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The Existence of Heteroclinic Travelling
Waves in the Discrete Sine-Gordon Equation
with Nonlinear Interaction on a 2D-Lattice

S. Bak

The article deals with the discrete sine-Gordon equation that describes
an infinite system of nonlinearly coupled nonlinear oscillators on a 2D-lattice
with the external potential V(r) = K(1 — cosr). The main result concerns
the existence of heteroclinic travelling waves solutions. Sufficient conditions
for the existence of these solutions are obtained by using the critical points
method and concentration-compactness principle.
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1. Introduction

In the paper, we study the discrete sine-Gordon equation that describes the
dynamics of an infinite system of nonlinearly coupled nonlinear oscillators on a
two-dimensional lattice. Let gy, be a generalized coordinate of the (n,m)-th
oscillator at the time ¢t. It is assumed that each oscillator interacts nonlinearly
with its four nearest neighbors. The equation of motion of the system considered
is of the form

(.jn,m = V/(QnJrl,m - Qn,m) - V,(Qn,m - anl,m) + V/(Qn,erl - Qn,m)
- V/(Qn,m - Qn,m—l) - KSin(Qn,m)y (n, m) € 227 (1)

where K > 0. Equations (1) form an infinite system of ordinary differential
equations.

System (1) can be considered as a 2D version of the Frenkel-Kontorova model
(see, e.g., [11]). Notice that this system represents a wide class of systems called
lattice dynamical systems extensively studied in last decades. In this area of re-
search, a great attention is paid to an important specific class of solutions called
travelling waves solutions. A comprehensive presentation of the results on trav-
elling waves for 1D Fermi-Pasta—Ulam lattices is given in [19]. The existence
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of periodic travelling waves in the Fermi—Pasta—Ulam system on a 2D-lattice is
studied in [4]. On the other hand, some results on the chains of oscillators are also
known in the literature. In particular, in [14] they are obtained by means of bifur-
cation theory, while in [1] and [2] the existence of periodic and solitary travelling
waves is studied by means of the critical point theory. In papers [3,10,12,13], trav-
elling waves for infinite systems of linearly coupled oscillators on a 2D-lattice are
studied. Paper [18] is devoted to periodic and homoclinic travelling waves for the
infinite one-dimensional chain of nonlinearly coupled nonlinear particles. In [6],
a result on the existence of subsonic periodic travelling waves for the system of
nonlinearly coupled nonlinear oscillators on a 2D-lattice is obtained, and in [7],
supersonic periodic travelling waves for these systems are studied. Paper [15]
contains a result on the existence of heteroclinic travelling waves for the dis-
crete sine-Gordon equation with linear interaction. In [16], periodic, homoclinic
and heteroclinic travelling waves for such systems with nonlinear interaction are
studied. In paper [5], a result on the existence of periodic travelling waves for
the discrete sine-Gordon equation with nonlinear interaction on a 2D-lattice is
obtained. [8] is devoted to the existence of heteroclinic travelling waves for the
discrete sine-Gordon equation with linear interaction on a 2D-lattice.

2. The problem statement

A travelling wave solution of equation (1) is a function of the form
Gn,m(t) = u(ncosp +msiny — ct),
where the profile function u(s) of the wave, or simply profile, satisfies the equation

cQu”(s) = V'(u(s + cosp) —u(s)) — V'(u(s) — u(s — cos ¢))
+ V'(u(s +sinp) —u(s)) — V'(u(s) — u(s — sinp)) — K sin(u(s)). (2)

The constant ¢ # 0 is called the speed of the wave. If ¢ > 0, then the wave moves
to the right, otherwise to the left.

An important role is played by the quantity ¢; defined by the equation

c? =2 sup

[r|<6m

v |

We consider the case of heteroclinic travelling waves. The profile function of
this wave satisfies the conditions:

SEIPOOU(S) =—m and sginoou(s) =. (3)

In what follows, a solution of equation (2) is understood as a function u(s)
from the space C%(R) satisfying equation (2) for all s € R.
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3. Variational setting
To equation (2), we associate the functional

+o00 02
Jw= [ [2(1/(3))2 — V(uls + cos ) — u(s)

—V(u(s +singp) —u(s)) + K(1 + cos(u(s)))| ds, (4)

defined on the Hilbert space
E:={uc HL.(R):u € L*(R)}

with the scalar product

+o00
(u,v)g = u(0)v(0) —I—/ u'(s)v'(s) ds.

—0oQ
It is not so difficult to verify that the critical points of the functional J are the
solutions of equation (2).
Now we introduce the following notation:
M_zr={ue E:u(-0)=—m u(+o0) =7},
Au(s) :=u(s + cosp) — u(s),
Bu(s) :=u(s +sinp) — u(s).
According to Lemma 3.1 from [10],

[ Au(s)l[ 2y < [cosel - [0 ()]l 2(x), u€E,
[1Bu(s)ll 2wy < |sine] - [0/ (s)l| L2(r), u€ k.

Then the functional J can be expressed in the form

o0 02
J(u) = / [2(1/(3))2 — V(Au(s)) — V(Bu(s)) + K(1 + cos(u(s)))| ds. (5)

Throughout the paper we will assume that the interaction potential V(r)
satisfies the following conditions:

(i) V(r) € CY(R), V(0) = 0 and V(r) > 0 for all r € R;
(i) lim, 100 V(1) = +o0;

(iii) there exists finite lim,_,o ;

(iv) the wave speed c satisfies ¢ > ¢2.

The following lemma can be obtained by a straightforward calculation (see [15]
for details).
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Lemma 3.1. Let vy : R — [—m, 7] be a monotone function in C*°(R) such
that vo(s) = —m for s < —1 and vo(s) = w for s > 1. Define the functional U :
H'(R) — R by

Y (v) := J(vo + v)

and suppose that assumptions (1)—(iv) are satisfied. Then the following holds:

(i1) ¥(v) < +oo for all v € HY(R) (equivalently, J(u) < +oo for all u of the
form uw = vy +v for some v € H'(R));

(ii1) J(u) = +oo for all u € M_; » which are not of the form u = vy + v for
some v € HY(R). In particular, a minimizer u of J on M_, . can be
expressed as u = vy + v for some v € H'(R);

(iii1) ¥ € C! on H(R);

(iv1) let v € HY(R) be a critical point of ¥ and set u = vo + v. Then u,v €
C%(R), and u is a solution of (2) with boundary conditions (3).

Let F be a non-negative function in C°°(R) such that

F(r) = i |r| < 2,
F(r) > 4‘ |V’(a:)|d:v’ and F(r) > 2K, if |r| > 3, (6)
2 <1+4cosr+ 5=F(r), if |r| € (3m,3m).

Now we define the modified functional .J : E — RU {oo} by
_ +oo 62
J = [ |G weR - viaus) - visu)
+K(1+ cos(u(s))) + F(u(s))| ds. (7)

Remark 3.2. Obviously, J(u) = J(u) for all u € E with norm

l\D\O‘l

[ul| Lo r) <
Now we denote the modified potential of interaction by

7oy = | [ V@)
0

Then from (6) for all |r| > 37, we have

V(2r) <V(2r) < =F(r). (8)

AN

Hence, by (ii), F'(r) — +oo for r — fo0.
The lemma below can be found in [16, Lemma 2.5].



20 S. Bak

Lemma 3.3. Let W € CY(R) be such that W(£m) = 0 and W(£) > 0 for
€| < 7, and let

+o00
1) = [ (6)? + W)l

Then the minimum of I on M_x » is attained and

min  I(u / VW (E)dE =: 0.

UEM _ 7 »

Moreover, with the same 19,

T
%I;fo ueH%I(lfT,T) {/_T[(u/(s))2 + W(u(s))ds:u(-T) = —m,u(T) = 77} =7.

Lemma 3.4. Assume conditions (i)—(iv) hold. Then for all u € E,

—00

5 +oo 02_02
H) = [ T[S G 4 K cos(ute)) + pFCuls) s, (0)

and the functional J is bounded from below on M _ x. Moreover,

&/@Q—C@Kf<ueg%mﬁﬂu)<80¢Ri (10)

Proof. Since

[Au(s)] < fu(s + cos )| + [u(s)] < 2max{fu(s + cos )], [u(s)]},
[Bu(s)| < |u(s +sinp)| + |u(s)| < 2max{|u(s + sin@)], [u(s)[},

then for every k > 0,

k
{s e R:|Au(s)] > k} C ¢ s € R: max{|u(s + cos )|, |u(s )\}>2}

{
{seR s+coS@)|>§}U{SER:u(s)|>];}7
{s € R:|Bu(s)| >k} C {seR max{|u(s + sin )|, |u(s )‘}>’;‘}

g{seR:m@+gn@|>g}u{seR:m@n>§}.

Making use of (8) and the monotonicity of the potential V on (—oc0,0) and on
(0, +00), we have
V(Au(s))ds < / V(Au(s)) ds

{s€R:|Au(s)|>6m}

</ V(2 max{u(s + cos ), [u(s)|}) ds
{s€R:|Au(s)|>67}

/{sGR:|Au(s) [>67}
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1
<L/ S Fma{u(s + cos )], [u(s)|}) ds
{seR:max{|u(s+cos )|, u(s)|}>37}

+oo
32/ Yptusds <2 [ Pluls)) ds. (11)
{s€R:|u(s)|>3n} 4 2J)
Similarly,
I
/ V(Bu(s))ds < / F(u(s))ds. (12)
{s€R:|Bu(s)|>67} 2/

By the definition of ¢;, we obtain

/ V(Au(s))ds < / Cl (Au(s))? ds
{s€R:| Au(s)| <6} {sER: |Au s)|<6r} 2
/ ds
> 2
/ s < —I(Bu(s))Z ds
{sER:|Bu(s)|§67r} {sER: |Bu s)|<6r} 2

_/m % (Bu(s))?ds.

Then it follows from (11) and (12) that

- +00 2 2 2
iz [ Geer - Hauw? - sy

+ K (1 + cos(u(s))) + F(u(s))] ds

V(Au(s))ds — / V(Bu(s))ds

/[SGR |Au(s)|>6m} {s€R:|Bu(s)|>67}

oo 2 _ 2
> [ [F5 006 - K+ costulo)) + 3Fu)] ds

—00

for all u € E, and (9) holds true.
Applying Lemma 3.3 to the functional

62 _ C2 +o00
B = 5 [ W) + Wia(s)) ds

where oK
Wi(z) == ﬁ[l + cosx + ﬁF( x)],

and making use of (9), we obtain

’Uze./i\fllfﬂ-,ﬂ j( ) Z (C B 01)

Vﬁ‘*m

= \/2(02—0%)1(‘/ V1+cosz+0dx

=84/(c2 — A)K.
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Furthermore, since V > 0, we have

C

() < 22 / ;OO [(u/(s))Q + 2 <K(1 + cos(u(s))) + gF(u(s))ﬂ ds.

Now, we apply Lemma 3.3 to the functional

22 [
Blo) = 5 [ 6)? + Walu(s)) ds,

—00

where oK 5
Wa(z) = 07[1 + cosx + ﬁF(x)]

As a consequence, we obtain

inf J(u) < < 8cVK,

UEM 7 7

i VvV Wa(z)dx

from which inequalities (10) follow. O
The following lemma can be proved in the same way as Lemma 2.7 from [16].

Lemma 3.5. Assume conditions (i)-(iv) hold. Let i € M_z » be a minimizer
of J on M_g , then

N 3
]| oo (m) < o+

where
4¢3

2 _ .2 2 _ 2
c c] +cy/c c

In particular, if the speed c is large enough to ensure 6 <, then ||i| poo(r) < gw.

§:= (13)

4. Main result

In order to prove the main result, we need the following version of the
concentration-compactness principle obtained in [15, Lemma 4.1] (see [16,17,19]
for other versions of this principle).

Given T' > 1 and 7 € R, we define a truncated version of .J by

B 1 m+T—147 62 n+T—-1
Jr(u,n) = / / —(u'(s))? ds dr —/ V(Au(s))ds
0 Jn-T+1 2 n=T

n+T-1 77+T7% 3
_ / V(Bu(s)) ds + / 1 [K(1+cos(u(s)))+2F(u(s)) ds.
n=T n=T+3

Lemma 4.1 (Concentration-compactness). Assume conditions (i)—(iv) hold.
Let (un) C M_y » be a minimizing sequence for J on M_x =, and let c be large
enough to ensure 6 < 7 for § defined in (13). Then there exists a subsequence,
still denoted by (uy,), such that one of the following holds:



The Existence of Heteroclinic Travelling Waves in the Discrete sine-Gordon ... 23

(ia) (concentration) there is a sequence (n,) C R such that for all small enough
e > 0 there exists T > 0 such that

’j(un) - jT(una nn)‘ <e
for everyn € N;

(iia) (vanishing) for all T > 0,

lim_sup Jr(un,n) = 0;

n—oo WGR

(ilip) (dichotomy) there exists e1 > 0 such that for every 0 < € < &1 there are
(fn)y (gn) C E S’LLCh that

[un — (fn+gn —m)| <e, ‘j(un) - (j(fn) + j(gn)| < &,
Jim_dist(supp(f;), supp(g)) = o0, lim J(fn) = a, lim J(ga) = 5,

n—oo
for some 0 < o, 8 < infuem_, . J(u) (r is needed in the first inequality to
ensure J(fn) < 400 and J(gn) < +00).

Lemma 4.2. Under the assumptions of Lemma /j.1, the functional J has a
minimizer on M _r .

Proof. By Lemma 3.4, the functional J is bounded from below on M_;x.
Let (u,) C M_z» be a minimizing sequence. Then, by Lemma 4.1, the subse-
quence exists, still denoted by (u,,), which satisfies either of the following criteria:
concentration, vanishing or dichotomy.

Vanishing is impossible (see the proof of Lemma 5.1 in [15]).

We will show that dichotomy is also impossible. Indeed, as f,,g9, € E and
J(fn), J(gn) < +o0, the analogous statement of Lemma 3.1 (with .J replaced by
J) shows that f,,(£00), gn(£00) € {£7}. Since f, + gn — ™ € M_4 -, then only
fn(=00) = frn(400) or only g,(—00) = gn(+00). In the first case, we set 4, =
gn and in the second case, iy, := f. Then (4,) C M_; » and, by (iiiz), possibly
after passing to a subsequence, we have

g T ) < R0 = g )
We obtained a contradiction to the assumption that (u,) C M_y » is a minimiz-
ing sequence of J.

Thus (i2) holds. Hence, given £ > 0, there exists a sequence (1,) C R and

To > 0 such that . .
| (un) = Iy (U, M) | < €.

Let wy,(s) = upn(nn + s). The sequence (wy,) is bounded in E. Indeed, by (9),

2

lwpll 2@y = lunll2@) < 55— 7 (un),
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and by Lemma 3.5,

wa(0)] < o748

Hence, (w,) contains a subsequence, still denoted by (wy,), that converges weakly
to some limit v € E. The convergence is uniform on [Ty, Tp], and

Il ) < Jimm i a2 -

Since the functions V' (u), 1+ cosu and F(u) belong to C'(R) and therefore are
Lipschitz continuous for |u| < 37 + 4, there exists ng € N such that for all n >
no,

- c2 , ~ c? /
J(w) = Sz | = | Jr(wa) = Sllwllzom) )| < e

In fact, this inequality holds for all T > Ty instead of Tp. By Lemma 3.1, u €
Mz . Furthermore, as T' +— Jr(wy,0) is non-decreasing for every n € N, we
obtain that Jr(wy,0) < J(wy,). Then,

J(u) = lim Jr(u,0) < lim lim inf J7(w,,0)

T—00 Nn—00

< lim lim J(w,) = lim J(w,) = lim J(uy,),

— T—o0on—0 n—00 n—00
and thus v is a minimizer of the functional J on M_ . O

The following theorem is the main result of the paper.

Theorem 4.3. Assume conditions (i)—(iv) hold. Suppose that c is large
enough to ensure § < 7 for & defined by (13). Then equation (2) has a solu-
tion u that satisfies boundary conditions (3).

Proof. By Lemma 3.1, the modified functional J has a minimizer u, € M _zx.
We have to show that u, is a solution of equation (2) with boundary conditions
(3). We define the functional ¥ similarly to ¥ but in terms of .J. Then the
function vy = wux — vy minimizes ¥ on H L(R). Since the embedding H'(R) C
L*>°(R) is continuous, we have that

)
||’U0 + UHLOO(]R) < 571'

for all v in the neighborhood A C H!(R) of v,. Then, by Remark 3.2, for all
v E A,

V(v) = J(vg +v) = J(vg +v) = ¥(v),
and v, minimizes ¥ as well as ¥ in A. In particular, v, is a local minimizer of the
functional ¥ on H!(R), i.e., v, is a critical point of ¥. Hence, by Lemma 3.1 (ivy),

Uy = Vo + v, is the solution of equation (2) that satisfies boundary conditions (3).
O
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IcHyBaHHS reTepOKJIIHIYHUX PYXOMHUX XBUJIb B
nUCcKpeTHOMY piBHsiHHI cuHyc-I'opoHa Ha ABOBUMIpHIit
rparii
C. bak

CTaTTIO HPUCBIIEHO JICKPETHOMY DIBHSHHIO CHHyC-I OpIOHA, sIKe OITH-
Cy€ HECKIHYEHHY CUCTEeMY HEJIHIHO 3B’sA3aHUX HEJIHINHUX OCIUJIATOPIB Ha
JIBOBUMIpHI# rparmi i3 3oBHimuIM norermniagom V (r) = K (1 —cosr). OcHos-
HUU PEe3yJIbTAT CTOCYEThCH ICHYBAHHS PO3B’H3KIB y BUIVIA] T'€TE€POKJIiHI-
YHUX PYXOMUX XBUJIb. 38 JOMOMOIOI0 METO/LY KPUTUIHUX TOYOK 1 IIPUHITUITY
KOHIIEHTPOBAHOI KOMIIAKTHOCTI OTPUMAHO JIOCTATHI YMOBH iCHYBaHHS TAKUX
PO3B’SI3KiB.

Kmro4oBi c10Ba: quCKpeTHe piBHSHHS cuHyc-1opona, HeiHiiini ocrms-
TOpH, JIBOBUMipHa& I'DATKa, T€TEPOKJIIHIYHI PYXOMi XBUJI, KPDUTHIHI TOYKH,
IIPUHITUIT KOHIIEHTPOBAHOI KOMIIAKTHOCTI.
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