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1. Introduction

In 1924, A. Friedman and J.A. Schouten [9] introduced the notion of a semi-
symmetric linear connection on a differentiable manifold. In 1932, H.A. Hayden
[11] introduced the idea of metric connection with torsion on a Riemannian man-
ifold. In 1970, K. Yano [19] studied some curvature and derivational conditions
for semi-symmetric connections in Riemannian manifolds. Later on, some inter-
esting results on semi-symmetric metric connection were obtained by K.S. Amur
and S.S. Pujar [1], C.S. Bagewadi [2], U.C. De [8], Mukut Mani Tripathi [13],
T.Q. Binh [4], A.A. Shaikh et. al. [17].

In 1975, S. Golab [10] introduced the idea of quarter-symmetric metric con-
nections and studied their properties. In 1980, R.S. Mishra and S.N. Pandey [12]
studied quarter-symmetric metric F-connections in Riemanniann Kaehlerian and
Sasakian manifolds. Later on, K. Yano and T. Imai [20], S.C. Rastogi [15], S.
Mukhopadhyay, A.K. Roy and B. Barua [14], C.S. Bagewadi, D.G. Prakasha and
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Venkatesha [3] studied some properties of quarter-symmetric metric connection
on different manifolds. Note that a quarter-symmetric metric connection is a
Hayden connection with the torsion tensor of the form (1, 2).

The notion of local symmetry of Riemannian manifolds has been weakened
by many authors in several ways to a different extent. As a weaker version of
local symmetry, T. Takahashi [18] introduced the notion of local φ-symmetry on
Sasakian manifolds. In the context of contact Geometry, the notion of φ-symmetry
is introduced and studied by E. Boeckx, P. Buecken and L. Vanhecke [7] with se-
veral examples. The paper is organized as follows: Section 3 is concerned with the
relation between the Levi–Civita connection and the quarter-symmetric metric
connection in a K-contact manifold. Section 4 deals with the locally φ-symmetric
K-contact manifold with respect to the quarter-symmetric metric connection. In
Section 5, we study the φ-symmetric K-contact manifold with respect to the
quarter-symmetric metric connection. Section 6 is devoted to the study of the
locally C-Bochner φ-symmetric K-contact manifold with respect to the quarter-
symmetric metric connection. Finally, we construct an example.

A linear connection ∇̃ in an n-dimensional differentiable manifold is said to
be a quarter-symmetric connection [10] if its torsion tensor T is of the form

T (X,Y ) = ∇̃XY − ∇̃Y X − [X, Y ]
= π(Y )FX − π(X)FY, (1.1)

where π is a 1-form and F is a tensor of type (1.1). A quarter-symmetric linear
connection ∇̃ is said to be a quarter-symmetric metric connection if ∇̃ satisfies
the condition

(∇̃Xg)(Y,Z) = 0

for all X,Y, Z ∈ X (M), where X (M) is the Lie algebra of vector fields of the
manifold M. For the contact manifold admitting quarter-symmetric connection,
we take π = η and F = φ in (1.1). Then it can be written as

T (X, Y ) = η(Y )φX − η(X)φY. (1.2)

2. Preliminaries

An n-dimensional differentiable manifold M is said to have an almost contact
structure (φ, ξ, η) if it carries a tensor field φ of type (1, 1), a vector field ξ and a
1-form η on M such that

φ2 = −I + η ⊗ ξ, η(ξ) = 1, η ◦ φ = 0, φ ◦ ξ = 0. (2.1)

Thus, the manifold M equipped with the structure (φ, ξ, η) is called an almost
contact manifold and is denoted by (M, φ, ξ, η). If g is a Riemannian metric on
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an almost contact manifold M such that

g(φX, φY ) = g(X, Y )− η(X)η(Y ), g(X, ξ) = η(X), (2.2)
g(X, φY ) = −g(φX, Y ), (2.3)

where X and Y are the vector fields defined on M , then it is said to have an
almost contact metric structure (φ, ξ, η, g) and the manifold M with the struc-
ture (φ, ξ, η, g) is called an almost contact metric manifold and is denoted by
(M, φ, ξ, η, g).

If on (M,φ, ξ, η, g) the exterior derivative of 1-form η satisfies

dη(X, Y ) = g(X,φY ), (2.4)

then (φ, ξ, η, g) is said to be a contact metric structure and M equipped with a
contact metric structure is called a contact metric manifold.

If, moreover, ξ is a Killing vector field, then M is called a K-contact manifold
[6, 16]. In a K-contact manifold M the following relations holds:

η(R(ξ, X)Y ) = g(X, Y )− η(X)η(Y ), (2.5)
(∇Xφ)Y = g(X, Y )ξ − η(Y )X, (2.6)

∇Xξ = −φX, (2.7)
S(X, ξ) = (n− 1)η(X) (2.8)

for any vector fields X, Y, and Z, where R and S are the Riemannian curvature
tensor and the Ricci tensor of M, respectively.

Definition 2.1. A K-contact manifold M is said to be locally φ-symmetric if

φ2((∇W R)(X, Y )Z) = 0 (2.9)

for all vector fields X, Y, Z, and W orthogonal to ξ. This notion was introduced
by T. Takahashi [18] for Sasakian manifolds.

Definition 2.2. A K-contact manifold M is said to be φ-symmetric if

φ2((∇W R)(X, Y )Z) = 0 (2.10)

for the arbitrary vector fields X, Y, Z, and W.

Definition 2.3. A K-contact manifold M is said to be locally C-Bochner φ-
symmetric if

φ2((∇W B)(X,Y )Z) = 0 (2.11)
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for all vector fields X, Y, Z and W orthogonal to ξ, where B is the C-Bochner
curvature tensor given by

B(X, Y )Z = R(X,Y )Z +
1

n + 3
[g(X, Z)QY −S(Y,Z)X−g(Y, Z)QX+S(X,Z)Y

+ g(φX, Z)QφY − S(φY,Z)φX − g(φY, Z)QφX + S(φX, Z)φY

+ 2S(φX, Y )φZ + 2g(φX, Y )QφZ + η(Y )η(Z)QX − η(Y )S(X, Z)ξ

+ η(X)S(Y, Z)ξ−η(X)η(Z)QY ]−D + n− 1
n + 3

[g(φX,Z)φY−g(φY, Z)φX

+ 2g(φX, Y )φZ] +
D

n + 3
[η(Y )g(X, Z)ξ − η(Y )η(Z)X + η(X)η(Z)Y

− η(X)g(Y,Z)ξ]− D − 4
n + 3

[g(X, Z)Y − g(Y,Z)X], (2.12)

where D = r+n−1
n+1 .

3. Relation between Levi–Civita Connection and the
Quarter-Symmetric Metric Connection in a K-Contact

Manifold

Let ∇̃ be a linear connection and ∇ be a Riemannian connection of an almost
contact metric manifold M such that

∇̃XY = ∇XY + H(X,Y ), (3.1)

where H is a tensor of type (1, 1). If ∇̃ is a quarter-symmetric metric connection
in M, then we have [10]

H(X,Y ) =
1
2
[T (X,Y ) + T

′
(X,Y ) + T

′
(Y, X)] (3.2)

and

g(T
′
(X, Y ), Z) = g(T (Z, X), Y ). (3.3)

From (1.2) and (3.3), we get

T
′
(X, Y ) = g(X, φY )ξ − η(X)φY. (3.4)

Using (1.2) and (3.4) in (3.2), we obtain

H(X,Y ) = −η(X)φY.

Hence, a quarter-symmetric metric connection ∇̃ in a K-contact manifold is given
by

∇̃XY = ∇XY − η(X)φY. (3.5)
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Therefore, (3.5) is the relation between the Levi–Civita connection and the quarter-
symmetric metric connection on a K-contact manifold.

A relation between the curvature tensor of M with respect to the quarter-
symmetric metric connection ∇̃ and the Levi–Civita connection ∇ is given by

R̃(X, Y )Z = R(X, Y )Z + 2g(φX, Y )φZ + [η(X)g(Y, Z)
− η(Y )g(X, Z)]ξ + [η(Y )X − η(X)Y ]η(Z), (3.6)

where R̃ and R are the Riemannian curvatures of the connections ∇̃ and ∇,
respectively.
From (3.6), it follows that

S̃(Y,Z) = S(Y, Z)− g(Y, Z) + nη(Y )η(Z), (3.7)

where S̃ and S are the Ricci tensors of the connections ∇̃ and ∇, respectively.
Contracting (3.7), we get

r̃ = r, (3.8)

where r̃ and r are the scalar curvatures of the connections ∇̃ and ∇, respectively.

4. Locally φ-Symmetric K-Contact Manifold with Respect to
the Quarter-Symmetric Metric Connection

In this section we define a locally φ-symmetric K-contact manifold with re-
spect to the quarter-symmetric metric connection by

φ2((∇̃W R̃)(X, Y )Z) = 0 (4.1)

for all vector fields X, Y, Z, and W orthogonal to ξ.
Using (3.5), we can write

((∇̃W R̃)(X, Y )Z) = (∇W R̃)(X,Y )Z − η(W )φR̃(X, Y )Z + η(W )R̃(φX, Y )Z
+ η(W )R̃(X, φY )Z + η(W )R̃(X, Y )φZ. (4.2)

Now, differentiating (3.6) with respect to W and using (2.6), we obtain

(∇W R̃)(X,Y )Z = (∇W R)(X, Y )Z + 2[η(Y )g(X, W )− η(X)g(W,Y )]φZ

+[g(W,φX)g(Y, Z)− 2g(X,φY )g(W,Z)− g(W,φY )g(X,Z)]ξ
+[η(Y )g(X, Z)− η(X)g(Y, Z)]φW − [g(Y, φW )η(Z) + g(Z, φW )η(Y )]X

+[g(X,φW )η(Z) + g(Z, φW )η(X)]Y − 2g(φX, Y )η(Z)W. (4.3)
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Using (2.1) and (4.3) in (4.2), we get

φ2(∇̃W R̃)(X, Y )Z = φ2(∇W R)(X, Y )Z + 2[η(Y )g(X,W )− η(X)g(W,Y )]φ2(φZ)

+[g(W,φX)g(Y, Z)− 2g(X, φY )g(W,Z)− g(W,φY )g(X, Z)]φ2ξ

+[η(Y )g(X,Z)− η(X)g(Y,Z)]φ2(φW )− [g(Y, φW )η(Z)

+g(Z, φW )η(Y )]φ2X + [g(X, φW )η(Z) + g(Z, φW )η(X)]φ2Y

−2g(φX, Y )η(Z)φ2W − η(W )φ2(φR(X,Y )Z) + η(W )[φ2R(φX, Y )Z

+φ2R(X, φY )Z + φ2R(X, Y )φZ]. (4.4)

If we consider X, Y, Z and W orthogonal to ξ, then (4.4) reduces to

φ2((∇̃W R̃)(X,Y )Z) = φ2((∇W R)(X, Y )Z). (4.5)

Hence we can state the following:

Theorem 4.1. A K-contact manifold is locally φ-symmetric with respect to
the quarter-symmetric metric connection ∇̃ if and only if it is locally φ-symmetric
with respect to the Levi–Civita connection.

5. A φ-Symmetric K-Contact Manifold with Respect
to the Quarter-Symmetric Metric Connection

A K-contact manifold M is said to be φ-symmetric with respect to the quarter-
symmetric metric connection if

φ2((∇̃W R̃)(X,Y )Z) = 0 (5.1)

for the arbitrary vector fields X, Y, Z, and W.
Let us consider a φ-symmetric K-contact manifold with respect to the quarter-

symmetric metric connection. Then by virtue of (2.1) and (5.1), we have

−((∇̃W R̃)(X,Y )Z) + η((∇̃W R̃)(X, Y )Z)ξ = 0, (5.2)

from which it follows that

−g((∇̃W R̃)(X,Y )Z,U) + η((∇̃W R̃)(X, Y )Z)g(ξ, U) = 0. (5.3)

Let {ei : i = 1, 2, . . . , n} be an orthonormal basis of the tangent space at any
point of the manifold. Then, putting X = U = ei in (5.3) and taking summation
over i, 1 ≤ i ≤ n, we get

−(∇̃W S̃)(Y, Z) +
n∑

i=1

η((∇̃W R̃)(ei, Y )Z)η(ei) = 0. (5.4)
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By putting Z = ξ, the second term of (5.4) takes the form

η((∇̃W R̃)(ei, Y )Z)η(ei) = g((∇̃W R̃)(ei, Y )ξ, ξ)g(ei, ξ). (5.5)

Thus, by using (3.5) and (4.2), we can write

g((∇̃W R̃)(ei, Y )ξ, ξ) = g(∇̃W R̃(ei, Y )ξ, ξ)− g(R̃(∇̃W ei, Y )ξ, ξ)
− g(R̃(ei, ∇̃W Y )ξ, ξ)− g(R̃(ei, Y )∇̃W ξ, ξ). (5.6)

By simplifying (5.6), we obtain

g((∇̃W R̃)(ei, Y )ξ, ξ) = g((∇W R)(ei, Y )ξ, ξ). (5.7)

In the K-contact manifold M, we have g((∇W R)(ei, Y )ξ, ξ) = 0 and thus from
(5.7) we get

g((∇̃W R̃)(ei, Y )ξ, ξ) = 0. (5.8)

By replacing Z = ξ in (5.4) and using (5.8), we get

(∇̃W S̃)(Y, ξ) = 0. (5.9)

We know that

(∇̃W S̃)(Y, ξ) = ∇̃W S̃(Y, ξ)− S̃(∇̃W Y, ξ)− S̃(Y, ∇̃W ξ). (5.10)

Using (2.7), (2.8), (3.5) and (3.7) in (5.10), we obtain

(∇̃W S̃)(Y, ξ) = S(Y, φW )− (2n− 1)g(Y, φW ). (5.11)

Using (5.11) in (5.9) and simplifying it, we have

S(Y,W ) = (2n− 1)g(Y, W )− nη(Y )η(W ). (5.12)

Then, after contracting the last equation, we get

r = 2n(n− 1). (5.13)

This leads to the following:

Theorem 5.2. Let M be a φ-symmetric K-contact manifold with respect to the
quarter-symmetric metric connection ∇̃. Then the manifold has a scalar curvature
r with respect to the Levi–Civita connection ∇ of M given by (5.13).
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6. Locally C-Bochner φ-Symmetric K-Contact Manifold with Re-
spect to the Quarter-Symmetric Metric Connection

A K-contact manifold M is said to be locally C-Bochner φ-symmetric with
respect to the quarter-symmetric metric connection if

φ2((∇̃W B̃)(X,Y )Z) = 0 (6.1)

for all vector fields X, Y, Z, W orthogonal to ξ, where B̃ is the C-Bochner curva-
ture tensor with respect to the quarter-symmetric metric connection. It is given
by

B̃(X,Y )Z =R̃(X, Y )Z+
1

n + 3
[g(X, Z)Q̃Y −S̃(Y,Z)X−g(Y, Z)Q̃X+S̃(X,Z)Y

+g(φX,Z)Q̃φY − S̃(φY, Z)φX − g(φY, Z)Q̃φX + S̃(φX,Z)φY

+2S̃(φX, Y )φZ + 2g(φX, Y )Q̃φZ + η(Y )η(Z)Q̃X − η(Y )S̃(X, Z)ξ

+η(X)S̃(Y, Z)ξ − η(X)η(Z)Q̃Y ]− D̃ + n− 1
n + 3

[g(φX,Z)φY − g(φY,Z)φX

+2g(φX, Y )φZ] +
D̃

n + 3
[η(Y )g(X,Z)ξ − η(Y )η(Z)X + η(X)η(Z)Y

−η(X)g(Y,Z)ξ]− D̃ − 4
n + 3

[g(X, Z)Y − g(Y,Z)X]. (6.2)

where
D̃ =

r̃ + n− 1
n + 1

,

where R̃ and r̃ are the Riemannian curvature tensor and the scalar curvature
with respect to the quarter-symmetric metric connection. Using (3.5), we can
write

((∇̃W B̃)(X,Y )Z) = (∇W B̃)(X,Y )Z − η(W )φB̃(X, Y )Z + η(W )B̃(φX, Y )Z
+ η(W )B̃(X, φY )Z + η(W )B̃(X,Y )φZ. (6.3)

Now differentiating (6.2) with respect to W and by making use of (4.3), (3.8),
(6.2) in (6.3), we get

(∇̃W B̃)(X,Y )Z = (∇W R)(X, Y )Z + 2[g(W,X)η(Y )− g(W,Y )η(X)]φZ−
2g(φX, Y )[η(Z)W − g(W,Z)ξ] +

1
n + 3

[S(W,Z)[η(Y )φX − η(X)φY ]

−2η(X)S(W,Y )φZ+S(φY, Z)[η(X)W−g(W,X)ξ]−S(φX, Z)[η(Y )W−g(W,Y )ξ]
−2S(φX, Y )[η(Z)W − g(W,Z)ξ] + [g(Y, φW )S(X, Z)− g(X, φW )S(Y, Z)]ξ

+[η(Y )S(X,Z)− η(X)S(Y,Z)]φW ] +
r − (n + 3)

(n + 1)(n + 3)
[{η(X)g(Y, Z)
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−η(Y )g(X,Z)}φW + {g(X, φW )g(Y,Z)− g(Y, φW )g(X, Z)}ξ]
− r + 3n + 1

(n + 1)(n + 3)
[g(W,Z){η(Y )φX − η(X)φY }+ g(φY,Z)[η(X)W

−g(W,X)ξ]− g(φX, Z)[η(Y )W − g(W,Y )ξ]− 2g(φX, Y )[η(Z)W

−g(W,Z)ξ]− 2η(X)g(W,Y )φZ] +
n2 − 3n− 2− r

(n + 1)(n + 3)
[g(W,X)η(Z)φY

−g(W,Y )η(Z)φX + 2g(W,X)η(Y )φZ] +
∇W r

(n + 1)(n + 3)
[g(φY,Z)φX

−g(φX, Z)φY − 2g(φX, Y )φZ + g(φY, φZ)X − g(φX, φZ)Y + {η(Y )g(X,Z)

−η(X)g(Y,Z)}ξ] +
r − (n2 + n + 2)
(n + 1)(n + 3)

[η(Z){g(Y, φW )X − g(X, φW )Y }

+g(Z, φW ){η(Y )X − η(X)Y }] + η(W )[R(φX, Y )Z + R(X, φY )Z
+R(X,Y )φZ]− η(W )φR(X,Y )Z. (6.4)

The above equation (6.4) can be written in the form

(∇̃W B̃)(X,Y )Z =(∇W B)(X, Y )Z+2[g(W,X)η(Y )−g(W,Y )η(X)]φZ−g(φX, Y )

×[η(Z)W−g(W,Z)ξ]− 2
n + 3

[{g(Y, φW )η(Z)+g(Z, φW )η(Y )}X−{g(X,φW )η(Z)

+g(Z, φW )η(X)}Y + {g(Y, Z)η(X)− g(X, Z)η(Y )}φW + {g(φY, Z)η(X)
−g(φX,Z)η(Y )− 2g(φX, Y )η(Z)}W + η(Y )g(W,Z)φX − η(X)g(W,Z)φY

−2η(X)g(W,Y )φZ + {g(X, φW )g(Y, Z)− g(Y, φW )g(X, Z)
+g(φX,Z)g(W,Y )− g(φY, Z)g(W,X) + 2g(φX, Y )g(W,Z)}ξ]

−η(W )φR(X,Y )Z + η(W ){R(φX, Y )Z + R(X, φY )Z + R(X, Y )φZ}. (6.5)

Applying (2.1) to (6.5), we get

φ2(∇̃W B̃)(X,Y )Z = φ2(∇W B)(X,Y )Z + 2[g(W,X)η(Y )− g(W,Y )η(X)]φ2φZ

−g(φX, Y )[η(Z)φ2W − g(W,Z)φ2ξ]− 2
n + 3

[{g(Y, φW )η(Z)

+g(Z, φW )η(Y )}φ2X − {g(X, φW )η(Z) + g(Z, φW )η(X)}φ2Y

+{g(Y, Z)η(X)− g(X,Z)η(Y )}φ2φW + {g(φY, Z)η(X)− g(φX,Z)η(Y )

−2g(φX, Y )η(Z)}φ2W + η(Y )g(W,Z)φ2φX − η(X)g(W,Z)φ2φY

−2η(X)g(W,Y )φ2φZ + {g(X,φW )g(Y, Z)− g(Y, φW )g(X,Z)

+g(φX, Z)g(W,Y )− g(φY,Z)g(W,X) + 2g(φX, Y )g(W,Z)}φ2ξ]

−η(W )φ2φR(X,Y )Z + η(W ){φ2R(φX, Y )Z + φ2R(X, φY )Z

+φ2R(X, Y )φZ}. (6.6)
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If we are considering X,Y, Z,W to be orthogonal to ξ, then we obtain

φ2((∇̃W B̃)(X,Y )Z) = φ2((∇W B)(X,Y )Z). (6.7)

Theorem 6.3. A K-contact manifold is locally C-Bochner φ-symmetric with
respect to the quarter-symmetric metric connection ∇̃ if and only if it is locally
C-Bochner φ-symmetric with respect to the Levi–Civita connection ∇.

Applying (2.1) to (6.4) and again considering X, Y, Z, and W to be orthogonal
to ξ and the scalar curvature r with respect to the Levi–Civita connection be
constant in (6.4), we can reduce (6.4) to

φ2((∇̃W B̃)(X, Y )Z) = φ2((∇W R)(X, Y )Z). (6.8)

Theorem 6.4. A K-contact manifold is locally C-Bochner φ-symmetric with
respect to the quarter-symmetric metric connection if and only if it is locally
φ-symmetric with respect to the Levi–Civita connection provided the scalar cur-
vature r is constant with respect to the Levi–Civita connection.

7. Example

Consider a 3-dimensional manifold C∗ × R. Let (r, θ, z) be standard coordi-
nates in C∗ ×R. Let {E1, E2, E3} be linearly independent:

E1 =
1
r

∂

∂θ
+ r

∂

∂z
, E2 =

∂

∂r
, E3 = ξ =

∂

∂z
.

Let g be a Riemannian metric defined by

g(E1, E1) = g(E2, E2) = g(E3, E3) = 1,

g(E1, E2) = g(E2, E3) = g(E3, E1) = 0.

Then (φ, ξ, η) is given by

ξ =
∂

∂z
, η = dz − r2dθ,

φE1 = −E2, φE2 = E1, φE3 = 0.

The linearity of φ and g yields

η(E3) = 1, φ2U = −U + η(U)E3,

g(φU, φW ) = g(U,W )− η(U)η(W )

for any vector fields U,W on M. By the definition of Lie bracket, we have

[E1, E2] =
1
r
E1 − 2E3, [E1, E3] = [E2, E3] = 0.
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Let ∇ be a Levi–Civita connection with respect to the above metric g given by
the Koszula formula

2g(∇X Y, Z) = X(g(Y, Z)) + Y (g(Z, X))− Z(g(X, Y ))
− g(X, [Y, Z])− g(Y, [X, Z]) + g(Z, [X, Y ]). (7.1)

Then

∇E1E1 =
−E2

r
, ∇E2E2 = 0, ∇E3E3 = 0,

∇E1E2 =
E1

r
− E3, ∇E2E1 = E3,

∇E1E3 = E2, ∇E3E1 = E2,

∇E2E3 = −E1, ∇E3E2 = −E1. (7.2)

The tangent vectors X, Y, Z and W to C∗×R are expressed as the linear combi-
nation of {E1, E2, E3}, that is, X =

∑3
i=1 aiEi, Y =

∑3
j=1 bjEj , Z =

∑3
k=1 ckEk,

and W =
∑3

l=1 dlEl, where ai, bj , ck, and dl are scalars. Clearly, (φ, ξ, η, g) satisfy
the equations of the K-contact manifold. Thus, C∗ ×R is a K-contact.

The non-zero terms g(R(X, Ei)Ei, Y ), i = 1, 2, 3, by virtue of (7.2), are given
by

R(E2, E1)E1 = −3E2, R(E3, E1)E1 = E3,

R(E1, E2)E2 = −3E1, R(E3, E2)E2 = E3,

R(E1, E3)E3 = E1, R(E2, E3)E3 = E2. (7.3)

Using expressions (7.2) and (7.3), by virtue of the definition of the K-contact
manifold and φ2E3 = 0, one can see that Theorems 4.1, 6.3 and 6.4 are verified
as seen below:

φ2(∇̃W R̃)(X, Y )Z = φ2(∇W R)(X,Y )Z. (7.4)

φ2(∇̃W B̃)(X, Y )Z = φ2(∇W B)(X, Y )Z. (7.5)

φ2(∇̃W B̃)(X, Y )Z = φ2(∇W R)(X, Y )Z. (7.6)
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