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1. Introduction

For modeling the functions with complicated local structure (singular, con-
tinuous nowhere differentiable, nowhere monotonic functions), various represen-
tations of real numbers are used widely in modern scientific researches [1, 2, 4, 9].
For example, the representations of numbers by positive and alternating series,
whose terms are reciprocal to positive integers or their products.

In the present paper, the application of the expansions of real numbers in
infinite series, whose terms are rational, to the construction of monotonic singular
and continuous nowhere monotonic functions is considered. Traditionally, the
simplest examples of these series are s-adic and nega-s-adic expansions.
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In 1869, the first time Georg Cantor [10] considered the expansions of real
numbers from [0; 1] in the positive series

ad £
Yo (1)
L dydy . dy,

where (d,,) is a fixed sequence of positive integers d,, > 1 and (Ag, ) is a sequence
of alphabets Ay, ={0,1,...,d, — 1}, e, € Ag,,.

In scientific literature the last-mentioned series is called the positive Cantor
series or Cantor series. It is easy to see that the representation of real numbers
by the Cantor series is a generalization of the s-adic numeral system. So it
would be logical to assume the possibility of representation of real numbers by
the alternating Cantor series

. (=1)"en
- 2

that [6] is a generalization of the nega-s-adic representation of real numbers.

Since 1869, the problem on necessary and sufficient conditions of the ratio-
nality of numbers defined by the positive Cantor series has remained open. The
last-mentioned problem was solved by the author of the present paper in [5].
Among the papers on finding the necessary or sufficient conditions of rationality
of numbers, represented by the positive Cantor series, we have [11]. In the paper,
A. Oppenheim studied mostly sufficient conditions of irrationality of numbers
defined not only by the positive series (1), but also (1) with positive and neg-
ative terms such that for the last-mentioned series the conditions |e;| < d; — 1
fori=1,2,3,..., and gne, < 0 for some m > i and n > 4, where ¢ is any fixed
integer, are true.

Investigations of the present paper are the generalization of studies of M. V.
Pratsiovytyi and A.V. Kalashnikov [3]. The similar functions, whose argument
was defined by the positive Cantor series, were studied by the author of the
present paper in [7, 8].

In the present paper, the main attention is given to the study of the main
properties of functions with complicated local structure whose arguments are
represented by the alternating Cantor series

1+¢
L Y| 3
2ty U en e A ®)

because the domain of definition of these functions is a closed interval [0; 1] and
each number from the interval can be represented by the last-mentioned series.
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Continuous Functions with Complicated Local Structure

Before turning to the basic research results, let us consider the problem on
belonging of expansions (2) and (3) to numeral systems.
Theorem 1. Each number x € [ag — 1;ag], where

n+1
Z d1d2

can be represented by the series (2) in not more than two ways.

Theorem 2. For any x € [0;1], there exist not more than two different se-
quences (ey,) such that

The proofs of Theorem 1 and Theorem 2 are similar, because the sequence
(dy) is fixed and it follows that ag = const.

Definition 1.1. The defining of an arbitrary number x from [ag — 1;ag] (or
from [0;1]) by the expansion in the alternating Cantor series (2) (or (3)) is called
a nega-D-expansion, where D = (dy,), (or nega-(d,)-expansion) of the number
z and is denoted by v = AZD _  (orz = A;(EQ )an ). The last-mentioned
notation is called the nega-D- representation (or nega-(dy,)-representation) of the
number x.

Theorem 1 follows from the next two lemmas.

Lemma 1. For any x € [ag — 1; ap], there exists a sequence (€y,) such that the
number x can be represented by the series (2).

Proof. It is obvious that

1)"ep D
ap = max{zdlde} B ofdy —110[da—1]0[do—1]0...

1)"8 D
ap — 1 = min {Z d1d2d} A[dl 1]0[ds—1]0[d5—1]0..."

Let = be an arbitrary number from (ag — 1;agp),

[e.e]

dog—1 — = d2k:—1
Zdl +Zd1

dq d% 1
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with 0 < g7 < d; — 1, and since

di—1 0o dk 1 . o) dk 1
gl = [ — ok—1—1 @ 2% —
(a0~ Lia0} = Iy U Zdl codog1’ Zdl

1=0

it is obtained that

N dopg — 1 > d2k—1
_ <z +—<
Zdl . dog—1 Zdl

Let x + 21 = z1. Then the following cases are obtained:
1. If the equality
d1
holds, then
_ A—D _ A—D .
r = Aal[dQ—l}O[d4—1}o... orr= A[q—1]0[d3—1]0[d5—1]0...’

2. If the equality is not true, then z = —2—1 + 21, where

> 1

doj—1 — €9 dog, —
<2 + .
d1d2 Z d1ds d2k 1 d1d2 Z dl ... day

In the same way, let o = 21 — df—zz. Then we have:

1. If the equality
i dop—1—1
didy ... dag—1
holds, then

-D -D
r= Aelsz[dgfl}()[ds,fl}o... orr = Asl[5271]0[d471}0[d571]0...'

2. In another case,
€1 €9
r=—— ——i—xg, where

di  did

ko 1— 1 d2k —1
— <12 < — Td d etc.
d1d2d3 Z didy .. .dog_1 2= d1d2d3 Z 5 didy ... da
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So, for the positive integer m,

dop—1 —1 (—1)™ e, dop — 1
Z A - < Ty — —L— " < Z L B

w2 ..dop_1 dids . .. dm+1 —  didy ... dyy
k> >mil

Moreover, the following cases are possible:
1. p )

2k—1— : 3 .

> ks me2 g g if m is an odd number;

Tm4+1 =
dop—1 : i
Dok Ml gy e if m is an even number.

In this case,

_ A-D
T = Aalaz...£m+1[dm+2—1}0[dm+4—1]0...
or
L= Aal Em[5m+1—1]0[ m+3— 1]0[dm+5 1}0
2. If there does not exist m € N such that the last-mentioned system is true,
then
m—+1
T = + T
Z dldg m+1-

Continuing the process indefinitely, we obtain

1-—_7_’_1- —_671_'_872_ €3 + +%+x —
T YT T A T didy  dydeds | dyde. .o dy, T

Hence,

= (D),
x_;dldg...dn

Lemma 2. The numbers

x=A"P andm—AD

€1€2...Em—1EMEmM+1-- E1€2...Em— 18m5m+1 ’

where &, # e m» are equal iff one of the systems

Em42i-1 = dm—l;2i—1 -1, Em42i = dm—l;Qi -1,
€7n+2z‘ =0 = Em+2i—1> or 5m+2i—1 =0 = Em+2ir
i =  dmy2i — 1, m+21 1 = dmg2i-1— 1,

Em = Em—1 -1 = &

is satisfied for all i € N.
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Proof. Necessity. Let e, =¢,, + 1. Then

0O=z—2 =AP —AP :&
FLEzEmotEmEmitt Q162 Em1EmEp 1 didy ... dm
+(_1)m+1(5m+1 - E;n—f—l) Em+i — 5;n+z‘ (=1)m+i 4
dids ... dpyq dvds...dp
I T P N R A
dids . ..dp, — dny1dmiz - Ay
v = i (_1)i(€m+i - m+z Z m-‘ri -1 -1
i—1 dm+1dm+2 m-‘rz dm+1dm+2 dm-‘ri

The last inequality becomes an equality only when
Em+2i = Emagi1 = 0 and epq2i-1 = dmy2i-1 — 1, €09, = dmg2i — 1.

That is, the conditions for the first system follow from the equality z = 2. It
is easy to see that the conditions for the second system follow from x = 2" under
the assumption that &, = &, + 1.

It is obvious that the sufficiency is true. [

Definition 1.2. A number z € [0;1] is called a nega-(dy,)-rational number if
it can be represented by

—(dn) _ A—(dn)
€1€2...en—16n[dn+1—1]0[dn4+3—1]0[dp4+5—1]... = Te1e2..en—1[en—1]0[dn+2—1]0[dn+4—1]0[dn+6—1..."

The rest of the numbers from [0;1] are called nega-(dy,)-irrational numbers
and have a unique nega-(d,)-representation.

2. The Object of Research

Let P = ||pin|| be a given matrix such that n = 1,2,... and i = 0,d,, — 1
For the matrix, the following system of the properties holds:

1°. VTLGN:pi,n € (71)1)7
dn—1
2 VnEN:ZPi,nZL
i=0
0
30_ V(Zn)7zn c Adn : H ‘plnyn‘ =0
n=1
in—1
4°, Vin € Agu \{0} : 1> Bin = Y Pin > fon =0
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Continuous Functions with Complicated Local Structure

Let x = A;(gti’i‘,),gnm. Consider the function

( 551 1+ Z ﬂsn (z),n H ps] ’

where
> Ben(z)ms if n is an odd number,
Pen(@n = o
Bdp—1—en(z)m> i 1 is an even number,
- Den(z),n if n is an odd number,
p n = . .
@) Pdy—1—en(x)n» 1L 1 is an even number.

To study other methods of defining the considered functions, we use the re-
lation between representations of real numbers by the positive Cantor series
€1 €2 €n

R ce _— — AD
di  didy e didsy . ..d, *- €162...n..

and the alternating Cantor series

o0

1 +5n ntl — A—(dn _ AD
Z dl 1) 1 = Ael(sg..)fn... = Ael[d2—1—52]53[d4—1—54]..‘

& d2—1—€2
_d1+ dids

It follows that
F(x)=F(g(x)) = Fouy,

where

dp,
T = Ae’;‘l(EQ )E _> Ael[dz 1— 82} Egn_l[d2n717€2n}... = g(x) =Y,

F (Z d1d2 ) Ber1 + Z Benmn HpSJ,j

The notion of the shift operator of real number expansion by the positive
Cantor series is useful for studying the methods of defining the function F'.

Definition 2.3. A mapping ¢, defined by

0-o (St ) S

1s called a shift operator of expansion of the number x = AQEQ...sn... by the positive
Cantor series (1).
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That is, $(z) = diz — e1(x) = d1 AL

Oeoes...

. In addition,

= didsy.. .dkAD
%1 dk+1dk+2 dy 1 0. k Qepyieniocris...
and
dk dk - 162 - - k-1 0 o 0i5k+15k+25k+3... - SD 9

k—1

where i is a k-th digit in the D-representation (representation by the positive

D
Cantor series) A/, . of x.

It is easy to see that the function F is a unique solution of the following
infinite functional equations systems (the systems are equivalent because equality
(4) holds) in the class of determined and bounded on [0; 1] functions:

[ ]
i(z) + PF(y ~ - .
f <()dk()> = Biteyk + iy - F(D° (W),
where £ = 1,2,..., and i € Ag,, i(x) is a k-th digit in the nega-(d,)-
representation A51(62 )5" cof x,
() = i(z), | if k is odd;
dip — 1 —i(x), if kis even,;
[
F@ W) = Bepyr @) btt + Pegss @i f (1)),
where k=0,1,2,..., and ex11€Aq, > ¥ A€1[d2 1—es]es[dan—1—eanleam o
Really,

k
( le 1 + Z ﬂen (z),n H Pe;(x + Hﬁsj(m),j ’ f(@k(y))a
j=1

where y = AD( Vida—1—ea(2)]es () [da—1—ea(2)]... . Using the limit transition as k — oo
in the last-mentioned equality, we get the proving proposition is true, because
the function F is determined and bounded on [0; 1] and the third property of the
matrix P holds.

The main proposition of the present section is the well-posedness of definition
of the function.
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Lemma 3. The values of the function y = F(z) for different representations
of nega-(dy,)-rational numbers from [0;1] are equal.

Proof. Consider anega-(d,)-rational number z and the following difference:

_ (A (dn) i A~ (dn)
0= F(Asl...an,len[dn+1—1]0[dn+3]0...) — F( al...an,l[en—l]o[dnw—1]0[dn+4—1]0...)

H ﬁ@j \J [(ﬂsn,n + 5dn+171,n+1]56n,n + /30,n+2]56n,nﬁdn+171,n+1
+Bd,s5—1,n43Pen nPdnsr—1,0+100.n42 + o) = (Ben—1,n + Bont1Pen—1,n

+Bdps0—1,n+2Den—1,0P0,n+1 + B0,n+3Den—1,0P0,n+1Pdpso—1,n42 + - - )]

If n is even, then

n—1
0= H ﬁEj,j [ﬁdn—l—sn,n + 6dn+1—1,n+1pdn—1—sn,n
Jj=1

00 k—1

n—1
+Dd,—1—en,n Z By s i—1,n+k H Pdpy;—1,n+j |- H Dejj
k=2 7j=1 7=1
00 k—1
X ﬁdn—sn,n =+ 50,n+1pdn—sn,n + Pd,,—enyn Z ﬂo,n—l—k H Po,n+j
k=2 j=1

n—1
= H ﬁaj,j (_pdn—sn—l,n + (1 - pdn+1—1,n+1)pdn_€n—1,n
Jj=1

00 k—1
+pdn7€n71,n Z (1 - pdn+k71,n+k) den+j71,n+j ) =0.
k=2 j=1

If n is odd, then
o= (pan—l,n - (1 - pdn+1—1,n+1)pan—l,n

n—1
—(1 = Pdpyo—1,n42)Pen—1,0Pdns1—1tl — ) H De;j = 0.
i=1
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3. Continuity and Monotonicity

Theorem 3. The function F is:
e continuous;

e monotonic non-decreasing if the elements of the matriz P are non-negative,
and strictly increasing if all elements of the matrix P are positive.

Proof. Continuity. Let xg = A_ (dn) be an arbitrary

e1(zo)e 2E 0)) -&ng (T0)eng+1(z0)--

61(; €2(2)...eng (2)eng+1(2). ..
such that €;(x) = ¢;(x0) for j = 1,n9 — 1, and &y, (z) # en,(z0). Consider the
difference

number from the interval [0;1] and z = A be a number

no—1

F(a) = Fao) = | [T be00 | (F@™ 7 (@) = F@" 7 (w0))
j=1

~ no—1 no—1
’F([E) _F(J"O)‘ < H ‘ﬁaj(ro),j‘ < < %ma (z0),J ) — 0 (TL() - OO)

Jj=1lno—1

The last-mentioned condition and lim, .., F'(x) = F(xq) are equivalent.

Really, the conditions * — zg and ng — oo are equivalent for the nega-
(d,, )-irrational number xg. It follows that the function F' is continuous at each
nega-(d,,)-irrational point.

Let zyp be a nega-(d,)-rational number. In this case, a continuity of the
function F at nega-(d, )-rational point zo can be proved by the notion of unilateral
borders for the cases of odd and even ny.

Monotonicity. Let the elements p;, of the matrix P be non-negative. It is
obvious that

i o
F(0) = F(Aggsjojds-1.. 601+Z ﬁMHpo,j = min Fla) =0,

F( ) F(A[dg 1]0[d3—1]O0... 5d1 1,1 + Z ﬂdn 1,n de -1,
= max F(z) =1
z€[0;1]
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Let 1 = AEI(&’;))EQ(II) en(21)... and zo = Asl(é’;))w(m) (@2)o be such that
x1 < x9. It is obvious that there exists ng such that ¢; (xl) = ¢gj(x9) for all
j= 1,np—1, and ep,(z1) < €ny(x2) in the case of an odd ng, or e,,(z1) >
€ng(z2) in the case of an even ng.

Thus,

no—1

F(xQ) - F(xl) = H paj (z2),J 55n0(:p2),n0 - Bsno(zﬂ,no

00 m—1
+ Z ﬁ Eng+m 12 ,no+m H psng-ﬁ—](xQ) no+Jj

m—1 j=0
00 ~ m—1
- Z (/85710+m($1)7n0+m H ﬁ5n0+j($1)7n0+j )-
m=1 §=0
Since
00 ~ m—1
K= Z ﬁz—:no_;,_m(acg),noer H ﬁsn0+j(w2),no+j
m—1 §=0
0o ~ m—1
- Z Bsn0+m(m1),no+m H ﬁsno_,_j(zl),no—i-j
m—1 §=0
00 _ m—1
> — Z ﬂen0+m(m1),no+m H ﬁ5n0+j(x1)7n0+j ’
m=1 §j=0
where in the case of an odd ng
00 m—1
K2 _psno (acl),no(l - pdn0+1—1,n0+1 +Z (1 - pdn0+m—1,n0+m)den0+j—1,no+j )
m=2 j=1

= _psno (z1),m0>

for the case of an even ng we have

K> “Pdp,—1—eng(z1)n0 <z%l[%}i] F(@”O («Tl))) = _pdnoflfsno (z1),m0°

Hence, if ng is odd, then

no—1

F(xg) — F(xl) = H ﬁfj($2),j (Bsno(zz),no - /Bsno(m),no + K)

Journal of Mathematical Physics, Analysis, Geometry, 2017, vol. 13, No. 1 67



S.0. Serbenyuk

no—1

> H ﬁEj(xz),j (pEnO (z1),m0 +psn0 (z1)+1,m0 +.. '+pen0 (z2)—1,n0 — Pey, (xl),no> > 0.
7=1

If ng is even, then

no—1

F(xQ) - F(xl) = H ﬁsj(xg),j : (Bsno(xg),no - B&no(xl),no + H)
j=1

no—1
= < H ﬁi,ei(x2)> (pdno—l—ano(acl),no +pdn0 —eng(21),m0 t.
=1

+pdn0 —2—¢eng(z2),m0 — pdno —1—€n, (rl),no) > 0.

It is easy to see that the condition F(x3) — F(z1) > 0 holds if all elements
Din of the matrix P are positive. [

Let the elements p; , of P be non-negative.
Let 1 be a random variable defined by the Cantor expansion

&1 ) &3 &k D
= —= e —— . =A
n d1 + d1d2 + d1d2d3 + + d1d2 .. .dk + G182 &k
where
£ = Eky if £ is odd;
b dp — 1 —¢, if kis even,

and the digits { (k =1,2,3,...) are random and take the values 0,1,...,d; — 1
with probabilities po , 1k, - - -, Pd,—1,k- That is, & are independent, and P{¢;, =
ik} = Dk ik € Agy-

From the definition of the distribution function and the expressions

{?7 < l‘} = {fl < 61(.%')} U {fl = 81(x),fg <dg—1 —82(w)} U...

U{& =e1(x), & =do — 1 —ex(x), ..., Eop—1 < eop—1(2)}
U{& =e1(x), & = da—1—cea(x), ..., Ep—1 = ak—1(x), Eo < dop—1—egr(x)}U. ..,
P{& =ce1(x), & =do — 1 —e9(x), ..., &1 < eo—1(z)}
2%k—2
= Begp_1(2),2k—1 H Pej(x),j

j=1
and
P{& = 51(1‘),52 = dg —1-— 62(:5'), e ,fgk < dzk -1 Ezk(l‘)}

68 Journal of Mathematical Physics, Analysis, Geometry, 2017, vol. 13, No. 1



Continuous Functions with Complicated Local Structure

2k—1
= ﬂdzkflfezk(x)ﬂk H ﬁsj (z),5>
j=1
it is easy to see that the following proposition is a corollary of the last-mentioned
theorem.

Corollary 3.1. The distribution function Fn of the random variable n has the
form

0, x <0;
Fn(m) = Bel(x),l + 220:2 [55:% Hf 11ﬁsj(:1: 0<z< 1;'
1, x>1,

where ﬁsj(a:),j > 0.

4. Integral Properties

Theorem 4. The Lebesque integral of the function F can be calculated by the
formula

/1 i /B + Bl,n + 5]2,71 + ...+ /Bdnfl,n
0 =1 dldg...dn ’

Proof. Denotey = g(z) (the function g was defined in Section 2.). Using
the definition of F' (and the properties of F' that follow from different ways of
defining the function) and the properties of the Lebesgue integral, we have

&‘w

1 1

. % 1
/F(x)dx: O/F(y)dy—i—/F(y)dy—i—...—i—/i11 F(y)dy

0 a1

S

Poa F(@(W)dy + [ [poy + p1aF((y))l dy

o\&‘H
&\H\&‘M

3 1
-+/Uh«+m;F@()(w+ + / Bin—11 + Par—11F ()] dy.
2

ar

1 1 1
[ Fwyie =2 [ R+ ol + 22 [ FE@IG@)+al
0 0 0
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1 1
p2,1 N N pd 1,1
3 /F SWNASW)) + -+ Bar—11Ylgy 1 + = /F )

1 J e )

1

e _ 1
= st 2inen g L[ RG)asn))

0
Analogously, from the relation between D-representation and nega-(d,, )-representation,

it follows that

1 1
/ F(p(9)d(3 () = / PoaF (82 (9)d(5(y))
0 2—

do—1
dy

+ / [Br2 + p12F(@%(y)] d(@(y))+. . -+/ [Bas—1,2 + Pay—12F(#*(y))] d((v)).
0

do—2
da

Since ¢(y) = =2 + 1:¢%(y) and d(@(y)) = 7;d($*(y)), we obtain

dog—1

F(@*(y)d(@*(y)) + P12yl g

do

O\H
|
—~
ASY
—~
<
~
S~—
QU
—~
ASY
—~
<
~
S~—
I
SN
[\
O\H

1 1
P2 / FQW)AG W) + -+ Bip109l” + 22 / F(¢ 2(y))
0 0

— 1
Y Lo

So,

1

/F(x)dx _ Pt Beat+Baan
dy

0

1
/812+ﬁ22+ +ﬁd2_172 1 5 A2
& t o / F(&(0)d(@ ().
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Analogously,

n

1 ~ ~ ~ ~
N 3 A B+ B4+ Ba1y
/F(.%')dl'— ﬁO,j ﬁl,j ﬁQ,j ij 1,9
0

=~ dydy ... d;

1 LU n
pt /0 F(&"()d(" (v).

Continuing the process indefinitely, we obtain

1 . . _ .
- > ﬁOn"’ﬂln“’ﬁQn‘*’-n"’ﬁd —1,n
Fa)de =y 2on Z0Ln T2 nobn,

/ (e)de = dyds - d,

0

n=1

5. Self-affine Properties

Theorem 5. If the elements p; , of the matriz P are positive, then the graph
Iz of the function F' in the space R? is the set

FF = U (x;... OWepm O 0Wey2 O¢a1,1($))a

xz€[0;1]

_ AD
where & = A0 1 cleslda—1—ed].

/ 1 Wi, n
T = d—:L“+ d"’ ;
win,n . ) ~n n
Yy = ﬁin,n +pin,nya
T in, if n is odd;
in, — . . .
" dp —1 =iy, ifn is even,

in € Adn~
P roof. Since the following expressions

f(x) = Bix +pinf(e(x)),

f <Z§x> = Bi1 +pif(x)
1
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are equivalent for x = A? [ it is obvious that

1 d2—1—62]53[d4—1—€4]...’

/ 1 n 1
r = —X -
%‘1,1 : dl dl

Yy = Bin1 +pir1y-
Consider the affine transformations 1; 2, ¢ = 0,d2 — 1. Since the expressions

F(o(x) = Biy—1-i2 + Pay—1-i2f ($*(x)),

do—1—i+4+¢(x .
f( - 7 o )> = Bdz—1-i2 T Pdy—1-i2.f (P(2))
are equivalent, we have

/ 1 do—1—1
oty dmlot
1%,21 d2 d2

Y = Bay—1-iy,2 T Pdy—1—i5,2Y-
By induction, we obtain

/ 1 Wi, n
win,n : n n

y/ = /éinyn +ﬁ1n7ny

So,
U (w5...0 VYepm©. . 0tey20 %1,1(1’)) =GC FF'

z€[0;1]

Let T(xo,ﬁ’(xo)) € I'z.  Consider a point =z, = @"(xg), where =z =
81 da—1—clealds—1—cal... is a fixed point from [0; 1].
ince for any n € N en and d,, — 1 — €, belong to Ay, ,

f <¢k(x0)) = B€k+1,k+1 +ﬁ6k+l7k+1f <¢)k+1 (x0)> vk = 07 17 oo
and from T (gbk(aro); F (g&k(aﬁo))) € I'z, it follows that

wik,ko---owiQQOwihl (T) :T0($0;F($0)) S Fﬁ, i € Adk, k — oo.

Therefore, I'; C G, and thus

PF‘ = U ({L‘; .. O’lﬁgmn 0...0 1/162,2 Owéhl(x))'

z€(0;1]
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6. Differential Properties when the Elements of the Matrix P
are Non-negative

Let the elements p; ,, of the matrix P be non-negative.

Definition 6.4. Let c1,co,...,c, be an ordered set of integer numbers such
that ¢; € Aq, for all i =1, n.
(dn)

A cylinder Aciey e, of rank n with the base cics...cn is called a set of all
numbers from [0; 1] such that the first n digits of the nega-(d,)-representation of

the numbers are equal to c1,co,...,c,. That is,
—(d _ e A—(d
Acl(027.l.).cn = {x T = A61(027.L.).Cn5n+1...€n+k...7€n+k € Adn+k} :

Definition 6.5. The change pj in the function F on the cylinder A;(Ci’f,)_cn

is called a value iz (Ac_l(c?,),c» defined by the equality

1232 (A;(ccén)cn> = (sup Acl(ccén)c ) - (lnf Acl(ccén)cn) .
Lemma 4. The following equalities are true:

1.

(Acl(ci cn) H Pejj =

2. Let zg = A;(E‘i?)_gnm be a nega-(dy,)-irrational point, then

F( = lim Hd]pgw

n—oo

Proof.

1. Calculate the change iz in the function F on the cylinders Ac_l(cd;.),cn. That
is, on the following closed intervals:

A (dn) . A—(dn)
C1C2...C2n—1 [dzn—l]o[d2n+2—1]0[d2n+4—1]...’ 6182...62n,10[d2n+1—1]0[d2n+3—1]...
A_(d”) . A—(dn)
ClCQ‘..CQnO[dQn_'»Q71]0[d2n+471} . ClCQ...CQn[d2n+1 71]0[d2n+371]0[d2n+571]...

(ACI(CdQn)CQn 1) =F (Ac_l(c?.).%_lo[dmﬂ71]0[d2n+371]...>
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(dn)

—F(A‘

2n—1

= H Pejj
Jj=1

1 — Pdy,—1,2n + (1

+(1

Analogously,

~ _(dn) _ I _(d’ﬂ)
'u'F <ACIC2~--C2n) - F (Aclcg...62n[d2n+171}0[dgn+371]0[d2n+571}...

(dn)

—F(A’
2n
Hﬁcj-,j
7j=1

+Bdanss—1,2n43Pdons1 —1,2n+1Pdonso—12n42 T - .) =

up(Aqm %>

2. Find the derivative of I at the nega-(d, )-irrational point z¢ = A;(E‘i'fuenm.

c1c2...can—1[d2n—1]0[d2n+2—1]0[d2n+4—1]..

— Ddan2—1,2n4+2)Pdap—1,20Pdap 4 1—1,2n4+1 + - -

2n—1

> = H Pejj
j=1

X (Bdgyn—1,2nFBdons1—1,2n4+1Pdon—1,2nFBdan o —1,2042Pdon —1,20Pdop 41 —1,2n+17F -

2n—1

)=

c1¢2...c2n0[d2n+2—1]0[d2r 44 —1}--->

(Bdani1—1,2n41 F Bonso—1,2n4+2Pdons1—1,2n41

Iln%g >0

Since
To = 5152 sn - ﬂ A€1€2 En?
we have @)
—(dn ~
-, ] MF (Asleg‘..€n> . H?:l pEj,j
e ‘A€162rf~6n| nee didy...dn
n o0
i (TTas ) =10
noo (11 iPe;.j djbe, 5)-
]:

7=1
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Since the function under consideration is continuous and monotonic (by the
Lebesgue theorem), it has a finite derivative almost everywhere in the sense of
the Lebesgue measure. But I (z9) = oo in the case when the condition a, =
dppPe, n > 1 holds for all positive integers n except perhaps a finite number of n.
Therefore,

e if a, > 1 holds for a finite set of values n, then F’ (zg) = 05
e if a, =1 for all n € N (it is true only for F(z) = z), then ' (z0) = 1;

o if p.. o F# i holds only for a finite set of values n, then 0 < F (z0) < oc.

7. Nondifferentiable Functions

Let pin € (—1;1) foralln € N, i =0,d,, — 1.

In this case, it follows from the statement 1 of Lemma 4 that the function
F does not have any arbitrary small monotonicity interval if for each n € N the
numbers p; ,, where ¢ = 0,d,, — 1, are either non-negative or negative.

Theorem 6. Let p., npe,—1n < 0 for alln € N, ¢, € Ag, \ {0}, and the
conditions

n n
Jim T dipo #0, lim T dipa—16 # 0
k=1 k=1
hold simultaneously. Then the function F is nowhere differentiable on [0;1].

P roof. Choose some nega-(d,)-rational point z¢:

g = A~ ~(dn)

£1€2...€n—_1En [dn+1—1]0[dn+3—1]... = 61824..871,1[En—l]O[dn+2—1]O[dn+4—1]‘..’

where e, # 0.
Let us introduce some notations. Let n be odd, then

(1_ A—(dn) —(dn) (2)

To="Tg :AQ@...en,lsn[dn+1—1}o[dn+3—1]...: £162...n—1[en—1]0[dn42—1]0[dnss—1]...~ L0
and

_ o (D_ A—(dn) _ A—(dn) _.(2)
L0=%g _Aelag...an_l[an—1]0[dn+2—1]0[dn+4—1]..._ £169...en—18n|dni1—1]0[dny3—1]... = L0

in the case of even number n.
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Let us consider the sequences (z,), (z,) such that

()
Elv--an—lan[dn+1_1}0[dn+3_1]0---[dn+k—1_1]1[dn+k+1_1]0[dn+k+3_1]-~’

n e, k ek,

A-(dn)
51~~€’n715n[dn+171}0“-[dn+k7271]O[dn+k72]0[dn+k+271}0[dn+k+471]~-7

/ ne0, ke
—(dn)
51---577,_1[En—l}o[dn+2—1]0[dn+4—1]0...[dn+k_1—1]1[dn+k+1—1]0[dn+k+3—1]...’

nek, ke

A ( n
€1...en—1[en—1]0[dn42—1]0...[dp 4 —2—1]0[dp 1 —2]0[d 4kt 2—1]0[dp 4 oy a—1]..7

\neE,kzeE,

8
ey
I

—(dn)

61...6’”71[&‘n—I]O[dnJrz—l}O...[dn_‘_k_l—I]OO[dn+k+2—I]O[dn+k+4—1]...’
ne, ke0

—(dn)

€1...en—1[en—1]0[dn42—1]0...[dp k= 1][dn1k+1—1]0[dn4 k+3—1]0[dnt k45—1]...7

" ne@,kGE,

T = —(dn)
61...Enflen[drnﬁfl—I]O[dn+3—1]‘..0[dn+k—1][dn+k+1—1}0[dn+k+3—1]...7
nek, ke
A~ (dn)
51--~5n—15n[dn+1_1]0-~~[dn+k—1_1]00[dn+k+2_1]0[dn+k+4_1}0[dn+k~+6_1]--~7
nck, kck,
where O is a set of all odd positive integers and E is a set of all even positive
integers.
That is,
/ (1) 1
T, =xy +———"—
k didy ... dnir’
" (2) 1
T =y —
R0 didy . dpr

al’ldﬂf;gﬂﬂjo, x}é%xo as k — oo.
Let n be an odd number. Then
(1) _ 1)y _ AD
Yo = g(‘ro ) - Asl[dg—1—62]83[d4—1—€4}€5...[dn71—l—Enfl]En(O)7
(2)_ .2\ _AD
Yo =9(xg )_Aq[dg—1—52]53[d4—1—54]...[dn_1—1—5n_1}[an—l][dn+1—1}[dn+2—1][dn+3—1]...7

/ o ’ o D
yr. = 9(xy) —Agl[dr1752]53[@71754]...[51”_17175”_1}571 0...01(0)’

k—1
"

1" D
Yp=9(zp)= A [da—1—e2)es[da—1—¢e4]...[dn—1—1—en—1]len—1][dn+1—1][dnr2—1]...[dnsr—1](0)>
where F(z) = F(g(z)) = F o g.
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Hence,

~ !

F(xk) = F(yk) = feyn + Z Beyt Hﬁsj,j + Benin H ﬁ&j,j
t=2 j=1 j=1

n+k—1 -1 n n+k—1
+< > <ﬂo,z 11 po7m>> Hpa‘],] + Btk H~J,j ( 11 po,m>,

l=n+1 m=n-+1 m=n+1

Jj=
F(mél)) ( = fey1 + Z ﬂat,t Hpa],]) + Benn Hpej,]

Therefore,
n n+k—1 n n+k
~ T B ~
F(ay) = F(xl)) = Bi s 11 5. < 11 po,m Hpj,g 11 pOm)
j=1 m=n+1 j=1 m=n-+1

In addition,

n—1 t—1 n—1
=~ 2 2 s ~ ~
F(x(() )) = F(y(() )) = ﬁehl + Z ﬁf:‘t,t Hpsj,j + ﬁenfl,n H Pej.j
t= j=1 j=1

n—1 00 -1
+Pen1m | [ Per (Z !ﬁdl—u 1T pdm—l,m])u

j=1 l=n+1 m=n+1

~ 1"

n—1 t—1 n—1
F(:Ek) = F(yk) = ﬂel,l + Z Bat,t Hﬁaj,j + ﬂen—l,n H ﬁej,j
t=2 j=1 j=1

n—1 n+k -1
+Pep—1,n Hﬁsj,j (Z [/Bdll,l H pdml,m]>-

J=1 l=n+1 m=n+1
Hence,
n+k
~ 9 ~
F(x(() )) F( = Pep—1,n H pej,] ( H pdml,m> .
m=n+1

Let n be an even number. In this case,

1 1
y(() )= 9(95(() )) = Ag[d2—1—52}53[d4—1—a4]...an_1[dn—an](oy
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D
Yo = g(x(] ) = Aa1[dg—l—ag]ag[d4—1—a4]...an_1[dn—an—l][dn+1—1][dn+2—l}...7

/ _ / o D
Y = g(xk) - A€1[d2—1—62}€3[d4—1—64]...€n71[dn—5n} 0... 01(0)’
k—1

1" 14 D
Yp = g(zy) = Ael[dg—l—sg]sg[d4—1—e4}.‘.en,l[dn—l—sn][dn+1—1}[dn+2—l]...[dn+k—1](0)'
Thus,

n—1 t—1 n—1
F(ay) = F(ye) = Besa+ Y | Bev [[ 5oy | + Baw—com [ 52,5
t=2 j=1 j=1

n—1 n+k—1
+ﬁl,n+k Hﬁ€j,j ( H pO,m) Pd,—en,ns

j=1 m=n+1

n—1 t—1 n—1
- 1 1 et ~ ~
F(m(() )) = F(y(() )) = ﬁsl,l + Z ﬁst,t HpEj,j + ﬁdn—an,n H DPej.j-
t=2 j=1 j=1

Therefore,

n—1 n+k—1

Pyl B (1 -

F(xy) — F(%() )) = Bin+k H Dej j ( H po,m> DPdp—en.n
j=1

m=n-1

n—1 n+k
= H ﬁgj,j ( H pO,m> Pd,—en,n-
i=1

m=n+1

In addition,

n—1 t—1 n—1
= (2 2 = . .
Fal) = FOuS) = Ben + 3 | Bevt [[ 8=y | + Banmrcenin [ 5=,
t—2 j=1 j=1
n 0 -1
+ Hﬁaj,j ( Z lﬂdl—u H pdm—Lm]) ;
7j=1 l=n+1 m=n-+1

~ 1"

n—1 t—1 n—1
F(xk) = F<yk) = 581,1 + Z ﬁet,t Hﬁaj,j + 5dn7175n,n H ﬁaj,j
t=2 j=1 j=1

n n—+k -1
+ Hﬁa]-,j (Z [5@1,1 H pdm1,m]>~
j=1

l=n+1 m=n+1
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Hence,
n—1 n+k
~ 2 ~ " ~
F(al) = F(23) = pay-1-com 115 ( 11 Pdm—l,m) :
j=1 m=n+1
Thus,
(dnpe,,n) (l_[?;ll djﬁej,j) (Hnm—;kn—l-l dmpo,m) ;
g F(a:;c) — F(zo) n is an odd;
Lk = = _ _
Ty — To (dnPdy—cp.n) (H?zll djpsj,j> (Hnmiknﬂ dmpo,m) ;
n is an even.
(dnpsn—l,n) (H?:_ll djﬁffj,j) (HZ:;knJrl dmpdmfl,m) 5
v F(xg) — F(x)) n is an odd;
Bk) = =

77 — ~ k
Lo = Ty, (dnPdy—1—2n,n) (H?:f dﬂ%j,j) (HZj:n—H dmpdm—l,m) ;

n 1S an even.

n+k n+k
Let us denote by =[], 1 dmpom and ba, —1x = 1211 dnPdy—1,m-

. 1, -

Since H?Zl djPe; j = const, Pe, nPe,—1,n < 0, Pd, e, .nPdp—1—c,n < 0 and the
sequences (bo ), (ba,—1,k) do not converge to 0 simultaneously (by the statement
of the theorem), we obtain the following cases:

1. If the inequalities dppor > 1 and dipg,—1,% > 1 hold for all k& € N except
perhaps a finite set of numbers k, then one of the sequences B;ﬁ, B,;/ tends
to oo, and another sequence tends to —oo;

2. If one of the products of dypo i, dipa,—1, is greater than 1, and another is
less than 1 for all k£ € N except perhaps a finite set of numbers k, then one
of the sequences B;C, B,: tends to £o0o, and another sequence tends to 0;

3. If one of the products of dipo i, dipa,—1,k is greater than 1, and another is
equal to 1 for all k € N except perhaps a finite set of numbers k, then one
of the sequences B;C, Bg tends to 00, and another sequence is constant;

4. If one of the products of dipok, dippg,—1,% is less than 1, and another is
equal to 1 for all k¥ € N except perhaps a finite set of numbers k, then one
of the sequences B;C, B,;/ tends to 0, and another sequence is constant;

5. If the products of dipo i, dipd,—1,1 are equal to 1 for all k& € N, then the
sequences B;C, B,Z are different constant sequences since the inequalities

Dey 7é Pen—1n5 Pdyp—en,n 7é Pd,—1—epn by the conditions DPep k € (_1; 1)
and (3, r > 0 for g5, > 0.
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Since l~im;€_>oo B,; # limg_ o0 B,Z holds in all possible cases, it follows that the

function F' is nowhere differentiable on [0; 1]. [
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