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The Existence of Heteroclinic Travelling

Waves in the Discrete Sine-Gordon Equation

with Nonlinear Interaction on a 2D-Lattice

S. Bak

The article deals with the discrete sine-Gordon equation that describes
an infinite system of nonlinearly coupled nonlinear oscillators on a 2D-lattice
with the external potential V (r) = K(1 − cos r). The main result concerns
the existence of heteroclinic travelling waves solutions. Sufficient conditions
for the existence of these solutions are obtained by using the critical points
method and concentration-compactness principle.

Key words: discrete sine-Gordon equation, nonlinear oscillators, 2D-latt-
ice, heteroclinic travelling waves, critical points, concentration-compactness
principle.

Mathematical Subject Classification 2010: 34G20, 37K60, 58E50.

1. Introduction

In the paper, we study the discrete sine-Gordon equation that describes the
dynamics of an infinite system of nonlinearly coupled nonlinear oscillators on a
two-dimensional lattice. Let qn,m be a generalized coordinate of the (n,m)-th
oscillator at the time t. It is assumed that each oscillator interacts nonlinearly
with its four nearest neighbors. The equation of motion of the system considered
is of the form

q̈n,m = V ′(qn+1,m − qn,m)− V ′(qn,m − qn−1,m) + V ′(qn,m+1 − qn,m)

− V ′(qn,m − qn,m−1)−K sin(qn,m), (n,m) ∈ Z2, (1)

where K > 0. Equations (1) form an infinite system of ordinary differential
equations.

System (1) can be considered as a 2D version of the Frenkel–Kontorova model
(see, e.g., [11]). Notice that this system represents a wide class of systems called
lattice dynamical systems extensively studied in last decades. In this area of re-
search, a great attention is paid to an important specific class of solutions called
travelling waves solutions. A comprehensive presentation of the results on trav-
elling waves for 1D Fermi–Pasta–Ulam lattices is given in [19]. The existence
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of periodic travelling waves in the Fermi–Pasta–Ulam system on a 2D-lattice is
studied in [4]. On the other hand, some results on the chains of oscillators are also
known in the literature. In particular, in [14] they are obtained by means of bifur-
cation theory, while in [1] and [2] the existence of periodic and solitary travelling
waves is studied by means of the critical point theory. In papers [3,10,12,13], trav-
elling waves for infinite systems of linearly coupled oscillators on a 2D-lattice are
studied. Paper [18] is devoted to periodic and homoclinic travelling waves for the
infinite one-dimensional chain of nonlinearly coupled nonlinear particles. In [6],
a result on the existence of subsonic periodic travelling waves for the system of
nonlinearly coupled nonlinear oscillators on a 2D-lattice is obtained, and in [7],
supersonic periodic travelling waves for these systems are studied. Paper [15]
contains a result on the existence of heteroclinic travelling waves for the dis-
crete sine-Gordon equation with linear interaction. In [16], periodic, homoclinic
and heteroclinic travelling waves for such systems with nonlinear interaction are
studied. In paper [5], a result on the existence of periodic travelling waves for
the discrete sine-Gordon equation with nonlinear interaction on a 2D-lattice is
obtained. [8] is devoted to the existence of heteroclinic travelling waves for the
discrete sine-Gordon equation with linear interaction on a 2D-lattice.

2. The problem statement

A travelling wave solution of equation (1) is a function of the form

qn,m(t) = u(n cosϕ+m sinϕ− ct) ,

where the profile function u(s) of the wave, or simply profile, satisfies the equation

c2u′′(s) = V ′(u(s+ cosϕ)− u(s))− V ′(u(s)− u(s− cosϕ))

+ V ′(u(s+ sinϕ)− u(s))− V ′(u(s)− u(s− sinϕ))−K sin(u(s)). (2)

The constant c 6= 0 is called the speed of the wave. If c > 0, then the wave moves
to the right, otherwise to the left.

An important role is played by the quantity c1 defined by the equation

c21 := 2 sup
|r|<6π

∣∣∣∣V (r)

r2

∣∣∣∣ .
We consider the case of heteroclinic travelling waves. The profile function of

this wave satisfies the conditions:

lim
s→−∞

u(s) = −π and lim
s→+∞

u(s) = π. (3)

In what follows, a solution of equation (2) is understood as a function u(s)
from the space C2(R) satisfying equation (2) for all s ∈ R.
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3. Variational setting

To equation (2), we associate the functional

J(u) :=

∫ +∞

−∞

[
c2

2
(u′(s))2 − V (u(s+ cosϕ)− u(s))

−V (u(s+ sinϕ)− u(s)) +K(1 + cos(u(s)))

]
ds, (4)

defined on the Hilbert space

E := {u ∈ H1
loc(R) : u′ ∈ L2(R)}

with the scalar product

(u, v)E = u(0)v(0) +

∫ +∞

−∞
u′(s)v′(s) ds.

It is not so difficult to verify that the critical points of the functional J are the
solutions of equation (2).

Now we introduce the following notation:

M−π,π = {u ∈ E : u(−∞) = −π, u(+∞) = π},
Au(s) := u(s+ cosϕ)− u(s),

Bu(s) := u(s+ sinϕ)− u(s).

According to Lemma 3.1 from [10],

‖Au(s)‖L2(R) ≤ | cosϕ| · ‖u′(s)‖L2(R), u ∈ E,
‖Bu(s)‖L2(R) ≤ | sinϕ| · ‖u′(s)‖L2(R), u ∈ E.

Then the functional J can be expressed in the form

J(u) :=

∫ +∞

−∞

[
c2

2
(u′(s))2 − V (Au(s))− V (Bu(s)) +K(1 + cos(u(s)))

]
ds. (5)

Throughout the paper we will assume that the interaction potential V (r)
satisfies the following conditions:

(i) V (r) ∈ C1(R), V (0) = 0 and V (r) ≥ 0 for all r ∈ R;

(ii) limr→±∞ V (r) = +∞;

(iii) there exists finite limr→0

∣∣∣V (r)
r2

∣∣∣ ;
(iv) the wave speed c satisfies c2 > c21.

The following lemma can be obtained by a straightforward calculation (see [15]
for details).
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Lemma 3.1. Let v0 : R → [−π, π] be a monotone function in C∞(R) such
that v0(s) = −π for s < −1 and v0(s) = π for s > 1. Define the functional Ψ :
H1(R)→ R by

Ψ(v) := J(v0 + v)

and suppose that assumptions (i)–(iv) are satisfied. Then the following holds:

(i1) Ψ(v) < +∞ for all v ∈ H1(R) (equivalently, J(u) < +∞ for all u of the
form u = v0 + v for some v ∈ H1(R));

(ii1) J(u) = +∞ for all u ∈ M−π,π which are not of the form u = v0 + v for
some v ∈ H1(R). In particular, a minimizer u of J on M−π,π can be
expressed as u = v0 + v for some v ∈ H1(R);

(iii1) Ψ ∈ C1 on H1(R);

(iv1) let v ∈ H1(R) be a critical point of Ψ and set u := v0 + v. Then u, v ∈
C2(R), and u is a solution of (2) with boundary conditions (3).

Let F be a non-negative function in C∞(R) such that
F (r) = 0, if |r| ≤ 5π

2 ,

F (r) ≥ 4
∣∣∣∫ 2r

0 |V
′(x)|dx

∣∣∣ and F (r) ≥ 2K, if |r| ≥ 3π,

1
2 ≤ 1 + cos r + 1

2KF (r), if |r| ∈
(
5
2π, 3π

)
.

(6)

Now we define the modified functional J̃ : E → R ∪ {∞} by

J̃(u) :=

∫ +∞

−∞

[
c2

2
(u′(s))2 − V (Au(s))− V (Bu(s))

+K(1 + cos(u(s))) + F (u(s))

]
ds. (7)

Remark 3.2. Obviously, J̃(u) = J(u) for all u ∈ E with norm

‖u‖L∞(R) ≤
5

2
π.

Now we denote the modified potential of interaction by

Ṽ (r) =

∣∣∣∣∫ r

0
|V ′(x)|dx

∣∣∣∣ .
Then from (6) for all |r| ≥ 3π, we have

V (2r) ≤ Ṽ (2r) ≤ 1

4
F (r). (8)

Hence, by (ii), F (r)→ +∞ for r → ±∞.
The lemma below can be found in [16, Lemma 2.5].
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Lemma 3.3. Let W ∈ C1(R) be such that W (±π) = 0 and W (ξ) > 0 for
|ξ| < π, and let

I(u) :=

∫ +∞

−∞
[(u′(s))2 +W (u(s))]ds.

Then the minimum of I on M−π,π is attained and

min
u∈M−π,π

I(u) = 2

∫ π

−π

√
W (ξ) dξ =: ϑ.

Moreover, with the same ϑ,

inf
T>0

inf
u∈H1(−T,T )

{∫ T

−T
[(u′(s))2 +W (u(s))] ds : u(−T ) = −π, u(T ) = π

}
= ϑ.

Lemma 3.4. Assume conditions (i)–(iv) hold. Then for all u ∈ E,

J̃(u) ≥
∫ +∞

−∞

[
c2 − c21

2
(u′(s))2 +K(1 + cos(u(s)) +

1

2
F (u(s))

]
ds, (9)

and the functional J̃ is bounded from below on M−π,π. Moreover,

8
√

(c2 − c21)K < inf
u∈M−π,π

J̃(u) < 8c
√
K. (10)

Proof. Since

|Au(s)| ≤ |u(s+ cosϕ)|+ |u(s)| ≤ 2 max{|u(s+ cosϕ)|, |u(s)|},
|Bu(s)| ≤ |u(s+ sinϕ)|+ |u(s)| ≤ 2 max{|u(s+ sinϕ)|, |u(s)|},

then for every k > 0,

{s ∈ R : |Au(s)| > k} ⊆
{
s ∈ R : max{|u(s+ cosϕ)|, |u(s)|} > k

2

}
⊆
{
s ∈ R : |u(s+ cosϕ)| > k

2

}
∪
{
s ∈ R : |u(s)| > k

2

}
,

{s ∈ R : |Bu(s)| > k} ⊆
{
s ∈ R : max{|u(s+ sinϕ)|, |u(s)|} > k

2

}
⊆
{
s ∈ R : |u(s+ sinϕ)| > k

2

}
∪
{
s ∈ R : |u(s)| > k

2

}
.

Making use of (8) and the monotonicity of the potential Ṽ on (−∞, 0) and on
(0,+∞), we have∫
{s∈R:|Au(s)|>6π}

V (Au(s))ds ≤
∫
{s∈R:|Au(s)|>6π}

Ṽ (Au(s)) ds

≤
∫
{s∈R:|Au(s)|>6π}

Ṽ (2 max{|u(s+ cosϕ)|, |u(s)|}) ds



The Existence of Heteroclinic Travelling Waves in the Discrete sine-Gordon . . . 21

≤
∫
{s∈R:max{|u(s+cosϕ)|,|u(s)|}>3π}

1

4
F (max{|u(s+ cosϕ)|, |u(s)|}) ds

≤ 2

∫
{s∈R:|u(s)|>3π}

1

4
F (u(s))ds ≤ 1

2

∫ +∞

−∞
F (u(s)) ds. (11)

Similarly, ∫
{s∈R:|Bu(s)|>6π}

V (Bu(s))ds ≤ 1

2

∫ +∞

−∞
F (u(s))ds. (12)

By the definition of c1, we obtain∫
{s∈R:|Au(s)|≤6π}

V (Au(s)) ds ≤
∫
{s∈R:|Au(s)|≤6π}

c21
2

(Au(s))2 ds

≤
∫ +∞

−∞

c21
2

(Au(s))2 ds,∫
{s∈R:|Bu(s)|≤6π}

V (Bu(s)) ds ≤
∫
{s∈R:|Bu(s)|≤6π}

c21
2

(Bu(s))2 ds

≤
∫ +∞

−∞

c21
2

(Bu(s))2 ds.

Then it follows from (11) and (12) that

J̃(u) ≥
∫ +∞

−∞

[
c2

2
(u′(s))2 − c21

2
(Au(s))2 − c21

2
(Bu(s))2

+K(1 + cos(u(s))) + F (u(s))

]
ds

−
∫
{s∈R:|Au(s)|>6π}

V (Au(s))ds−
∫
{s∈R:|Bu(s)|>6π}

V (Bu(s)) ds

≥
∫ +∞

−∞

[
c2 − c21

2
(u′(s))2 +K(1 + cos(u(s))) +

1

2
F (u(s))

]
ds

for all u ∈ E, and (9) holds true.
Applying Lemma 3.3 to the functional

I1(u) =
c2 − c21

2

∫ +∞

−∞
[(u′(s))2 +W1(u(s))] ds,

where

W1(x) :=
2K

c2 − c21
[1 + cosx+

1

2K
F (x)],

and making use of (9), we obtain

inf
u∈M−π,π

J̃(u) ≥
(
c2 − c21

) ∣∣∣∣∫ π

−π

√
W1(x) dx

∣∣∣∣
=
√

2(c2 − c21)K
∣∣∣∣∫ π

−π

√
1 + cosx+ 0 dx

∣∣∣∣ = 8
√

(c2 − c21)K.
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Furthermore, since V ≥ 0, we have

J̃(u) ≤ c2

2

∫ +∞

−∞

[
(u′(s))2 +

2

c2

(
K(1 + cos(u(s))) +

3

2
F (u(s))

)]
ds.

Now, we apply Lemma 3.3 to the functional

I2(u) =
c2 − c21

2

∫ +∞

−∞
[(u′(s))2 +W2(u(s))] ds,

where

W2(x) :=
2K

c2
[1 + cosx+

3

2K
F (x)].

As a consequence, we obtain

inf
u∈M−π,π

J̃(u) ≤ c2
∣∣∣∣∫ π

−π

√
W2(x)dx

∣∣∣∣ < 8c
√
K,

from which inequalities (10) follow.

The following lemma can be proved in the same way as Lemma 2.7 from [16].

Lemma 3.5. Assume conditions (i)–(iv) hold. Let ũ ∈M−π,π be a minimizer
of J̃ on M−π,π, then

‖ũ‖L∞(R) ≤
3

2
π + δ,

where

δ :=
4c21

c2 − c21 + c
√
c2 − c21

. (13)

In particular, if the speed c is large enough to ensure δ < π, then ‖ũ‖L∞(R) ≤ 5
2π.

4. Main result

In order to prove the main result, we need the following version of the
concentration-compactness principle obtained in [15, Lemma 4.1] (see [16,17,19]
for other versions of this principle).

Given T > 1 and η ∈ R, we define a truncated version of J̃ by

J̃T (u, η) :=

∫ 1

0

∫ η+T−1+τ

η−T+τ

c2

2
(u′(s))2 ds dτ −

∫ η+T−1

η−T
V (Au(s)) ds

−
∫ η+T−1

η−T
V (Bu(s)) ds+

∫ η+T− 1
2

η−T+ 1
2

[
K
(
1 + cos(u(s))

)
+

3

2
F (u(s))

]
ds.

Lemma 4.1 (Concentration-compactness). Assume conditions (i)–(iv) hold.
Let (un) ⊂ M−π,π be a minimizing sequence for J̃ on M−π,π, and let c be large
enough to ensure δ < π for δ defined in (13). Then there exists a subsequence,
still denoted by (un), such that one of the following holds:
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(i2) (concentration) there is a sequence (ηn) ⊂ R such that for all small enough
ε > 0 there exists T > 0 such that

|J̃(un)− J̃T (un, ηn)| < ε

for every n ∈ N;

(ii2) (vanishing) for all T > 0,

lim
n→∞

sup
η∈R

J̃T (un, η) = 0;

(iii2) (dichotomy) there exists ε1 > 0 such that for every 0 < ε < ε1 there are
(fn), (gn) ⊂ E such that

|un − (fn + gn − π)| ≤ ε, |J̃(un)− (J̃(fn) + J̃(gn)| ≤ ε,
lim
n→∞

dist(supp(f ′n), supp(g′n)) = +∞, lim
n→∞

J̃(fn) = α, lim
n→∞

J̃(gn) = β,

for some 0 < α, β < infu∈M−π,π J̃(u) (π is needed in the first inequality to
ensure J(fn) < +∞ and J(gn) < +∞).

Lemma 4.2. Under the assumptions of Lemma 4.1, the functional J̃ has a
minimizer on M−π,π.

Proof. By Lemma 3.4, the functional J̃ is bounded from below on M−π,π.
Let (un) ⊂ M−π,π be a minimizing sequence. Then, by Lemma 4.1, the subse-
quence exists, still denoted by (un), which satisfies either of the following criteria:
concentration, vanishing or dichotomy.

Vanishing is impossible (see the proof of Lemma 5.1 in [15]).
We will show that dichotomy is also impossible. Indeed, as fn, gn ∈ E and

J̃(fn), J̃(gn) < +∞, the analogous statement of Lemma 3.1 (with J replaced by
J̃) shows that fn(±∞), gn(±∞) ∈ {±π}. Since fn + gn − π ∈ M−π,π, then only
fn(−∞) = fn(+∞) or only gn(−∞) = gn(+∞). In the first case, we set ũn :=
gn and in the second case, ũn := fn. Then (ũn) ⊂M−π,π and, by (iii2), possibly
after passing to a subsequence, we have

lim
n→∞

J̃(ũn) < inf
u∈M−π,π

J̃(u) = lim
n→∞

J̃(un).

We obtained a contradiction to the assumption that (un) ⊂M−π,π is a minimiz-
ing sequence of J̃ .

Thus (i2) holds. Hence, given ε > 0, there exists a sequence (ηn) ⊂ R and
T0 > 0 such that

|J̃(un)− J̃T0(un, ηn)| < ε.

Let wn(s) = un(ηn + s). The sequence (wn) is bounded in E. Indeed, by (9),

‖w′n‖L2(R) = ‖u′n‖L2(R) ≤
2

c2 − c21
J(un),
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and by Lemma 3.5,

|wn(0)| ≤ 3

2
π + δ.

Hence, (wn) contains a subsequence, still denoted by (wn), that converges weakly
to some limit u ∈ E. The convergence is uniform on [−T0, T0], and

‖u′‖L2(−T0,T0) ≤ lim
n→∞

inf ‖w′n‖L2(−T0,T0) .

Since the functions V (u), 1 + cosu and F (u) belong to C1(R) and therefore are
Lipschitz continuous for |u| ≤ 3

2π + δ, there exists n0 ∈ N such that for all n >
n0, ∣∣∣∣(J̃(u)− c2

2
‖u′‖L2(R)

)
−
(
J̃T0(wn)− c2

2
‖u′‖L2(−T0,T0)

)∣∣∣∣ ≤ ε.
In fact, this inequality holds for all T > T0 instead of T0. By Lemma 3.1, u ∈
M−π,π. Furthermore, as T 7→ J̃T (wn, 0) is non-decreasing for every n ∈ N, we
obtain that J̃T (wn, 0) ≤ J̃(wn). Then,

J̃(u) = lim
T→∞

J̃T (u, 0) ≤ lim
T→∞

lim
n→∞

inf J̃T (wn, 0)

≤ lim
T→∞

lim
n→∞

J̃(wn) = lim
n→∞

J̃(wn) = lim
n→∞

J̃(un),

and thus u is a minimizer of the functional J̃ on M−π,π.

The following theorem is the main result of the paper.

Theorem 4.3. Assume conditions (i)–(iv) hold. Suppose that c is large
enough to ensure δ < π for δ defined by (13). Then equation (2) has a solu-
tion u that satisfies boundary conditions (3).

Proof. By Lemma 3.1, the modified functional J̃ has a minimizer u∗ ∈M−π,π.
We have to show that u∗ is a solution of equation (2) with boundary conditions
(3). We define the functional Ψ̃ similarly to Ψ but in terms of J̃ . Then the
function υ∗ = u∗ − υ0 minimizes Ψ̃ on H1(R). Since the embedding H1(R) ⊂
L∞(R) is continuous, we have that

‖υ0 + υ‖L∞(R) <
5

2
π

for all υ in the neighborhood ∆ ⊂ H1(R) of υ∗. Then, by Remark 3.2, for all
υ ∈ ∆,

Ψ(υ) = J(υ0 + υ) = J̃(υ0 + υ) = Ψ̃(υ),

and υ∗ minimizes Ψ as well as Ψ̃ in ∆. In particular, υ∗ is a local minimizer of the
functional Ψ on H1(R), i.e., υ∗ is a critical point of Ψ. Hence, by Lemma 3.1 (iv1),
u∗ = υ0 +υ∗ is the solution of equation (2) that satisfies boundary conditions (3).
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223–283.



26 S. Bak

[18] P.D. Makita, Periodic and homoclinic travelling waves in infinite lattices, Nonlinear
Anal. 74 (2011), 2071–2086.

[19] A. Pankov, Travelling Waves and Periodic Oscillations in Fermi–Pasta–Ulam Lat-
tices. Imperial College Press, London, 2005.

Received June 22, 2017.

S. Bak,

Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University, 32 Ostrozkogo St., Vin-
nytsia, 21001, Ukraine,
E-mail: sergiy.bak@gmail.com

Iснування гетероклiнiчних рухомих хвиль в
дискретному рiвняннi синус-Ґордона на двовимiрнiй

ґратцi
С. Бак

Статтю присвячено дискретному рiвнянню синус-Ґордона, яке опи-
сує нескiнченну систему нелiнiйно зв’язаних нелiнiйних осциляторiв на
двовимiрнiй ґратцi iз зовнiшнiм потенцiалом V (r) = K(1−cos r). Основ-
ний результат стосується iснування розв’язкiв у виглядi гетероклiнi-
чних рухомих хвиль. За допомогою методу критичних точок i принципу
концентрованої компактностi отримано достатнi умови iснування таких
розв’язкiв.

Ключовi слова: дискретне рiвняння синус-Ґордона, нелiнiйнi осциля-
тори, двовимiрна ґратка, гетероклiнiчнi рухомi хвилi, критичнi точки,
принцип концентрованої компактностi.
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