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The 2-d wave equation wtt = ∆w, t ∈ (0, T ), on the half-plane x1 > 0
controlled by the Neumann boundary condition wx1(0, x2, t) = δ(x2)u(t) is
considered in Sobolev spaces, where T > 0 is a constant and u ∈ L∞(0, T )
is a control. This control system is transformed into a control system for
the 1-d wave equation in modified Sobolev spaces introduced and studied
in the paper, and they play the main role in the study. The necessary
and sufficient conditions of (approximate) L∞-controllability are obtained
for the 1-d control problem. It is also proved that the 2-d control system
replicates the controllability properties of the 1-d control system and vise
versa. Finally, the necessary and sufficient conditions of (approximate) L∞-
controllability are obtained for the 2-d control problem.
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1. Introduction

Consider the wave equation on a half-plane

wtt = ∆w, x1 > 0, x2 ∈ R, t ∈ (0, T ), (1.1)

controlled by the Neumann boundary condition

wx1(0, x2, t) = δ(x2)u(t), x2 ∈ R, t ∈ (0, T ), (1.2)

where T > 0, is a constant, u ∈ L∞(0, T ) is a control, δ is the Dirac distribution,
∆ = (∂/∂x1)

2+(∂/∂x2)
2. Control system (1.1), (1.2) is considered in the Sobolev

spaces (see Secs. 2 and 3).
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Note that most of the papers on controllability of the wave equation deal with
bounded domains and consider Lp-controllability (2 ≤ p ≤ +∞) (see, e.g., [8, 11–
14, 18] and others). Controllability problems for distributed parameter systems
on domains unbounded with respect to the space variables have not been fully
investigated. L∞-controllability and approximate L∞-controllability of the 1-d
wave equation on a half-axis were investigated at a given time and at a free time
in [4–7, 15–17]. Controllability problems for the 2-d wave equation on a half-plane
controlled by the Dirichlet boundary condition were studied only at a given time
in the context of controls bounded by a hard constant in [3]. Controllability
of the 3-d wave equation in R3 were studied in [2]. In the present paper L∞-
controllability and approximate L∞-controllability are considered at a given time
and at a free time for the 2-d wave equation on the half-plane x1 > 0, where the
equation is controlled by the Neumann boundary condition. In the case of the
Neumann boundary control, the results on L∞-controllability at a given time are
similar to those obtained in [3], where the equation controlled by the Dirichlet
boundary condition was studied. However, the studying of the control problems
at a given time differs from the studying of these problems at a free time. Thus,
the methods used in the present paper essentially differ from those applied in [3].
We have to study some new spaces of the Sobolev type, the convergence in the
spaces, and some operators acting in these spaces to investigate the controllability
problems at a free time. Using these spaces and their properties, the necessary
and sufficient conditions of (approximate) L∞-controllability are obtained at a
given time and at a free time in the case of the Neumann boundary control.

The sketch of the paper is the following:
1. It is proved that control system (1.1), (1.2) under initial condition (2.1) is

equivalent to control system (2.2), (2.3) (Sec. 2).

2. It is proved that if control system (2.2), (2.3) is approximately L∞-controllable
at a free time, then each solution to (2.2), (2.3) is of the form W(x, t) =
w(|x|, t) (Sec. 4), i.e., system (2.2), (2.3) is one-dimensional.

3. The operator Φ, transforming control system (2.2), (2.3) to auxiliary 1-d
control system (4.1), (4.2), is introduced and studied (Sec. 3).

4. Applying the operator Φ (see Sec. 3), it is proved that control system (2.2),
(2.3) replicates the controllability properties of auxiliary control system
(4.1), (4.2) and vice versa (Sec. 4).

5. Necessary and sufficient conditions of (approximate) L∞-controllability are
obtained for auxiliary control system (4.1), (4.2) at a given time and at a
free time (Sec. 5).
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6. Necessary and sufficient conditions of (approximate) L∞-controllability are
obtained for the main control system (2.2), (2.3) at a given time and at a
free time (Sec. 6).

The conditions of (approximate) L∞-controllability for the main control system
(2.2), (2.3) are illustrated by the examples in Sec. 6.

Note that auxiliary control system (4.1), (4.2) is considered in the modified
Sobolev spaces that are the main objects as well as the main tools for studying
the control problems in the present paper. There are two types of these spaces:

• the space H0
s[1/2] of the distributions g ∈ S′ such that we have G ∈ Hs

0 for
G(x) = g(|x|), s ∈ R;

• the space H
s[1/2]
0 that is the Fourier transform of H0

s[1/2], s ∈ R.

These spaces are introduced and studied in Sec. 3. In particular, some embedding
properties are proved for the pairs H0

s[1/2], H0
s and H

s[1/2]
0 , Hs

0 , s ∈ R. The
operator Φ introduced and studied in the same section also plays an important
role in the paper. This operator is an isomorphism of a subspace Hs

0 of Hs
0 and

H
s[1/2]
0 such that ∆Φf = Φ(f ′′), f ∈ H

s[1/2]
0 . Here, Hs

0 is the subspace of Hs
0

such that F ∈ Hs
0 iff there exists f ∈ H

s[1/2]
0 under the condition F (x) = f(|x|),

s ∈ R. Using the operator Φ, we can reduce control problem (1.1), (1.2), (2.1)
to an auxiliary control problem for the 1-d wave equation (see (4.1), (4.2)). We
should notice that control problem (4.1), (4.2) has been investigated in Hs

0 in
[5]. However, we have to study this problem again because the convergence in
the space H

s[1/2]
0 differs from that in Hs

0 . Therefore the controls solving the
(approximate) L∞-controllability problem for (4.1), (4.2) in H

s[1/2]
0 differ from

those solving this problem in Hs
0 . In particular, to construct the controls we have

to prove Lemmas 7.1–7.7 that are rather complicated. Thus, using the operator Φ
and the modified Sobolev spaces H0

s[1/2] and H
s[1/2]
0 , we solve the (approximate)

L∞-controllability problem for control system (1.1), (1.2) at a given time and at
a free time.

This study may be treated as an attempt to extend the class of operators
transforming 1-d wave equation into more general equations (see, e.g., [7, 15, 16]).
Note that the controllability problems for the wave equation with a variable
potential were studied in [7] by reducing them to the controllability problems for
the wave equation with a constant potential with the help of some transformation
operator acting in the classical Sobolev spaces. In the present paper, we observe
a similar transformation. The operator Φ may be treated as a transformation
operator transforming 2-d control problem (2.2), (2.3) in the classical Sobolev
spaces into 1-d control problem (4.1), (4.2) in the modified Sobolev spaces.
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2. Problem Formulation

Let n ∈ N. Let S(Rn) be the Schwartz space of rapidly decreasing functions
of n variables and S′(Rn) be its dual space of tempered distributions (see, e.g.,
[10, Chap. 1]). Denote by Hs

l (Rn), s, l ∈ R, the following Sobolev spaces:

Hs
l (Rn) =

{
ϕ ∈ S(Rn) | (1 + |D|2)s/2(1 + |x|2)l/2ϕ ∈ L2(Rn)

}
,

‖ϕ‖s
l =

(∫

Rn

∣∣∣(1 + |D|2)s/2(1 + |x|2)l/2ϕ(x)
∣∣∣
2

dx

)1/2

,

where | · | is the Euclidian norm in Rn, D = (−i∂/∂x1, . . . ,−i∂/∂xn), n ∈ N.
It is well known [10, Chap. 1] that ‖ϕ‖s′

l′ ≤ ‖ϕ‖s
l , s′ ≤ s, l′ ≤ l, ϕ ∈ Hs

l (Rn).
Therefore, Hs

l ⊂ Hs′
l′ is a continuous embedding, s′ ≤ s, l′ ≤ l.

Let F : S(Rn) → S(Rn) be the Fourier transform operator. For ϕ ∈ S(Rn)
we have (Fϕ)(σ) = (2π)−n/2

∫
Rn e−i〈x,σ〉ϕ(x) dx and for f ∈ S′(Rn), ψ ∈ S(Rn),

〈Ff, ψ〉 = 〈f, F−1ψ〉. It is well known [10, Chap. 1] that F is an isometric isomor-
phism of Hs

0(Rn) and H0
s (Rn), s ∈ R. A distribution f ∈ S′(Rn) is said to be odd

with respect to x1 if 〈f, ϕ(x1, x2, . . . , xn)〉 = −〈f, ϕ(−x1, x2, . . . , xn)〉, ϕ ∈ S(Rn),
and be even with respect to x1 if 〈f, ϕ(x1, x2, . . . , xn)〉 = 〈f, ϕ(−x1, x2, . . . , xn)〉,
ϕ ∈ S(Rn).

Set n = 2, R+ = (0, +∞). For s, l ∈ R, denote by Ĥs
l (R2) the subspace

of the distributions in Hs
l (R2) that are even with respect to x1, and denote

Ĥs = Ĥs
0(R2) × Ĥs−1

0 (R2) and Ĥl = Ĥ0
l (R2) × Ĥ0

l−1(R2), with the norms |||·|||s
and |||·|||l, respectively.

Set s = 0, 1, 2. Denote also Hs
0 = {ϕ ∈ L2(R+ × R) | ∃ϕ̂ ∈ Ĥs

0(R2) ϕ(x) =
ϕ̂(x) a.e. on R+ × R} with the norm []ϕ[]s0 = 1√

2
‖ϕ̂‖s

0, ϕ ∈ Hs
0, ϕ̂ ∈ Ĥs

0(R2),

ϕ(x) = ϕ̂(x) a.e. on R+ × R, and H−s
0 = (Hs

0)
′ with the norm []f []s0 =

sup{|〈f, ϕ〉|/ []ϕ[]s0 | []ϕ[]s0 6= 0}, f ∈ H−s
0 . Evidently, for each f ∈ H−s

0 there exists

the unique f̂ ∈ Ĥ−s
0 (R2) such that f̂

∣∣∣
R+×R

= f . Moreover, for each f̂ ∈ Ĥ−s
0 (R2)

we have f = f̂
∣∣∣
R+×R

∈ H−s
0 . In addition, []f []−s

0 = 1√
2

∥∥∥f̂
∥∥∥
−s

0
for f ∈ H−s

0 and

f̂ ∈ Ĥ−s
0 (R2) such that f̂

∣∣∣
R+×R

= f . One can see that

H0
0 =L2(R+ × R), []ϕ[]00 = ‖ϕ‖H0

0
, ϕ ∈ H0

0;

H1
0 =

{
ϕ ∈ H0

0 | ϕx1 ∈ H0
0 and ϕx2 ∈ H0

0

}
,

[]ϕ[]10 = ‖ϕ‖H0
0
+ ‖ϕx1‖H0

0
+ ‖ϕx2‖H0

0
, ϕ ∈ H1

0;
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H2
0 =

{
ϕ ∈ H1

0 |
(∀k, l = 1, 2, ϕxkxl

∈ H0
0

)
and (ϕx1(+0, x2) = 0 a.e. on R)

}
,

[]ϕ[]20 = ‖ϕ‖H0
0
+ 2 ‖ϕx1‖H0

0
+ 2 ‖ϕx2‖H0

0
+ 2 ‖ϕx1x2‖H0

0

+ ‖ϕx1x1‖H0
0
+ ‖ϕx2x2‖H0

0
, ϕ ∈ H2

0.

We treat equality (1.2) as the value of the distribution w at x1 = 0 (see
Definition 2.1 below). Set S = S(R), S+ = {ϕ ∈ S | suppϕ ∈ R+}, and S+ =
{ϕ ∈ C∞(R+) | ∀k = 0,∞∀m = 0,∞xkϕ(m) ∈ L∞(R+)}. By analogy with the
definition of the value of a distribution of one variable at a point [1, Chap. 1],
we give the following definition for the value of a distribution of several variables
at a line.

Definition 2.1. We say that a distribution f ∈ (S+)′ × S′ × (S+)′ has the
value f0 ∈ S′× (S+)′ on the line x1 = 0 (i.e., f(0, x2, x3) = f0(x2, x3)) if for each
ϕ ∈ S+ × S × S+ we have 〈fα − f0, ϕ〉 → 0 as α → +0, where fα(x1, x2, x3) =
f(αx1, x2, x3).

Consider control system (1.1),(1.2) under the initial condition

w(x, 0) = w0
0(x), wt(x, 0) = w0

1, x1 > 0, x ∈ R, (2.1)

in the spaces H−s
0 , s = 0, 1, 2. Here w0

0 ∈ H1
0, w0

1 ∈ H0
0,

(
d
dt

)s
w : [0, T ] → H−s

0 ,

s = 0, 1, 2, ∆ : H0
0 → H−2

0 . Denote by W(·, t) =
(

W0(·, t)
W1(·, t)

)
and W0 =

(
W0

0

W0
1

)
the

even extension of
(

w
wt

)
and

(
w0

0

w0
1

)
, respectively, with respect to x1, t ∈ [0, T ].

Then,
(

d
dt

)s
W : [0, T ] → Ĥ−s, s = 0, 1, W0 ∈ Ĥ1. If w is a solution to problem

(1.1), (2.1), (1.2), then W is a solution to problem

d

dt
W =

(
0 1
∆ 0

)
W − 2δu(t)

(
0
1

)
, t ∈ (0, T ), (2.2)

W(·, 0) = W0, (2.3)

where δ ∈ H−2
0 (R2) is the Dirac distribution with respect to x. Due to the Poisson

formula (see, e.g., [19, Chap. 3]), we have

W(x, t) =
1
2π

∂

∂t

(
H(t2 − |x|2)√

t2 − |x|2 ∗W0
0

)
+

1
2π

H(t2 − |x|2)√
t2 − |x|2 ∗W0

1

− 1
π

∫ t

0

H(ξ2 − |x|2)√
ξ2 − |x|2 u(t− ξ) dξ,

where ∗ is the convolution with respect to x. Let W+ be the restriction of W to
R+ × R× [0, T ]. Taking into account Lemmas 7.8 and 7.9, we obtain

(W+
0 )x1(0, x2, t) = δ(x2)u(t). (2.4)
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Therefore, if W is a solution to problem (2.2), (2.3), then W+ is a solution to
problem (1.1), (2.1), (1.2). Thus, control problems (1.1), (2.1), (1.2) and (2.2),
(2.3) are equivalent. Further we will consider control problem (2.2), (2.3) instead
of control problem (1.1), (2.1), (1.2).

3. Spaces and Operators

Let us give definitions of the spaces used in the paper. Set n = 1. For s, l ∈ R
denote Hs

l = Hs
l (R), and denote by Ĥs

l the subspace of even distributions in Hs
l .

Further throughout the section we will assume s ∈ R.
Introduce the space H0

s[−1/2] = {ϕ ∈ H0
s−1/2 | ∃ϕ̄ ∈ H0

s ϕ =
√
|ρ|ϕ̄} with

the norm |ϕ|0s[−1/2] =
∥∥∥ϕ/

√
|ρ|

∥∥∥
0

s
, ϕ ∈ H0

s[−1/2], and its dual space H0
−s[1/2] =

(
H0

s[−1/2]

)′
with the strong topology, i.e., |f |0−s[1/2] = sup{|〈f, ϕ〉|/|ϕ|0s[−1/2] |

|ϕ|0s[−1/2] 6= 0}, f ∈ H0
−s[1/2]. Evidently, |f |0−s[1/2] =

∥∥∥
√
|ρ|f

∥∥∥
0

−s
, f ∈ H0

−s[1/2].

One can see that H0
s[−1/2] and H0

−s[1/2] are complete. Since
√
|ρ| ≤ 4

√
1 + ρ2, it

is seen that

‖ϕ‖0
s−1/2 ≤ |ϕ|0s[−1/2], ϕ ∈ H0

s[−1/2]; |f |0−s[1/2] ≤ ‖f‖0
−s+1/2 , f ∈ H0

−s+1/2. (3.1)

Therefore, H0
s[−1/2] ⊂ H0

s−1/2 and H0
−s+1/2 ⊂ H0

−s[1/2] are continuous embeddings.

According to Lemma 7.1, if f ∈ H0
−s[1/2], then f ∈ H

−3/2
−s+1/2.

Introduce the spaces H
s[−1/2]
0 = FH0

s[−1/2] and H
−s[1/2]
0 = FH0

−s[1/2] with

the norms |ϕ|s[−1/2]
0 = |Fϕ|0s[−1/2], ϕ ∈ H

s[−1/2]
0 0 and |f |−s[1/2]

0 = |Ff |0−s[1/2],

f ∈ H
−s[1/2]
0 . Evidently, H

−s[1/2]
0 =

(
H

s[−1/2]
0

)′
. One can see that H

s[−1/2]
0 and

H
−s[1/2]
0 are complete. Taking into account (3.1), we get

‖ϕ‖s−1/2
0 ≤ |ϕ|s[−1/2]

0 , ϕ ∈ H
s[−1/2]
0 ; |f |−s[1/2]

0 ≤ ‖f‖−s+1/2
0 , f ∈ H

−s+1/2
0 . (3.2)

Therefore, H
s[−1/2]
0 ⊂ H

s−1/2
0 and H

−s+1/2
0 ⊂ H

−s[1/2]
0 are continuous embed-

dings. According to Lemma 7.1, if f ∈ H
−s[1/2]
0 , then f ∈ H

−s+1/2
−3/2 . For f ∈

H
−s[1/2]
0 , by analogy with [10, Chap. 1], setting F = Ff and fs = (1 + |D|2)s/2f ,

we obtain

|f |−s[1/2]
0 = |F |0−s[1/2] =

(
1
2π

∫ ∞

−∞

∫ ∞

−∞
(1 + ρ2)−s|F (ρ)|2

∣∣eizρ − 1
∣∣2

z2
du dρ

)1/2
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=

(
1
2π

∫∫

R2

|fs(x + z)− fs(x)|2
|z|2 dx dz

)1/2

=

(
1
2π

∫∫

R2

|fs(x)− fs(y)|2
|x− y|2 dy dx

)1/2

. (3.3)

Denote by Ĥ0
−s[1/2] and Ĥ

−s[1/2]
0 the subspaces of even distributions in H0

−s[1/2]

and H
−s[1/2]
0 , respectively. Now set n = 2 and introduce the subspaces

Hs
0 =

{
G ∈ Hs

0(R2) | ∃g ∈ S′+ G(x) = g(|x|)} ,

H0
s =

{
F ∈ H0

s (R2) | ∃f ∈ S′+ F (x) = f(|x|)}

of Hs
0(R2) and H0

s (R2), respectively. If f ∈ H0
s, then there exists the unique

f ∈ Ĥ0
s[1/2] such that F (x) = f(|x|), x ∈ R2, and

‖F‖0
s =

√
π|f |0s[1/2]. (3.4)

Therefore, H0
s is isomorphic to Ĥ

0[1/2]
s . Hence the space H0

s is complete. Due to
[10, Chap. 1], the Fourier transform F is an isometric isomorphism of Hs

0(R2)
and H0

s (R2). Therefore, F is an isometric isomorphism of Hs
0 and H0

s. Thus Hs
0

is also complete.
Let Ĥs

0[1/2] and I0s : H0
s → Ĥ0

s[1/2] be the isomorphisms of H0
s and Ĥ0

s[1/2]

mentioned above. We have I0sF = f iff F (x) = f(|x|), x ∈ R2.
Denote Φ : Ĥ

−2[1/2]
0 → H−2

0 , D(Φ) = Ĥ
−2[1/2]
0 ,

Φf =
(
F−1(I0−2)

−1F
)
f, f ∈ D(Φ).

Taking into account (3.4), we obtain

Theorem 3.1. Φ is an isomorphism of Ĥ
s[1/2]
0 and Hs

0. In addition, ‖Φf‖s
0 =√

π|f |−s[1/2]
0 , f ∈ D(Φ), s ≥ −2.

We also need

Theorem 3.2. We have ∆Φf = Φ(f ′′), f ∈ Ĥ
s[1/2]
0 , s ≥ −2.

P r o o f. For f ∈ Ĥ
s[1/2]
0 , we have

∆Φf = −F−1
(|σ|2 (

(I0−2)
−1Ff

))
= − (

F−1(I0−2)
−1

) (
ρ2Ff

)
= Φ(f ′′).

That was to be proved.
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Theorem 3.3. Let α > 0, f ∈ Ĥ
0[1/2]
0 , and G = Φf . Then, supp f ⊂ [−α, α]

iff suppG ⊂ Dα = {x ∈ R2 | |x| ≤ α}.
P r o o f. Due to Theorem 3.1, G ∈ H0

0. Put F = Ff and g = FG. Then,

g(σ) = F (|σ|), σ ∈ R. (3.5)

First, let supp f ⊂ [−α, α]. Due to Lemma 7.1, f ∈ Ĥ
1/2
−3/2 ⊂ S′. Applying

the generalized Paley–Wiener theorem [9, Chap. 3], we may conclude that F
can be extended to an entire function of the order ≤ 1 and the type ≤ α. Since
G ∈ H0

0 ⊂ L2(R2) is even, we obtain that g ∈ L2(R2) and it can be extended to
an entire function of the order ≤ 1 and the type ≤ α. Applying the Paley–Wiener
theorem, we obtain suppG ⊂ [−α, α]2. Therefore, suppG ⊂ Dα because G ∈ H0

0.
Now, let suppG ⊂ Dα. Then, suppG ⊂ [−α, α]2. Applying again the Paley–

Wiener theorem, we obtain that g ∈ H0
0 and it can be extended to an entire

function of the order ≤ 1 and the type ≤ α. Moreover,

|g(s)| ≤ α

2
√

π
‖G‖0

0 e|=s| ≤ α

2
√

π
‖G‖0

0 e|s|, s ∈ C, (3.6)

because G ∈ H0
0. Therefore F is a regular distribution, F is of a polynomial

growth, and F can be extended to an entire function of the order ≤ 1 and the
type ≤ α. Applying the generalized Paley–Wiener theorem [9, Chap. 3], we
obtain supp f ⊂ [−α, α]. The theorem is proved.

Denote Ĥs = Hs
0×Hs−1

0 and Ĥs = H0
s×H0

s−1, and consider them as subspaces
of Ĥs and Ĥs, respectively.

One can see that the following two theorems hold.

Theorem 3.4. Let f ∈ D(Φ) and f ′ ∈ L∞(R) ∩ L1(R). Then, (Φf) (x) =√
2
π

∫∞
|x|

f ′(ξ) dξ√
ξ2−|x|2 .

Theorem 3.5. Let G ∈ D(Φ−1), g = I−2
0 G, rg ∈ L1(R), and rg ∈ L∞(−a, a)

for each a > 0. Then,
(
Φ−1G

)
(ξ) =

√
2
π

∫∞
ξ

rg(r) dr√
r2−ξ2

.

4. Transformations between Two-Dimensional and
One-Dimensional Control Systems

Consider control system (2.2), (2.3) and the auxiliary control system

d

dt
Z(·, t) =

(
0 1

(d/dξ)2 0

)
Z(·, t) +

(
0
1

)√
2
π

δu(t), t ∈ (0, T ), (4.1)

Z(·, 0) = Z0, (4.2)
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with the same time T > 0 and the same control u ∈ L∞(0, T ). Here δ ∈ H
−2[1/2]
0

is the Dirac distribution with respect to ξ,
(

d
dt

)s
Z : [0, T ] → Ĥ−s[1/2], s = 0, 1,

Z0 ∈ Ĥ1[1/2].
For given T > 0 and W0 ∈ Ĥ1 (Z0 ∈ Ĥ1[1/2]), denote by R2

T (W0) (R1
T (Z0),

respectively) the set of the states WT ∈ Ĥ1 (ZT ∈ Ĥ1[1/2], respectively) for which
there exists a control u ∈ L∞(0, T ) such that problem (2.2), (2.3) ((4.1), (4.2),
respectively) has the unique solution W (Z, respectively) and W(·, T ) = WT

(Z(·, T ) = ZT , respectively). Denote also Rj∞(Z0) =
⋃

T>0Rj
T (Z0), j = 1, 2.

Definition 4.1. A state W0 ∈ Ĥ1 (Z0 ∈ Ĥ1[1/2]) is called L∞-controllable
with respect to system (2.2), (2.3) ( (4.1), (4.2), respectively) at a given time
T > 0 if 0 belongs to R2

T (W0) (R1
T (Z0), respectively) and approximately L∞-

controllable with respect to this system at a given time T > 0 if 0 belongs to the
closure of R2

T (Z0) in Ĥ1 (the closure of R1
T (Z0) in Ĥ1[1/2], respectively).

Definition 4.2. A state W0 ∈ Ĥ1 (Z0 ∈ Ĥ1[1/2]) is called approximately L∞-
controllable with respect to system (2.2), (2.3) ( (4.1), (4.2), respectively) at a free
time if 0 belongs to the closure of R2

T (Z0) in Ĥ1 (the closure of R1
T (Z0) in Ĥ1[1/2],

respectively).

Theorem 4.1. Let un(t), t ∈ [0, Tn], n = 1,∞, solve the approximate L∞-
controllability problem with respect to system (2.2), (2.3) for a state W0 ∈ Ĥ1.
Let Wn be a solution to (2.2), (2.3) with u = un, T = Tn, n = 1,∞. Then, this
solution is unique, W0 ∈ Ĥ1, Wn(·, t) ∈ Ĥ0, t ∈ [0, Tn], n = 1,∞.

P r o o f. Since the controls un(t), t ∈ [0, Tn], n = 1,∞, solve the approximate
L∞-controllability problem with respect to system (2.2), (2.3) for the state W0 ∈
Ĥ1, we have

|||Wn(·, Tn)|||1 → 0 as n →∞. (4.3)

Put V0 = FW0, Vn(·, t) = FWn(·, t), t ∈ [0, Tn], n = 1,∞. For n = 1,∞,
applying the Fourier transform with respect to x to system (2.2), (2.3) with
u = un, T = Tn, we obtain

d

dt
Vn =

(
0 1

−|σ|2 0

)
Vn − 1

π
un(t)

(
0
1

)
, t ∈ (0, T ), (4.4)

V(·, 0) = V0, (4.5)

where
(

d
dt

)s
V:[0, T ] → Ĥ−s, s = 0, 1, V0 ∈ Ĥ1. Hence, for n = 1,∞, we have

that

Vn(σ, t) =

(
cos(t|σ|) sin(t|σ|)

|σ|
−|σ| sin(t|σ|) cos(t|σ|)

)(
V0(σ)− 1

π

∫ t

0

(
sin(ξ|σ|)
|σ|

cos(ξ|σ|)

)
un(ξ) dξ

)

(4.6)

26 Journal of Mathematical Physics, Analysis, Geometry, 2015, vol. 11, No. 1



Modified Sobolev Spaces in Controllability Problems

is the unique solution to (4.4), (4.5). Thus W is the unique solution to (2.2),
(2.3). Taking into account (4.3), we get

|||Vn(·, Tn)|||1 → 0 as n →∞. (4.7)

Set Un(t) = un(t)(H(t)−H(t−T ))−un(−t)(H(t+T )−H(t)), t ∈ R; νn = FUn;
ν̃n(σ) = νn(|σ|) − νn(|σ|), ν̂n(σ) = νn(|σ|) + νn(|σ|), σ ∈ R2, n = 1,∞. Taking
into account (4.7), we get

∥∥∥∥∥|σ|V
0
0 −

√
2
π

ν̃n

∥∥∥∥∥
0

0

→ 0 and

∥∥∥∥∥V0
1 −

√
2
π

ν̂n

∥∥∥∥∥
0

0

→ 0 as n →∞.

Since H0
1 is complete and V0 ∈ Ĥ1, we have V0 ∈ Ĥ1. Therefore, W0 ∈ Ĥ1.

With regard to (4.6) we obtain Vn(·, t) ∈ Ĥ0, t ∈ [0, Tn], and thus Wn(·, t) ∈ Ĥ0,
t ∈ [0, Tn], n = 1,∞. The theorem is proved.

Taking into account (4.7), we obtain

Corollary 4.2. Let T > 0, u ∈ L∞(0, T ), and W0 ∈ Ĥ1. Let W be a solution
to (2.2), (2.3). Then, W(·, t) ∈ Ĥ0, t ∈ [0, T ].

According to Theorem 4.1 and Corollary 4.2, we can consider the L∞-controll-
ability problems with respect to system (2.2), (2.3) in the spaces Ĥs instead of
the spaces Ĥs, s = 0, 1.

Theorem 4.2. Let T > 0, u ∈ L∞(0, T ), Z0 ∈ Ĥ1[1/2], W0 = ΦZ0. Let Z be
a solution to (4.1), (4.2) and W(·, T ) = ΦZ(·, t), t ∈ [0, T ]. Then W is a solution
to (2.2), (2.3), W0 ∈ Ĥ1, and W(·, t) ∈ Ĥ0, t ∈ [0, T ].

P r o o f. We have

Φδ = F−1
(
I0−2

)−1
Fδ =

√
2π. (4.8)

Taking into account Theorems 3.1, 3.2 and applying Φ to (4.1), (4.2), we obtain
(2.2), (2.3) for W0 = ΦZ0 and W(·, T ) = ΦZ(·, t), t ∈ [0, T ]. Hence W is a
solution to (2.2), (2.3). Moreover, W0 ∈ Ĥ1, and W(·, t) ∈ Ĥ0, t ∈ [0, T ]. The
theorem is proved.

Theorem 4.3. Let T > 0, u ∈ L∞(0, T ), W0 ∈ Ĥ1, Z0 = Φ−1W0. Let W
be a solution to (2.2), (2.3) and Z(·, T ) = Φ−1W(·, t), t ∈ [0, T ]. Then, Z is a
solution to (4.1), (4.2), Z0 ∈ Ĥ1[1/2], and Z(·, t) ∈ Ĥ1[1/2], t ∈ [0, T ].

P r o o f. Taking into account (4.8), Theorems 3.1, 3.2 and applying Φ−1

to (2.2), (2.3), we obtain 4.1, 4.2 for Z0 = Φ−1W0 and Z(·, T ) = Φ−1W(·, t),
t ∈ [0, T ]. Hence Z is a solution to (4.1), (4.2). That was to be proved.
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Theorems 3.1, 4.1–4.3 imply

Corollary 4.5. Let W0 ∈ Ĥ1 and Z0 = Φ−1W0. Then the following three
assertions hold:

1. The state W0 is L∞-controllable with respect to system (2.2), (2.3) at a
given time T > 0 iff Z0 is L∞-controllable with respect to system (4.1),
(4.2) at the same time.

2. The state W0 is approximately L∞-controllable with respect to system (2.2),
(2.3) at a given time T > 0 iff Z0 is approximately L∞-controllable with
respect to system (4.1), (4.2) at the same time.

3. The state W0 is approximately L∞-controllable with respect to system (2.2),
(2.3) at a free time iff Z0 is approximately L∞-controllable with respect to
system (4.1), (4.2) at a free time.

Thus, 2-d control system (2.2), (2.3) replicates the controllability properties
of 1-d control system (4.1), (4.2) and vise versa.

5. Auxiliary Control Problem

In this section we study auxiliary control problem (4.1), (4.2). Using the
Fourier transform method, by analogy with [4, Proposition 3.2 and Lemma 6.7],
we obtain the following two propositions.

Proposition 5.1. Let Z0 ∈ Ĥ1[1/2], u ∈ L∞(0, T ), U(t) = u(t)(H(t)−H(t−
T ))− u(−t)(H(t + T )−H(t)), and ∂−1U(t) =

∫ t
−∞ U(µ) dµ, t ∈ R. Then,

Z(·, T ) = E(·, T ) ∗
(

Z0 −
(

∂−1U
sgn ξ U

))
, (5.1)

where Z is the unique solution to (4.1), (4.2), ∗ is the convolution with respect to
ξ, and

E(·, T ) =
1
2

(
δ(ξ + T ) + δ(ξ − T ) H(ξ + T )−H(ξ − T )
δ′(ξ + T )− δ′(ξ − T ) δ(ξ + T ) + δ(ξ − T )

)
(5.2)

=
1√
2π

F−1


 cos(Tρ)

sin(Tρ)
ρ

ρ sin(Tρ) cos(Tρ)


 . (5.3)

Proposition 5.2. Let E be defined by (5.2), s ∈ R. Then we have

|||E(·, T ) ∗ f |||s[1/2] ≤
√

2T 2 + 6 |||f |||s[1/2] , f ∈ Ĥs[1/2]. (5.4)
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Theorem 5.3. A state Z0 ∈ Ĥ1[1/2] is approximately L∞-controllable with
respect to system (4.1), (4.2) at a given time T > 0 iff

Z0
1 = sgn ξ Z0

0
′, (5.5)

supp Z0 ⊂ [−T, T ]. (5.6)

Moreover, the controls un(t) = Z0
0
′(tn/(n−1))∗nϕ(tn), t ∈ [0, T ], n = 2,∞, solve

the approximate L∞-controllability problem with respect to system (4.1), (4.2) at
a given time T > 0 for the state Z0, where ϕ ∈ C1(R) is the function determined
by (7.5).

P r o o f. Necessity of (5.5), (5.6). Let Z0 be approximately L∞-controllable
with respect to system (4.1), (4.2) at a given time T > 0. Then there exists
a sequence of controls {un}∞n=1 ⊂ L∞(0, T ) such that |||Zn(·, T )|||1[1/2] → 0 as
n → ∞, where Zn is the unique solution to (4.1), (4.2) for u = un, n = 1,∞.
According to Propositions 5.1 and 5.2, we get

|Z0
0 − ∂−1Un|1[1/2] → 0 and |Z0

1 − sgn ξ Un|0[1/2] → 0 as n →∞, (5.7)

where Un(t) = un(t)(H(t)−H(t−T ))−un(−t)(H(t+T )−H(t)), and ∂−1Un(t) =∫ t
−∞ Un(µ) dµ, t ∈ R, n = 1,∞. Taking into account Lemma 7.2, we get

| sgn ξ(Z0
0
′ − Un)|0[1/2] → 0 as n →∞. (5.8)

Comparing (5.7) and (5.8), it is seen that (5.5) holds. Note that supp∂−1Un ⊂
[−T, T ], n = 1,∞. From (5.7) it follows that the sequence {∂−1Un}∞n=1 converges
weakly to Z0

0 in H
0[1/2]
0 . Hence (5.6) also holds.

Sufficiency of (5.5), (5.6). Put Ũn(t) = Z0
0(nt/n− 1)∗nϕ(nt), Un(t) = Ũ ′n(t),

t ∈ R, n = 2,∞. Here ϕ ∈ C1(R) is the function determined by (7.5). Due to
Lemma 7.4, we see that suppUn ⊂ [−T, T ], n = 2,∞, and (5.7) holds. Applying
Propositions 5.1 and 5.2, from here we get

|||Zn(·, T )|||1[1/2] → 0 as n →∞,

where Zn is the unique solution to (4.1), (4.2) with u(t) = un(t) := Un(t), t ∈
[0, T ], n = 2,∞. Thus, the controls un, n = 2,∞, solve the approximate L∞-
controllability problem for the state Z0. The theorem is proved.

Analyzing the proof of Theorem 5.3, we obtain

Corollary 5.4. A state Z0 ∈ Ĥ1[1/2] is L∞-controllable with respect to system
(4.1), (4.2) at a given time T > 0 iff (5.5), (5.6) hold and

Z0
1 ∈ L∞(R). (5.9)
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Moreover, under conditions (5.5), (5.6), and (5.9) the control u(t) = Z0
0
′(t), t ∈

[0, T ], solves the approximate L∞-controllability problem with respect to system
(4.1), (4.2) at the time T > 0 for Z0.

Theorem 5.5. A state Z0 ∈ Ĥ1[1/2] is approximately L∞-controllable with
respect to system (4.1), (4.2) at a free time iff (5.5) holds.

P r o o f. Necessity of (5.5). Let Z0 be approximately L∞-controllable
with respect to system (4.1), (4.2) at a free time. Then there exist a sequence
{Tn}∞n=1 ⊂ (0,+∞) and a sequence {un}∞n=1, un ∈ L∞(0, Tn), n = 1,∞, such
that

|||Zn(·, Tn)|||1[1/2] → 0 as n →∞, (5.10)

where Zn =
(

Zn
0

Zn
1

)
is the unique solution to (4.1), (4.2) with T = Tn and u = un,

n = 1,∞. Put Un(t) = un(t)(H(t) − H(t − Tn)) − un(−t)(H(t + Tn) − H(t)),
t ∈ R, n = 1,∞. According to Proposition 5.1, we have

2(Zn
0 (x, Tn))x =(Z0

0
′ − Un)(x + Tn) + (Z0

0
′ − Un)(x− Tn)

+ (Z0
1 − sgn ξ Un)(x + Tn)− (Z0

1 − sgn ξ Un)(x− Tn),

2Zn
1 (x, Tn) =(Z0

0
′ − Un)(x + Tn)− (Z0

0
′ − Un)(x− Tn)

+ (Z0
1 − sgn ξ Un)(x + Tn) + (Z0

1 − sgn ξ Un)(x− Tn).

Therefore,

2(Z0
0
′ − Un)(x) = (Zn

0 (x− Tn, Tn) + Zn
0 (x + Tn, Tn))x

+ Zn
1 (x− Tn, Tn)− Zn

1 (x + Tn, Tn)

2(Z0
1 − sgn ξ Un)(x) = (Zn

0 (x− Tn, Tn)− Zn
0 (x + Tn, Tn))x

+ Zn
1 (x− Tn, Tn) + Zn

1 (x + Tn, Tn).

Taking into account (5.10), we obtain

|Z0
0
′ − ∂−1Un|0[1/2] → 0 and |Z0

1 − sgn ξ Un|0[1/2] → 0 as n →∞. (5.11)

Applying Lemma 7.2, we obtain (5.5).
Sufficiency of (5.5). Let {Tn}∞n=1 ⊂ (0, +∞) be a nondecreasing sequence

under the condition Tn → ∞ as n → ∞. Let ψ ∈ C2(R) be an even function
such that 0 ≤ ψ(ξ) ≤ 1, ξ ∈ R; ψ(ξ) = 1, |ξ| ≤ 1/2; ψ(ξ) = 0, |ξ| ≥ 1. Put
Ẑn

0 (ξ) = Z0
0(ξ)ψ(ξ/Tn), Ẑn

1 = sgn ξ Ẑn
0
′, ξ ∈ Rn, n = 1,∞. Due to Lemmas 7.2

and 7.5, we obtain Ẑn =

(
Ẑn

0

Ẑn
1

)
∈ Ĥ1[1/2], n = 1,∞. Evidently, condition (5.5)
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holds for Ẑn, n = 1,∞. For each n = 1,∞, applying Theorem 5.3, we can find
some controls un

k ∈ L∞(0, Tn), k = 2,∞, such that |||Zn
k |||1[1/2] → 0 as n → ∞,

where Zn
k is the unique solution to (4.1), (4.2) with T = Tn, u = un

k , and Z0 = Zn,
k = 2,∞. For each n = 1,∞, set kn = 2,∞ such that

∣∣∣∣∣∣Zn
kn

∣∣∣∣∣∣1[1/2] ≤ 1
n

, (5.12)

and denote by Zn the unique solution to control problem (4.1), (4.2) with T = Tn,
u = un

kn
, and the given initial state Z0. Then Zn − Ẑn is the unique solution to

(4.1), (4.2) with T = Tn, u = un
kn

, and the initial state Z0 − Ẑn, n = 1,∞. For
n = 1,∞, taking into account Proposition 5.1, we get

Zn(ξ, Tn)− Zn
kn

(ξ, Tn)

=

(
H(ξ + Tn)(Z0

0 − Ẑn
0 )(ξ + Tn) + H(Tn − ξ)(Z0

0 − Ẑn
0 )(Tn − ξ)

H(ξ + Tn)(Z0
0 − Ẑn

0 )′(ξ + Tn) + H(Tn − ξ)(Z0
0 − Ẑn

0 )′(Tn − ξ)

)
.

According to Lemmas 7.2 and 7.7, we obtain
∣∣∣∣∣∣Zn − Zn

kn

∣∣∣∣∣∣1[1/2] → 0 as n →∞. (5.13)

Summarizing (5.12) and (5.13), we see that

|||Zn|||1[1/2] ≤ ∣∣∣∣∣∣Zn − Zn
kn

∣∣∣∣∣∣1[1/2] +
∣∣∣∣∣∣Zn

kn

∣∣∣∣∣∣1[1/2] →∞ as n →∞.

Thus, the controls un
kn

, n = 1,∞, solve the approximate L∞-controllability prob-
lem with respect to system (4.1), (4.2) at a free time for Z0. The theorem is
proved.

6. Main Control Problem

In this section we study control system (2.2), (2.3) using the results of Secs. 4
and 5. Theorems 3.3, 4.1, 5.3, 5.5 and Corollaries 4.2, 4.5, 5.4 yield the following
three theorems.

Theorem 6.1. A state W0 ∈ Ĥ1 is L∞-controllable with respect to system
(2.2), (2.3) at a given time T > 0 iff

W0 ∈ Ĥ1, (6.1)

W0
1 = Φ

(
sgn x

d

dξ

(
Φ−1W0

0

))
, (6.2)

suppW0 ∈ DT , (6.3)

Φ−1W0
1 ⊂ L∞(R), (6.4)

where DT = {x ∈ R2 | |x| ≤ T}.
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Theorem 6.2. A state W0 ∈ Ĥ1 is approximately L∞-controllable with re-
spect to system (2.2), (2.3) at a given time T > 0 iff (6.1)–(6.3) hold.

Theorem 6.3. A state W0 ∈ Ĥ1 is approximately L∞-controllable with re-
spect to system (2.2), (2.3) at a free time iff (6.1) and (6.2) hold.

E x a m p l e 6.1. Let w0
0(r) = 8

3H(1 − r2)(1 − r2)3/2, w0
1(r) = 2H(1 −

r2)
(
(2 − 3r2) ln 1+

√
1−r2

r − 3
√

1− r2
)
, r ∈ R, and W0

j (x) = w0
j (|x|), x ∈ R2,

j = 0, 1. Evidently, conditions (6.1) and (6.3) hold for W =
(

W0
0

W0
1

)
and T > 1.

According to Theorem 3.5, replacing
√

r2 − ξ2 by p, we get

(
Φ−1W0

0

)
(ξ) =

8
3

√
2
π

H(1− ξ2)
∫ 1

ξ

r(1− r2)3/2

√
r2 − ξ2

dr

=
8
3

√
2
π

H(1− ξ2)
∫ √

1−ξ2

0
(1− ξ2 − p2 )dp =

√
2
π

(1− ξ2)2, ξ ∈ R. (6.5)

Therefore, (6.4) also holds. Let us verify (6.2). Taking into account Theorem
3.4, replacing ξ by r cosh p, we obtain

I00Φ
(

sgn ξ
d

dξ

(
Φ−1W0

0

))
= H(1− r2)

∫ 1

r

4− 12ξ√
ξ2 − t2

= H(1− r2)
∫ ln 1+

√
1−r2

|r|

0
(4− 12r2 cosh2 p) dp

= 2H(1− r2)

(
(2− 3r2) ln

1 +
√

1− r2

r
− 3

√
1− r2

)
= w0

1(r), r ∈ R.

Hence (6.2) is also valid. Thus, the state W0 is (approximately) L∞-controllable
with respect to system (2.2), (2.3) at a given time T > 1 according to Theorems
6.1 and 6.2. Since

(
Φ−1W0

0

)′ ∈ L∞(R) (see (6.5)), we conclude that u(t) =(
Φ−1W0

0

)′ (t) = −4
√

π
2 H(1 − t2)t(1 − t2), t ∈ [0, T ], solves the (approximate)

L∞-controllability problem with respect to system (2.2), (2.3) at the time T > 1
for W0

0.

E x a m p l e 6.2. Let w0
0(r) = 1

(1+r2)3/2 , w0
1(r) = 2

π

(
r2−2

(1+r2)5/2 ln
√

1+r2+1√
1+r2−1

+
3

2(1+r2)2

)
, r ∈ R, and W0

j (x) = w0
j (|x|), x ∈ R2, j = 0, 1. Evidently, condition

(6.1) holds for W =
(

W0
0

W0
1

)
. Let us verify (6.2). According to Theorem 3.5,
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replacing
√

r2 − ξ2 by p, we get

(
Φ−1W0

0

)
(ξ) =

√
2
π

∫ ∞

ξ

r dr

(1 + r2)3/2
√

r2 − ξ2

=

√
2
π

∫ ∞

0

dp

(1 + ξ2 + p2)3/2
=

√
2
π

1
1 + ξ2

, ξ ∈ R. (6.6)

According to Theorem 6.2 and (6.6), the state W0 is not approximately L∞-
controllable with respect to system (2.2), (2.3) at any given time T > 0. Taking
into account Theorem 3.4, by replacing ξ by r cosh v and substituting tanh v = p
into (6.6), we obtain

π

2
I00Φ

(
sgn ξ

d

dξ

(
Φ−1W0

0

))
=

∫ ∞

r

(3ξ2 − 1) dξ

(1 + ξ2)3
√

ξ2 − r2

=
∫ ∞

0

3r2 cosh2 v − 1
(1 + r2 cosh2 v)3

dv =
∫ 1

0

(3r2 − 1 + p2)(1− p2)
(1 + r2 − p2)3

= −4r4

∫ 1

0

dp

(1 + r2 − p2)3
+ 5r2

∫ 1

0

dp

(1 + r2 − p2)2
−

∫ 1

0

dp

1 + r2 − p2

=
3

2(1 + r2)2
+

r2 − 2
(1 + r2)5/2

ln
√

1 + r2 + 1√
1 + r2 − 1

=
π

2
w0

1(r), r ∈ R.

Hence (6.2) holds. Thus, the state W0 is approximately L∞-controllable with
respect to system (2.2), (2.3) at a free time according to Theorems 6.3. Now, let us
construct some controls solving the approximate L∞-controllability problem with
respect to system (2.2), (2.3) at a free time. Let ψ ∈ C2(R) be an even function
such that ψ(ξ) = 1 if |ξ| ≤ 1/2, ψ(ξ) = 0 if |ξ| > 1, and 0 ≤ |ξ| ≤ 1 if 1/2 ≤
|ξ| ≤ 1. With regard to (6.6), we get

(
Φ−1W0

0

)′ ∈ L∞(R). According to Lemma

7.7, we see that the controls u(t) =
(
Φ−1W0

0

)′ (t)ψ(t/Tn) = −
√

2
π

2t
(1+t2)2

ψ(t/Tn),

t ∈ [0, Tn], n = 1,∞, solve the problem mentioned above for each sequence
{Tn}∞n=1 ⊂ (0, +∞) such that Tn →∞ as n →∞.

7. Auxiliary Statements

In this section we prove some auxiliary assertions used in Secs. 2–6.

Lemma 7.1. If F̂ ∈ H0
s and F = F̂ /

√
|ρ|, then F ∈ H

−3/2
1/2+s, s ∈ R.

P r o o f. Evidently, ρF ∈ H0
s−1/2. Set F0 = (1 + ρ2)s/2−1/4F , f0 = F−1F0.

Then, ρF0 ∈ H0
0 and f ′0 ∈ H0

0 . Put g(x) = f ′0(x) and ∂−1g(x) =
∫ x
0 g(ξ) dξ,
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x ∈ R. We have

∣∣∂−1g(x)
∣∣ ≤ ‖g‖0

0

√∫ |x|

0
dξ =

√
|x| ‖g‖0

0 , x ∈ R.

Therefore,

∥∥∂−1g
∥∥0

−3/2
≤ ‖g‖0

0

√
2

∫ |x|

0

x dx

(1 + x2)3/2
=
√

2 ‖g‖0
0 .

Hence,

∥∥∂−1g
∥∥1

−3/2
≤

((∥∥∂−1g
∥∥0

−3/2

)
+

(
‖g‖0

0

)2
)1/2

≤
√

3 ‖g‖0
0 .

Since there exists C0 ∈ C such that f0 = ∂−1g + C0, it is seen that f0 ∈ H1
−3/2,

F0 ∈ H
−3/2
1 . Hence, F = (1 + ρ2)1/4−s/2 ∈ H

−3/2
1/2 . The lemma is proved.

Lemma 7.2. If f ∈ H
0[1/2]
0 is odd, then sgnx f ∈ H

0[1/2]
0 and |sgnx f |0[1/2]

0 ≤√
2 |f |0[1/2]

0 .

P r o o f. Set g = sgnx f . Taking into account (3.3), we obtain

(
|f |0[1/2]

0

)2
=

∫ ∞

−∞

∫ ∞

−∞

|f(x)− f(y)|2
|x− y|2 dy dx

= 2
∫ ∞

0

∫ ∞

0

|f(x)− f(y)|2
|x− y|2 dy dx + 2

∫ ∞

0

∫ ∞

0

|f(x) + f(y)|2
|x + y|2 dy dx.

Since |x + y| ≥ |x− y|, x ≥ 0, y ≥ 0, we see that

(
|g|0[1/2]

0

)2
=

∫ ∞

−∞

∫ ∞

−∞

|g(x)− g(y)|2
|x− y|2 dy dx ≤ 4

∫ ∞

0

∫ ∞

0

|g(x)− g(y)|2
|x− y|2 dy dx

= 4
∫ ∞

0

∫ ∞

0

|f(x)− f(y)|2
|x− y|2 dy dx ≤ 2

(
|f |0[1/2]

0

)2
.

That was to be proved.

Lemma 7.3. Let f ∈ H
1[1/2]
0 and supp f ⊂ [−α, α]. Let fn(x) = f

(
nx

n−1

)
,

x ∈ R, n = 2,∞. Then, supp fn ⊂ [−α+1/n, α−1/n], [fn] ∈ H
1/[1/2]
0 , n = 2,∞,

and
|f − fn|1[1/2]

0 → 0 as n →∞. (7.1)
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P r o o f. Evidently, supp fn ⊂ [−α + 1/n, α− 1/n], n = 2,∞. Put F = Ff
and Fn = Ffn, n = 2,∞. Then, Fn(ρ) = n−1

n F0

(
n−1

n ρ
)
, ρ ∈ R, n = 2,∞.

Therefore, for n = 2,∞, we have

|fn|1[1/2]
0 = |Fn|0s[1/2] =

n− 1
n

(∫ ∞

−∞

(
1 + ρ2

) |ρ|
∣∣∣∣F

(
n− 1

n
ρ

)∣∣∣∣
2

dρ

)1/2

≤ n

n− 1

(∫ ∞

−∞

(
1 + ξ2

) |ξ| |F (ξ)|2 dξ

)1/2

=
n

n− 1
|f |1[1/2]

0 . (7.2)

Thus, fn ∈ H
1/[1/2]
0 , n = 2,∞. Now, let us prove assertion (7.1). We have

|f − fn|1[1/2]
0 ≤ |F − Fn|01[1/2] +

1
n− 1

|Fn|01[1/2] , n = 2,∞.

According to (7.2), the second summand in the right-hand side of this estimate
tends to 0 as n →∞. Therefore, to prove (7.1) it is sufficient to prove

|F − Fn|01[1/2] → 0 as n →∞. (7.3)

We have
(
|F − Fn|01[1/2]

)2
≤

∫

|ρ|≤ 4√n

(
1 + ρ2

) |ρ|
∣∣∣∣F (ρ)− F0

(
n− 1

n
ρ

)∣∣∣∣
2

dρ

+
∣∣∣∣
[
H(ρ2 −√n)

(
F − n

n− 1
Fn

)]∣∣∣∣
0

1[1/2]

. (7.4)

Taking into account Lemma 7.1, we see that f ∈ H
3/2
−3/2. Moreover, f ∈ H0

0 ,

because supp f0 ⊂ [−α, α] and H
3/2
−3/2 ⊂ H0

−3/2 [10, Chap. 1]. Then,

∣∣F ′(ρ)
∣∣ ≤

∫ α

−α
|xf(x)| dx ≤

√
3α3

2
‖f‖0

0 , ρ ∈ R.

Hence,

∫

|ρ|≤ 4√n

(
1 + ρ2

)s |ρ|
∣∣∣∣F0(ρ)− F

(
n− 1

n
ρ

)∣∣∣∣
2

dρ

≤ 2
n2

sup
ξ∈R

∣∣f ′(ξ)∣∣2
∫ 4√n

0

(
ρ2 + ρ4

) ≤ α3

n3/4

(
‖f‖0

0

)2
→ 0 as n →∞.

Thus, the first summand in the right-hand side of (7.4) tends to 0 as n → ∞.
Since F0 ∈ H0

1[1/2] and Fn ∈ H0
1[1/2], n = 2,∞,we see that the second summand

also tends to 0 as n → ∞ there. Hence (7.3) holds and (7.1) is valid. That was
to be proved.
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Lemma 7.4. Let f ∈ H
1[1/2]
0 and supp f ⊂ [−α, α]. Letfn = gn ∗ ϕn, where

gn(x) = f
(

nx
n−1

)
, ϕn(x) = nϕ(nx), x ∈ R,

ϕ(x) = 2




0 if |x| ≥ 1

(|x| − 1)2 if 1/2 ≤ |x| ≤ 1

1/2− x2 if |x| ≤ 1/2

, x ∈ R, n = 2,∞. (7.5)

Then supp fn ⊂ [−α, α], [fn] ∈ H
1/[1/2]
0

⋂
C1(R), n = 2,∞, and

|f − fn|1[1/2]
0 → 0 as n →∞. (7.6)

P r o o f. According to Lemma 7.3, we have supp gn ⊂ [−α + 1/n, α− 1/n],
gn ∈ H

1[1/2]
0 , n = 2,∞, and (7.1) holds. Since ϕn ∈ C1(R) and suppϕn ⊂

[−1/n, 1/n], n = 2,∞, we see that supp fn ⊂ [−α, α], fn ∈ H
1/[1/2]
0

⋂
C1(R),

n = 2,∞. Let us prove (7.6). Put Φ = Fϕ. We have

Φ(ξ) =
4√
2π

(∫ 1/2

0

(
1/2− x2

)
cos(ξx) dx +

∫ 1

1/2
(x− 1)2 cos(ξx) dx

)

=
8√
2π

2 sin(ξ/2)− sin ξ

ξ3
=

16√
2π

sin(ξ/2) sin(ξ/4)
ξ3

, ξ ∈ R.

Using the Tailor formula, we get

∣∣∣
√

2πΦ(ξ)− 1
∣∣∣ =

∣∣∣∣8
2 sin(ξ/2)− sin ξ

ξ3
− 1

∣∣∣∣ ≤
|ξ|
2

, ξ ∈ R. (7.7)

Therefore,

∣∣∣
√

2πΦ(ξ)− 1
∣∣∣ =

∣∣∣∣16
sin(ξ/2) sin(ξ/4)

ξ3
− 1

∣∣∣∣ ≤
3
2
, ξ ∈ R. (7.8)

We have

|f − fn|1[1/2]
0 ≤ |f − gn|1[1/2]

0 + |gn − fn|1[1/2]
0 , n = 2,∞. (7.9)

Put F = Ff , Gn = Fgn, Φn = Fϕn, n = 2,∞. Then Φn(ρ) = Φ
( ρ

n

)
, Gn(ρ) =

n−1
n F0

(
n−1

n ρ
)
, n = 2,∞. Taking into account (7.2), applying (7.7) for |ρ| ≤ √

n
and (7.8) for |ρ| ≥ √

n, we get

|f − gn|1[1/2]
0 =

∣∣∣Fn(1−
√

2πΦn)
∣∣∣
0

1[1/2]
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≤1
2

(∫

|ρ|≤√n

(
1 + ρ2

)s |ρ| |Fn(ρ)|2 ρ2

n2
dρ

+9
∫

|ρ|≥√n

(
1 + ρ2

)s |ρ| |Fn(ρ)|2 ρ2

n2
dρ

)1/2

≤ 1
2
√

n− 1

(
|F |01[1/2] + 3

√
n

∣∣H(ξ2 − (n− 1)2/n)F
∣∣0
1[1/2]

)
.

Since F ∈ H0
1[1/2], we have |f − gn|s[1/2]

0 → 0 as n → ∞. Due to Lemma 7.3,

|gn − fn|1[1/2]
0 → 0 as n → ∞ too. With regard to (7.9), we obtain (7.6). That

was to be proved.

Lemma 7.5. Let ψ ∈ C1(R) and suppψ ∈ [−1, 1]. If f ∈ H
0[1/2]
0 and f̂a(x) =

f(x)ψ(x/a), x ∈ R, a > 0, then f̂a ∈ H
s[1/2]
0 , a > 0.

P r o o f. Taking into account (3.3), we have

(
|f |0[1/2]

0

)2
=

∫∫

R2

|f(x)− f(y)|2
|x− y|2 dy dx < ∞. (7.10)

Setting I−∞ = (−∞,−a], I0 = [−a, a], I+∞ = [a,+∞, we get

(
|f̂a|0[1/2]

0

)2
=

∑

k,l=−∞,0,+∞
Jk,l, where Jk,l =

∫∫

Ik×Il

|f̂a(x)− f̂a(y)|2
|x− y|2 dy dx.

(7.11)
According to Lemma 7.1, f ∈ L2

loc(R). Set M = max{|ψ′(ξ)| | ξ ∈ [−a, a]}.
From the mean value theorem it follows that |ψ(x/a) − ψ(y/a)| ≤ M

a (x − y),
(x, y) ∈ [−a, a]2. Then

J−∞,−∞ =J+∞,+∞ = 0, (7.12)

J0,0 ≤2
∫∫

I0×I0

|f(x)− f(y)|2
|x− y|2 dy dx

+ 2
∫∫

I0×I0

|f(x)|2 |ψ(x/a)− ψ(y/a)|2
|x− y|2 dy dx

≤ 2
(
|f |0[1/2]

0

)2
+ 4M

(
‖f‖L2(I0)

)2
, (7.13)

J−∞,0 =J0,−∞ =
∫∫

I0×I−∞

|f(x)ψ(x/a)|2
|x− y|2 dy dx

=
∫

I0

|f(x)ψ(x/a)|2
|x + a| dx ≤ 2M

(
‖f‖L2(I0)

)2
, (7.14)
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J+∞,0 =J0,+∞ =
∫∫

I0×I+∞

|f(x)ψ(x/a)|2
|x− y|2 dy dx

=
∫

I0

|f(x)ψ(x/a)|2
|x− a| dx ≤ 2M

(
‖f‖L2(I0)

)2
. (7.15)

Summarizing (7.10)–(7.15), we get |f̂a|0[1/2]
0 < ∞, i.e., f̂a ∈ H

0[1/2]
0 , a > 0. The

lemma is proved.

Lemma 7.6. If f ∈ H
0[1/2]
0 is odd, then

∫∞
0

|f0(x)|2
x dx < ∞.

P r o o f. According to Lemma 7.2, we have sgnx f ∈ H
0[1/2]
0 . Therefore,

H(x)f ∈ H
0[1/2]
0 , where H is the Heaviside function. Hence,

∫ ∞

0

|f(x)|2
x

dx =
∫ ∞

0

∫ ∞

0

|f(x)|2
|x + y|2 dy dx < ∞,

because

2
∫ ∞

0

∫ ∞

0

|f(x)|2
|x + y|2 dy dx +

∫ ∞

0

∫ ∞

0

|f(x)− f(y)|2
|x− y|2 =

(
|H(x)f |0[1/2]

0

)2
< ∞.

The lemma is proved.

Lemma 7.7. Let ψ ∈ C2(R) be even; 0 ≤ ψ(x) ≤ 1, x ∈ R; ψ(x) = 1,
|x| ≤ 1/2; ψ(x) = 0, |x| ≥ 1. Let f ∈ Ĥ

1[1/2]
0 , fa(x) = H(x)f(x)(1 − ψ(x/a)),

x ∈ R, a > 0. Then |fa|1[1/2]
0 → 0 as a →∞.

P r o o f. According to (3.3), we have
∫∫

R2\[−a,a]2

|f(x)− f(y)|2
|x− y|2 dy dx → 0 as a →∞, (7.16)

because for a = 0 this integral is equal to
(
|f |0[1/2]

0

)2
< ∞. Set f̂a(x) =

f(x)ψ(2x/a), x ∈ R, a > 0. From Lemma 7.5 it follows that f̂a ∈ H
0[1/2]
0 .

Hence,

4
3a

∫ a

a/2
|f0(x)|2 dx ≤

∫ ∞

a/2

|f0(x)|2
x− a/4

dx ≤
∫ ∞

a/2

∫ a/4

0

|f(x)− f̂a(x)|2
|x− y|2 dx

≤
∫∫

R2\[−a/2,a/2]2

|(f − f̂a)(x)− (f − f̂a)(y)|2
|x− y|2 dy dx → 0 as a →∞, (7.17)
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because for a = 0 the last integral is equal to
(
|f − f̂a|0[1/2]

0

)2
< ∞.

First, let us estimate |[fa]|0[1/2]
0 . Set I1 = [−∞, a/2], I2 = [a/2, a], I3 =

[a,+∞]. Then

(
|fa|0[1/2]

0

)2
=

3∑

k,l=1

Jkl, where Jkl =
∫∫

Ik×Il

|fa(x)− fa(y)|2
|x− y|2 dy dx. (7.18)

We have

J11 =0, (7.19)

J22 ≤2
∫∫

I2×I2

|f(x)− f(y)|2
|x− y|2 dy dx

+ 2
∫∫

I2×I2

|f(x)|2 |ψ(x/a)− ψ(y/a)|2
|x− y|2 dy dx, (7.20)

J33 =
∫∫

I3×I3

|f(x)− f(y)|2
|x− y|2 dy dx, (7.21)

J12 = J21 =
∫∫

I2×I1

|f(x)|2 |1− ψ(x/a)|2
|x− y|2 dy dx

≤
∫

I2

|f(x)|2 |1− ψ(x/a)|2
x− a/2

dx, (7.22)

J13 = J31 =
∫∫

I3×I1

|f(x)|2
|x− y|2 dy dx =

∫ ∞

a

|f(x)|2
x− a/2

dx, (7.23)

J23 = J32 =2
∫∫

I3×I2

|f(x)− f(y)|2
|x− y|2 dy dx

+ 2
∫∫

I3×I2

|f(y)|2 |ψ(y/a)|2
|x− y|2 dy dx

=2
∫∫

I3×I2

|f(x)− f(y)|2
|x− y|2 dy dx

+ 2
∫

I2

|f(y)|2 |ψ(y/a)|2
|a− y|2 dy. (7.24)

Applying the mean value theorem, we obtain |ψ(x/a) − ψ(y/a)| ≤ M
a |x − y|,

(x, y) ∈ R2, where M = max{|ψ′(ξ)| | |ξ| ≤ 1}. Therefore,
∫∫

I2×I2

|f(x)|2 |ψ(x/a)− ψ(y/a)|2
|x− y|2 dy dx ≤ M2

2a

∫ a

a/2
|f(x)|2 dx, (7.25)
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∫

I2

|f(x)|2 |1− ψ(x/a)|2
x− a/2

dx ≤ M2

a2

∫ a

a/2
|f(x)|2(x− a/2) dx

≤ M2

2a

∫ a

a/2
|f(x)|2 dx, (7.26)

∫

I2

|f(y)|2 |ψ(y/a)|2
|a− y|2 dy ≤ M2

a2

∫ a

a/2
|f(y)|2(a− y) dy

≤ M2

2a

∫ a

a/2
|f(y)|2 dy. (7.27)

Summarizing (7.16)–(7.27), we get

|fa|0[1/2]
0 ≤

(∫∫

R2\[−a/2,a/2]2

|f(x)− f(y)|2
|x− y|2 dy dx + 2

∫ ∞

a

|f(x)|2
x− a/2

dx

+
3M2

a

∫ a

a/2
|f(x)|2 dx

)1/2

→ 0 as a →∞.

Analogously, taking into account Lemma 7.6 and applying the assertion

1
a

∫ a

a/2
|f ′(x)| dx ≤

∫ ∞

a/2

|f ′(x)|2
x

dx → 0 as a →∞

instead of (7.17), we obtain that |(fa)′|1[1/2]
0 → 0 as a →∞. Thus, |fa|1[1/2]

0 → 0
as a →∞. That was to be proved.

Lemma 7.8. Let u ∈ L∞(R+), p(x, t) = ∂
∂x1

∫ t
0

H(ξ2−|x|2)√
ξ2−|x|2 u(t − ξ) dξ, and p+

be the restriction of p to R+ × R× R+. Then

p+(0, x2, t) = πδ(x2)u(t). (7.28)

P r o o f. One can see that

p(x, t) = − x1

|x|2
(

∂

∂t

)2 ∫ t

0
H(ξ2 − |x|2)

√
ξ2 − |x|2u(t− ξ) dξ.

Let α > 0 and ψ ∈ S+ × S× S+. For x ∈ R2, ξ ∈ R+, and t ∈ R+, set

fα(x, ξ) =
αx1

(αx1)2 + x2
2

H(ξ2 − (αx1)2 − x2
2)

√
ξ2 − (αx1)2 − x2

2 − πδ(x2),

gα(x, t) =
(

∂

∂t

)2 ∫ t

0
u(t− ξ)fα(x, ξ) dξ,

ϕ(x, ξ) =
∫ ∞

ξ
ψtt(x, t)u(t− ξ) dt.
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Therefore, (7.28) is equivalent to

〈fα, ϕ〉 = 〈gα, ψ〉 → 0 as α → +0. (7.29)

We have 〈fα, ϕ〉 =
∑4

j=1〈f j
α, ϕ〉, where

f1
α(x, ξ) =

αx1H(ξ2 − (αx1)2 − x2
2)

(αx1)2 + x2
2

(√
ξ2 − (αx1)2 − x2

2 −
√

ξ2 − (αx1)2
)

,

f2
α(x, ξ) =

αx1

√
ξ2 − (αx1)2

(αx1)2 + x2
2

(
H(ξ2 − (αx1)2 − x2

2)−H(ξ2 − (αx1)2)
)
,

f3
α(x, ξ) =

√
ξ2 − (αx1)2H(ξ2 − (αx1)2)

(
αx1

(αx1)2 + x2
2

− πδ(x2)
)

,

f4
α(x, ξ) = πδ(x2)

(√
ξ2 − (αx1)2H(ξ2 − (αx1)2)− |ξ|

)
, (x, ξ) ∈ R2 × R+.

Since ψ ∈ S+ × S× S+, we get ϕ ∈ S+ × S× S+ and

|ϕ(x, ξ)| ≤ M

(1 + x2
1)2(1 + ξ2)

, (x, ξ) ∈ R2 × R+, (7.30)

where M > 0. Applying the mean value theorem, we also obtain

|ϕ(x1, x2, ξ)− ϕ(x1, 0, ξ)| ≤ Ckl
sp|x1|k|x2|l

(1 + x2
1)s(1 + ξ2)p

, (x, ξ) ∈ R2 × R+, (7.31)

where Ckl
sp > 0, k = 0, 1, l = 0, 1, s = 0,∞, l = 0,∞, because ϕ(0, x2, ξ) = 0 for

x2 ∈ R and ξ ∈ R+.
Now, let us estimate 〈f j

α, ϕ〉, j = 1, 4. Taking into account (7.30), we obtain

∣∣〈f1
α, ϕ〉∣∣ ≤α

∫∫∫

R3

H(ξ2 − (αx1)2 − x2
2)x

2
2|x1ϕ(x, ξ)|√

ξ2 − (αx1)2 − x2
2((αx1)2 + x2

2)
dx dξ

≤2Mπα

∫ ∞

0

x1 dx1

(1 + x2
1)2

∫ ∞

0

dξ

1 + ξ2
= Mπ2α, (7.32)

∣∣〈f2
α, ϕ〉∣∣ ≤2M

∫∫

R2

α|x1|
√

ξ2 − (αx1)2

(1 + x2
1)(1 + ξ2)

∫ ∞

0

H(ξ2 − (αx1)2 − x2
2) dx2

(αx1)2 + x2
2

dx1 dξ

≤2Mα

∫ ∞

0

x1 dx1

(1 + x2
1)2

∫ ∞

0

dξ

1 + ξ2
= Mπα ≤ Mπ2α. (7.33)

In (7.33) we have used the inequality
∣∣π
2 − arctan 1

z

∣∣ ≤ z, z > 0. Applying again
this inequality and (7.31), we obtain

∣∣〈f3
α, ϕ〉∣∣ ≤

∫∫∫

R3

α|ξx1|
(αx1)2 + x2

2

|ϕ(x, ξ)− ϕ(x1, 0, ξ)| dx1 dξ
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≤2
∫∫

R2

α|ξx1|
(1 + ξ2)2

(
C11

12 |x1|
1 + x2

1

∫ α3/4

0

x2 dx2

(αx1)2 + x2
2

+
C00

22

(1 + x2
1)2

∫ ∞

α3/4

dx2

(αx1)2 + x2
2

)
dx1 dξ

=
∫∫

R2

|ξ|
(1 + ξ2)2

(
αC11

12x2
1

1 + x2
1

ln
(αx1)2 + α3/2

(αx1)2

+
2C00

22

(1 + x2
1)2

(
π

2
− arctan

α3/4

α|x1|

))
dx1 dξ

≤
(
C11

12α1/2 + C00
22α1/4

)∫ ∞

0

dx1

1 + x2
1

∫ ∞

0

ξ dξ

(1 + ξ2)2

=2π
(
C11

12α1/2 + C00
22α1/4

)
. (7.34)

Taking into account (7.30), we get

∣∣〈f3
α, ϕ〉∣∣ ≤4π

∫ ∞

0

(∫ αx1

0
|ξϕ(x1, 0ξ)| dx1

+
∫ ∞

αx1

(
|ξ| −

√
ξ2 − (αx1)2

)
|ϕ(x1, 0, ξ)| dx1

)
dξ

≤4πα

∫ ∞

0

∫ ∞

0
x1|ϕ(x1, 0, ξ)| dx1 dξ

≤4Mπα

∫ ∞

0

x1 dx1

(1 + x2
1)2

∫ ∞

0

dξ

1 + ξ2
= 2Mπ2α. (7.35)

Summarizing (7.32)–(7.35), we obtain

|〈fα, ϕ〉| ≤ 7Mπ2α + 2π
(
C11

12α1/2 + C00
22α1/4

)
→ 0 as α → +0.

Thus (7.29) holds for each ψ ∈ S+ × S× S+. That was to be proved.

Lemma 7.9. Let g ∈ Ĥ0
0 (R2), f(x, t) = ∂

∂x1

H(t2−|x|2)√
t2−|x|2 ∗ g, and f+ be the

restriction of f to R+ × R × R+. Here ∗ is the convolution with respect to x.
Then

f(0, x2, t) = 0. (7.36)

P r o o f. Let α > 0, ψ ∈ S+×S×S+, and ψ̂(x, t) = ψ(x1, x2, t)−ψ(−x1, x2, t),
x ∈ R2 and t ∈ R+. Set Ψ(·, t) = Fx→σψ(·, t), G = Fg, P (σ, t) = σ1

|σ| sin(t|σ|),
Ψα(σ, t) = Ψ(ασ1, σ2, t), and fα(x, t) = f(αx1, x2, t), where σ ∈ R2, x ∈ R2,
t ∈ R+. Then, 〈Fα, ψ〉 = 〈PG, Ψα〉. Therefore, to prove (7.36), we have to prove

〈PG,Ψα〉 → 0 as α → +0. (7.37)
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Since P (σ, t) = ∂
∂t

(
σ1
|σ|2 (1− cos(t|σ|))

)
, we get

〈PG,Ψα〉 = −1
2

∫ ∞

0

∫∫

R2

σ1

|σ|2 (1− cos(t|σ|))G(σ)Ψt(ασ1, σ2, t) dσ dt.

We have

|Ψt(σ1, σ2, t)| ≤ Mk|σ|k
(1 + σ2

2)1/2(1 + t2)
, (σ, t) ∈ R2 × R+,

where Mk > 0, k = 0, 1, because Ψt ∈ S × S × S+ and ψt(0, σ2, t) = 0, (σ2, t) ∈
R× R+. Hence,

|〈PG,Ψα〉| ≤2
∫ ∞

0

dt

1 + t2

∫ ∞

0

1√
1 + σ2

2

(
αM1

∫ 1/α

0

σ2
1|G(σ)|

σ2
1 + σ2

2

dσ1

+M0

∫ ∞

1/α

σ1|G(σ)|
σ2

1 + σ2
2

dσ1

)
dσ2

≤π

∫ ∞

0

1√
1 + σ2

2

√∫ ∞

0
|G(σ1, σ2)|2 dσ1


αM1

√∫ 1/α

0
dσ1

+M0

√∫ ∞

1/α

dσ1

σ2
1

)
dσ2

≤(M0 + M1)

√
π3α

2
‖g‖0

0 → 0 as α → +0.

That was to be proved.
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