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1. Introduction

The notion of a finite type submanifold of the Euclidean space was introduced
by B.-Y. Chen in the late 1970s. Since then the finite type submanifolds of
Euclidean spaces or pseudo-Euclidean spaces have been studied extensively, and

many important results have been obtained ([3, 4, 6, 7], etc.).

In [8], Chen and Piccinni extended the notion of finite type to differentiable
maps, in particular, to the Gauss map of submanifolds. A smooth map ¢ from
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a compact Riemannian manifold M into a Euclidean space E™ is said to be of
finite type if ¢ can be expressed as a finite sum of E™-valued eigenfunctions of
the Laplacian A of M, that is,

d=do+ 1+ 2+ + oy, (1.1)

where ¢q is a constant map, ¢1, ..., ¢ are non-constant maps such that A¢; =
Api®is Ap, €ER, i =1,... k. If \p,..., Ay, are mutually distinct, then the map
¢ is said to be of k-type. If ¢ is an isometric immersion, then M is called a
submanifold of finite type (or of k-type) if ¢ is. In the spectral decomposition of
the immersion ¢ on a compact manifold, the constant vector ¢¢ is the center of
mass.

Chen and Piccinni characterized and classified compact hypersurfaces with
1-type Gauss map. They also provided the complete classification of minimal
surfaces of S™~1(1) with 2-type Gauss map.

Let S™~1(1) C E™ denote the unit hypersphere of E™ centered at the origin
E™. A spherical finite type map ¢ : M™ — S™71(1) C E™ of a compact Rie-
mannian manifold M™ into S™~1(1) is called mass-symmetric if the vector ¢q in
its spectral decomposition is the center of S™~!(1) (which is the origin of E™).
Otherwise, ¢ is called non-mass-symmetric.

If M™ is not compact, we cannot make the spectral decomposition of a map on
M™ in general. However, it is possible to define the notion of a map of finite type
on a non-compact manifold [6, page 124]. When M™ is non-compact, the vector
¢o in the spectral decomposition in (1.1) is not necessarily a constant vector.

Let x : M — E7" be an oriented isometric immersion from a pseudo-
Riemannian n-manifold M;" into a pseudo-Euclidean m-space E*. Let G(n,m)
denote the Grassmannian manifold consisting of all oriented n-planes of E]*. The
classical Gauss map v : M{* — G(n, m) associated with x is a map which carries
each point p € M;" to the oriented n-plane of E7" obtained by parallel displace-
ment of the tangent space T, M/ to the origin of E'. Since G(n,m) can be
canonically imbedded in the vector space \"E" = Eév for some integer ¢, the
classical Gauss map v gives rise to a well-defined map from M;* into the pseudo-
Euclidean N-space Ef]\f , where N = (7:) and A" ET is the vector space obtained
by the exterior products of n vectors in EI* [17].

An isometric immersion from a Riemannian n-manifold M" into an (m — 1)-
sphere S”~1(1) can be viewed as one into a Euclidean m-space, and therefore the
Gauss map associated with such an immersion can be determined in the ordinary
sense. However, for the Gauss map to reflect the properties of the immersion into
a sphere, instead of into the Euclidean space, Obata modified the definition of
the Gauss map appropriately, [19].

Let x : M™ — M™ be an isometric immersion from a Riemannian n-manifold
M™ into a simply-connected complete m-space M™ of constant curvature. The
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generalized Gauss map in Obata’s sense is a map which assigns to each p € M™
the totally geodesic n-space tangent to x(M"™) at x(p). In the case M™ = S™(1)
(or resp. M™ = H™(—1)), the gencralized Gauss map is also called the spherical
Gauss map ( or resp. the hyperbolic Gauss map).

Later, in [15], Ishihara studied the Gauss map in a generalized sense of pseudo-
Riemannian submanifolds of pseudo-Riemannian manifolds that also gives the
Gauss map in Obata’s sense.

Let M1 denote the pseudo-sphere S™~1(1) C E™ or the pseudo-hyperbolic
space HT""!(—1) C E™ . Let x : MJ* — M;”_l be an oriented isometric immer-
sion from a pseudo-Riemannian n-manifold M;* with index ¢ into the complete
pseudo-Riemannian (m — 1)-space M m=1 of constant curvature. The generalized
Gauss map in Obata’s sense is a map associated to x, which assigns to each
p € M a totally geodesic n-subspace of M™~! tangent to x(M]*) at x(p). Since
the totally geodesic n-subspace of M™~! tangent to x(M) at x(p) is the pseudo-
sphere S} (1) or the pseudo-hyperbolic space H}'(—1), it determines a unique ori-
ented (n + 1)-plane containing S?'(1) or H(—1). Thus, the generalized Gauss
map in Obata’s sense can be extended to a map ¥ of M;* into the Grassmannian
manifold G(n + 1,m) in the natural way, and the composition © of ¥ followed
by the natural inclusion of G(n + 1,m) into a pseudo-Euclidean N-space Eév ,
N = ( Tl)’ for some integer ¢ is the pseudo-spherical Gauss map or the pseudo-
hyperbolic Gauss map according to M;"_l = Sm1(1) or My—l = H"1(-1),
respectively.

In [9], Chen and Lue studied spherical submanifolds with finite type spherical
Gauss map, and they obtained some characterization and classification results.
In particular, they proved that Veronese surface and equilateral minimal torus
are the only minimal surfaces in S”~!(1) with 2-type spherical Gauss map. As
it was explained in [9], the geometric behavior of the classical Gauss map differs
from that of the spherical Gauss map. For example, the classical Gauss map
of every compact Euclidean submanifold is mass-symmetric, but the spherical
Gauss map of a spherical compact submanifold is not mass-symmetric in general.

In [14], the first author and Bektag determined submanifolds of the unit sphere
S™=1(1) with non-mass-symmetric 1-type spherical Gauss map, and they also
classified surfaces in S3(1) with constant mean curvature and mass-symmetric
2-type spherical Gauss map.

There are many results obtained on the finite type submanifolds of hyper-
bolic spaces, pseudo-spheres and pseudo-hyperbolic spaces [4-6]. In [12], the first
author studied hypersurfaces of hyperbolic space with 1-type Gauss map, and
he provided the classification of hypersurfaces of a hyperbolic space canonically
imbedded in Lorentz-Minkowski space E[* with at most two distinct principal
curvatures and 1-type Gauss map.
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Recently, in [13], we investigated submanifolds of hyperbolic spaces with finite
type hyperbolic Gauss map. We characterized and classified submanifolds of the
hyperbolic m-space H™(—1) with 1-type hyperbolic Gauss map, and we obtained
some results on hypersurfaces of H"(—1) with 2-type hyperbolic Gauss map.

In this work, we study the pseudo-Riemannian submanifold of pseudo-hyper-
bolic space H™~1(—1) C EY ; with finite type pseudo-hyperbolic Gauss map. We
mainly obtain the following results:

1) An oriented pseudo-Riemannian submanifold M;* with index ¢ of a pseudo-
hyperbolic space H™ (—1) C ET ; has 1-type pseudo-hyperbolic Gauss map
if and only if M} has a zero mean curvature in H” !(—1), a constant scalar
curvature and a flat normal bundle.

2) Let M be an oriented space-like surface in a pseudo-hyperbolic space
H™1(-1) C EY,, for some values of s and m. Then, M has 1-type pseudo-
hyperbolic Gauss map if and only if M is congruent to an open part of maximal
surface H'(—2) x H'(—-2) lying in H{(—1) C HZ*"'(—1) C E7, or the totally
geodesic space H?*(—1) in H" (1) C ET},.

3) An oriented n-dimensional pseudo-Riemannian submanifold M;* with index
¢ and non-zero mean curvature vector H of a pseudo-hyperbolic space H™1(-1) C
EY ; has a 1-type pseudo-hyperbolic Gauss map with nonzero constant compo-
nent in its spectral decomposition if and only if M}* is an open part of a non-flat,
non-totally geodesic and totally umbilical pseudo-Riemannian hypersurface of
a totally geodesic pseudo-hyperbolic space H:t!'(~1) ¢ H™"!(-1) c E™, for
s*=t<sors*=t+1<s, that is, M is an open part of Hy(—c) C H}H'(—1)
of curvature —c for ¢ > 1 or HP(—¢) € H?™(—1) of curvature —c for 0 < ¢ < 1
or SP(c) € HM(—1) of curvature ¢ > 0.

2. Preliminaries

Let ET* denote the pseudo-Euclidean m-space with the canonical pseudo-
Fuclidean metric of index s given by

go = mz_sd:n? - i d:UJQ», (2.1)
i=1

j=m—s+1
where (z1,x2,...,2Tn) is a rectangular coordinate system of EI*. We put
_ 1
qun l(anC) = {l’ = (SUl,fL’Q,..-,ﬂl'm) € E;n‘ <£L‘ — 20, T _$0> = E > 0}7
_ 1
H™ I(I‘o,*C) ={z = (z1,22,...,2m) € EJ 1| (x — 20,2 — 20) = — < 0},

where (,) is the indefinite inner product on E7* and c is a positive real number.
Then S”~1(zg, ¢) and H"~! (g, —c) are pseudo-Riemannian manifolds with index
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s and of constant curvatures ¢ and —c called pseudo-sphere and pseudo-hyperbolic
space, respectively. For x,, > 0 and s = 0, H™ (2, —c) = H’On_l(xo,—c) is
called a hyperbolic space of curvature —c centered at zp. The manifolds EI*,
S™=1(¢c) and H" 1 (—c) are known as indefinite space forms. In particular, E7*,
ST !(¢) and H" ! (—¢) are called Minkowski space, de Sitter space and anti-de
Sitter space in relativity, respectively. In order to simplify our notation, we will
denote ST*(zg, 1), H*(xg, —1) and H™(z¢, —1) by ST*(1), H*(—1) and H™(—1),
respectively, when z is the origin.

Let M;* be an oriented n-dimensional pseudo-Riemannian submanifold with
index t in an m-dimensional pseudo-Riemannian manifold M;" with index s.

We choose a local orthonormal frame eq,...,e,, €yt1,..., 6y with signatures
eqa = (ea,ea) = F1, A=1,2,...,m, on M such that the vectors ej,eq,..., e,
are tangent to M, and the vectors e,1,..., e, are normal to M;*. We use the

following convention on the ranges of indices:
1<ABC,....<m; 1<i,5,k....,<n; n+1<rst,....,<m.

Let {wa} be the dual 1-forms of {e4} defined by w4 (X) = (ea, X), and {wap} the
connection forms with wap + wpa = 0 according to the chosen frame field {ea}.
Let V and V denote the Levi Civita connections on M and th, respectively.
Therefore, the Gauss and Weingarten formulas are given as

Zejww er)e; + Z erhiper (2.2)

r=n+1

and .
6%65 = —As(ex) + Z erwsr(ex)er, (2.3)
r=n+1

respectively, where hl,’s are the coefficients of the second fundamental form h, A
is the Weingarten map in direction es, and w,s are the normal connection forms.
Also, the normal connection is defined by De.e, = > 0% | eswrs(e;)es.

The mean curvature vector H of M in M 2 is defined by

m
1
Z etrdye, = - Zsierh%er. (2.4)
i,r

r=n-+41

The squared norm ||| of the second fundamental form h of M in M™ is defined
by

IBP =" > eiejechi;hy;. (2.5)

i,0=1r=n+1
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The Codazzi and Ricci equations of M;" are defined by

ro T
ij;k T iksg
hix =ex(hij) — €r (hfgwj[(ek) + hggwig(ek)) + Z eshijwsr(ex)
=1 s=n+1

and

n
RD(ej7ek; 67”768) = <[A87-7A65}6j76k> = Zgi ( 21 fj - ;z fk) ) (27)

i=1

where RP is the normal curvature tensor associated with the normal connection
D. If the ambient space M." is the pseudo-Euclidean space EI*, then the scalar
curvature S of M;" is given by

S =n%(H H) —|h|* (2.8)

If M} is immersed in the pseudo-hyperbolic space HT"~'(—1) C ET,, then (2.8)
gives

S =—n(n—1)+n%H, H) — |h|? (2.9)

where H and h are the mean curvature vector and the second fundamental form
of M in H"1(—1). For M;* in H"~!(—1) C E7%; we also have

H=H+x, hX,)Y)=hXY)+(X,Y)x (2.10)

A point on a pseudo-Riemannian submanifold M;" of a pseudo-Riemannian
manifold M;” is called isotropic if, at each point p € M}, (h(X, X),h(X, X)) is
constant for any unit tangent vector X at p.

A pseudo-Riemannian hypersurface M;* of a pseudo-Riemannian manifold
]\AJS"Jrl is called proper if the shape operator A¢ in a unit normal direction { can
be expressed by a real diagonal matrix with respect to an orthonormal frame at
each point of M.

A proper hypersurface M}* in H?T!(—1) is said to be isoparametric if it has
constant principal curvatures.

3. Pseudo-Hyperbolic Gauss Map

Let x : M* — H*"*(—1) C E* | be an oriented isometric immersion from a
pseudo-Riemannian n-manifold M;* with index ¢ into a pseudo-hyperbolic (m—1)-
space H1(-1) C E{: ;. The pseudo-hyperbolic Gauss map in Obata’s sense
v: M — G(n+1,m) of an immersion x into the Grassmannian manifold
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G(n 4 1,m) is a map which to each point p of M;* assigns the great pseudo-
hyperbolic n-space HZ(—1) of H”~!(—1) tangent to x(M;*) at x(p). The great
pseudo-hyperbolic n-spaces H?(—1) in H”~!(—1) are naturally identified with the
Grassmannian manifold of oriented (n+1)-planes through the center of H™~!(—1)
in E7\; since such (n + 1)-planes determine unique great pseudo-hyperbolic n-
spaces and vice versa.

On the other hand, since the Grassmannian manifold G(n + 1, m) can be
canonically imbedded in a pseudo-Euclidean space /\"Jrl Ef, = IEN obtained by
the exterior products of n + 1 vectors in E7,; for some positive 1nteger q, the
composite 7 of U followed by the natural inclusion of G(n 4+ 1,m) in Ef]\] is also
called the pseudo-hyperbolic Gauss map where N = (n Jrl)

For each point p € M}, let e1,...,e, be an orthonormal basis of T, M}
with the signatures e; = (e;,e;) = F1, @« = 1,...,n. Then the n + 1 vectors
x(p),e1,...,e, determine a linear (n + 1)- subspace in E" ;. The intersection

of this linear subspace and H™!(—1) is a totally geodesic pseudo-hyperbolic
n-space H}'(—1) determined by T, M;".

Let ET%; be a pseudo-Euclidean space with index s + 1. Let fi; A--- A fi
and g;; A --- A gi,,, be two vectors in /\"Jrl E7,, where {f1, fo,..., fm} and

{91,92,...,9m} are two orthonormal bases of E7", ;. Define an indefinite inner
product ({,)) on A" E™ | by
<<fl1 ARERNA fin+1>gj1 ARERNA gjn+1>> = det(<fiz7gjk>)' (3-1)

Therefore, we can identify /\"Jrl EY: | with some pseudo-Euclidean space Eév for

some positive integer ¢ where N = (n 1) [17].

For an oriented immersion x : M* — H*"(—1) C EZ* |, the map in Obata’s
sense can be considered as v : M;* — G(n + 1, m) which carries each p € M}* to
U(p) = (xAe1AeaA---Aey)(p). Since ({0, V) = —e1e9 - - - &, = F1, the Grassman-
nian manifold G(n+1,m) is a submanifold of SY (1) c EY or Hév__ll(—l) CEY.
Thus, considering the natural inclusion of G(n + 1,m) into Eflv , the pseudo-
hyperbolic Gauss map ¥ associated with x is given by

ﬁzx/\el/\eg/\---/\en:M[L—>G(n+1,m)CEéV. (3.2)
Now, by differentiating 7 from (3.2), we find
m—1 n
p) = Z Zarh%x/\el/\---/\ er N Aey. (3.3)
- ~~~
r=n+1 j=1 j—th
Since Ve, e; = Z] L Ejwij(er)ej, we have
m—1 n
(Ve,€i)0 Z Z eperwik (€ hij/\ e1tN---N e AN---Aep. (3.4)
r=n+1jk=1 j—th
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Considering that the Laplacian of 7 is defined by

n

AD = Z Ei(veiei — 67;61')17, (3.5)

i=1
by a direct calculation, we obtain that

Av = ||h|?0+nH Ney A Ney

n
—nY XAetA-ADgHA-Ney
——
k=1 k—th (3.6)

n m—1
+ E E sTengjkerlA-'-A es N+ N e A---Nep,
J,k=1 r,s=n+1 .
e k—th j—th

where R, = RD(ej, €k €ry €s).

In [4], Chen studied non-compact finite type pseudo-Riemannian submanifold
of a pseudo-Riemannian sphere S”~1(1) or a pseudo-hyperbolic space H™!(—1),
and the definition of spectral decomposition of an immersion was stated without
a constant component.

A smooth map ¢ : M — ST~ 1(1) C E™ (resp., ¢ : M — H"1(-1) C
E7, ;) from a pseudo-Riemannian manifold M} into a pseudo-Riemannian sphere
S™=1(1) (resp., into a pseudo-hyperbolic space H”~1(—1)) is called of finite type
in S™71(1) (resp., in H™~!(—1)) if the map ¢ has the spectral decomposition

6= 1+ + o, (3.7)

where ¢;’s are non-constant E]'-valued maps on M{* such that A¢; = \,,¢; with
Ap; € Rji = 1,...,k. If the spectral decomposition (3.7) contains exactly k
non-constant components, the map ¢ is called of k-type, [12].

For a finite type map, one of the components in its spectral decomposition
may still be constant. A criteria for finite type maps was given in [13] as follows:

Theorem 3.1. Let ¢ : M]* — E7* be a smooth map from a pseudo-Riemannian
manifold M}* with index t into a pseudo-Fuclidean space ET*, and let T = div(d¢)
be the tension field of ¢. Then,

(1) If there is a non-trivial polynomial Q such that Q(A)T = 0, then ¢ is either
of infinite type or of finite type with type number k < deg(Q) + 1;

(7i) If there is a non-trivial polynomial P with simple roots such that P(A)T =0,
then ¢ is of finite type with type number k < deg(P).
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A smooth map ¢ between two pseudo-Riemannian manifolds is said to be
harmonic if its tension field 7 = div(d¢) vanishes identically. For a harmonic
pseudo-hyperbolic Gauss map we have the following.

Proposition 3.1. Let x : (M, g) — HI"'(=1) C ET, be an isomet-
ric immersion from a pseudo-Riemannian n-manifold M[* with metric g into a
pseudo-hyperbolic space H™~1(—1) C E{ 1. Then we have the following:

(i) the Obata map v : (M}, g) — G(n+ 1,m) is a harmonic map if and only
if the immersion x : (M}', g) — H™~1(—1) has a zero mean curvature;

(17) the pseudo-hyperbolic Gauss map v : (M}, g) — Eflv with N = (n’j:l) and
for some positive integer q is a harmonic map if and only if M* has a zero
mean curvature in M1 (—1), a flat normal bundle and the scalar curvature

S =-n(n-1).

P roof. The proof of (i) is similar to that of Proposition 3.2 given in [9],
and the proof of (ii) comes from (2.9) and (3.6). [

4. Submanifolds with 1-Type Pseudo-Hyperbolic Gauss Map

In this section, we examine submanifolds of a pseudo-hyperbolic space
H™1(-1) C E7" | with 1-type pseudo-hyperbolic Gauss map .

If the pseudo-hyperbolic Gauss map v is of 1-type, then we have Av = A\ v
from (3.7).

Theorem 4.1. A pseudo-Riemannian oriented submanifold M]* with index
t of a pseudo-hyperbolic space H~1(—1) C EY has a 1-type pseudo-hyperbolic
Gauss map if and only if M]* has a zero mean curvature in H"~1(—1), a constant
scalar curvature and a flat normal bundle.

Proof Assume that a pseudo-Riemannian oriented submanifold M;* in
H”~1(—1) has a 1-type pseudo-hyperbolic Gauss map 7 in H™1(—1), that is,
AD = \pv for some nonzero constant A\, € R. Therefore, from (3.6) we obtain
that 7 is of 1-type if and only if H = RP = 0, and ||B||2 is a nonzero constant,
i.e., M has a zero mean curvature in H™ !(—1), the normal bundle of M} is
flat, and from (2.9) the scalar curvature is constant. [

Corollary 4.2. Totally geodesic pseudo-Riemannian oriented submanifolds
of H""1(—-1) C ET  have a harmonic pseudo-hyperbolic Gauss map which is of

1-type.
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Corollary 4.3. Let M be an n-dimensional pseudo-Riemannian oriented
hypersurface with index t in a pseudo-hyperbolic space HP 1 (—1) C E?If Then
M has a 1-type pseudo-hyperbolic Gauss map if and only if M]* has a zero mean
curvature in H Y (—1) and a constant scalar curvature.

Corollary 4.4. Isoparametric proper pseudo-Riemannian oriented hypersur-
faces of HI* (1) C ET | with zero mean curvature in H'~1(—1) have a 1-type
pseudo-hyperbolic Gauss map.

In [2], Zhen-qi and Xian-hua determined a space-like isoparametric hyper-
surface M in H}™'(—1) € E5™2. They showed that a space-like isoparametric
hypersurface M in H}™(—1) can have at most two distinct principal curvatures.
Moreover, they showed that M is congruent to an open subset of the umbilical
hypersurface H"(—c) C H?“(—l) where ¢ > 0 or the product of two hyperbolic
spaces

HF (—cy) x H' % (—cy) = {(x,y) € BFT x EP L s (g, 2) = o W >——f}

where ¢, co > 0.
In [11], Cheng gave the following corollary.

Corollary 4.5. Let M be a complete isoparametric mazximal space-like hy-
persurface in an anti- de Sitter space Hy T (—c). Then M = H"(—c) or M =
H™ (Z2) x H"™ (= C) for (n>ny >1).

nlc)

(n—n1)

Therefore, we obtain the following corollary using Corollary 4.3 and Corol-
lary 4.5.

Corollary 4.6. A totally geodesic hyperbolic space H"(—1) and the product
hypersurface M = H”l( ) x H" "1((n ) c) for (n > ny > 1) in HITH(—1)
are the only mazximal zsopammetmc hypersurfaces with 1-type pseudo-hyperbolic
Gauss map.

We need the connection forms of the following surface to be used later:

Example 4.7. (Maximal space-like surface in H3(—1))

Let x : M = H'(—a2) xH!(—=b"2) — H}(—1) C Ej be an oriented isometric
immersion from the space-like surface M into the anti-de Sitter space H3(—1)
defined by

x(u,v) = (asinhu, bsinh v, a cosh u, b cosh v)

19 10

: 212 _ _ _
with a® + 0% = 1. If we put ey = ; 5., 2= ;5,,

es = (bsinhu, —asinh v, bcosh u, —a coshv), e4 = x,
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then {eq, es, e3,e4} form an orthonormal frame field on M in E5. A straightfor-
ward computation gives

a

wiz = w3t =0, wig = —— w1, wag = pwr, Wiy = W1, Wy = —wa. (4.1)
It follows from (4.1) that H = “22;52 es, which implies that M is a maximal
surface if and only if a = b = % Therefore, H!(—2) x H!(-2) C Hj(-1) C E3

is a maximal and flat surface, and hence H'(—2) x H'(—2) has a 1-type pseudo-
hyperbolic Gauss map by Theorem 4.1.

Theorem 4.8. Let M be a space-like oriented surface in a pseudo-hyperbolic
space H~1(—~1) C E{ | for some values of s and m. Then M has a 1-type
pseudo-hyperbolic Gauss map if and only if M is congruent to an open part of
mazimal surface H'(—2) x H'(—2) lying in H}(—1) C H?"'(—1) C E7\; or the
totally geodesic space H*(—1) in HI*~'(—1) C ET .

Proof Let M be a space-like oriented surface in a pseudo-hyperbolic
space H™~1(—~1) C ET. , with 1-type pseudo-hyperbolic Gauss map. Then, from
Theorem 4.1, for t = 0, we obtain that M is a maximal surface in H™~1(—1) with
constant scalar curvature and flat normal bundle. Thus, (2.9) yields that ||]? is
constant.

Let x be the position vector of M in EJ’ ;. Since M is maximal, we may
choose an orthonormal tangent frame {e;, e2} and an orthonormal normal frame
{es,...,em—1,€em = x} of M such that

h3 0 0 At
Ax — 11 >,A:( 12>,A:"‘:Am— =0,4,, = -1,
i (0 ~h}, T\, 0 ’ '

where I is the 2 x 2 identity matrix. Hence we obtain that
1] = 2e3(hi1)? + 2e4(hiy)?. (4.2)

On the other hand, as K? = —2h$,h], = 0, we have either h$, = 0 or hi, = 0.

Case (a): h3; = 0. Then the first normal space of M is spanned by e4, and
hence M lies in a totally geodesic anti-de Sitter space H3(—1) C H?~1(—1) or
a totally geodesic hyperbolic 3-space H?(—1) C H”~1(—1). From (4.2), we have
|h]|2 = 2e4(h%,)2, which implies that h%, is constant. It follows from the Codazzi
equation that wiz(ej)hiy = 0 for j = 1,2, which gives that either wjs(e;) = 0 for
j=1,20r hi, =0.

Case (a.1): wia(e;) = 0 for j = 1,2. Then the Gaussian curvature K is zero.
On the other hand, from the Gauss equation we have

K =—-1+4+¢e3det A3 +e4det Ay = —1— 64(h4112)2 =0. (4.3)
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Therefore, (h{y)? = —&4, which implies that e, = —1, and hj, = F1. That is, M
lies in H3(—1) € H™ !(—1). Without loss of generality, we may take h{, = 1.
Therefore, for the maximal surface M we obtain

0 1
ICES)

By choosing a new orthonormal tangent frame {é1,é2}, we can have the shape

operator Ay as
1 0
4= ( Lo >

Since M lies in a totally geodesic anti-de Sitter 3-space in H3(—1) C H?*1(-1) C
E™ ,, we can assume that M is immersed in H3(—1) C E3 without loss of gener-
ality. Let {e1, e, e3,e4 = x} be a local orthonormal frame on M in Ej such that
e1,e9 are tangent to M, and es, eq are normal to M. Since the normal connec-
tion of M is flat, we have w3y = 0. In addition, as M is flat, we can take local
coordinates (u,v) on M with w; = du and wy = dv. So we have

wig = w3q =0, w13 = —wi, W3 = Wy, Wiu = —Wi, Way = —wa. (4.4)

Therefore, the connection forms wsp of M coincide with the connection forms
of H'(—a=2) x HY(—=b72) C H}(~1) C Ej fora = b = % given by (4.1). As a
consequence of the fundamental theorem of submanifolds, M is congruent to an
open part of H'(—2) x H'(-2) C H}(-1) c H*"}(-1) C E™ .

Case (a.2): hiy = 0 and wi2(e;) # 0 at least for one j = 1,2. Thus, we have
A3 =Ay=---=A,,_1 =0and A,, = —1I, and the Gaussian curvature K = —1.
So, M is an open part of hyperbolic space H?(—1) in H?~!(—1) C E™ .

Case (b): hiy = 0. By a similar argument given in Case (a), it can be easily
seen that M is an open part of H'(—2) x H'(—2) C H}(—1) c H™!(-1) C ET*,
or an open part of the hyperbolic space H?(—1) in H*"*(—-1) C ET* ;.

The converse follows from Corollary 4.2 and Example 4.7. ]

We have stated before that a map may have a nonzero constant component
in its spectral decomposition. We will investigate submanifolds of a pseudo-
hyperbolic space H™ (—1) C EY, ; with 1-type pseudo-hyperbolic Gauss map
having a nonzero constant component in its spectral decomposition.

Now we provide the example to be used in the proof of the next theorem.

Example 4.9. (Space-like surface with flat normal bundle and zero mean
curvature vector H in Hi(—1) C E)

Let x : M — H{(—1) C E} be an oriented space-like isometric immersion
from a surface M into an anti-de Sitter space Hj(—1) C E5 defined in [10] by

x(u,v) = (1, cosh usinh v, sinh u, cosh u cosh v, 1). (4.5)
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1 0

_ 0 _
If we put e; = Fu> €2 = coiiu 5o

3 1
e3 = (5, cosh u sinh v, sinh u, cosh u cosh v, 5)
and 1
€4 = (5,coshusinhv,sinhu,coshucoshv, —5), €5 = X,

then {e;} for ¢ = 1,...,5 form an orthonormal frame field on M. A straightfor-
ward computation gives

h?l = h%Q = hill = h32 =—1, h?ﬁ = hz112 =0,
wiz(e1) =0, wiz(e2) =tanhu, w3y =0, (4.6)

IA? =0, H=es—es=(-1,0,0,0,-1).

If we use (4.6), then equation (3.6) reduces to

A =2HAe; Aeg = —2e3 Aey A es + 2eq A ey A es. (4.7)
If we put
c=v—e3NeiNexs+tesNelNeg (4.8)
and
ﬁpzeg/\el/\eg—€4/\€1/\62, (4.9)

then we have 7 = ¢ + 7. It can be shown that e;(¢) =0 for i = 1,2, i.e, ¢is a
constant vector. Using (4.7), (4.8) and (4.9), we arrive at Ap, = —20,. Thus, M
has a 1-type pseudo-hyperbolic Gauss map with nonzero constant component in
its spectral decomposition.

Theorem 4.10. Let M be a space-like oriented surface in Hi(—1) C E5 with
zero mean, curvature vector H in an anti-de Sitter space H{(—1). Then M has
a 1-type pseudo-hyperbolic Gauss map with nonzero constant component in its
spectral decomposition if and only if M is an open part of the surface defined
by (4.5) which is of curvature —1 and totally umbilical with constant zero mean
curvature vector.

Proof Assume that x : M — Hj(—1) C Ej is an oriented isometric
immersion from a space-like surface M into Hj(—1), and the pseudo-hyperbolic
Gauss map © of x is of 1-type with nonzero constant component in its spectral
decomposition. Then we have A = A\, (7 — ¢) for a real number A, # 0 and for
some constant vector ¢, from which we get

(AD); = Al (4.10)
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where (.); = ¢;(.) and

4 2
v) = ZZErhka A e Nea. (4.11)
r=3 k=1 oth

By a long computation we obtain that

4 2
ei(AD) = (|7 + ||h)? ZZ&T mX A L Ne2+4De H Nep Aey
4 2 2
+2ZZ€T kH/\ er /\62—|—225kH/\ X Aeg
r=3 k=1 k*th k=1 k—th
—2ijk €)X A\ ek /\DekH —2 Z ZET X A er /\Dekﬁ
J.k=1 jk=1 =3 . N
Gtk kfth Stk J—th k—th

+22< Do A (ei) ek>y—2ZxAD DekH/\EQ
k=1 k—th
2
+ 26354(ei(R§21)x + Riyei) Aes A ey — 26364 Ry Z h3.x A e A ey
k=1

2
— 25354R§21 Z hka A €3 VAN €. (412)
k=1

Since M has a zero mean curvature vector H in ]HI4( 1), then <H' JH ) =0
and H # 0. Considering (4.10) and (4.11), the term Do, H A e1 A ey appears only
in e;(AD), not in ¢;(7), and thus we have Do, H = 0. Since the co-dimension of
M in H{(—-1) is two, and H is parallel, then RP = 0, i.e., the normal bundle is
flat. So we can choose {ej,e2} such that the shape operators As, Ay are both
diagonal. As DH = 0 and R” = 0, equation (4.12) reduces to

ei(A5) = (b)) + (o] Zzsrh,kx/\ e hes

r=3 k=1 k}—th
4 2
+2) > erhipH A er Nes+2H A X Nes. (4.13)
r=3 k=1 k_th i—th

Now, using (4.11) and (4.13), from (4.10) we obtain that ||2]|? = 0, i.e., ||h]|? is
constant, which implies that the scalar curvature is constant because of (2.9).
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On the other hand, we have

4 2
A2 ZZET X A & Nex +2H A _x /\eg—)\pZZa‘ hix A P Negy
o

r=3 k=1 k—th z—th r=3 k=1 —t
(4.14)
and
2 4
DY ehip HA e Aeg =0. (4.15)
—~—
k=1r=3 k—th
Since hiy = hiy = 0, from (4.15) we get
trAuhd, —trAsh}; =0 (4.16)

for ¢ = 1,2. Considering H = 0, we can take H = e3aes + e4bey, where a =
%tI'Ag, b = %trA4 and a®> = b®>. That is, b = *a with ¢* = +1. Therefore,
H = a(eses + e*e4eq). Without loss of generality, if we take e3 = 1, g4 = —1,
then H = a(es — c*eq). As H is parallel, DH =0 implies that a is a nonzero
constant.
Now, from (4.16) we have a(h3, — e*h}) = 0, i = 1,2, i.e., h3, = e*h}; for
= 1,2. These give us [|A]|2 = 0. So the scalar curvature S = —2 and the
Gaussian curvature K = —1. Hence, from (4.14) we find \yh3, = —2a and
)\phfi = —2a for ¢ = 1,2, which imply that hl;’s are constant and ez, e4 are
umbilical. Thus, M is a totally umbilical surface in H{(—1) C Ej. Taking the
sum of \ph}; = —2a and A h22 = —2a, we obtain that a()\, +2) = 0 that
gives A\, = —2. So, we have h}, = h22 = e*h{; = €*h},, and hence Az = al,
Ay = e*al. Now it is easy to see that Ve, H = 0, that is, H = a(e3 — *e4) is a
constant vector. It follows from the proof of Theorem 8.1 given in [10] that M is
congruent to the surface defined by (4.5) which is totally umbilical with constant
zero mean curvature vector and of curvature —1.
The converse of the proof follows from Example 4.9. ]

Lemma 4.11. Let M} be a pseudo-Riemannian hypersurface with index t in
H?+1(—1) € EXf?. Then we have

Alept1 Ner A Nep) = —n(a0 + epr1 Aer A+ Aey), (4.17)
where & is the mean curvature of MJ* in H L (—1).

Proof Let M be a pseudo-Riemannian hypersurface with index ¢ in
H"*l( 1) C E’;LQ Let e1,€9,...,€nt1,€ent2 be a local orthonormal frame on
M} in E”+1 with signatures 4 = <€A, eq) = Fl for A=1,2,...,n+2 such that
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e1,€2,...,e, are tangent to M{*, and ey, ept2 = X are normal to M;*, where x
is the position vector of M. As M}* is a hypersurface in H?T!(—1) C E?jf, the
normal vector e, 1 in H?*1(—1) is parallel, i.e., De, 1 = 0.
Let us put ¥ = e,11 Aep A--- Aey,. By differentiating 7, we obtain

eV ==¢ciepri Ne1r N~ Ne_1 AXNeip1 N Neg. (4.18)

Since V¢, e; = Ej gjwij(e;)ej and Depqq = 0, we have
n
(Ve,ei)v = Z;Wij(ei)en+]_ ANepA--AN_X N Ney. (4.19)
j= j—th

Differentiating e; in (4.18), we get

n

eiei(v) =eiv + hZ-Hz? - ZWji(ei)en+1 AetA---A_ X N Nep. (4.20)
j=1 i—th
i J

Using n& = trd,1 =), EihZH, we obtain that

AU = — Z 5i(€iei — Veiei)ﬁ
%

n
= —nav —nv + Z (wij(ei) + wji(ei))emrl ANepN---N_ X N---Nep,
,5=1 j—th
(4.21)

which gives (4.17) as wj;(e;) + wij(e;) = 0. "

Theorem 4.12. An n-dimensional pseudo-Riemannian oriented submanifold
M with index t and non-zero mean curvature vector H of a pseudo-hyperbolic
space H1(-1) C EY | has a I-type pseudo-hyperbolic Gauss map with nonzero
constant component in its spectral decomposition if and only if M{* is an open part
of a non-flat, non-totally geodesic and totally umbilical pseudo-Riemannian hyper-
surface of the totally geodesic pseudo-hyperbolic space H™ (—1) ¢ HP 1 (~1) C

wyq for st =t < s or s = t+1 < s, that is, M;* is an open part of
H}(—c) C Hfjll(—l) of curvature —c for ¢ > 1 or H¥(—c) € H™(=1) of curva-
ture —c for 0 < ¢ < 1 or S}(c) C HP™ (—1) of curvature ¢ > 0.

Proof Letx:M"— H"'(-1) C E", be an oriented isometric im-

mersion from a pseudo-Riemannian manifold M;* into a pseudo-hyperbolic space
H?1(-1) C E{: ;. Assume that M{* has a non-zero mean curvature vector H in
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H7~1(—~1) and a 1-type pseudo-hyperbolic Gauss map with nonzero component
in its spectral decomposition. Then we have Av = A,(¥ — ¢) for a real number
Ap # 0 and some constant vector ¢ € Eév . So, we have

(AD); = A\p(D)i, (4.22)

where (-); = ¢;(-). By a direct long computation, from (4.22), we obtain that

ei(AD) = (||h)|?)iv + || h|? Z Zer OXAeL A A L N Nen
r= n+1k 1 k*th

n
—|—2nDeiﬁ/\el/\ /\en—i—nz Z erh kH/\el/\ -A €r A Aep
k=1r=n+1 kfth

n
—i—nZsi(SikH/\el/\.../\ X A---Ney,
k=1 k—th

n
—nZskwjk(ei)x/\el/\“-/\ ex N+ ANDe,HN---Ney,

k=1 )
Jj;ék j—th k—th

—nz Z erhwx/\el/\ - A er o ANDe,HAN---Ney

J’; 1 r=n+l j—th

) k—th

+n25k< D. Hel) ek>u—nZX/\el/\ /\DeiDekfI/\---/\en

k=1 k—th

m—1

+ Z Zsrss{el( Sjk)x—i-stkez}/\el/\ A es AN e AN Ney

r,s=n+1 j k=1 .
s<r gk k—th j—th

+ Z Z ErEs sgk{Z&Mh e)XAer A A RN Es N

r,s=n+1 j k=1

P o k—th
m—1
t

e Ao Nep+ > ethlXANer Ao A ep Ao A eg Ao A er Ao-Aeg)
~— Mot ~— ~— ~—
j—th =n+ (—th k—th j—th

m—1
= D eeERIhEX A Ao A eg Ao A e N Aey

r,s=n-+1 j,k, =1 .
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m—1

+ Z Z ETesststkwst(e@)x ANetA---N e NN e A---Aepy.
t=n-+1 jk=1 v v
r,s,t=n-+ Jj;ék k—th j—th

(4.23)

Case (a): H = 0. Then equation (4.23) becomes

(85) = (R [HE S S el xAer neee A LR
r=n+1k=1 kfth

m—1

+ Z Zeres{el( )X+ Ropeit Aer Ao A es Ao A er Aoo-Aey

r,s=n+1 j k=1 .
s k—th j—th

+ Z Zsrss sgk{szhwfh e)XANep AN ey A=A es A=A e

r,s=n+1 j k=1

AR t—th k—th j—th
m—1
t
N Newt Y ehlyxAer Ao A ep Ao A eg NN ep Ao Nen}
t=n+1

(—th k—th j—th

Z Z ereseeRLhSX A et A e A LN A o N N
r,s=n-+1 j,k,t=1 k th i th
£k - J=
m—1
+ Z Z 5T555tR8]kwst(el)x ANetAN---N e NN e A---Aep.
gt=n+t1 jk=1 v v
r,s,t=n-+ Jj;ék k—th j—th

(4.24)

By comparing (3.3), (4.22) and (4.24), we get ||2]? = ok = 0. So, M}
has a flat normal bundle, and ||A||? is constant. On the other hand, the scalar
curvature is constant by (2.9). Thus, Theorem 4.1 implies that ;" has the 1-
type pseudo-hyperbolic Gauss map v with ¢ = 0. This is a contradiction, and
thus H # 0.

Case (b): H # 0. We observe that the term D¢, H A ey A --- A e, appears
only in (AP);, not in €;(77). Hence, considering (3.3), (4 22) and (4.23), we obtain
that DH = 0. Then M has a nonzero parallel mean curvature vector H in
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H5*~(—1). In this case, (4.23) becomes

ei(AD) = (|[Al*)i7 + ||Al|? Z Zsr e XACLA A e Ao Aen
r=n+1 k=1 k—th

n
+n25i51kﬁ/\61/\~-/\ X A---Aep
k=1 k—th

—l—nz Z erh HAep Ao A L N Nen
=lr=n+l kfth

n

+ > > ee{eRy)x+ Ryjpeit Aet Ao A e Ao A en Ao Aep

r,s=n+1 j,k=1 .
s<r  j#k k—th j—th

+ Z Zsres s]k{zehwﬁh e)xXNep A A eh AN es N- N e

r,s=n+1 j k=1

AR z—th k—th j—th
m—1
t
N Newt Y ehixAer Ao A ep Ao A eg Ao A ey Ao Aen}
Mot ~— ~— ~—
=n+ (—th k—th j—th

Z Z ercst R Ner e A e Ao A e Ao Aen
~—

1 jik,e=1 .
r,s=n+1 J, [ k—th j—th
m—1
+ E E srssststkwst(ez)x ANetAN---N e NN e A---Nep.
r,s,t=n+1 j,k=1 .
S, jon k—th j—th

(4.25)
From (3.3), (4.22) and (4.25), we get ||A]|? = 0, that is, ||k||? is constant, and

also from (2.9), the scalar curvature of M is constant. On the other hand,
considering (3.3), (4.22) and (4.25), we have

1A Z 267’ X Aer A A L A Aey

r= 7'L+1k 1 k—th

n
+TLZ€¢5¢;€IA{/\@1/\.../\ X A Ney
k=1 k—th
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m—1 n
D eresErRLhIX Net AN e Ao A e Ao Ney
r,s=n+1 j,k,f=1 .
itk k—th j—th
m—1 n
=X erhizpx Ner AN e N+ Ney (4.26)
~—
r=n+1 k=1 k—th

and

n
ny Z erh HAep Ao A L N Nen
k=1r=n+1 kfth

(4.27)
+ Z Zeres GREiNCLA A € NN e A Aen =0.

iR e o j—th
As H is non-zero, we may put H= Ent1Q€ni1, where nd = Y 1" aih?i“. From
(4.27) we have R =0forr,s >n+2and j,k=1,...,n. Also, as DH =0, it is
seen that RZJT'I;I = 0. Thus the normal bundle of M is flat. Therefore, equation
(4.27) is reduced to

n
nz Z Ernt1Ghl ent1 ANep A A er A+ Ne, =0. (4.28)
k=1r=n+2 k—th

This equation implies that b}, = 0forr > n+2and ¢,k =1,...,n. Thus, the first
normal space Imh is spanned by e,41, i.e., from Erbacher’s Reduction Theorem,
MY lies in a totally geodesic pseudo-hyperbolic space H: Y—1) cHP1(-1) C
El,fors*=t<sors* =t+1<Is.

Now, using equation (4.26), we obtain that

(IR = 3, ) P = naiesie (4.29)

for i,k = 1,...,n. It is seen that X\, # |A]|? as & # 0. If we take the sum of
(4.29) for i = k and i from 1 to n, then we get na(||h]|> —n — A,) = 0, that is,
0# Ay = ||h]|> = n. Hence R = Ge;dy from (4.29), i.e., the shape operator of
M} is diagonal. Moreover, )\, = IR]|2 = n = n(epp16® — 1) # 0, and from (2.9)
we have S =n(n — 1)(g,416% — 1) = (n — 1)\, that is, M} is non-flat.
Consequently, M* is an open part of a non-flat, non-totally geodesic and
totally umbilical pseudo-Riemannian hypersurface of a totally geodesic pseudo-
hyperbolic space H. (—1) ¢ H™(~1) CET, for s* =t < sors* =t+1<s,
that is, following [1], M/ is an open part of H}(—c) C H?j:ll(—l) of curvature
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—c for ¢ > 1 or H}(—¢) € HM(=1) of curvature —c for 0 < ¢ < 1 or SP(c) C
H? (1) of the curvature ¢ > 0.

Conversely, assume that M/* is an open part of a non-flat, non-totally geodesic
and totally umbilical pseudo-Riemannian hypersurface of a totally geodesic pseu-
do-hyperbolic space HX™ (=1) ¢ H?"!(-1) ¢ E™, for s* =t < s or s* =
t+1 < s. Now we suppose that M} is immersed in H%™(-1) C Eg’:fl Let
€l,..-,€ntl,ent2 = X be a local orthonormal frame on M;* in EZ+_,_21 such that
€1,...,6en are tangent to M/, and en41,en+2 = X are normal to M, where x
is the position vector of M;*. Since M;" is a pseudo-Riemannian hypersurface of
H™(—1), the normal bundle of M} in E™"2 is flat, and the mean curvature

Jr
vector H = €, 110€en41 is parallel in Egj _31 because M;" has the nonzero constant

mean curvature & in H™ (—1). Also, as M} is totally umbilical, we get ||[|> =
ens1n@?, and hence, from (3.6) we have

AU =eppna(av +epp1 ANep Aeg A Aep). (4.30)
We put
E:+17+6 Qe ANeptANeg A---Ae
E»,H_lOéQ — 1( n+1 n+1 1 2 n)
and )
- Ept1t

P oA 1(c3u7+en+1 ANerNeg A= Ney),
where ,,, 142 — 1 # 0 because M* is a non-flat hypersurface in H™(—1) (note
that for a flat totally umbilical hypersurface in H:" (1), g,01 = 1 and &% = 1),
then we have 7 = ¢ + 7. As & is a constant, it is easily seen that e;(¢) = 0,
i=1,...,n, ie., ¢ is a constant vector. Using (4.17) and (4.30), from a direct
computation we obtain that AD, = n(e,116% — 1)7y. Therefore, the pseudo-
hyperbolic Gauss map 7 is of 1-type with nonzero constant component in its
spectral decomposition. [

We have the following corollaries.

Corollary 4.13. A hyperbolic space H"(—c) of curvature —c for ¢ > 1 in the
anti-de Sitter space HYTH(=1) C E5"2 is the only space-like hypersurface with
1-type pseudo-hyperbolic Gauss map having a nonzero constant component in its
spectral decomposition.

Corollary 4.14. An anti-de Sitter space H} (—c) of curvature —c forc > 1 in
the pseudo-hyperbolic space H’;H(—l) C Eg” is the only Lorentzian hypersurface
with 1-type pseudo-hyperbolic Gauss map having a nonzero constant component
i its spectral decomposition.
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