] = 0, [U, V ] = UV − V U,

i.e.,

Ht(t, x) + Hx(t, x) + [izσ3 + H(t, x), izσ3 + H(t, x) +
iF̂ (t, x)

4z
] = 0.

This identity is equivalent to the system of matrix equations:

Ht(t, x) + Hx(t, x) =
1
4
[σ3, F̂ (t, x)] (40)

F̂t(t, x) =[F̂ (t, x),H(t, x)]. (41)

Using the Schwartz symmetry properties of the jump matrix J(t, x, z), we find
that F̂ (t, x) is a Hermitian matrix, and we put

F̂ (t, x) =
(N (t, x) ρ(t, x)

ρ∗(t, x) −N (t, x)

)
.
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Matrix Eqs. (40) and (41) are equivalent to the scalar Eqs. (6). Thus we have
proved that the matrix Φ(t, x, z) satisfies equations (38) and (39) that coincide
with AKNS system (8) and (9), and the scalar functions E(t, x), N (t, x), ρ(t, x)
are smooth and satisfy the MB equations (6) due to the compatibility of equations
(38) and (39).

As a corollary of the previous theorems, we obtain (due to formulas (32),
(36)) an integral representation for the electric field envelope

E(t, x) =
2
π

∫

Σ

([I + Q(t, x, z)][J(t, x, z)− I])12 dz

through the solution Q(t, x, z) of the singular integral equation (37) which is
equivalent to the regular RH problem. The entries N (t, x) and ρ(t, x) of the
density matrix of a quantum two-level atom subsystem are defined by

(N (t, x) ρ(t, x)
ρ∗(t, x) −N (t, x)

)
= −M(t, x, 0)σ3M

−1(t, x, 0)

or by using linear differential equations (2) and (3) by already known E(t, x).

5. Conclusions

Thus the Riemann–Hilbert problem R1–R3 with the given contour conjuga-
tion and the jump matrix given by Theorem 4.2, which satisfy the Schwartz reflec-
tion principle, generates the solutions to the Maxwell–Bloch equations. Among
them there are the solutions defined for t ∈ R, x ∈ R+ and studied in [5, 6],
the step-like solutions with a different background shape as t → ±∞ that (by
the best of our knowledge) are not considered in the literature, the solutions to
the mixed problem (6), (7) (t, x ∈ R+) with decreasing or periodic input pulse
E(t, 0) and different initial functions E(0, x), N (0, x), ρ(0, x), etc. The type of
solutions is defined by the specialization of the conjugation contour and the jump
matrix on this contour. The specialization which cover the periodicity case and
description of the corresponding solutions will be done further.
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