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1. Introduction

For modeling the functions with complicated local structure (singular, con-
tinuous nowhere differentiable, nowhere monotonic functions), various represen-
tations of real numbers are used widely in modern scientific researches [1, 2, 4, 9].
For example, the representations of numbers by positive and alternating series,
whose terms are reciprocal to positive integers or their products.

In the present paper, the application of the expansions of real numbers in
infinite series, whose terms are rational, to the construction of monotonic singular
and continuous nowhere monotonic functions is considered. Traditionally, the
simplest examples of these series are s-adic and nega-s-adic expansions.

c© S.O. Serbenyuk, 2017
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In 1869, the first time Georg Cantor [10] considered the expansions of real
numbers from [0; 1] in the positive series

∞∑

n=1

εn

d1d2 . . . dn
, (1)

where (dn) is a fixed sequence of positive integers dn > 1 and (Adn) is a sequence
of alphabets Adn ≡ {0, 1, . . . , dn − 1}, εn ∈ Adn .

In scientific literature the last-mentioned series is called the positive Cantor
series or Cantor series. It is easy to see that the representation of real numbers
by the Cantor series is a generalization of the s-adic numeral system. So it
would be logical to assume the possibility of representation of real numbers by
the alternating Cantor series

∞∑

n=1

(−1)nεn

d1d2 . . . dn
, (2)

that [6] is a generalization of the nega-s-adic representation of real numbers.
Since 1869, the problem on necessary and sufficient conditions of the ratio-

nality of numbers defined by the positive Cantor series has remained open. The
last-mentioned problem was solved by the author of the present paper in [5].
Among the papers on finding the necessary or sufficient conditions of rationality
of numbers, represented by the positive Cantor series, we have [11]. In the paper,
A. Oppenheim studied mostly sufficient conditions of irrationality of numbers
defined not only by the positive series (1), but also (1) with positive and neg-
ative terms such that for the last-mentioned series the conditions |εi| < di − 1
for i = 1, 2, 3, . . ., and εmεn < 0 for some m > i and n > i, where i is any fixed
integer, are true.

Investigations of the present paper are the generalization of studies of M. V.
Pratsiovytyi and A.V. Kalashnikov [3]. The similar functions, whose argument
was defined by the positive Cantor series, were studied by the author of the
present paper in [7, 8].

In the present paper, the main attention is given to the study of the main
properties of functions with complicated local structure whose arguments are
represented by the alternating Cantor series

∞∑

n=1

1 + εn

d1d2 . . . dn
(−1)n+1, εn ∈ Adn , (3)

because the domain of definition of these functions is a closed interval [0; 1] and
each number from the interval can be represented by the last-mentioned series.
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Before turning to the basic research results, let us consider the problem on
belonging of expansions (2) and (3) to numeral systems.

Theorem 1. Each number x ∈ [a0 − 1; a0], where

a0 =
∞∑

n=1

(−1)n+1

d1d2 . . . dn
,

can be represented by the series (2) in not more than two ways.

Theorem 2. For any x ∈ [0; 1], there exist not more than two different se-
quences (εn) such that

x =
∞∑

n=1

1 + εn

d1d2 . . . dn
(−1)n+1.

The proofs of Theorem 1 and Theorem 2 are similar, because the sequence
(dn) is fixed and it follows that a0 = const.

Definition 1.1. The defining of an arbitrary number x from [a0 − 1; a0] (or
from [0; 1]) by the expansion in the alternating Cantor series (2) (or (3)) is called
a nega-D-expansion, where D ≡ (dn), (or nega-(dn)-expansion) of the number
x and is denoted by x = ∆−D

ε1ε2...εn... (or x = ∆−(dn)
ε1ε2...εn...). The last-mentioned

notation is called the nega-D-representation (or nega-(dn)-representation) of the
number x.

Theorem 1 follows from the next two lemmas.

Lemma 1. For any x ∈ [a0− 1; a0], there exists a sequence (εn) such that the
number x can be represented by the series (2).

P r o o f. It is obvious that

a0 = max

{ ∞∑

n=1

(−1)nεn

d1d2 . . . dn

}
≡ ∆−D

0[d2−1]0[d4−1]0[d6−1]0...,

a0 − 1 = min

{ ∞∑

n=1

(−1)nεn

d1d2 . . . dn

}
≡ ∆−D

[d1−1]0[d3−1]0[d5−1]0....

Let x be an arbitrary number from (a0 − 1; a0),

−ε1

d1
−

∞∑

k=2

d2k−1 − 1
d1d2 . . . d2k−1

< x ≤ −ε1

d1
+

∞∑

k=1

d2k − 1
d1d2 . . . d2k
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with 0 ≤ ε1 ≤ d1 − 1, and since

[a0 − 1; a0] = I0 =
d1−1⋃

i=0

[
− i

d1
−

∞∑

k=2

d2k−1 − 1
d1d2 . . . d2k−1

;− i

d1
+

∞∑

k=1

d2k − 1
d1d2 . . . d2k

]
,

it is obtained that

−
∞∑

k=2

d2k−1 − 1
d1d2 . . . d2k−1

< x +
ε1

d1
≤

∞∑

k=1

d2k − 1
d1d2 . . . d2k

.

Let x + ε1
d1

= x1. Then the following cases are obtained:

1. If the equality

x1 =
∞∑

k=1

d2k − 1
d1d2 . . . d2k

holds, then

x = ∆−D
ε1[d2−1]0[d4−1]0... or x = ∆−D

[ε1−1]0[d3−1]0[d5−1]0...;

2. If the equality is not true, then x = − ε1
d1

+ x1, where

ε2

d1d2
−

∞∑

k=2

d2k−1 − 1
d1d2 . . . d2k−1

≤ x1 <
ε2

d1d2
+

∞∑

k=2

d2k − 1
d1d2 . . . d2k

.

In the same way, let x2 = x1 − ε2
d1d2

. Then we have:

1. If the equality

x2 =
∞∑

k=2

d2k−1 − 1
d1d2 . . . d2k−1

holds, then

x = ∆−D
ε1ε2[d3−1]0[d5−1]0... or x = ∆−D

ε1[ε2−1]0[d4−1]0[d6−1]0....

2. In another case,
x = −ε1

d1
+

ε2

d1d2
+ x2, where

− ε3

d1d2d3
−

∞∑

k=3

d2k−1 − 1
d1d2 . . . d2k−1

< x2 ≤ − ε3

d1d2d3
+

∞∑

k=2

d2k − 1
d1d2 . . . d2k

, etc.
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So, for the positive integer m,

−
∑

k> m+2
2

d2k−1 − 1
d1d2 . . . d2k−1

< xm − (−1)m+1εm+1

d1d2 . . . dm+1
<

∑

k> m+1
2

d2k − 1
d1d2 . . . d2k

.

Moreover, the following cases are possible:

1.

xm+1 =





∑
k> m+2

2

d2k−1−1
d1d2...d2k−1

, if m is an odd number;

∑
k> m+1

2

d2k−1
d1d2...d2k

, if m is an even number.

In this case,
x = ∆−D

ε1ε2...εm+1[dm+2−1]0[dm+4−1]0...

or
x = ∆−D

ε1...εm[εm+1−1]0[dm+3−1]0[dm+5−1]0....

2. If there does not exist m ∈ N such that the last-mentioned system is true,
then

x =
m+1∑

n=1

(−1)nεn

d1d2 . . . dn
+ xm+1.

Continuing the process indefinitely, we obtain

x = −ε1

d1
+ x1 = . . . = −ε1

d1
+

ε2

d1d2
− ε3

d1d2d3
+ . . . +

(−1)nεn

d1d2 . . . dn
+ xn = . . . .

Hence,

x =
∞∑

n=1

(−1)nεn

d1d2 . . . dn
.

Lemma 2. The numbers

x = ∆−D
ε1ε2...εm−1εmεm+1... and x

′
= ∆−D

ε1ε2...εm−1ε
′
mε

′
m+1...

,

where εm 6= ε
′
m, are equal iff one of the systems





εm+2i−1 = dm+2i−1 − 1,

εm+2i = 0 = ε
′
m+2i−1,

ε
′
m+2i = dm+2i − 1,

ε
′
m = εm − 1

or





εm+2i = dm+2i − 1,

εm+2i−1 = 0 = ε
′
m+2i,

ε
′
m+2i−1 = dm+2i−1 − 1,

ε
′
m − 1 = εm

is satisfied for all i ∈ N.
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P r o o f. Necessity. Let εm = ε
′
m + 1. Then

0 = x− x
′
= ∆−D

ε1ε2...εm−1εmεm+1... −∆−D

ε1ε2...εm−1ε′mε
′
m+1...

=
(−1)m

d1d2 . . . dm

+
(−1)m+1(εm+1 − ε

′
m+1)

d1d2 . . . dm+1
+ . . . +

εm+i − ε
′
m+i

d1d2...dm+i
(−1)m+i + . . .

=
(−1)m

d1d2 . . . dm

(
1 +

∞∑

i=1

(−1)i(εm+i − ε
′
m+i)

dm+1dm+2 . . . dm+i

)
.

v ≡
∞∑

i=1

(−1)i(εm+i − ε
′
m+i)

dm+1dm+2 . . . dm+i
≥ −

∞∑

i=1

dm+i − 1
dm+1dm+2 . . . dm+i

= −1.

The last inequality becomes an equality only when

εm+2i = ε
′
m+2i−1 = 0 and εm+2i−1 = dm+2i−1 − 1, ε

′
m+2i = dm+2i − 1.

That is, the conditions for the first system follow from the equality x = x
′
. It

is easy to see that the conditions for the second system follow from x = x
′
under

the assumption that ε
′
m = εm + 1.

It is obvious that the sufficiency is true.

Definition 1.2. A number x ∈ [0; 1] is called a nega-(dn)-rational number if
it can be represented by

∆−(dn)
ε1ε2...εn−1εn[dn+1−1]0[dn+3−1]0[dn+5−1]... = ∆−(dn)

ε1ε2...εn−1[εn−1]0[dn+2−1]0[dn+4−1]0[dn+6−1....

The rest of the numbers from [0; 1] are called nega-(dn)-irrational numbers
and have a unique nega-(dn)-representation.

2. The Object of Research

Let P = ||pi,n|| be a given matrix such that n = 1, 2, . . . and i = 0, dn − 1.
For the matrix, the following system of the properties holds:





1◦. ∀n ∈ N : pi,n ∈ (−1; 1);

2◦. ∀n ∈ N :
dn−1∑

i=0

pi,n = 1;

3◦. ∀(in), in ∈ Adn :
∞∏

n=1

|pin,n| = 0;

4◦. ∀in ∈ Adn \ {0} : 1 > βin,n =
in−1∑

i=0

pi,n > β0,n = 0.
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Let x = ∆−(dn)
ε1ε2...εn.... Consider the function

F̃ (x) = βε1(x),1 +
∞∑

n=2


β̃εn(x),n

n−1∏

j=1

p̃εj(x),j


,

where

β̃εn(x),n =

{
βεn(x),n, if n is an odd number,
βdn−1−εn(x),n, if n is an even number,

p̃εn(x),n =

{
pεn(x),n, if n is an odd number,
pdn−1−εn(x),n, if n is an even number.

To study other methods of defining the considered functions, we use the re-
lation between representations of real numbers by the positive Cantor series

ε1

d1
+

ε2

d1d2
+ . . . +

εn

d1d2 . . . dn
+ . . . ≡ ∆D

ε1ε2...εn...

and the alternating Cantor series

∞∑

n=1

1 + εn

d1d2 . . . dn
(−1)n+1 ≡ ∆−(dn)

ε1ε2...εn... ≡ ∆D
ε1[d2−1−ε2]ε3[d4−1−ε4]...

≡ ε1

d1
+

d2 − 1− ε2

d1d2
+ . . . .

It follows that
F̃ (x) = F (g(x)) = F ◦ g,

where

x = ∆−(dn)
ε1ε2...εn...

g→ ∆D
ε1[d2−1−ε2]...ε2n−1[d2n−1−ε2n]... = g(x) = y,

F

( ∞∑

n=1

εn

d1d2 . . . dn

)
= βε1,1 +

∞∑

n=2


βεn,n

n−1∏

j=1

pεj ,j


.

The notion of the shift operator of real number expansion by the positive
Cantor series is useful for studying the methods of defining the function F̃ .

Definition 2.3. A mapping ϕ̂, defined by

ϕ̂(x) = ϕ̂

( ∞∑

n=1

εn

d1d2 . . . dn

)
=

∞∑

n=2

εn

d2d3 . . . dn
,

is called a shift operator of expansion of the number x = ∆D
ε1ε2...εn... by the positive

Cantor series (1).
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That is, ϕ̂(x) = d1x− ε1(x) ≡ d1∆D
0ε2ε3.... In addition,

ϕ̂k(x) =
∞∑

n=k+1

εn

dk+1dk+2 . . . dn
≡ d1d2 . . . dk∆D

0 . . . 0︸ ︷︷ ︸
k

εk+1εk+2εk+3...

and
i

dk
+

ϕ̂k(x)
dk

= d1d2 . . . dk−1∆D
0 . . . 0︸ ︷︷ ︸

k−1

iεk+1εk+2εk+3...
= ϕ̂k−1(x), (4)

where i is a k-th digit in the D-representation (representation by the positive
Cantor series) ∆D

ε1ε2...εn... of x.
It is easy to see that the function F̃ is a unique solution of the following

infinite functional equations systems (the systems are equivalent because equality
(4) holds) in the class of determined and bounded on [0; 1] functions:

•
f

(
ĩ(x) + ϕ̂k(y)

dk

)
= β̃i(x),k + p̃i(x),k · f(ϕ̂k(y)),

where k = 1, 2, . . . , and i ∈ Adk
, i(x) is a k-th digit in the nega-(dn)-

representation ∆−(dn)
ε1ε2...εn... of x,

ĩ(x) =

{
i(x), if k is odd;
dk − 1− i(x), if k is even;

•
f(ϕ̂k(y)) = β̃εk+1(x),k+1 + p̃εk+1(x),k+1f(ϕ̂k+1(y)),

where k=0, 1, 2, . . . , and εk+1∈Adk+1
, y=∆D

ε1[d2−1−ε2]ε3...[d2n−1−ε2n]ε2n+1....

Really,

F̃ (x) = βε1(x),1 +
k∑

n=2


β̃εn(x),n

n−1∏

j=1

p̃εj(x),j


 +




k∏

j=1

p̃εj(x),j


 · f(ϕ̂k(y)),

where y = ∆D
ε1(x)[d2−1−ε2(x)]ε3(x)[d4−1−ε4(x)].... Using the limit transition as k →∞

in the last-mentioned equality, we get the proving proposition is true, because
the function F̃ is determined and bounded on [0; 1] and the third property of the
matrix P holds.

The main proposition of the present section is the well-posedness of definition
of the function.

64 Journal of Mathematical Physics, Analysis, Geometry, 2017, vol. 13, No. 1



Continuous Functions with Complicated Local Structure

Lemma 3. The values of the function y = F̃ (x) for different representations
of nega-(dn)-rational numbers from [0; 1] are equal.

P r o o f. Consider a nega-(dn)-rational number x and the following difference:

δ = F̃ (∆−(dn)
ε1...εn−1εn[dn+1−1]0[dn+3]0...)− F̃ (∆−(dn)

ε1...εn−1[εn−1]0[dn+2−1]0[dn+4−1]0...)

=




n−1∏

j=1

p̃εj ,j


 [(β̃εn,n + β̃dn+1−1,n+1p̃εn,n + β̃0,n+2p̃εn,np̃dn+1−1,n+1

+β̃dn+3−1,n+3p̃εn,np̃dn+1−1,n+1p̃0,n+2 + ...)− (β̃εn−1,n + β̃0,n+1p̃εn−1,n

+β̃dn+2−1,n+2p̃εn−1,np̃0,n+1 + β̃0,n+3p̃εn−1,np̃0,n+1p̃dn+2−1,n+2 + . . .)].

If n is even, then

δ =




n−1∏

j=1

p̃εj ,j


 [βdn−1−εn,n + βdn+1−1,n+1pdn−1−εn,n

+pdn−1−εn,n

∞∑

k=2


βdn+k−1,n+k

k−1∏

j=1

pdn+j−1,n+j


]−




n−1∏

j=1

p̃εj ,j




×

βdn−εn,n + β0,n+1pdn−εn,n + pdn−εn,n

∞∑

k=2


β0,n+k

k−1∏

j=1

p0,n+j







=




n−1∏

j=1

p̃εj ,j


 (−pdn−εn−1,n + (1− pdn+1−1,n+1)pdn−εn−1,n

+pdn−εn−1,n

∞∑

k=2


(1− pdn+k−1,n+k)

k−1∏

j=1

pdn+j−1,n+j


) = 0.

If n is odd, then

δ = (pεn−1,n − (1− pdn+1−1,n+1)pεn−1,n

−(1− pdn+2−1,n+2)pεn−1,npdn+1−1,n+1 − . . .)
n−1∏

j=1

p̃εj ,j = 0.
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3. Continuity and Monotonicity

Theorem 3. The function F̃ is:

• continuous;

• monotonic non-decreasing if the elements of the matrix P are non-negative,
and strictly increasing if all elements of the matrix P are positive.

P r o o f. Continuity. Let x0 = ∆−(dn)
ε1(x0)ε2(x0)...εn0 (x0)εn0+1(x0)... be an arbitrary

number from the interval [0; 1] and x = ∆−(dn)
ε1(x)ε2(x)...εn0 (x)εn0+1(x)... be a number

such that εj(x) = εj(x0) for j = 1, n0 − 1, and εn0(x) 6= εn0(x0). Consider the
difference

F̃ (x)− F̃ (x0) =




n0−1∏

j=1

p̃εj(x0),j




(
F̃ (ϕ̂n0−1(x))− F̃ (ϕ̂n0−1(x0))

)
.

So,

|F̃ (x)− F̃ (x0)| ≤



n0−1∏

j=1

|p̃εj(x0),j |

 ≤

(
max

j=1,n0−1
|p̃εj(x0),j |

)n0−1

→ 0 (n0 →∞).

The last-mentioned condition and limx→x0 F̃ (x) = F̃ (x0) are equivalent.
Really, the conditions x → x0 and n0 → ∞ are equivalent for the nega-

(dn)-irrational number x0. It follows that the function F̃ is continuous at each
nega-(dn)-irrational point.

Let x0 be a nega-(dn)-rational number. In this case, a continuity of the
function F̃ at nega-(dn)-rational point x0 can be proved by the notion of unilateral
borders for the cases of odd and even n0.

Monotonicity. Let the elements pi,n of the matrix P be non-negative. It is
obvious that

F̃ (0) = F̃ (∆−(dn)
0[d2−1]0[d4−1]...) = β0,1 +

∞∑

n=2


β0,n

n−1∏

j=1

p0,j


 = min

x∈[0;1]
F̃ (x) = 0,

F̃ (1) = F̃ (∆−(dn)
[d1−1]0[d3−1]0...) = βd1−1,1 +

∞∑

n=2


βdn−1,n

n−1∏

j=1

pdj−1,j




= max
x∈[0;1]

F̃ (x) = 1.
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Let x1 = ∆−(dn)
ε1(x1)ε2(x1)...εn(x1)... and x2 = ∆−(dn)

ε1(x2)ε2(x2)...εn(x2)... be such that
x1 < x2. It is obvious that there exists n0 such that εj(x1) = εj(x2) for all
j = 1, n0 − 1, and εn0(x1) < εn0(x2) in the case of an odd n0, or εn0(x1) >
εn0(x2) in the case of an even n0.

Thus,

F̃ (x2)− F̃ (x1) =




n0−1∏

j=1

p̃εj(x2),j


 (β̃εn0(x2),n0

− β̃εn0(x1),n0

+
∞∑

m=1


β̃εn0+m(x2),n0+m

m−1∏

j=0

p̃εn0+j(x2),n0+j




−
∞∑

m=1


β̃εn0+m(x1),n0+m

m−1∏

j=0

p̃εn0+j(x1),n0+j


).

Since

κ =
∞∑

m=1


β̃εn0+m(x2),n0+m

m−1∏

j=0

p̃εn0+j(x2),n0+j




−
∞∑

m=1


β̃εn0+m(x1),n0+m

m−1∏

j=0

p̃εn0+j(x1),n0+j




≥ −
∞∑

m=1


β̃εn0+m(x1),n0+m

m−1∏

j=0

p̃εn0+j(x1),n0+j


,

where in the case of an odd n0

κ≥−pεn0 (x1),n0
(1− pdn0+1−1,n0+1 +

∞∑

m=2


(1− pdn0+m−1,n0+m)

m−1∏

j=1

pdn0+j−1,n0+j


)

= −pεn0 (x1),n0
,

for the case of an even n0 we have

κ ≥ −pdn0−1−εn0 (x1),n0

(
max

x∈[0,1]
F̃ (ϕ̂n0(x1))

)
= −pdn0−1−εn0 (x1),n0

.

Hence, if n0 is odd, then

F̃ (x2)− F̃ (x1) =




n0−1∏

j=1

p̃εj(x2),j


 (β̃εn0 (x2),n0

− β̃εn0 (x1),n0
+ κ)
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≥



n0−1∏

j=1

p̃εj(x2),j


 (pεn0 (x1),n0

+pεn0 (x1)+1,n0
+ . . .+pεn0 (x2)−1,n0

−pεn0 (x1),n0
) ≥ 0.

If n0 is even, then

F̃ (x2)− F̃ (x1) =




n0−1∏

j=1

p̃εj(x2),j


 · (β̃εn0 (x2),n0

− β̃εn0(x1),n0
+ κ)

=

(
n0−1∏

i=1

p̃i,εi(x2)

)
(pdn0−1−εn0 (x1),n0

+ pdn0−εn0 (x1),n0
+ . . .

+pdn0−2−εn0 (x2),n0
− pdn0−1−εn0 (x1),n0

) ≥ 0.

It is easy to see that the condition F̃ (x2) − F̃ (x1) > 0 holds if all elements
pi,n of the matrix P are positive.

Let the elements pi,n of P be non-negative.
Let η be a random variable defined by the Cantor expansion

η =
ξ1

d1
+

ξ2

d1d2
+

ξ3

d1d2d3
+ . . . +

ξk

d1d2 . . . dk
+ . . . ≡ ∆D

ξ1ξ2...ξk...,

where

ξk =

{
εk, if k is odd;
dk − 1− εk, if k is even,

and the digits ξk (k = 1, 2, 3, . . .) are random and take the values 0, 1, . . . , dk − 1
with probabilities p0,k, p1,k, . . . , pdk−1,k. That is, ξk are independent, and P{ξk =
ik} = pik,k, ik ∈ Adk

.
From the definition of the distribution function and the expressions

{η < x} = {ξ1 < ε1(x)} ∪ {ξ1 = ε1(x), ξ2 < d2 − 1− ε2(x)} ∪ . . .

∪{ξ1 = ε1(x), ξ2 = d2 − 1− ε2(x), . . . , ξ2k−1 < ε2k−1(x)}
∪{ξ1 = ε1(x), ξ2 = d2−1−ε2(x), . . . , ξ2k−1 = ε2k−1(x), ξ2k < d2k−1−ε2k(x)}∪. . . ,

P{ξ1 = ε1(x), ξ2 = d2 − 1− ε2(x), . . . , ξ2k−1 < ε2k−1(x)}

= βε2k−1(x),2k−1

2k−2∏

j=1

p̃εj(x),j

and
P{ξ1 = ε1(x), ξ2 = d2 − 1− ε2(x), . . . , ξ2k < d2k − 1− ε2k(x)}
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= βd2k−1−ε2k(x),2k

2k−1∏

j=1

p̃εj(x),j ,

it is easy to see that the following proposition is a corollary of the last-mentioned
theorem.

Corollary 3.1. The distribution function F̃η of the random variable η has the
form

F̃η(x) =





0, x < 0;

βε1(x),1 +
∑∞

k=2

[
β̃εk(x),k

∏k−1
j=1 p̃εj(x),j

]
, 0 ≤ x < 1;

1, x ≥ 1,

where p̃εj(x),j
≥ 0.

4. Integral Properties

Theorem 4. The Lebesgue integral of the function F̃ can be calculated by the
formula ∫ 1

0
F̃ (x)dx =

∞∑

n=1

β̃0,n + β̃1,n + β̃2,n + ... + β̃dn−1,n

d1d2...dn
.

P r o o f. Denote y = g(x) (the function g was defined in Section 2.). Using
the definition of F̃ (and the properties of F̃ that follow from different ways of
defining the function) and the properties of the Lebesgue integral, we have

1∫

0

F̃ (x)dx =

1
d1∫

0

F (y)dy +

2
d1∫

1
d1

F (y)dy + . . . +
∫ 1

d1−1
d1

F (y)dy

=

1
d1∫

0

p0,1F (ϕ̂(y))dy +

2
d1∫

1
d1

[p0,1 + p1,1F (ϕ̂(y))] dy

+

3
d1∫

2
d1

[β2,1 + p2,1F (ϕ̂(y))] dy + . . . +

1∫

d1−1
d1

[βd1−1,1 + pd1−1,1F (ϕ̂(y))] dy.

Since y = ε1
d1

+ 1
d1

ϕ̂(y) and dy = 1
d1

d(ϕ̂(y)), then

1∫

0

F̃ (x)dx =
p0,1

d1

1∫

0

F (ϕ̂(y))d(ϕ̂(y))+β1,1y|
2

d1
1

d1

+
p1,1

d1

1∫

0

F (ϕ̂(y))d(ϕ̂(y))+β2,1y|
3

d1
2

d1
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+
p2,1

d1

1∫

0

F (ϕ̂(y))d(ϕ̂(y)) + . . . + βd1−1,1y|1d1−1
d1

+
pd1−1,1

d1

1∫

0

F (ϕ̂(y))d(ϕ̂(y))

=
β1,1 + β2,1 + . . . + βd1−1,1

d1
+

1
d1

1∫

0

F (ϕ̂(y))d(ϕ̂(y)).

Analogously, from the relation between D-representation and nega-(dn)-representation,
it follows that

1∫

0

F (ϕ̂(y))d(ϕ̂(y)) =

1∫

d2−1
d2

p0,2F (ϕ̂2(y))d(ϕ̂(y))

+

d2−1
d2∫

d2−2
d2

[
β1,2 + p1,2F (ϕ̂2(y))

]
d(ϕ̂(y))+. . .+

1
d2∫

0

[
βd2−1,2 + pd2−1,2F (ϕ̂2(y))

]
d(ϕ̂(y)).

Since ϕ̂(y) = d2−1−ε2
d2

+ 1
d2

ϕ̂2(y) and d(ϕ̂(y)) = 1
d2

d(ϕ̂2(y)), we obtain

1∫

0

F (ϕ̂(y))d(ϕ̂(y)) =
p0,2

d2

1∫

0

F (ϕ̂2(y))d(ϕ̂2(y)) + β1,2y|
d2−1

d2
d2−2

d2

+
p1,2

d2

1∫

0

F (ϕ̂2(y))d(ϕ̂2(y)) + . . . + βd2−1,2y|
1

d2
0 +

pd2−1,2

d2

1∫

0

F (ϕ̂2(y))d(ϕ̂2(y))

=
β1,2 + β2,2 + . . . + βd2−1,2

d2
+

1
d2

1∫

0

F (ϕ̂2(y))d(ϕ̂2(y)).

So,
1∫

0

F̃ (x)dx =
β1,1 + β2,1 + . . . + βd1−1,1

d1

+
β1,2 + β2,2 + . . . + βd2−1,2

d1d2
+

1
d1d2

1∫

0

F (ϕ̂2(y))d(ϕ̂2(y)).
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Analogously,

1∫

0

F̃ (x)dx =
n∑

j=1

β̃0,j + β̃1,j + β̃2,j + . . . + β̃dj−1,j

d1d2 . . . dj

+
1

d1d2 . . . dn

∫ 1

0
F (ϕ̂n(y))d(ϕ̂n(y)).

Continuing the process indefinitely, we obtain

1∫

0

F̃ (x)dx =
∞∑

n=1

β̃0,n + β̃1,n + β̃2,n + . . . + β̃dn−1,n

d1d2 . . . dn
.

5. Self-affine Properties

Theorem 5. If the elements pi,n of the matrix P are positive, then the graph
ΓF̃ of the function F̃ in the space R2 is the set

ΓF̃ =
⋃

x∈[0;1]

(x; . . . ◦ ψεn,n ◦ . . . ◦ ψε2,2 ◦ ψε1,1(x)),

where x = ∆D
ε1[d2−1−ε2]ε3[d4−1−ε4]...,

ψin,n :





x
′
=

1
dn

x +
ωin,n

dn
;

y
′
= β̃in,n + p̃in,ny,

ωin,n =

{
in, if n is odd;
dn − 1− in, if n is even,

in ∈ Adn.

P r o o f. Since the following expressions

f(x) = βi,1 + pi,1f(ϕ̂(x)),

f

(
i + x

d1

)
= βi,1 + pi,1f(x)
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are equivalent for x = ∆D
ε1[d2−1−ε2]ε3[d4−1−ε4]..., it is obvious that

ψi1,1 :





x
′
=

1
d1

x +
i1
d1

;

y
′
= βi1,1 + pi1,1y.

Consider the affine transformations ψi,2, i = 0, d2 − 1. Since the expressions

f(ϕ̂(x)) = βd2−1−i,2 + pd2−1−i,2f(ϕ̂2(x)),

f

(
d2 − 1− i + ϕ̂(x)

d2

)
= βd2−1−i,2 + pd2−1−i,2f(ϕ̂(x))

are equivalent, we have

ψi2,2 :





x
′
=

1
d2

x +
d2 − 1− i2

d2
;

y
′
= βd2−1−i2,2 + pd2−1−i2,2y.

By induction, we obtain

ψin,n :





x
′
=

1
dn

x +
ωin,n

dn
;

y
′
= β̃in,n + p̃in,ny.

So, ⋃

x∈[0;1]

(x; . . . ◦ ψεn,n ◦ . . . ◦ ψε2,2 ◦ ψε1,1(x)) ≡ G ⊂ ΓF̃ .

Let T (x0, F̃ (x0)) ∈ ΓF̃ . Consider a point xn = ϕ̂n(x0), where x0 =
∆D

ε1[d2−1−ε2]ε3[d4−1−ε4]... is a fixed point from [0; 1].
Since for any n ∈ N, εn and dn − 1− εn belong to Adn ,

f
(
ϕ̂k(x0)

)
= β̃εk+1,k+1 + p̃εk+1,k+1f

(
ϕ̂k+1(x0)

)
, k = 0, 1, . . .

and from T
(
ϕ̂k(x0); F̃

(
ϕ̂k(x0)

)) ∈ ΓF̃ , it follows that

ψik,k ◦ . . . ◦ ψi2,2 ◦ ψi1,1

(
T

)
= T0(x0; F̃ (x0)) ∈ ΓF̃ , ik ∈ Adk

, k →∞.

Therefore, ΓF̃ ⊂ G, and thus

ΓF̃ =
⋃

x∈[0;1]

(x; . . . ◦ ψεn,n ◦ . . . ◦ ψε2,2 ◦ ψε1,1(x)).
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6. Differential Properties when the Elements of the Matrix P
are Non-negative

Let the elements pi,n of the matrix P be non-negative.

Definition 6.4. Let c1, c2, . . . , cn be an ordered set of integer numbers such
that ci ∈ Adi for all i = 1, n.

A cylinder ∆−(dn)
c1c2...cn of rank n with the base c1c2 . . . cn is called a set of all

numbers from [0; 1] such that the first n digits of the nega-(dn)-representation of
the numbers are equal to c1, c2, . . . , cn. That is,

∆−(dn)
c1c2...cn

≡
{

x : x = ∆−(dn)
c1c2...cnεn+1...εn+k..., εn+k ∈ Adn+k

}
.

Definition 6.5. The change µF̃ in the function F̃ on the cylinder ∆−(dn)
c1c2...cn

is called a value µF̃

(
∆−(dn)

c1c2...cn

)
defined by the equality

µF̃

(
∆−(dn)

c1c2...cn

)
= F̃

(
sup∆−(dn)

c1c2...cn

)
− F̃

(
inf ∆−(dn)

c1c2...cn

)
.

Lemma 4. The following equalities are true:

1.

µF̃

(
∆−(dn)

c1c2...cn

)
=

n∏

j=1

p̃cj ,j ≥ 0.

2. Let x0 = ∆−(dn)
ε1ε2...εn... be a nega-(dn)-irrational point, then

F̃
′
(x0) = lim

n→∞




n∏

j=1

dj p̃εj ,j


.

P r o o f.

1. Calculate the change µF̃ in the function F̃ on the cylinders ∆−(dn)
c1c2...cn . That

is, on the following closed intervals:
[
∆−(dn)

c1c2...c2n−1[d2n−1]0[d2n+2−1]0[d2n+4−1]...; ∆
−(dn)
c1c2...c2n−10[d2n+1−1]0[d2n+3−1]...

]
,

[
∆−(dn)

c1c2...c2n0[d2n+2−1]0[d2n+4−1]...;∆
−(dn)
c1c2...c2n[d2n+1−1]0[d2n+3−1]0[d2n+5−1]...

]
.

µF̃

(
∆−(dn)

c1c2...c2n−1

)
= F̃

(
∆−(dn)

c1c2...c2n−10[d2n+1−1]0[d2n+3−1]...

)
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−F̃
(
∆−(dn)

c1c2...c2n−1[d2n−1]0[d2n+2−1]0[d2n+4−1]...

)
=




2n−1∏

j=1

p̃cj ,j




×(βd2n−1,2n+βd2n+1−1,2n+1pd2n−1,2n+βd2n+2−1,2n+2pd2n−1,2npd2n+1−1,2n+1+. . .)

=




2n−1∏

j=1

p̃cj ,j


 (1− pd2n−1,2n + (1− pd2n+1−1,2n+1)pd2n−1,2n

+(1− pd2n+2−1,2n+2)pd2n−1,2npd2n+1−1,2n+1 + . . .) =




2n−1∏

j=1

p̃cj ,j


 .

Analogously,

µF̃

(
∆−(dn)

c1c2...c2n

)
= F̃

(
∆−(dn)

c1c2...c2n[d2n+1−1]0[d2n+3−1]0[d2n+5−1]...

)

−F̃
(
∆−(dn)

c1c2...c2n0[d2n+2−1]0[d2n+4−1]...

)

=




2n∏

j=1

p̃cj ,j


 (βd2n+1−1,2n+1 + βd2n+2−1,2n+2pd2n+1−1,2n+1

+βd2n+3−1,2n+3pd2n+1−1,2n+1pd2n+2−1,2n+2 + . . .) =




2n∏

j=1

p̃cj ,j


 .

So,

µF̃

(
∆−(dn)

c1c2...cn

)
=




n∏

j=1

p̃cj ,j


 ≥ 0.

2. Find the derivative of F̃ at the nega-(dn)-irrational point x0 = ∆−(dn)
ε1ε2...εn....

Since

x0 = ∆−(dn)
ε1ε2...εn... =

∞⋂

n=1

∆−(dn)
ε1ε2...εn

,

we have

F̃
′
(x0) = lim

n→∞

µF̃

(
∆−(dn)

ε1ε2...εn

)

|∆−(dn)
ε1ε2...εn |

= lim
n→∞

∏n
j=1 p̃εj ,j

1
d1d2...dn

= lim
n→∞




n∏

j=1

dj p̃εj ,j


 =

∞∏

j=1

(
dj p̃εj ,j

)
.
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Since the function under consideration is continuous and monotonic (by the
Lebesgue theorem), it has a finite derivative almost everywhere in the sense of
the Lebesgue measure. But F̃

′
(x0) = ∞ in the case when the condition an =

dnp̃εn,n > 1 holds for all positive integers n except perhaps a finite number of n.
Therefore,

• if an ≥ 1 holds for a finite set of values n, then F̃
′
(x0) = 0;

• if an = 1 for all n ∈ N (it is true only for F̃ (x) = x), then F̃
′
(x0) = 1;

• if pεn,n 6= 1
dn

holds only for a finite set of values n, then 0 ≤ F̃
′
(x0) < ∞.

7. Nondifferentiable Functions

Let pi,n ∈ (−1; 1) for all n ∈ N, i = 0, dn − 1.
In this case, it follows from the statement 1 of Lemma 4 that the function

F̃ does not have any arbitrary small monotonicity interval if for each n ∈ N the
numbers pi,n, where i = 0, dn − 1, are either non-negative or negative.

Theorem 6. Let pεn,npεn−1,n < 0 for all n ∈ N, εn ∈ Adn \ {0}, and the
conditions

lim
n→∞

n∏

k=1

dkp0,k 6= 0, lim
n→∞

n∏

k=1

dkpdk−1,k 6= 0

hold simultaneously. Then the function F̃ is nowhere differentiable on [0; 1].

P r o o f. Choose some nega-(dn)-rational point x0:

x0 = ∆−(dn)
ε1ε2...εn−1εn[dn+1−1]0[dn+3−1]... = ∆−(dn)

ε1ε2...εn−1[εn−1]0[dn+2−1]0[dn+4−1]...,

where εn 6= 0.
Let us introduce some notations. Let n be odd, then

x0 =x
(1)
0 =∆−(dn)

ε1ε2...εn−1εn[dn+1−1]0[dn+3−1]...=∆−(dn)
ε1ε2...εn−1[εn−1]0[dn+2−1]0[dn+4−1]...=x

(2)
0

and

x0 =x
(1)
0 =∆−(dn)

ε1ε2...εn−1[εn−1]0[dn+2−1]0[dn+4−1]...=∆−(dn)
ε1ε2...εn−1εn[dn+1−1]0[dn+3−1]...=x

(2)
0

in the case of even number n.
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Let us consider the sequences (x
′
k), (x

′′
k) such that

x
′
k =





∆−(dn)
ε1...εn−1εn[dn+1−1]0[dn+3−1]0...[dn+k−1−1]1[dn+k+1−1]0[dn+k+3−1]...,

n ∈ O, k ∈ E;
∆−(dn)

ε1...εn−1εn[dn+1−1]0...[dn+k−2−1]0[dn+k−2]0[dn+k+2−1]0[dn+k+4−1]...,

n ∈ O, k ∈ O;
∆−(dn)

ε1...εn−1[εn−1]0[dn+2−1]0[dn+4−1]0...[dn+k−1−1]1[dn+k+1−1]0[dn+k+3−1]...,

n ∈ E, k ∈ O;
∆−(dn)

ε1...εn−1[εn−1]0[dn+2−1]0...[dn+k−2−1]0[dn+k−2]0[dn+k+2−1]0[dn+k+4−1]...,

n ∈ E, k ∈ E,

x
′′
k =





∆−(dn)
ε1...εn−1[εn−1]0[dn+2−1]0...[dn+k−1−1]00[dn+k+2−1]0[dn+k+4−1]...,

n ∈ O, k ∈ O;
∆−(dn)

ε1...εn−1[εn−1]0[dn+2−1]0...[dn+k−1][dn+k+1−1]0[dn+k+3−1]0[dn+k+5−1]...,

n ∈ O, k ∈ E;
∆−(dn)

ε1...εn−1εn[dn+1−1]0[dn+3−1]...0[dn+k−1][dn+k+1−1]0[dn+k+3−1]...,

n ∈ E, k ∈ O;
∆−(dn)

ε1...εn−1εn[dn+1−1]0...[dn+k−1−1]00[dn+k+2−1]0[dn+k+4−1]0[dn+k+6−1]...,

n ∈ E, k ∈ E,

where O is a set of all odd positive integers and E is a set of all even positive
integers.

That is,

x
′
k = x

(1)
0 +

1
d1d2 . . . dn+k

,

x
′′
k = x

(2)
0 − 1

d1d2 . . . dn+k
,

and x
′
k → x0, x

′′
k → x0 as k →∞.

Let n be an odd number. Then

y
(1)
0 = g(x(1)

0 ) = ∆D
ε1[d2−1−ε2]ε3[d4−1−ε4]ε5...[dn−1−1−εn−1]εn(0),

y
(2)
0 =g(x(2)

0 )=∆D
ε1[d2−1−ε2]ε3[d4−1−ε4]...[dn−1−1−εn−1][εn−1][dn+1−1][dn+2−1][dn+3−1]...,

y
′
k = g(x

′
k)=∆D

ε1[d2−1−ε2]ε3[d4−1−ε4]...[dn−1−1−εn−1]εn 0...0︸︷︷︸
k−1

1(0)
,

y
′′
k =g(x

′′
k)=∆D

ε1[d2−1−ε2]ε3[d4−1−ε4]...[dn−1−1−εn−1][εn−1][dn+1−1][dn+2−1]...[dn+k−1](0),

where F̃ (x) = F (g(x)) = F ◦ g.
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Hence,

F̃ (x
′
k) = F (y

′
k) = βε1,1 +

n−1∑

t=2


β̃εt,t

t−1∏

j=1

p̃εj ,j


 + βεn,n

n−1∏

j=1

p̃εj ,j

+

(
n+k−1∑

l=n+1

(
β0,l

l−1∏

m=n+1

p0,m

))


n∏

j=1

p̃εj ,j


 + β1,n+k




n∏

j=1

p̃εj ,j




(
n+k−1∏

m=n+1

p0,m

)
,

F̃ (x(1)
0 ) = F (y(1)

0 ) = βε1,1 +
n−1∑

t=2


β̃εt,t

t−1∏

j=1

p̃εj ,j


 + βεn,n

n−1∏

j=1

p̃εj ,j .

Therefore,

F̃ (x
′
k)− F̃ (x(1)

0 ) = β1,n+k




n∏

j=1

p̃εj ,j




(
n+k−1∏

m=n+1

p0,m

)
=




n∏

j=1

p̃εj ,j




(
n+k∏

m=n+1

p0,m

)
.

In addition,

F̃ (x(2)
0 ) = F (y(2)

0 ) = βε1,1 +
n−1∑

t=2


β̃εt,t

t−1∏

j=1

p̃εj ,j


 + βεn−1,n

n−1∏

j=1

p̃εj ,j

+pεn−1,n




n−1∏

j=1

p̃εj ,j




( ∞∑

l=n+1

[
βdl−1,l

l−1∏

m=n+1

pdm−1,m

])
,

F̃ (x
′′
k) = F (y

′′
k ) = βε1,1 +

n−1∑

t=2


β̃εt,t

t−1∏

j=1

p̃εj ,j


 + βεn−1,n

n−1∏

j=1

p̃εj ,j

+pεn−1,n




n−1∏

j=1

p̃εj ,j




(
n+k∑

l=n+1

[
βdl−1,l

l−1∏

m=n+1

pdm−1,m

])
.

Hence,

F̃ (x(2)
0 )− F̃ (x

′′
k) = pεn−1,n




n−1∏

j=1

p̃εj ,j




(
n+k∏

m=n+1

pdm−1,m

)
.

Let n be an even number. In this case,

y
(1)
0 = g(x(1)

0 ) = ∆D
ε1[d2−1−ε2]ε3[d4−1−ε4]...εn−1[dn−εn](0),
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y
(2)
0 = g(x(2)

0 ) = ∆D
ε1[d2−1−ε2]ε3[d4−1−ε4]...εn−1[dn−εn−1][dn+1−1][dn+2−1]...,

y
′
k = g(x

′
k) = ∆D

ε1[d2−1−ε2]ε3[d4−1−ε4]...εn−1[dn−εn]0 . . . 0︸ ︷︷ ︸
k−1

1(0)
,

y
′′
k = g(x

′′
k) = ∆D

ε1[d2−1−ε2]ε3[d4−1−ε4]...εn−1[dn−1−εn][dn+1−1][dn+2−1]...[dn+k−1](0).

Thus,

F̃ (x
′
k) = F (y

′
k) = βε1,1 +

n−1∑

t=2


β̃εt,t

t−1∏

j=1

p̃εj ,j


 + βdn−εn,n

n−1∏

j=1

p̃εj ,j

+β1,n+k




n−1∏

j=1

p̃εj ,j




(
n+k−1∏

m=n+1

p0,m

)
pdn−εn,n,

F̃ (x(1)
0 ) = F (y(1)

0 ) = βε1,1 +
n−1∑

t=2


β̃εt,t

t−1∏

j=1

p̃εj ,j


 + βdn−εn,n

n−1∏

j=1

p̃εj ,j .

Therefore,

F̃ (x
′
k)− F̃ (x(1)

0 ) = β1,n+k




n−1∏

j=1

p̃εj ,j




(
n+k−1∏

m=n+1

p0,m

)
pdn−εn,n

=




n−1∏

j=1

p̃εj ,j




(
n+k∏

m=n+1

p0,m

)
pdn−εn,n.

In addition,

F̃ (x(2)
0 ) = F (y(2)

0 ) = βε1,1 +
n−1∑

t=2


β̃εt,t

t−1∏

j=1

p̃εj ,j


 + βdn−1−εn,n

n−1∏

j=1

p̃εj ,j

+




n∏

j=1

p̃εj ,j




( ∞∑

l=n+1

[
βdl−1,l

l−1∏

m=n+1

pdm−1,m

])
,

F̃ (x
′′
k) = F (y

′′
k ) = βε1,1 +

n−1∑

t=2


β̃εt,t

t−1∏

j=1

p̃εj ,j


 + βdn−1−εn,n

n−1∏

j=1

p̃εj ,j

+




n∏

j=1

p̃εj ,j




(
n+k∑

l=n+1

[
βdl−1,l

l−1∏

m=n+1

pdm−1,m

])
.
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Hence,

F̃ (x(2)
0 )− F̃ (x

′′
k) = pdn−1−εn,n




n−1∏

j=1

p̃εj ,j




(
n+k∏

m=n+1

pdm−1,m

)
.

Thus,

B
′
k =

F̃ (x
′
k)− F̃ (x0)
x
′
k − x0

=





(dnpεn,n)
(∏n−1

j=1 dj p̃εj ,j

) (∏n+k
m=n+1 dmp0,m

)
,

n is an odd;

(dnpdn−εn,n)
(∏n−1

j=1 dj p̃εj ,j

)(∏n+k
m=n+1 dmp0,m

)
,

n is an even.

B
′′
k =

F̃ (x0)− F̃ (x
′′
k)

x0 − x
′′
k

=





(dnpεn−1,n)
(∏n−1

j=1 dj p̃εj ,j

)(∏n+k
m=n+1 dmpdm−1,m

)
,

n is an odd;

(dnpdn−1−εn,n)
(∏n−1

j=1 dj p̃εj ,j

)(∏n+k
m=n+1 dmpdm−1,m

)
,

n is an even.

Let us denote b0,k =
∏n+k

m=n+1 dmp0,m and bdk−1,k =
∏n+k

m=n+1 dmpdm−1,m.
Since

∏n−1
j=1 dj p̃εj ,j = const, pεn,npεn−1,n < 0, pdn−εn,npdn−1−εn,n < 0 and the

sequences (b0,k), (bdk−1,k) do not converge to 0 simultaneously (by the statement
of the theorem), we obtain the following cases:

1. If the inequalities dkp0,k > 1 and dkpdk−1,k > 1 hold for all k ∈ N except
perhaps a finite set of numbers k, then one of the sequences B

′
k, B

′′
k tends

to ∞, and another sequence tends to −∞;

2. If one of the products of dkp0,k, dkpdk−1,k is greater than 1, and another is
less than 1 for all k ∈ N except perhaps a finite set of numbers k, then one
of the sequences B

′
k, B

′′
k tends to ±∞, and another sequence tends to 0;

3. If one of the products of dkp0,k, dkpdk−1,k is greater than 1, and another is
equal to 1 for all k ∈ N except perhaps a finite set of numbers k, then one
of the sequences B

′
k, B

′′
k tends to ±∞, and another sequence is constant;

4. If one of the products of dkp0,k, dkpdk−1,k is less than 1, and another is
equal to 1 for all k ∈ N except perhaps a finite set of numbers k, then one
of the sequences B

′
k, B

′′
k tends to 0, and another sequence is constant;

5. If the products of dkp0,k, dkpdk−1,k are equal to 1 for all k ∈ N, then the
sequences B

′
k, B

′′
k are different constant sequences since the inequalities

pεn,n 6= pεn−1,n, pdn−εn,n 6= pdn−1−εn,n by the conditions pεk,k ∈ (−1; 1)
and βεk,k > 0 for εk > 0.
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Since limk→∞B
′
k 6= limk→∞B

′′
k holds in all possible cases, it follows that the

function F̃ is nowhere differentiable on [0; 1].
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