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1. Introduction and Problem Statement

The paper deals with the synthesis problem, i.e., the problem of constructing
a control which depends on the phase coordinates and steers an arbitrary initial
point from some neighborhood of the origin to the origin at some finite time. Be-
sides, the control should satisfy some preassigned constrains. In [1], the methods
for solving the feedback synthesis problem for a linear system are given. Further
we consider the synthesis problem for the linear system with continuous bounded
unknown perturbations. In the present paper, we find a constraint for unknown
perturbations such that the control which solves the synthesis problem for the
system without perturbation also solves the synthesis problem for the perturbed
system.
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For the first time, the concept of the feedback synthesis was introduced and
studied in [2] published in Russian. In this and other papers of the author, this
concept was translated from Russian as a “positional synthesis”. Later the con-
cept was introduced and studied in [3, 4] where it was called a “feedback synthe-
sis”. Now the term “feedback synthesis” is generally used for the concept of the
synthesis introduced in [2]. The controllability function method was introduced
in [2]. In this method the angle between the direction of motion and the direc-
tion of decrease of the controllability function is not less than the corresponding
angle in the dynamic programming method, and not more than in a method of
Lyapunov function [1, p. 10]. The main advance of the controllability function
method is the finiteness of the motion time. Among other authors developing this
approach we would like to mention [5]. Herein the concept of finite time stability
is to find the trajectories within specifical domains of the state space during a
given finite time interval. A bit later, the problem of steering an arbitrary initial
point from some neighborhood of the origin to the origin (or in general case an
equilibrium point) in a finite time was called the “finite-time stabilization” (see,
e.g., [6, 7]). In contrast to this problem, the controllability function method al-
lows us to solve the problem of steering an arbitrary initial point to a generally
non-equilibrium point in a finite time. The paper [8] is devoted to the problem
of constructing a constrained control, which transfers a control system from any
point to a given non-equilibrium point in a finite time in global sense.

Let us consider the system

ẋ = (A0 + K + R(t, x))x + B0u, (1)

where t ≥ 0, x ∈ Q ⊂ Rn, Q is a neighborhood of the origin; u ∈ Rr is a
control satisfying the constraint ‖u‖ ≤ 1; A0 is an (n × n) matrix of the form
A0 = diag (A01, . . . , A0r) , where A0i are (ni × ni) matrices of the form A0i =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
0 0 0 . . . 0 1
0 0 0 . . . 0 0


 , i = 1, . . . , r; n1 ≥ n2 ≥ . . . ≥ nr ≥ 1, n1+. . .+nr=n;

B0 is an (n× r) matrix whose elements (B0)sii are equal to 1, si = n1+ . . .+ni,
i = 1, . . . , r and others are equal to zero; the elements of the matrix K which are
in row si (in other words, a row which contains a control) are equal to ksij , and the
other elements are equal to zero, R(t, x) = diag (R1(t, x), . . . , Rr(t, x)) + R̂(t, x),
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Ri(t, x)

=




r(si−1+1)1 r(si−1+1)2 0 0 . . . 0 0
r(si−1+2)1 r(si−1+2)2 r(si−1+2)3 0 . . . 0 0

. . .
r(si−2)1 r(si−2)2 r(si−2)3 r(si−2)4 . . . r(si−2)(si−1) 0
r(si−1)1 r(si−1)2 r(si−1)3 r(si−1)4 . . . r(si−1)(si−1) r(si−1)si

rsi1 rsi2 rsi3 rsi4 . . . rsi(si−1) rsisi




,

(2)
the elements of the matrix R̂(t, x) which are in row si (in other words, a row
which contains a control) are equal to rsij , and the other elements are equal to
zero, rmj = rmj(t, x). We assume that the functions rmj(t, x) are unknown, and
we call these systems robust systems, see, for example, [9, p. 173]. We assume
that the functions rmj(t, x) satisfy the constraints

max
1≤j≤m+1≤ni, i=1,...,r

|rmj(t, x)| ≤ ∆. (3)

The goal is to find ∆ and to build a bounded control which steers an arbitrary
initial point x0 ∈ Q to the origin in a finite time for any perturbation matrix
R(t, x) satisfying condition (3).

A classical example of this problem is a control over the motion of a car on
the surface with an unknown bounded friction. The motion of this system is
described by the equation

{
ẋ1 = x2,
ẋ2 = r22(t, x1, x2)x2 + u.

The term r22(t, x1, x2)x2 is a sliding frictional force and r22(t, x1, x2) is a coef-
ficient of the nonlinear viscous friction which is an unknown function and sat-
isfies the constraint |r22(t, x1, x2)| ≤ ∆. The constraint under consideration on
r22(t, x1, x2) does not except a “negative” friction.

The general approach to the admissible control synthesis problem for an ar-
bitrary nonlinear autonomous control system was given by V.I. Korobov in [2].
In this paper, an estimate for the time of motion (settling-time function) from
an arbitrary initial point to the origin was given. Recently, the problem of finite-
time stabilization has been formulated in several different ways [1], [9–15]. The
paper [16] describes a method for solving the feedback synthesis problem for sys-
tems with multidimensional control and without perturbations (i. e., R(t, x)≡0).
Moreover, in this case, the controllability function is the time of motion. In [10],
we solved the robust synthesis problem for a case with one perturbation and a
scalar control. In [11], the case, where R(t, x) = p(t, x)R, K ≡ 0, and the control
is scalar, was considered.
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In [12], an adaptive fuzzy finite-time control scheme was proposed for a class
of nonlinear systems with unknown nonlinearities. The scheme can guarantee
that the states of the closed-loop system converge to a small neighborhood of the
origin in a finite time. The book [9, p. 201] deals with the problem of robust
stabilization for the systems with constant affine perturbations. In [14], the
Lyapunov function method was suggested to study the finite-time stabilization
of the system ẋ(t) = A0x + B0u(t) + d(t, x(t)), where u(t) is a scalar function
and d(t, x) is measurable and uniformly bounded in the variable t function. In
[13, 14], the finite-time stabilization conditions were formulated in the form of
linear matrix inequalities. In [15], the problem of finite-time stabilization for the
second order system of general form (or double integrator) with a scalar control
was considered.

First, we describe the conditions which the perturbations rmj(t, x) must sat-
isfy.

Definition 1.1. By R, we denote a set of matrices R(t, x) whose elements are
the functions rmj(t, x) : [0, +∞)×Q → R, satisfying the following conditions:

1) rmj(t, x) are continuous in the variables t and x;
2) max

1≤j≤m+1≤ni, i=1,...,r
|rmj(t, x)| ≤ ∆ for all (t, x) ∈ [0, +∞)×Q;

3) in any domain K1(ρ2) = {(t, x) : 0 ≤ t < +∞, ‖x‖ ≤ ρ2}, the vector
function R(t, x)x satisfies the Lipschitz condition

|R(t, x′′)x′′ −R(t, x′)x′| ≤ `1(ρ2)‖x′′ − x′‖.

If R(t, x) ≡ 0, then (1) is a canonical system: ẋ = (A0 + K)x + B0u. For
the first time this concept was introduced in [2]. This system was also called
“integrator system” (for the second order system see, for example, [7]). Solv-
ing the synthesis problem for an arbitrary linear system with a multidimensional
control can be reduced to solving the synthesis problem for the canonical sys-
tem [1, p. 105]. The canonical system is completely controllable. The control
u(x), which solves the synthesis problem for the canonical system, is given in [1,
Theorem 2.3]; [16] .

Definition 1.2. The problem of finding a range of perturbations ∆ such that
the trajectory x(t) of the closed-loop system with the control u(x)

ẋ = (A0 + K + R(t, x))x + B0u(x), (4)

starting at an arbitrary initial point x(0) = x0 ∈ Q, ends at the origin at some
finite time T (x0,R), i. e., lim

t→T (x0,R)
x(t) = 0, is said to be the local robust feedback

synthesis. If Q = Rn, this problem is called the global robust feedback synthesis.
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Obviously, if r11(t, x) ≡ 0 and r12(t, x) ≡ −1, then the first coordinate x1 in
(1) is uncontrollable, and thus the problem is not solvable for any value of ∆.

The paper is organized as follows. In Section 2, some basic concepts of the
controllability function method are given. Section 3 represents the main results.
In Example 3.1 we consider the problem of stopping of oscillations of the system
of two coupled pendulums.

2. Background: the Controllability Function Method

In this Section we introduce some basic concepts and some results of the
controllability function method [1, 2]. Let us consider a nonlinear system of the
form

ẋ = f(x, u), (5)

where x ∈ Q ⊂ Rn, and u ∈ Ω ⊂ Rr, Ω is such that 0 ∈ int Ω, f(0, 0) = 0.

Definition 2.3. The problem of constructing a control of the form u = u(x),
x ∈ Q is said to be the local feedback synthesis if:
1) u(x) ∈ Ω;
2) the trajectory x(t) of the closed-loop system ẋ = f(x, u(x)), starting at an
arbitrary initial point x0 ∈ Q, ends at the origin at some finite time T (x0). If
Q = Rn, the problem is called the global feedback synthesis.

The sufficient conditions for solving the problem of feedback synthesis for
system (5) are given in [1, Theorem 1.1].

Let us describe one of possible approaches to solving the feedback synthesis
problem for the canonical system [1, Theorem 2.3]; [16]:

ẋ = (A0 + K)x + B0u, (6)

where x ∈ Rn, u ∈ Rr is a control which satisfies the constraint ‖u‖ ≤ 1. It
should be noted that system (1) coincides with completely controllable system
(6) when R(t, x) ≡ 0. Let us set

F−1 =

1∫

0

(1− t)e−A0tB0B
∗
0e−A∗0tdt. (7)

Let D(Θ) be a diagonal matrix of the form

D(Θ) = diag(D1(Θ), . . . , Dr(Θ)), where Di(Θ) = diag
(
Θ− 2ni−2j+1

2

)ni

j=1
.

(8)
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Theorem 1. [1, Theorem 2.3]; [16]. Let the controllability function Θ = Θ(x),
x 6= 0, be a unique positive solution of the equation

2a0Θ = (D(Θ)FD(Θ)x, x), (9)

where the constant a0 satisfies the inequality

0 < a0 ≤ 1
‖F−1‖ · (‖B∗

0F‖+ 2max{cn1 , c}‖B∗
0K‖)2 , (10)

besides the domain of solvability synthesis problem is of the form Q = {x :
Θ(x) ≤ c}, where Q is an ellipsoid. At x = 0, we put Θ(0) = 0.

Then in the domain Q the control

u(x) = −
(

1
2

B∗
0D(Θ(x))FD(Θ(x)) + B∗

0K

)
x (11)

solves the local feedback synthesis problem for system (6) and satisfies the con-
straint ‖u(x)‖ ≤ 1. Moreover, in this case, the equation Θ̇(x) = −1 holds, i. e.,
the controllability function Θ(x) is equal to the time of motion from any initial
point x ∈ Q to the origin.

In the case where K ≡ 0, the synthesis is global.

3. The Solution of the Robust Feedback Synthesis Problem

Let us consider system (1). Equation (4) with control (11) takes the form

(A0 + K + R(t, x))x + B0u(x)

= (A0 + K + R(t, x))x−
(

1
2

B0B
∗
0D(Θ(x))FD(Θ(x)) + B0B

∗
0K

)
x.

Due to the fact that B0B
∗
0K = K, the last equation takes the form

(A0 + K + R(t, x))x + B0u(x) = (A0 + R(t, x))x− 1
2

B0B
∗
0D(Θ(x))FD(Θ(x)x.

Put y(Θ, x) = D(Θ)x. Then equation (9) has the form

2a0Θ = (Fy(Θ, x), y(Θ, x)). (12)

Let us set

H = diag(H1, . . . , Hr), where Hi = diag
(
−2ni − 2j + 1

2

)ni

j=1
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and
F 1 = F − FH −HF = ((2n− i− j + 2)fij)n

i,j=1. (13)

If the matrix F is positive defined, then equation (12) has a unique positive
solution Θ = Θ(y) [1, p. 108]. Since the controllability function is the time of
motion, then the matrix F 1 is positive defined [1, p. 106]. Let the constant a0

satisfy inequality (10). Consider the closed-loop system (4) with the control given
by (11). Let us denote the trajectory of this system by x(t) and find the derivative
of the controllability function with respect to system (4): Θ̇ = d

dtΘ(x(t)). From
equation (12) it follows that

2a0Θ̇ = (F ẏ(Θ, x), y(Θ, x)) + (Fy(Θ, x), ẏ(Θ, x)). (14)

Let us find ẏ(Θ, x). We obtain that
d

dΘ
D(Θ) =

1
Θ

HD(Θ). Therefore,

ẏ(Θ, x) = Ḋ(Θ)x + D(Θ)ẋ =
Θ̇
Θ

Hy(Θ, x) + D(Θ)A0D
−1(Θ)y(Θ, x)+

+D(Θ)R(t, x)D−1(Θ)y(Θ, x)− 1
2
D(Θ)B0B

∗
0D(Θ)Fy(Θ, x).

Let us set

S(Θ, t, x) = Θ(FD(Θ)R(t, x)D−1(Θ) + D−1(Θ)R∗(t, x)D(Θ)F ). (15)

In [1, p. 109], it was proved that

D(Θ)A0D
−1(Θ) = Θ−1A0, D(Θ)b0 = Θ−1/2b0, FA0+A∗0F−FB0B

∗
0F = −F 1.

From (14), we can see that

Θ̇(2a0− 1
Θ

((FH+HF )y(Θ, x), y(Θ, x))) =
1
Θ

((−F 1+S(Θ, t, x))y(Θ, x), y(Θ, x)).

Taking into account equation (12), we obtain that the derivative of the control-
lability function with respect to system (4) is of the form

Θ̇ = −1 +
(S(Θ, t, x)y(Θ, x), y(Θ, x))

(F 1y(Θ, x), y(Θ, x))
. (16)

Let us introduce the following notation:
• M∗ is a transpose matrix to the matrix M ;
• σ(M) is the spectrum of the matrix M ;
• λmin(M) = min{λ : λ ∈ σ(M)};
• λmax(M) = max{λ : λ ∈ σ(M)};
• ρ(M) = max{|λ|, λ ∈ σ(M)} is a spectral radius of the matrix M ;
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• |M | = (|mij |)n
i,j=1 is the absolute value of the matrix M, i. e., the matrix which

consists of absolute values of the elements of the matrix M ;
• G̃ = |(F 1)−1| · (FR̃ + R̃∗F ), where the matrix R̃ coincides with the matrix
R(t, x) at rmj(t, x) = 1.

Denote y = y(Θ, x). Let us find the exact estimate for Θ̇. To this end, we find
the largest and the smallest values of the ratio (S(Θ, t, x)y, y)/(F 1y, y) at y 6= 0.
Let us consider the problem

(S(Θ, t, x)y, y) → extr, y ∈ {y : (F 1y, y) = c}.

We solve this problem using the method of Lagrange multipliers. The Lagrange
function takes the form

L(y, λ) = (S(Θ, t, x)y, y)− λ[(F 1y, y)− c].

From the necessary condition of the extremum, we obtain that
S(Θ, t, x)y − λF 1y = 0. So at the extremum point the following condition holds:
(S(Θ, t, x)y, y) = λ(F 1y, y), moreover, λ ∈ σ((F 1)−1

S(Θ, t, x)). Therefore,

λmin((F 1)−1
S(Θ, t, x)) ≤ (S(Θ, t, x)y, y)

(F 1y, y)
≤ λmax((F 1)−1

S(Θ, t, x)).

Thus, from (16) we obtain that

Θ̇ ≤ −1 + λmax((F 1)−1
S(Θ, t, x)). (17)

3.1. Perturbations of the superdiagonal elements
Suppose that the (ni × ni) matrices Ri(t, x) have nonzero elements only at

the main superdiagonal and R̂(t, x) ≡ 0. Then system (1) has the form




ẋsi−1+j = (1 + r(si−1+j)(si−1+j+1)(t, x))xsi−1+j+1, j = 1, . . . , ni − 1,

ẋsi =
n∑

j=1
ksijxj + ui, i = 1, . . . , r. (18)

Similarly to [1, p. 109], one can show that D(Θ)R(t, x)D−1(Θ) = Θ−1R(t, x)
(due to the fact that in the case under consideration the matrix R(t, x) has the
same structure as A0). We obtain that

S(Θ, t, x) = S0(t, x) = FR(t, x) + R∗(t, x)F. (19)

It should be noted that the matrix S0(t, x) does not depend on Θ. This observa-
tion is crucial for our method of solving the robust feedback synthesis problem.
Indeed, the explicit form of S0(t, x) is S0(t, x) = diag (S1(t, x), . . . , Sr(t, x)) ,
where
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Si(t, x)



0 f11r12 . . . f1(ni−1)r(ni−1)ni

f11r12 2f12r12 . . . f1nir12 + f2(ni−1)r(ni−1)ni

f12r23 f13r12 + f22r23 . . . f2nir23 + f3(ni−1)r(ni−1)ni

. . .
f1(ni−1)r(ni−1)ni

f1nir12 + f2(ni−1)r(ni−1)ni
. . . 2f(ni−1)ni

r(ni−1)ni




,

and rmj = rmj(t, x).

Theorem 2. Let γ be an arbitrary number which satisfies inequality
0 < γ < 1. Let

∆ =
(1− γ)

ρ(G̃)
. (20)

Let the controllability function Θ = Θ(x), x 6= 0, be a unique positive solution of
equation (9) where the constant a0 satisfies inequality (10).

Then, in the domain Q defined by Q = {x : Θ(x) ≤ c}, the control given by
(11) solves the local robust feedback synthesis problem for system (18). Moreover,
the trajectory x(t) of the closed-loop system (4), starting at an arbitrary initial
point x(0) = x0 ∈ Q, ends at the origin at some finite time T (x0,R), where the
time of motion T (x0,R) is bounded as follows:

T (x0,R) ≤ Θ(x0)
γ

. (21)

In the case where K ≡ 0, the robust feedback synthesis problem is global.

P r o o f. Since B0 = diag (B01, . . . , B0r) , then the matrices A0 and B0 have
a block structure. So the matrix F−1 given by (7) is of the form

F−1 = diag(F−1
1 , . . . , F−1

r ),

where (see [1, p. 98])

F−1
i =

1∫
0

(1− t)e−A0itB0iB
∗
0ie

−A∗0itdt
(

(−1)m+j

(ni −m)!(ni − j)!(2ni −m− j + 1)(2ni −m− j + 2)

)ni

m,j=1

.

(22)

Let us fix the value of i and consider the matrix Fi which is inverse to the
matrix F−1

i . Let us prove that the elements of the matrix Fi are positive. To this
end, we analyze the matrix

M̃ =
(

1
(2ni −m− j + 1)(2ni −m− j + 2)

)ni

m,j=1

.
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Put dm = (−1)m(ni − m). The elements of the matrix F−1
i can be calculated

from the elements of the matrix M̃ by multiplying every element of the row m
by dm and every element of the column j by dj . It is known that if every element
of the row m of the matrix is multiplied by ε 6= 0, then every element of the
column m in the inverse matrix will be divided by ε. A similar assertion is true
for the columns. To determine the elements of the matrix Fi, we should divide
every element of the column m of the matrix M̃−1 by dm, and every element of
the row j of the matrix M̃−1 by dj . Therefore, the element with the number mj
will be divided by dmdj , sign dmdj = (−1)m+j .

Let us prove that all the minors of the matrix M̃ are positive. It is known that
all the minors of the ni×ni matrix M̃ are positive if its s order minors composed
of the consecutive s rows and the consecutive s columns are positive [17, Theorem
3.3]. This theorem was first proved in [18]. So, in the matrix M̃ we consider only
submatrices composed of the consecutive s rows r̄ + 1, r̄ + 2, . . . , r̄ + s and the
consecutive s columns c̄+1, c̄+2, . . . , c̄+s. In addition, any of these submatrices
is the Schur product of the Cauchy matrices. A Cauchy matrix is a matrix of

the form
(

1
xm + yj

)n

m,j=1

[19, Theorem 1.2.12.1]. Each consecutive submatrix of

the matrices
(

1
2ni −m− j + 1

)ni

m,j=1

and
(

1
2ni −m− j + 2

)ni

m,j=1

is a Cauchy

matrix (put for the first matrix xm = ni−m, yj = ni− j + 1). The determinant
of the Cauchy matrix can be found by the formula [19, Theorem 1.2.12.1],

∏
m>j

(xm − xj)(ym − yj)
∏
m,j

(xm + yj)
. (23)

Each consecutive submatrix of the matrices
(

1
2ni −m− j + 1

)ni

m,j=1

and
(

1
2ni −m− j + 2

)ni

m,j=1

is a positive definite matrix by the Silvester criteria

and formula (23). The Schur product of the matrices
(

1
2ni −m− j + 1

)ni

m,j=1

and
(

1
2ni −m− j + 2

)ni

m,j=1

is the matrix of the form

(
1

(2ni −m− j + 1)(2ni −m− j + 2)

)ni

m,j=1

and it is equal to M̃. The Schur product of positive definite matrices is a positive
definite matrix [19, Theorem 6.4.2.1]. Hence, in the matrix M̃ all the submatrices
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composed of the consecutive s rows r̄ + 1, r̄ + 2, . . . , r̄ + s and the consecutive s
columns c̄ + 1, c̄ + 2, . . . , c̄ + s are positive. Therefore, all minors of the matrix
M̃ are positive. Then the minors of order ni − 1 and ni, in particular, are also
positive. Hence, the elements of the matrix inverse to the matrix M̃ have the
sign (−1)m+j . This implies that all the elements of the matrix Fi inverse to the
matrix F−1

i are positive.
It is known that λmax((F 1)−1

S0(t, x)) ≤ ρ((F 1)−1
S0(t, x)). We claim that

ρ((F 1)−1
S0(t, x)) ≤ ρ|(F 1)−1

S0(t, x)|. To prove this inequality we need the fol-
lowing theorem.

Theorem 3. [20, Theorem 8.1.18] Let M and N be some matrices. Then
1. |M ·N | ≤ |M | · |N |;
2. If |M | ≤ N, then ρ(M) ≤ ρ(|M |) ≤ ρ(N).

Therefore, ρ((F 1)−1
S0(t, x)) ≤ ρ|(F 1)−1

S0(t, x)| ≤ ∆ρ(G̃). Here we use the
fact that the elements of the matrix F are positive. Let us substitute the last
inequality into inequality (17). We obtain that

Θ̇ ≤ −1 + ∆ρ(G̃). (24)

If we assume that −1+∆ρ(G̃) ≤ −γ, then Θ̇ ≤ −γ. Similarly to [1, Theorem
1.2], the estimate for the time of motion (21) follows from the last inequality.

To complete the proof of the theorem, the boundedness of the control has
to be established. Since B∗

0D(Θ) = Θ− 1
2 B∗

0 , the control given by (11) can be
written in the form

u(x) = −
(

Θ− 1
2

2
B∗

0F + B∗
0KD−1(Θ(x))

)
y(Θ, x).

Since ‖y(Θ, x)‖2 ≤ 2a0Θ(x)‖F−1‖ and

‖D−1(Θ(x))‖ =

{
Θ

1
2 if 0 < Θ < 1,

Θ
2n1−1

2 if Θ ≥ 1,

at Θ(x) ≤ c we get

‖u(x)‖ ≤
(

1
2
‖B∗

0F‖+ max{cn1 , c}‖B∗
0K‖

)√
2a0‖F−1‖.

Let the constant a0 satisfy inequality (10). Then from the last inequality we
obtain that ‖u(x)‖ ≤ 1 for all x ∈ Q. Due to [1, Theorem 2.3], the control u(x)
of the form (11) solves the local feedback synthesis problem for system (18). The
proof of the theorem is completed.
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3.2. The general case
Let the matrix R(t, x) has the form given in (2). Then the elements of

S(Θ, t, x) defined by (15) are polynomials in Θ with a degree not exceeding n1. As
in the case with the perturbations of the superdiagonal elements, from inequality
(17) it follows that

Θ̇ ≤ −1 + ρ((F 1)−1
S(Θ, t, x)) ≤ −1 + ∆ max{cn1 , c}ρ(G̃)

at Θ(x) ≤ c. If we assume that

−1 + ∆ max{cn1 , c}ρ(G̃) ≤ −γ, (25)

then Θ̇ ≤ −γ. Thus, the following theorem is valid.

Theorem 4. Let the controllability function Θ = Θ(x), x 6= 0, be a unique pos-
itive solution of equation (9), where the constant a0 satisfies inequality (10). Let
the solvability domain be defined by Q = {x : Θ(x) ≤ c}, where Q is an ellipsoid.
Let γ be an arbitrary number which satisfies the inequality
0 < γ < 1. Let

∆ =
(1− γ)

max{cn1 , c}ρ(G̃)
. (26)

Then in the domain Q, the control given by (11) solves the local robust feedback
synthesis problem for system (1). Moreover, the trajectory x(t) of the closed-loop
system (4), starting at an arbitrary initial point x(0) = x0 ∈ Q, ends at the
origin at some finite time T (x0,R), where the time of motion T (x0,R) satisfies
inequality (21).

R e m a r k 3.1. If we solve inequality (25) with respect to c and consider r
to be arbitrary, then we obtain the following solvability domain of the synthesis
problem: Q = {x : Θ(x) ≤ c}.

R e m a r k 3.2. The value of ∆ is monotonically decreasing in γ. In addition,
the inequality for the time of motion T (x0,R) given by (21) is also monotonically
decreasing in γ. The value ∆ → max at γ → 0. Moreover, T (x0,R) → +∞ at
∆ → 0.

R e m a r k 3.3. Let R(t, x) ∈ R. To find the trajectory starting at an initial
point x0 ∈ Q, we solve equation (9) at x = x0 and find its unique positive solution
Θ(x0) = Θ0. Put θ(t) = Θ(x(t)). The trajectory satisfies the system





ẋ = (A0 + R(t, x))x− 1
2 B∗

0D(θ(x))FD(θ(x))x,

θ̇ =
(−F 1 + S(Θ, t, x))D(θ)x,D(θ)x)

(F 1D(θ)x,D(θ)x)
,

x(0) = x0, θ(0) = Θ0.

(27)
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It should be noted that in order to determine Θ0 it is enough to solve equation
(9) only once.

E x a m p l e 3.1. The stopping of oscillations of the system of two
coupled pendulums.

Let us consider a mechanical system which consists of two pendulums coupled
by a spring. The pendulums oscillate in the same plane. We denote by l1 and
l2 the lengths of pendulums and by m1 and m2, theirs masses. The lengths
from the suspension points of two pendulums to the spring attachment points
are considered to be equal to each other, and we denote them by h. The spring
stiffness is equal to k. The oscillations of the system without a control were
considered in many books (see, for example, [21, Sect. 6.1]; [22, Sect. 132]).

Fig. 1. The system which consists of two coupled pendulums.

Let us consider the controllable motion of this system. The pairs of forces u1

and u2 act as shown in Fig. 1. The linearized equations of the motion of these
pendulums are of the form





ϕ̈1 = −m1gl1 + kh2

m1l21
ϕ1 +

kh2

m1l21
ϕ2 + u1,

ϕ̈2 =
kh2

m2l22
ϕ1 − m2gl2 + kh2

m2l22
ϕ2 + u2.

(28)

The pairs of forces u1 and u2 satisfy the inequality ‖(u1, u2)∗‖=
√

u2
1 + u2

2≤1.
We assume that a positive value of ui corresponds to the case there the moments of
the force act in a clockwise direction. The force acts tangentially to the trajectory
of motion.

The first case. Suppose that the values of m1, m2, l1, l2 and h are known.
Suppose that the spring stiffness k is unknown. Let us set

kh2

m1l21
= r21,

kh2

m2l22
= r41,

g

l1
= k21,

g

l2
= k43.
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By changing the variables

x1 = ϕ1, x2 = ϕ̇1, x3 = ϕ2, x4 = ϕ̇2,

system (28) is reduced to the following form:




ẋ1 = x2,
ẋ2 = −(r21 + k21)x1 + r21x3 + u1,
ẋ3 = x4,
ẋ4 = r41x1 − (r41 + k43)x3 + u2.

(29)

The coefficients r21 and r41 are unknown constants.
System (29) can be written in the matrix form:

ẋ = (A0 + K + R)x + B0u, (30)

where

A0 =




0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 , B0 =




0 0
1 0
0 0
0 1


 , (31)

K =




0 0 0 0
−k21 0 0 0

0 0 0 0
0 0 −k43 0


 , R =




0 0 0 0
−r21 0 r21 0

0 0 0 0
r41 0 −r41 0


 ,

and n1 = 2 , n2 = 2 , s1 = 2 , s2 = n = 4.
Let us consider the robust feedback synthesis problem for system (30). Since

for any fixed stiffness k the following equation holds: rg(B0, (A0+K+R)B0) = 4,
then this system is completely controllable.

The matrices F and D(Θ) given by (7) and (8), respectively, are of the form

F =




36 12 0 0
12 6 0 0
0 0 36 12
0 0 12 6


 , D(Θ) =




Θ− 3
2 0 0 0

0 Θ− 1
2 0 0

0 0 Θ− 3
2 0

0 0 0 Θ− 1
2




. (32)

Let x = (x1, x2, x3, x4). Define the controllability function Θ = Θ(x) at x 6= 0
as a unique positive solution of equation (9),

2a0Θ4 = 36x2
1 + 24Θx1x2 + 6Θ2x2

2 + 36x2
3 + 24Θx3x4 + 6Θ2x2

4. (33)
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At x = 0, we put Θ(0) = 0. We consider the solution of the problem of robust
feedback synthesis in the domain Q = {x : Θ(x) ≤ c}, where Q is an ellipsoid.
The constant c > 0 is defined below. The constant a0 satisfies inequality (10)
which takes the form

0 < a0 ≤ 3.58
(13.42 + 2 max{c2, c}max{k21, k43})2 . (34)

For the solvability domain to contain the ellipsoid of the largest size, we will
choose a0 to be the largest value which satisfies (34).

The control given by (11) which solves the problem of robust feedback syn-
thesis is of the form

u(x) =
(

u1(x)
u2(x)

)
=



− 6x1

Θ2(x)
− 3x2

Θ(x)
+ k21x1

− 6x3

Θ2(x)
− 3x4

Θ(x)
+ k43x3


 ,

where Θ = Θ(x) is a unique positive solution of equation (33). For any value of
k, this control steers an arbitrary initial point x0 to the origin at some finite time
T (x0, k) ≤ Θ(x0)/γ, where γ is an arbitrary number which satisfies the inequality
0 < γ < 1.

The matrix S = S(Θ, t, x) given by (15) has the form

S(Θ) =




−24r21Θ2 −6r21Θ2 12(r21 + r41)Θ2 6r41Θ2

−6r21Θ2 0 6r21Θ2 0
12(r21 + r41)Θ2 6r21Θ2 −24r41Θ2 −6r41Θ2

6r41Θ2 0 −6r41Θ2 0


 ,

where Θ = Θ(x) is a unique positive solution of equation (33).
Let us find an estimate for the solvability domain. To this end, we find c from

inequality (25), which takes the form

−1 + ∆ max{c2, c}ρ(G̃) ≤ −γ, (35)

where G̃ =




7
6

1
6

7
6

1
6

4
1
2

4
1
2

7
6

1
6

7
6

1
6

4
1
2

4
1
2




, ρ(G̃) ≈ 8.4, ∆ = k max
{

h2

m1l21
;

h2

m2l22

}
.

From (35), it follows that

max{c2, c} ≤ 0.12(1− γ)
∆

=
0.12(1− γ)

k max
{

h2

m1l21
;

h2

m2l22

} .
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Taking into account inequality (17), let us find a more precise estimate for c.
At x ∈ Q, from (17) it follows that

Θ̇ ≤ −1 + λmax((F 1)−1
S(Θ)) = −1 +

(
r21 + r41 + 2

√
2(r2

21 + r2
41)

)
Θ2

6

≤ −1 +

(
r21 + r41 + 2

√
2(r2

21 + r2
41)

)
c2

6
.

Let c > 0 be such that the following inequality holds:

−1 +

(
r21 + r41 + 2

√
2(r2

21 + r2
41)

)
c2

6
≤ −γ. (36)

Then Θ̇ ≤ −γ. From (36), it follows that c ≤
√

6(1−γ)

(r21+r41+2
√

2(r2
21+r2

41)
. For the

solvability domain to contain the ellipsoid of the largest size, we will choose c to
be the largest value which satisfies (36). So, we obtain the following solvability
domain:

Q =





x : Θ(x) ≤
√√√√ 6(1− γ)

k
(

h2

m1l21
+ h2

m2l22
+ 2

√
2h4

m2
1l41

+ 2h4

m2
2l42

)





. (37)

Let us consider the values of the parameters

m1 = 1, m2 = 2, l1 = 60, l2 = 30, h = 7.5, γ = 0.001.

Then
h

l1
=

1
8
,

h

l2
=

1
4
, k21 =

g

l1
≈ 0.16, k43 =

g

l2
≈ 0.32, r21 =

k

64
, r41 =

k

32
.

Let the stiffness k satisfy the constraint k ≤ 4, but the value of k be unknown.
Then the set of points (37) from which we can steer to the origin is an ellipsoid of
the form Q = {x : Θ(x) ≤ 3.2}. Notice that from (37) it follows that the stiffness
k decreases as the values of axes of ellipsoid Q increase. At c = 3.2, inequality
(34) on a0 takes the form: a0 ≤ 0.0088 . . . Put a0 = 0.0088.

Let the initial point be equal to x(0) = (−0.3, 0.3, 0, 0), x(0) ∈ Q. The unique
positive solution Θ0 of equation (33) is Θ0 ≈ 3.2. Let x = x(t, k0) be the
trajectory of system (27), which is realized at some coefficient of stiffness k0 which
satisfies inequality k0 ≤ 4. Put θ(t) = Θ(x(t, k0)). The trajectory x = x(t, k0)
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satisfies the system




ẋ1 = x2,

ẋ2 =
k0

64
(−x1 + x3)− 6 x1

θ2
− 3x2

θ
,

ẋ3 = x4,

ẋ2 =
k0

32
(x1 − x3)− 6 x1

θ2
− 3x2

θ
,

θ̇ = φ,
x1(0) = −0.3, x2(0) = 0.3, x2(0) = 0, x2(0) = 0, θ(0) = 3.2,

(38)

where

φ = −((12 + 0.03 k0 θ2) x2
1 + (6 + 0.02 k0 θ2) x1 x2 θ + x2

2 θ2

+(12 + 0.06 k0 θ2) x2
3 + (6 + 0.03 k0 θ2) x3 x4 θ + x2

4 θ2

−0.09 k0 x1 x3 θ2 − 0.02 k0 x2 x3 θ3 − 0.03 k0 x1 x4 θ3)
/(12 x2

1 + 6x1 x2 θ + x2
2 θ2 + 12 x2

3 + 6x3 x4 θ + x2
4 θ2).

A two-dimensional projection of the domain Q on the plane Ox1x2 = Oϕ1ϕ̇1

or equally Q̄ = {(x0
1, x

0
2, 0, 0) : Θ(x0

1, x
0
2, 0, 0) ≤ 3.2} is given in Fig. 2. Let

(x0
1(t), x

0
2(t), x

0
3(t), x

0
4(t), θ(t)) be the solution of system (38) at k0 = 4. The curve

(x0
1(t), x

0
2(t)) is also given in Fig. 2 (the solid line). The curve (x̄0

1(t), x̄
0
2(t)) (the

dashed line), which corresponds to the case k0 = 0, is also given in Fig. 2.

>

j1

ß j
 
1

0.4

0.4

-0.4

-0.4

0

Fig. 2. The projection of the phase trajectory and the ellipsoid Q on the plane
Oϕ1ϕ̇1

.

All the other trajectories fill the domain between the trajectories correspond-
ing to k0 = 0 and k0 = 4 if the stiffness k0 satisfies the inequality 0 ≤ k0 ≤ 4 and
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the trajectories begin from x(0). At k0 = 0, the trajectory can be found from the
system
{

ẋ1 = x2, ẋ2 = −6 x1

θ2
− 3x2

θ
, ẋ3 = x4, ẋ2 = −6 x1

θ2
− 3x2

θ
, θ̇ = −1,

x1(0) = −0.3, x2(0) = 0.3, x2(0) = 0, x2(0) = 0, θ(0) = 3.2.

The graphs of the components of the control on the trajectory

u1 = u1(x0
1(t), x

0
2(t), x

0
3(t), x

0
4(t)) = −6x0

1(t)
θ2(t)

− 3x0
2(t)

θ(t)
+ 0.16x0

1(t),

u2 = u2(x0
1(t), x

0
2(t), x

0
3(t), x

0
4(t)) = −6x0

3(t)
θ2(t)

− 3x0
4(t)

θ(t)
+ 0.32x0

3(t)

are given in Fig. 3. The norm of the control ‖(u1, u2)∗‖ =
√

u2
1 + u2

2 is given in
Fig. 4, and we can see that ‖(u1, u2)∗‖ ≤ 1. The controllability function θ(t) is
close to the linear function (y = 3.2 − t) and is given in Fig. 5. The derivative
of the controllability function with respect to the system (38) is given in Fig. 6,
and we can see that it is negative. The estimate for the time of motion (21) is
of the form: T ≤ 3206. It is fulfilled for all 0 ≤ k0 ≤ 4, but at a particular value
of k0 the value of T is less than 3206. It can be shown numerically that the time
of motion T from the point x(0) for k0 = 4 is T ≈ 3.43, besides it can be shown
numerically that for 0 ≤ k0 ≤ 4 the following inequality holds: 3.2 ≤ T ≤ 3.43.
All graphs are given on the trajectory for k0 = 4. For other values of k0, the
graphs are similarly to those given in Fig. 2–6.

>

ß

0
t

u

u1

u2

1 2 3

0.2

-0.2

Fig. 3. The components of the con-
trol.

>

ß

0
t

ÈÈuÈÈ

1 2 3

0.2

0.1

Fig. 4. The norm of the control.

The second case. Let l1 = l2 = l. Let us consider that the values m1, m2

and k are known. We will also consider that the pendulum length l is unknown.

Besides, the ratio
h

l
is known. Let us set

kh2

m1l21
= k21,

kh2

m2l22
= k41,

g

l
= r21.
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>

ß

0 t

Q

1

2

3

1 2 3

Fig. 5. The controllability function.

>

ß

0 t

Q
 

-1.1

-0.85

1 2 3

-0.6

Fig. 6. The derivative of the control-
lability function w. r. t. the system.

By changing the variables

x1 = ϕ1, x2 = ϕ̇1, x3 = ϕ2, x4 = ϕ̇2,

we reduce (28) to the system




ẋ1 = x2,
ẋ2 = −(r21 + k21)x1 + k21x3 + u1,
ẋ3 = x4,
ẋ4 = k41x1 − (r21 + k41)x3 + u2.

The coefficient r21 is an unknown constant.
The system can be written in the matrix form (30), where the matrices A0

and B0 are given by (31) and the matrices K and R are of the form

K =




0 0 0 0
−k21 0 k21 0

0 0 0 0
k41 0 −k41 0


 , R =




0 0 0 0
−r21 0 0 0

0 0 0 0
0 0 −r21 0


 .

The matrices F and D(Θ) are given by (32). Let us define the controllability
function Θ = Θ(x) at x 6= 0 as a unique positive solution of equation (33). At
x = 0, we put Θ(0) = 0. Similarly to the first case, we consider the solution of the
problem of robust feedback synthesis in the domain Q = {x : Θ(x) ≤ c}, where
Q is ellipsoid. The constant c > 0 is defined below. The constant a0 satisfies
inequality (10) that takes the form

0 < a0 ≤ 3.58
(13.42 + 2.83max{c2, c}

√
k2

21 + k2
41)2

. (39)

For the solvability domain to contain the ellipsoid of the largest size, we will
choose a0 to be the largest value which satisfies (39).

Journal of Mathematical Physics, Analysis, Geometry, 2017, vol. 13, No. 1 53



V.I. Korobov and T.V. Revina

The control given by (11), which solves the robust feedback synthesis problem,
is of the form

u(x) =
(

u1(x)
u2(x)

)
=



− 6x1

Θ2(x)
− 3x2

Θ(x)
+ k21(x1 − x3)

− 6x3

Θ2(x)
− 3x4

Θ(x)
+ k41(−x1 + x3)


 ,

where Θ = Θ(x) is a unique positive solution of equation (33). For any value of
l, this control steers an arbitrary initial point x0 to the origin at some finite time
T (x0, l) ≤ Θ(x0)/γ, where γ is an arbitrary number which satisfies the inequality
0 < γ < 1.

The matrix S = S(Θ, t, x) given by (15) has the form

S =




−24gΘ2

l1
−6gΘ2

l1
0 0

−6gΘ2

l1
0 0 0

0 0 −24gΘ1

l1
−6gΘ2

l1

0 0 −6gΘ2

l1
0




,

where Θ = Θ(x) is a unique positive solution of equation (33).
Taking into account inequality (17), let us find an exact estimate for c. Since

λmax((F 1)−1S(Θ)) =
gΘ2

2l
, then at x ∈ Q from (17) it follows that

Θ̇ ≤ −1 + λmax((F 1)−1
S(Θ)) = −1 +

gΘ2

2l
≤ −1 +

gc2

2l
.

Let c > 0 be such that the following inequality holds:

−1 +
gc2

2l
≤ −γ. (40)

Then Θ̇ ≤ −γ. From (40) it follows that c ≤
√

0.2 l(1− γ). For the solvability
domain to contain the ellipsoid of the largest size, we choose c to be the largest
value which satisfies (40). So, we obtain the solvability domain

Q = {x : Θ(x) ≤
√

0.2 l(1− γ)}. (41)

Let
m1 = 1, m2 = 2, k = 1,

h

l
=

1
4
, γ = 0.001.
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Then k21 =
kh2

m1l2
=

1
16

, k41 =
kh2

m2l2
=

1
32

, r21 =
9.8
l

.

Let the length l satisfy the constraint l ≥ 30, but the value of l be unknown.
Then the set of points (41), from which we can steer to the origin, is an ellipsoid
of the form Q = {x : Θ(x) ≤ 2.47}. Besides, from (41) it follows that the length
l decreases as the values of axes of ellipsoid Q decrease. At c = 2.47, inequality
(39) on a0 takes the form: a0 ≤ 0.016 . . . Put a0 = 0.016.

Similarly to the first case, let the initial point be equal to x(0) = (−0.3, 0.3, 0, 0),
x(0) ∈ Q. The unique positive solution Θ0 of equation (33) is Θ0 ≈ 2.44. The
estimate for the time of motion (21) is of the form: T ≤ 2438. It is fulfilled for
all l ≥ 30, but at a particular value of l, the value of T is less than 2438. It can
be shown numerically that the time of motion T from the point x(0) at l = 30 is
T ≈ 3, besides it can be shown numerically that at l ≥ 30 the following inequality
holds: 2.44 ≤ T ≤ 3. The further considerations are similar to those in the first
case.
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