Journal of Mathematical Physics, Analysis, Geometry
2018, Vol. 14, No. 1, pp. 27-53
doi: https://doi.org/10.15407/magl4.01.027

Renormalized Solutions for Nonlinear
Parabolic Systems in the Lebesgue—Sobolev
Spaces with Variable Exponents

B. El Hamdaoui, J. Bennouna, and A. Aberqi

The existence result of renormalized solutions for a class of nonlinear
parabolic systems with variable exponents of the type

Ay @ _ div(|ug(a, t) [P 2w, (2, t))
+ div(e(a, t)|u; (z, £) 7@ 20 (2, 1) = f;(2, u1, ug) — div(E}),

for ¢ = 1,2, is given. The nonlinearity structure changes from one poi-
nt to other in the domain €. The source term is less regular (bounded
Radon measure) and no coercivity is in the nondivergent lower order term
div(c(z, t)|u(z,t)["®~2u(z,t)). The main contribution of our work is the
proof of the existence of renormalized solutions without the coercivity
condition on nonlinearities which allows us to use the Gagliardo—Nirenberg
theorem in the proof.
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1. Introduction

One of the driving forces for the rapid development of the theory of variable
exponent function spaces was the model of electrorheological fluids introduced
by Rajagopal and Rusicka [25]. The model leads naturally to a functional set-
ting involving function spaces with variable exponents. Electrorheological fluids
change their mechanical properties dramatically when an external electric field
is applied. In the mathematical community these materials have been inten-
sively studied in the recent years. In the case of an isothermal, homogeneous,
incompressible electrorheological fluid, the governing equations read

O+ —divS + [VoJv+ Vrr = g+ [VE]P in Q,
dive =0 1in §, v=0 on 09,
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where v is the velocity, [Vv]v is the convective term, m denotes the pressure, S
denotes the extra stress tensor, g is the external body force, E is the electric field,
and P is the electric polarization. The extra stress tensor is given by

_ —2
S =asl((1+ DT —1)E® E + (asl + asl|E|?)(1 + |D|?)"T),

p = p(|EJ?) is a Holder continuous function with 1 < p~ < pt < N; this
requirement also ensures that the operator induced by —div S(D, E) is coercive
and satisfies appropriate growth conditions. For the mathematical treatment,
we have additionally to assume that the operator induced by —divS(D, E) is
strictly monotone.

The first systematic study of spaces with variable exponents was carried out
by Nakano in [23], later in [22] Museilak and in [19] Kovacik investigated the
modular spaces which are more general frameworks.

In the real line, the Lebesgue space with variable exponents was developed
by Tsenov, Sharapudinov, and Zhikov [27,28]. The reader can find numerous
references in the overview paper by Antontsev [3] and in the monograph on
evolution PDEs by Antontsev and Shmarev [7]. In this paper, we consider a
problem with potential application in electrorheological fluids (smart fluids), the
flow through the porous media [7].

Let Q be a bounded-connected domain of RY (N > 2) with Lipschitz bound-
ary 092, Qr = Q x (0,T), the generic cylinder of an arbitrary finite hight T < oo,
and consider the following strongly nonlinear parabolic system:

( W —div(a(z,t,u1, Vur)) + div(ei (z, t, u1)),
= fi(x,uy,ug) — div(Fy) in Qr,
@%ﬁﬂﬁ—dw(@tu%VWﬁ+dwwxxtmD
ot (1.1)
= folx, uy, up) — div(F) in Qr,
ui(z,t) = ua(z,t) =0 on 09 x (0,T),
by (z,u1(z,0)) = by (z,uf(z)) in Q,
bo(x, ug(x,0)) = by(z, ud(x)) in Q.

Let p : Q — [1,4+00) be a continuous real-valued function and let p~ =
min, g p(x) and p* = max, gp(r) with 1 < p~ < p* < N. The operator
—div (a(a:,t,u,Vu)) is a Leray—Lions operator defined from some generalized
Sobolev space V into its dual space V* (the two functional spaces will be devel-
oped bellow, see (2.3), ¢i(z,t,u;) are the Carathéodory functions (see assump-
tions (3.6)—(3.8)), and b; : 2 x R — R are the Carathéodory functions such that
for every z € Q, b;(z,-) is a strictly increasing C*-function, the function Up,; 1s in
LY(Q) such that b;(-,up;) in L'(Q). The functions f; : @ x R x R — R are the
Carathéodory functions (see assumptions (H4) below), and F; € (Lp'(')(QT))N

Under our assumptions, problem (1.1) does not admit, in general, a solution
in the sense of distribution since we cannot expect to have the field ¢;(x,t,u;)
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in (LIIOC(QT))N. For this reason, we consider the framework of renormalized
solutions (see definition 3.1). The notion of renormalized solutions was introduced
by R.-J. DiPerna and P.-L. Lions [17] to study the Boltzmann equation. It was
then adapted to the study of some nonlinear elliptic or parabolic problems and
evolution problems in fluid mechanics [10, 14].

It should be mentioned that the existence and uniqueness of the renormalized
solution for parabolic equations in the form

up = —div(a(z, t,u, Vu) + div(p(u)) = f

have been studied by many authors under various conditions on the data in the
classical Sobolev spaces (see, e.g., [1,2,11,15]), and by J. Bennouna [9] in the
setting of Orlicz spaces.

In the framework of Sobolev spaces with variable exponents, S.N. Antontsev et
al. in [4-6] studied the existence and blow up properties of energy weak solutions
for parabolic equations with nonstandard growth conditions of the type

ur = (a(x,t,u, Vu)y, + bz, t,u)z, + f. (1.2)

In [8,26], P. Wittbold studied equations (1.2) with the p(x)-Laplacian opera-
tor. In this paper, we extend these results to nonlinear parabolic equations with
the terms b(x, u(z,t)); and a lower order term of type (c(z, t)|u(z, t)[Y®)),., where
~(x) is suitably given (in terms of p(-) and the dimension N), and we overcome
the lack of coercivity by using the approach of renormalized solutions.

The paper is organized as follows. In Section 2, we recall some basic notations
and properties of Sobolev spaces with variable exponents. In Section 3, we give
basic assumptions and introduce the definition of a renormalized solution. In
Section 4, we prove the main result of this paper, Theorem 4.1, on the existence
of a renormalized solution. In Appendix A, some technical results are given.

2. Functional spaces

We recall some definitions and basic properties of the generalized Lebesgue—
Sobolev spaces LP0)(Q), W()(Q) and Wol’p(')(Q), where () is an open subset of
RN. We refer to Fan and Zhao [18] for further properties of Lebesgue-Sobolev
spaces with variable exponents.

Let p : © — [1,+00) be a continuous real-valued function and let p~ =
min_ g p(z) and, p* = max, gp(z) with 1 <p(-) < N. We define the Lebesgue
space with variable exponent

Lp(’)(Q) = {u : Q — R; uis measurable with / lu(z) ]p(x)dx < oo} .
Q

We define the norm, the so-called Luxemburg norm, on this space by the formula

w(z) [P
[ull o> (@) = {M > 0;/9 ‘,(U) dr < 1} :
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The following inequality will be used later:

i {0 [} < [ )P

< max { Jull? ;g Il

Lp( ) Lp(cdot) (Q)} (2]‘)

If p~ > 1, then LP()(Q) is reflexive, and the dual space of LP() () can be identified
with LP'()(Q), where ﬁ + I%(') = 1. For any u € LP)(Q) and v € LP'()(Q), the
Holder type inequality

[ unlde < (4 = Yool (22)

holds true.

Extending a variable exponent p : Q — [1,00) to Q7 = [0,T] x Q by setting
p(t,z) := p(x) for all (t,x) € Qr, we can also consider the generalized Lebesgue
space

LPO(Qr) = {u : Qr — R;uis measurable with / lu(t, z)|P®) d(t, z) < oo}

T

endowed with the norm

||UHLP(-)(QT) = inf {N > 03/
Qr

which has the same properties as LP()(€2). We also define the variable Sobolev
space

u(t, z) p(z)

7

d(t,z) < 1}

Wlet)(Q) = {ueLP (Q); |Vl € L (Q)}.

In W0 (Q) we may consider one of the following equivalent norms:
HUHWLP(‘>(Q) = Hu”LP(')(Q) + HVUHLW(Q):

\V4 )
nwwmo@=am{u>m/(\iﬁ) >cmg1}
Q

Then we define Wol’p(')(Q) = CgO(Q)Wl’p(‘)(Q). Assuming 1 < p~ < p* < o0, the
spaces W1hP0)(Q) and T/VO1 P (')(Q) are separable and reflexive Banach spaces. The
space (W()l’p(")(Q))* is denoted as the dual space of Wol’p(')(Q).

For priori estimates, it is necessary to introduce more restrictions on the vari-
able exponents supposing them to be log-Holder continuous. This concept was
introduced for the first time by V.V. Zhikov in [29] (see Theorem 2.2, Paragraph
2 for sufficient conditions for regularity; see also [16] for more details). More-
over, the concept is used to obtain several regularity results for Sobolev spaces
with variable exponents, in particular that C°(Q) is dense in W'P()(Q) and
WOLP(‘)(Q)‘

or

p(z)

. u(z) p(z

I
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Remark 2.1 ([16,29]). The variable exponent p : Q — [1, 00) is said to satisfy
the log-continuity condition if

Vo, 20 €Q, |x1—29| <1, |p(x1) — p(22)| < w(|21 — 22|),
where w : (0,00) — R is a nondecreasing function with

limsup w(a)In (1/a) < +o0.

a—0t

Lemma 2.1. Let a variable exponent p(-) satisfy the log-continuity such that
1<p- <pt <N,

vu € WoP(Q),  Null ooy < ClIVull oo 0y,

with C' = C(N, Clog(p),p™) and p*—l(.) = ﬁ — % forp(z) < N a.e. in Q, p*(-) =
0o otherwise.

We introduce the functional space
v={ver 01w (@) Vel € 'O@Qr)}, (2:3)
which, endowed with the norm
[ollv = IVl Loy @y
or, the equivalent norm
lollv = 19l o= o w20 @y F IVl o0 @1

is a separable Banach space. We state some further properties of V' in the fol-
lowing lemma.

Lemma 2.2 (see [8]). Let V' be defined as in (2.3) and its dual space be
denoted by V*. Then

(i) we have the following continuous dense embedding:

. (O,T; WS’”"(Q)) SV e [P (O,T; WJW(Q)) . (2.4)

In particular, since D(Qr) is dense in LP" <O,T; Wol’p(')(Q)), it is also dense
i V, and for the corresponding dual space, we have

L) (O,T; (W&’p")(ﬁ))*) Vs L) <O,T; (W&’p“)(ﬁ))*) ;o (25)

ii) one can represent the elements o as follows: if F € , then there exists
ii t the el t v ll if e V*, then th t

F=(f1,...,fn) € (L”(')(QT))N such that F = div, F and, for anyv €V,

T
(F o)y y = (divy F,v)y+y = / / FVovdxdt,
0 Q

moreover, we have, | F||y- = max{||fi||Lp(.)(QT), i=1,..., n} .
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Remark 2.2. Notice that V N L*°(Qr), endowed with the norm

Wlvars @) =max{llvllv, [vlr=@m}, veVNL(Qr),

is a Banach space. In fact, it is the dual space of the Banach space V* + L (Q7),
endowed with the norm

[0llvetri@p) = inf {lvillve + lvallpr(@p); v =v1 +v2,v1 € V¥ 0p € LN Q)]
Lemma 2.3. The following holds:
W:={ueV;u eV*+L"(Qr)} — C([0,T); L'(Q)), (2.6)

and
W N L>®(Qr) = C ([0,T]; L*()) . (2.7)

Proof. The proof of this lemma follows the same lines as the proof of the
corresponding result for the case of a constant exponent p, Theorem 1.1 from
[8]. O

3. Assumptions on the data and definition of renormalized
solution

Throughout this paper, we will assume that the following assumptions hold
true:

Assumption (H1):
bi : 2 x R = R is a Carathéodory function (3.1)

such that for every x € €, b;(z,-) is a strictly increasing C!(R)-function with
bi(z,0) = 0; for any k > 0, there exists a constant /\% > 0 and the functions Afc €
L*(Q) and B}, € LP1)(Q) such that for almost every z in €,

Obi(z, s)
s

< Obi(z, s)

Ay EP < Al (z) and ’Vz < >‘ < Bi(z), |s|<k. (3.2

Assumption (H2): Let a : Qr x R x RV — R be a Carathéodory function
such that for any k > 0, there exists hy € LP ()(Qr) with

0wt 5,€)] < vl ) + [P, sl <kwithy>0,  (33)
a(x,t,s,§)& > a]{\p(x) with o > 0, )
(a(z,t,5,€) —a(z,t,5,m)(§ —n) >0 with § # 7. (3.5)

Assumption (H3): For i = 1,2, let ¢; : Q7 x R — R be a Carathéodory
function such that

‘d)i(x?t? S)’ < ci(xﬂt)ls"y(x% (36)
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(T N N +p()
a(et) € (LO@n), ()= TOREE (3.7)
v() = m(p(-) —-1), v = fé%l y(x), "= rfgg’y(ﬁc) (3.8)

for almost every (x,t) € Qr, for every s € R, and every &,1 € RY.

Assumption (H4): Fori=1,2, f; : Q xRx R — R is a Carathéodory function
with f1(z,0,s) = fa(x,5,0) =0 a.e. x € Q, Vs € R. And for almost every x € ,
for every si1,s2 € R,
sign(s;) fi(x, s1,s2) > 0. (3.9)

The growth assumptions on f; are as follows: for each k > 0, there exists o > 0
and a function Hj j in L'(Q) such that

|f1(@, s1,82)] < Hyp(a) + oklba(z, s2)| ae in €, |si| <k, s2€R; (3.10)
for each k > 0, there exists py > 0 and a function Ha g in L' () such that

| fa(z, 81, 82)| < Ha (@) + pelbr(z, 1) ae inQ, [sof <k, s1 €R, (3.11)
Fye IPO(Qp) fori=1,2, (3.12)
up; € LY(Q) such that b;(x,up;) € L'(Q). (3.13)

The definition of the renormalized solution for problem (1.1) can be stated as
follows.

Definition 3.1. A couple of measurable functions (u1, ug) defined on Q7 is
called a renormalized solution of (1.1) if for ¢ = 1,2, the function u; satisfies

bi(z,u;) € L (0,T; L1(Q)), (3.14)
Ty(u;) € LP ((o,T); Wol’p(')(ﬂ)) . k>0, (3.15)
N
VT (ui) € (L”(')(QT)> . k>0, (3.16)
lim ! / a(x,t, u;, Vu;)Vu; dr dt =0, (3.17)
R HE

and if for every function S in W2 (R), which is piecewise C! and such that S’
has a compact support, the following holds:
8BZ , Us . i
’Sa(txu) —div <a(w,t,ui, Vui)S'(ui)> + S (w)a(z,t,u;, Vu;)Vu,
+ div (12, ui) S'(w) ) = 8" ()i, wi) Vs
= fl(x, uiy, UQ)S,(UZ) — le(Sl(uz)Fz)
+ S"(ul)Fqul in D,(QT), (3.18)
Bi75($, ui)|t:0 = BZ‘,S(IL‘, ui,o) n Q, (319)
0bi(z, s)

here B; = [ 25 (s)ds.
where B; 5(z, 2) /0 s S (s)ds
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Remark 3.1. Equation (3.18) is formally obtained through multiplication of
(1.1) by S’(u). However, as a(x,t,u;, Vu;) and ¢;(z,t,u;) do not in general make
sense in D'(Qr), all the terms in (3.18) have a meaning in D'(Q7) (see, e.g., [14]).

We have

aBi,S(x’ uz)
ot

The properties of S, assumptions (3.2) and (3.15) imply that if K is such that
supp S’ C [-K, K],

belongs to  L'(Qr) + V*. (3.20)

VBis(w,ui)| < || Akl oo o) DT (ui) 18| oo ) + K|S || oo ) Bic (), (3.21)
and
B, s(x,u;) belongs to VN L*(Qr), (3.22)
then (3.20) and (3.22) imply that B; s(z,u;) belongs to C°([0,T]; L' (Q)) (for the
proof of this trace result see [24]). Hence the initial condition (3.19) makes sense.
4. Main result: existence of renormalized solution

Our main results are collected in the following theorem.

Theorem 4.1. Fori = 1,2, let b;(z,up;) € L*(Q). Assume that (H1)-(H4)
hold true, then there exists at least one renormalized solution (ui,us2) of problem
(1.1) (in the sense of Definition 3.1).

Proof. The above theorem is to be proved in five steps.
Step 1: A regularized problem. For i = 1,2 for each € > 0, let us introduce
the following regularization of the data:

bie(z,7) = bi(2,Tyc(r)) +er ae. inQ, r €R, (4.1)
ac(z,t,5,8) = a(z,t,T1/(s),§) ae. inQp, seR, £ecRY, (42
Gie(z,t, 1) = ¢i(x,t, Ty /(7)) a.e. in Qp, reR,
fie(x,s1,82) = fl(l',Tl/e(Sl),Sg) a.e. in €, s1,82 € R,
f.e(z,51,82) = fa(w, 51,1 /e(52)) a.e. in €, s1,82 € R. (4.4)

Let u; 0. € D(Q2) such that
bi.e(x,u;i0¢) = bi(z,u;0) strongly in LI(Q). (4.5)

In view of (4.1), for i = 1,2, b; . is a Carathéodory function which satisfies (3.2).
There exists A; + € > 0 and functions A? € L®(Q) and B! € LP1)(Q) such that

M and ’bze(x $)| < max |b (-:U 5)‘ a.e. in Q) s € R. (46)

Ai <
tes 0s s|<1/e
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Let us now consider the regularized problem

( abz € ,€
’(axt?u’) - diV(ae(a}, t, Uj e, Vui,e))
+ div(¢i,s($a t, ui,e))
_ (R (4.7)
= f’L,E(xa up, uz) — div(F;) in Qr,
Ui e(z,t) =0 on 09 x (0,7),
bie(, Uz‘,e)|t:o = bi (T, ui,0¢) in Q.

In view of (3.10)—(3.11), there exist Hy . € L(Q), Ha € L(), 0 > 0, and
e > 0 such that

|fl,€(x7517 S2)| < -Hl 6( ) + 0c ‘I‘n<ai}; ‘b (.’IT S)‘ a.e. in Qv 51,82 € Ru

€
|f2.e(z,81,82)] < Hae(x) + fie |r|n<al>; |bi(x,s)] ae. inQ, s;,s9 € R, (4.8)
S

As a consequence, it is easy to prove the existence of a weak solution u. € V of
(4.7) (see [21]).

Step 2: A priori estimates for the solutions and their gradients. Let t; €
(0,T) and t be fixed in (0,#1). Using in (4.7) Ty (uie)X(0,) as a test function, we
integrate in the interval (0,¢). By the conditions (4.3) and (3.6), we have

/nyk(m,ui,e(t))dm+/ ac(z,t, uie, V) VT (uie) dr ds
Q t
< / s(, )1t |V T (ws.0)| dx ds
Qt
+ fie(@, wt,e, un,e)Th (i) do ds

Q1

+ / B; y(z,ui0c)dx + FiVTi(u;c) dz ds, (4.9)
Q Qt

€ _rr 0b; e(x,s)

where Bf  (z,7) = [ Tk(s) =5, ds. By (4.6),

A+ €

Ai
/ (T, Ui () doe > /!Tk(uz’,e)Pdﬂ?Z / T (uie)|* dx. (4.10)
Q Q 2 Ja

Under the definition of B s the inequality
0< / B (7, ui0e) do < k/ |bi e (2, uioc)| dz, k>0, (4.11)
Q Q
holds. According to (4.8)—(4.11), and (3.4), we obtain

~ sup / Th(ui )| de 4+ a [ [VTk(ui)[P@®) da ds
Qt

< / ¢i(@, ) us Y@ |V T (ui )| da: ds
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+ E([1bie(z, ui0e) 1) + [ fiell L)
+/ FiVTy(uje) dz ds. (4.12)

If we take the supremum for ¢t € (0,%1) and define M; = (||ficllriQn) +
1bi,e(z, ui0e)|| L1 (), We can deduce

Ai
— sup /\Tk sz)‘ da:+a/ |VTk(ui7€)|p(x)dJ;ds
te(0,t1) Qr,
< Mik + / co(, ) g " |V T (us.0)| d ds

t

1

+ / FiVTk(ui,s) dx ds. (4.13)
Qty

Now we estimate th ci(z, t)|ui "™ |VTy(ue)| deds.  Using the generalized
1
Holder inequality, we have

/ ¢i(, )| ui V@ |V T (ui )| da dt
Q

t
< Clei @, £) | 70 oy It " o0 0y I VT (i )| o2y e (4:14)

where w(:) > %7 maxwegw($) =wT, and minxeﬁw(:n) =w".
By applying Gagliardo—Niremberg generalized inequalities (see Appendix,

Corollary A.1), one has

pt

p
VT (ui o )|P®) da ds>

57;
, (/ VT (ui o) |P™) da ds)
Qi

(z)( )
/ \Tk(u@e)\p - dx ds
Q1
< C'max /
Q
+ jo

¥ N
X max sup / | T (wie)|*d .| sup / T (wie)|*de . (4.15)
te(0,t1) JQ te(0,t1) JQ

t1

1 + 1 .
. el P ellt < - p(x)
min <Cp+ HTkUz,EHLP*(-)(Qtl)’ Cr- ”Tkzuz,e Lp*(.)(Qt1)> < /Qtl IVTKUZ,J dx ds

i) ey < s /m ws )Pz,
Otl

Bi| sup / |T%( u”)| dr] >1 and 52/ \VTk(uLE)\p(I) dxds > 1,
te(0,t1) tq
(4.16)
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where
1
br=rm—m >
Tt el 20
) -1
ﬁQ = (mm (Cp+ ||Tk;Uz €||Lp () Qt — HTI@Uz EHLp () Qt )>) .

After doing some calculations and by using (4.15) and (4.16), we obtain

(z)(N+2)
/ ]Tk(uze)|p - drds
Q

31

2 F+

< ¢ max ﬂlli% B1 sup /\Tk Uj e )|?dx )
B1B2 te(0,¢1)

- N
gl (51 sup / |Tk<ui,e>|2dx>
te(0,t1) JQ

IV T (i )P da ds)

+
sup / T (wi.e)|*dx / VT (ui o) |P®) da ds
t€(0,t1) Qty

In the same way, we arrive to the following inequality:

S

1

p
IV T (wi.e)ll oty (p, ) < C2 ( /Q IV Tk (w0 ) P®) da: ds)

Combining (4.17) and (4.18), we can conclude that

1

T e o (o) |V T (w5, | oo 1,

/\p7L

N
< (4 ( sup / |Tk(u¢,€)|2d$>
te(0,t1) JQ

% / VT (ui ) [P®) da ds ,
Q4

_F i Tud o, 2
o= i 1 Teuse e q,,) <

where

—_ =

w

(4.17)

(4.18)
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Since vy(x) = %ﬁg;_l) for all z € © and Z:p~ < p(z), we have y(z) <

WF2)@@)=Y) g4 411 2 € Q. Moreover, if 2C )(N_+f( )) — P@WH2) 4100 we can find
N NGO-D — NAG)
that 2 M < w(zx) for all z € Q.

Then the continuity of v(-) and p(-) on € implies that for all z € €, there
exist some constants d; > 0 and d9 > 0 such that

N+2
max ]L;F) < min  w(z), (4.20)
eeBonpne  Nv 2€B(z,01)N%!
N +2 -1
max  y(x) < min (W + )(p@ ) (4.21)
2€B(2,02)NQ 2€B(2,02)NQ N + Y/jp_

By taking = min(d1, d2), we can see that inequalities (4.20) and (4.21) hold
on B(z,d) N for all x € Q. So, recalling that Q is compact we can cover it with
a finite number of balls (Bj);=1,.. % By pj , pj , 'yj , w and )\+ we denote the

local maximum of p, p/, v, w, and A on B; NQ and by P pJ ;> wy and A7

. , S Pt (N+2)
we denote the local minimum of p, p’, 7, w and A on B; N2 ). Hence NyF
J
w; < w;-L, which implies
A 'p'.‘" N~T ot +
L Rl and 2P o i (4.22)
p; p; (N +2) N N +2

From (4.16), (4.19), and (4.22), it easy to check that instead of global estimate
we can find

I Thwi ) e @ ) IV Tk (i)l 1o i )

“/;r NW;L 1
N+2 P; (N+2)+7
< Cy| sup / T (wie)|*da / IV Ty (ui ) [P d ds
te(0,t1) J B;NQY le
3
ity o\
7

L J 1
< 2 0)) 7 N+ - / Ty (w; 2
< G (k mes( )) ’ k2 mes(Q) tES(léi)l) Bij| k(i) de

N'y-.'»
X /
( ol

L
2

J
p; (N+2)
VT (w0 ) [P®) da: ds)
t1
Therefore, by [, |Th(uie)|*dz < k* mes(Q), we get

1 / 9
————— sup Ti(wie)|“de < 1,
k2 meS(Q) te€(0,t1) J B;NQY ’ ( ’
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+
and as - > 1, we can claim that

7

et el 1 s 1 IV T s g

NiQ
< Oy ( sup / \Tk(uive)ﬁdx)
te(0,t1) BjﬂQ
J 1
T

Py (N+2)
% / VT (ui )P da ds
Q

J
t1

N+t

Finally, using (4.14), we get the estimate

/, ci(@, ) uge @V T (us )| da ds
J

t1
7j

N+2
< Cles@ oy [ sup / (T (us,0) 2da
| Lr(@t) te(0,t1) J B;NQ

+
N*yj 1

t1

According to (4.24) and using Young inequalities, we obtain

/ i@, ) |ui @ VT (i )| da: ds
QL

v
< Clle; t ‘ (7
< Ol Dl (7 rg)

N+2 <1+ J
N +2— vi N+2—~ \ p;  p; (N+2)
“Nia T ( / VT [P de ds> R

t1

In view of (4.21), we deduce

N+24+9 N
— — < 1.
pj(N—i-?)—’yjpj
Since
L Ny N+2  N+2+49/N
p; P]-*(N—FQ) N+4+2—~— p;(N—{—Q)—y;p;

and [ fQj |V Tyu; [P®) dxds > 1, using (4.25), we obtain that
1

by (VD) T py
X / VT (ui ) P da ds .
J

(4.23)

(4.24)

) swp [ (T do + Cl(e Ol oy
B;NQ ‘1

(4.26)
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/ s ) e [P |V T (s )| da s
J

t1

f)/‘_
<Ol o, e [ (TPl
N+ 2 ! L ()(Qil) te(O,tl) BjﬂQ e

N+2—n;

e N +2

||C7j($7t)HLT(A)(Qj/ IV Tyt [P da ds.  (4.27)

Combining (4.13) and (4.27) and using Young inequality, we have

Ai
= | T (wie)||* dz + o / VT (ui) [P dz ds
2 JB;no QL
< Mik+ O la@ oy s [ TP da
te(0,t1) J/ B;nQ
N+2—n;
, . . y|p(@)
+C N2 HCZ(:U’t)HLT<‘)(Q]TI)/Q{ VT (uie) P da ds
1
1 x
Bl g + o [ IVTklus )P dads,
p; p; h
where
8= {p;Jr if HFi”Lp’(-)(QT) =1,
J— .
p; if HFi”Lp’(~)(QT) <1,

which is equivalent to

i v
2 O—L—lei(z, O] riy g sup / Ty (uie)|? dz
(2 e >mAn@J>m&m [ o)

N+2—~7 1 -
+ (04 - CinCz( )HL%)(le) - p_> /]. |VTk(Ui,e)|p( ) dz ds
J

N +2 7
< Mjjk,
where M; ; = M; + o= L\|F; HLp<) or)’
If we choose #; Such that
i Y

(2 —Cy T 2||Ci($at)||y<~)(@gl)> >0, (4.28)

N+2—n; 1
(a - Cwﬂcz’(% t)HLT(»(le) - pj> >0, (4.29)

then, denoting by C; ; the minimum between (4.28) and (4.29), we obtain
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sup / \Tk(Uz,e)\zder/. VT (i) [P da dt < Ci ;M jk
te(0,t1) J B;nQ i

forallj =1,...,k.

Hence we obtain the desired result

sup / T (s )2 doe + /Q VT ()P da dt < Ci MLk, (4.30)

tE(O,t1) Q tq

Then, by (4.30), we conclude that Tj(u;¢) is bounded in V' independently of e
and for any k£ > 0. Thus, there exists a subsequence still denoted by u; . such
that

Ti(uie) = migx in P (0, T, WP (). (4.31)

We turn now to proving the almost every convergence of u; . and b;c(u;e).
Consider a nondecreasing function g, € C*(R) such that gj(s) = s for [s| < &
and gi(s) = k for |s| > k. Multiplying the approximate equation by g (u;), we
get

OBL (z,u;
9Bq (@, uic) _ div (ae(rﬂ, ty Ui, Vui,e)gk(ui,e)>

ot
+ ac(@, t, e, Vi) gpy (i) Vg e + div (cbi,e(x, t, ui,e)gk(ui,e))
- g%(uz e)vuz e¢i 6(337 L, ui,e)vui,e
= fi,Ggl/{;(ui7€) le( zgk(uz e)) + -Figg(ui,E)vuiﬁ in D/(QT)v (432)
where By“(z,2) = [ 26, g(f :5) g, (s)ds.

In view of (3.3) and (4.2) and taking into account that T} (u;¢) is bounded

in V, we deduce that gj(u;) is bounded in V' and OBy (,uic) is bounded in

LY(Qr)+V*. Indeed, since supp(g,) and supp(gy) are both included into [k, k],
by (4.3), it follows that for all 0 < € < 7, we have

‘ Gi.c(, t, us )P D gl (ug )P @) da dt
Qr

< / il P T i )P0 g g )P ) i
T

N / i, 67 | Ty (s, ) PO O gh ()P ) e dit.
{lui,e|<k}
Furthermore, by the Holder and the Gagliard—Niremberg inequalities, it results

/ Ci(x7t) |Tk(Uz e)|p A’(z)|gk( )|p () dx dt
{luie|<k}

< HngLOO R)”Cz(w t)HLT() )

pt ™

pW
sup (/ | T (wi e )2 dm) </ |VTk(ui7€)|P(fc) dz dt> ’ < ¢,
t€(0,T) Qr
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where

Tt

m = = if HCi(wvt)”LT@)(QT) > 1,
:F if ”Ci(fUat)HLf(-)(QT) <1,

e i T (i, )PP N oy oy 2 14
& Tk )OO iy g < L
() (-)

,u() = = ; and V() =

and ¢y is a constant independent of € which varies from line to line. In the same
way, by (4.3), we have

‘ ¢i,e (.T, t, ui,e)p/(x) (g;g,(ui,e)vui,e)p/(w) dz dt
Qr

< / (g7 (ui.)” @ s (2, )P @ | T (w3, ) |7 | Vg [P’ da dt. (4.33)
T €

Furthermore, by the Holder and the Gagliardo—Niremberg inequalities, for 0 <

€< %, we obtain

| s @l 0 U7 )P O Vot ) ded

Qr

B / (g (o) lei (2, )P | Ty (g ) 1O OV T () P d i

T
< HggHLm(R) sup \b’(r)\/ \ci(a:,t)]p'(x)]Tk(ui75)’7(f’f)?’($)‘VTk(ui7€)|P’(u’v) dx dt
[r|<k Qr
< ¢g.

By (4.32), we may conclude that

8916 (bi,e(my ui,e))
ot

Arguing again as in [12], estimates (4.31) and (4.34) imply that there exists a
subsequence, still indexed by wu; ,

is bounded in L'(Qr) + V*. (4.34)

Ui e — u; a.e. in Qr, (4.35)

where u; is a measurable function defined on Q7.
Let us prove that b;(z,u;) belongs to L>((0,T); L*(2)). Using (4.9), (4.27),
and (4.30), we deduce that

/ B (x, uic)dz < M{kC; + C. (4.36)
Q

In view of (4.35) and passing to the limit-inf in (4.36), as € tends to zero, we
obtain that

P [ Bt s < e (4:37)
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for almost any 7 in (0,7"), with

" 0b;
Bster) = [P 15)as.
’ 0 0s
Due to the definition of B; ;(x, s) and the fact that %Bk(x, u;) converges pointwise
to
i ob;
/ Sign(s)l((;j’s) ds = |bi(x, u;)],

0 S

as k tends to +o0, it is possible to show that b;(z,u;) € L>(0,T; L}(Q)).
Step 3: The limit of the solution of the approximated problem.

Lemma 4.1. Fori = 1,2, the subsequence of u;. defined in Step 1 satisfies

1
lim limsup / ac(z,t, ui e, Vi) Vug e de dt = 0. (4.38)
lui,e|<n}

n—+00 0 N

Proof. Using the admissible test function 27}, (u; ) from (4.7), and by (4.3),
(4.24), (4.26) and using again the elliptic condition on a, the Young inequality
and the boundedness of T, (u; () in V, we can claim that for all R < n for e < %:

1

— a(x,t,uje, Vi) VT, (ui ) do dt
200 J{Ju; c|<n}

<1 / ei(@, )| Tr(us. ) 1) |V TR (ui )| der di
{us|<RY

n

i iz
+- /Q Bin(, uioe)dr + Collei (2, )X (ju; 1> —y | ey (o

P/+

1 12\ A\
Due to the fact that wu;. converges to u almost everywhere, for |T,(r)| < r,
the Lebesgue dominated convergence theorem implies that T}, (u; ) converges to
To(u;) in L (Qr) weakly-x.
By (4.37) and (3.2), we obtain

/ iz, £)]dz < %Clkm\ + 0
Q

for almost any ¢ € (0,7T), which shows that u; € L°°(0,T; L' (£2)).

As a consequence, we have that T),(u;)/n tends to zero almost everywhere in
Qr.

In view of (3.9), (4.4), (4.5), (4.30), (4.31) and (4.35), using the Lebesgue
convergence theorem and passing to limit in (4.39), as e tends to zero (then n

tends to +00 and then R tends to +00), it is obvious that u; . satisfies Lemma 4.1.
O
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Step 4: Here we are to prove that the weak limit hy, of a(x, t, Ty (uie), VI (uie))
can be identified with a(z,t, Ty (u;), VI (u;)) for ¢ = 1,2. In order to show this
result we recall the lemma below.

Lemma 4.2. Fori = 1,2, the subsequence of u; . satisfies

¢
lim sup / / a(x, s, uje, VI (uie)) VT (wic) ds dr dt
T J0

e—0

t
< / / hipVTi(u;) de dsdt,  (4.40)
Qr J0

e—0

lim/ /Ot (a(az,t,Tk(uiye), VT (uie)) — alx, t, Ty (u; ), VTk(ui))>

X (VTk(ui,E) - VTk(ul-)) —0, (4.41)

hi = a(x,t, T (u;), VIr(u;)) a.e. in Qr, for any k > 0, as € tends to 0, (4.42)
a(x,t, Tip(wie), VI (wie)) VT (uie) = alz, t, Ti(u;), VI (u;)) VI (u;)

weakly in L' (Qr). (4.43)

Proof. For i = 1,2, we introduce a time regularization of the T (u;) for k >

0 in order to perform the monotonicity method. This specific time regularization

was first introduced by R. Landes in [20]. By (T%(u;))u, we denote the regularized

function of T (u;) with g > 0. Thus, by using the same argument as in [11], we
can show the following lemma.

Lemma 4.3. Let k > 0 be fized. Let S be an increasing C*°(R)-function
such that S(r) =r for |r| <k, and supp S’ is compact. Then,

lim inf lim /T /(]t<W,S/(Ui,e)(Tk(Ui7e) — (Tk(ui))u)> >0,

p—+00 e—=0 Jg

where (-,-) denotes the duality pairing between L*(Q) +W =1 ()(Q) and L>®(Q)N
V().

Let S, be a sequence of increasing C'*°(R)-functions such that
3
Sn(r) = for |r| < n, supp S, C [-2n,2n] and ”SZHLN(R) < — for any n > 1.
n

For i = 1,2, we use the sequence (T}(u;)), of approximation of T} (u;) and con-
sider the test function S}, (use)(Tk(wie) — (Tk(u;)),) for n > 0 and g > 0. For
fixed k > 0, we define Wff = Ty (use) — (Tk(us)), and by integrating over (0,t)
and then over (0,7, we get

/ / <ab” L Uic) g1 (qu)W”> ds dt

/ / /ae Tt Ui e, Vi) S), (u”)VW”d:Udsdt



Renormalized Solutions for Nonlinear Parabolic Systems .. . 45

T t
+/ / /ae(x,t,uiye,VULG)SZ(U@E)VULGW;’E dx ds dt
0 0 JQ
T ‘
—/ / / ¢,;7E(:U,t,uiye)S;(ui,e)VWﬁ’e dx dsdt
0 0 JQ

T ot
_/ / /SZ(Ui,e)@,e(x;t,Ui,e)Vui,eWﬁ’E dx ds dt
o Jo Ja

T
:/ / /fi,eSL(Ui,g)Wﬁ’e dx dsdt.
o Jo Ja

t
+ / / F,S; (uie) VW5 ds dt dz
7 J0

t .
+/ / Fisg(uiye)Vui,GW/j’e dsdtdz. (4.44)
+J0

Now we pass to the limit in (4.44) as ¢ — 0, p — +o0, n — oo for k real
number fixed. In order to perform this task, we prove below the following results
for any fixed k£ > 0:

T rt
bi e s Uie ;
lim inf lim/ / M, Sy (u )WEe ) dsdt > 0 for any n > k, (4.45)
p—+o0 =0 Jq 0 ot ’ K

T ot
lim lim/ / / Gie(z,t, uiye)S;L(ui,e)VW;’E drdsdt =0
0 0 JQ

p——+00 e—0

for any n > 1, (4.46)

p—r=+00 e—0

T st
lim limsuplimsup/ / /ae(x,t, Ui e, Vi)
n—=+00 ;3400 €0 o Jo Jo

X St (ui )V Wi dedsdt =0, (4.48)

T t ‘
lim lim/ / / Gie(z,t, ui,E)Vui,vef drdsdt =0 for any n > 1, (4.47)
o Jo Jo

T ot .
Mli)rfoolii%/o /0 /QfLES;L(ui,E)W;’E drdsdt =0, (4.49)
t .
lim / / F; S, (ui,e) VW€ ds dt dz = 0, (4.50)
p=t00 JQr Jo
t
lim / / FiSZ(uiﬂe)Vu@eWﬁ’E dsdtdx = 0. (4.51)
p—>—+00 Qr Jo

Proof of (4.45): The function S,, belongs to C*°(R) and it is increasing. We
have n > k, S,(r) = r for |r| < k because supp S;, is compact. In view of the
definition of W, we apply Lemma 4.3 with S = S, for fixed n > k. As a
consequence, (4.45) holds true. O

Proof of (4.46): Let us recall the main properties of WZLE For fixed p > 0,
W, converges to Ty (u;) — (Tk(w;)), weakly in LP (0,T; Wol’p(')(Q)) as € — 0.
Taking into account that

Wl oo () < 2k for any € >0, p >0, (4.52)
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we can deduce that
WZJE — Tp(wi) — (Tx(us)),  a.e. in Qp and L(Qr) weakly-* as e — 0. (4.53)
Foranyﬁxedn21and0<e<%,
Die (@, 1, 16) S (i, ) VWD = i e, t, Ton(ui ) Sy, (ui e VWL ace. in Qr,
since supp S’ C [—2n,2n]. On the other hand,
Gie(,t, Ton(uie)) Sy (wie) = d(x,t, Ton(uw))Sy (u) a.e. in Qr,
[Gic(@, 1, Ton (11.0)) S ()| < Cela, 1)(2n)7" for n > 1.

By (4.53) and the strong convergence of Ty (uj,), to Ty (u;) in LP (0, T, Wol’p(')(ﬂ)),
we obtain (4.46). O

Proof of (4.47): For any fixed n > 1 and 0 < € < 5-, we have
(z)i,e(x; t, ui,e)SZ (Ui,e)vui,ewﬁe = ¢i,e($7 t, TQn(ui,e))SZ(Ui,e)VTQn(Ui,e)W;

a.e. in Qr;

by (4.53) and (4.35), as in the previous step, it is possible to pass to the limit for
e — 0O

Gie (@, 1, Tg1 (uie)) S (s, ) Wi = i, t, Ton (u3)) Sp(u) W, ae. in Qr.
Since
i, t, T () S (u)W,| < 2Ck|c(x, 1)|(2n)Y"  ae. in Qp
and (Tj(u;)), converges to Ty (u;) in LP (0,7} Wol’p(')(Q)), we obtain (4.47). O

Proof of (4.48): In view of the definition of S,,, we have supp S’ C [—2n, —n]U
[n, 2n] for any n > 1. Thus,

T t
/ / / a5<x,t,ui,e,Vuz-,aS:;(ui,e)W:;’fda:dsdt‘
0 0 Q

< T||S;l'(u7;76)||LOO(R)HW&‘HLW(QT) /<| a(x,t,uje, Vi)V drds dt

Ui e|<2n

for any n > 1, any 0 < € < 5= and any g > 0. Since 157 1| oo () < 3 by (4.38), it
is possible to establish (4.48). O

Proof of (4.49): By (4.4), due to the pointwise convergence of u; ¢ and Wff,
and their boundness, it is possible to pass to the limit for e — 0 :

lim /0 ' /0 t /Q FieS () (T () — (To(wi)),) de ds dit

e—0

= [T [ [ 5800 (i) ~ Tt o s

for any p > 0 and any n > 1. Now, for fixed n > 1, it is possible to pass to the
limit as p tends to 400 in the above inequality. O
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Proof of (4.50): We have
F;S) (uic) — F;.S) (u;) a.e. in Qr,
| FiSp (i) | < 20| Fill Loy (g a.e. in Qr.
We obtain (4.50), by (4.53) and the strong convergence of T (), to Ty (u;) in
s (O,T, ngﬂ-)(m). 0
Proof of (4.51): For any fixed n > 1 and 0 < € < 5-, we have

F3S" (3,e) Vg, W = FiS" (i) VTon (i)W ace. in Qr.

As in the previous step, we can obtain (4.51) by passing to the limit for
e — 0, where (4.52), (4.53), and the strong convergence of Tj(u;c), in

LY (0,T, Wol’p(')(Q)) are taken into account. Recalling (4.45)—(4.51), we can
pass to the limit-sup in (4.44) as p tends to +o00, and to the limit as n tends to
+00. Using the definition of W, we deduce that for any k > 0,

T ot
lim limsup limsup / / / Sy (wic)ac(m, t, ui e, V)
n—=+00 3400 €0 o Jo JQ
X (VT (use) — V(T(ui)) ) dedsdt < 0.
Since

Sqlq,(ui,e)ae (I, t, Uje, vui,e)VTk (ui,e) = a(xa t, Ui e, vuz,e)VTk (Ui,e)

for k < % and k < n, by using the properties of S, the above inequality implies
that for £ < n,

T ot
lim sup/ / /ae(m,t,ui,e, Vi) VTi(ui ) dr dsdt
o Jo Ja

e—0

T st
< lim limsuplim sup/ / / Sh (i) ae (@, t, wi e, Vg e)
n—=+00 5400 =0 Jo Jo JQ
X V(T (use))pdrdsdt. (4.54)
On the other hand, for € < %,
S! (wie)ae(w, tywie, Vuie) = Sy (uie)a(@, t, Ton (i), VIan(uic)) a.e. in Qr.

Furthermore, we have
, N
ac(z,t, Tpuie, VIgu; ) — hy  weakly in (Lp (')(QT)) . (4.55)

It follows that for a fixed n > 1,

S,’l(u@e)ae(x, t,Uie, Vi) — S;L(ui75)h2n weakly in Lpl(')(QT)
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as € tends to zero. Finally, using the strong convergence of (T} (u;)), to Tj(u;) in
L (O,T; Wol’p(')(Q)) as 1 tends to +00, we get

T t
lim lim/ / /S;l(uije)ae(a:,t,ui,e,Vuije)V(Tk(ui,g))udxdsdt
0 0 JQ

p—>+00 e—=0
T rt
= / / / Sy (wie)hon VT (u;) dz dsdt  (4.56)
o Jo Ja
as soon as k < n. Now, for k£ < n, we have

a(z,t, Ton (i e)y VTon(Wie) ) X{ju; | <k}
= a(:c,t,Tk(ui7e), ka(ui76))X{‘ui’€‘§k} a.e. in QT (457)

which implies that, by (4.35), (4.55) and by passing to the limit when e tends
to 0,

h2nX|u¢|§k = th{Wz\Sk} a.e. in QT - {”U,Z‘ = k} for k <n. (458)

Finally, by (4.55) and (4.58), we have ho, VT (ui) = hiVTi(u;) a.e. in Qr for
k < mn. Thus the proof of (4.51) is complete. O

Now we are able to prove Lemma 4.2.

Proof of (4.41): Using (3.4), we have

T t
lim /0 /0 /Q (alest, Ti(uie), VTa(use)) — ale,t, To(use), VTi(us))
X (VTk(Ui,e) — VTk(ul)) > 0. (459)

Further, by (3.3), (4.35), and the growth condition, we show
a(m, t, Tk(ui76), VT]C(UZ)) — a(:c, t, Tk(ui), VTk(uz))
, N
strongly in <Lp (')(QT)> . (4.60)

Furthermore, we have
, N
ac(x,t,uje, Vi) — hy  weakly in (Lp (')(QT)) ) (4.61)

Finally, the use of (4.35), (4.60), and (4.61) makes it possible to pass to the
limit-sup as € tends to 0 in (4.59), and we have (4.41). O

Proof of (4.42): We observe that for for any k > 0, any 0 < € < % and any
£ e RN:

G’E(:E; t: Tk(ui,e)7 g) = CL(.%', ta Tk(“’i,e): f) =a <1’, t7 Tk(ui,E)ﬂ g) a.e. in QT-
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Since
Ty(uie) — Ti(u;) weakly in LP~ ((0, ), W&v”’(@)) , (4.62)

then by (4.41), we obtain

T oyt
lim/ / /allg(x,t,Tk(um),VTk(ui,E))VTk(ui,E) dx ds dt
o Jo Jo

e—0
T pt
—/ //thTk(u,) dx dsdt. (463)
0 0 JQ

Since, for fixed k > 0, the function a 1 (x,t,s,£) is continuous and bounded with

respect to s, by applying the usual Minty’s argument in view of (4.61)—(4.63),
it follows that (4.42) holds true. In order to prove (4.43), by (3.4), (4.61) and
proceeding as in [11,12], it is easy to obtain (4.43). O

Thus Lemma 4.2 is proved. O

Passing to the limit: Using the same argument as in [1], we can prove that u;
for i = 1,2 satisfies (3.17)—(3.19). The proof of Theorem 4.1 is complete. O

A. Appendix

Theorem A.l1 (Gagliardo—Nirenberg generalized inequality). Let v be a
function in Wol’q(')(Q) N LPO(Q) with q,p € P%(Q), 1 < ¢~ < q(z) < ¢t <
N,1<p” <plx)<p" <N,

Then there exists a positive constant C, depending on N, q(z) and p(x), such
that

ol 220 (@) < CIVOI s @y 1011560

for every 0 and ~(-) satisfying: 0 < 0 <1, 1 <~(:) < +o0,
1-6

p(:) "

(L —

a(’) )+

2=

i =
()

The proof follows the same lines as the proof for the case of constant exponent
[13, p. 147].

Corollary A.1. Let v € L9 ((0,T), Wy (Q)) n L((0,T), L3()), with
g€ P%(Q) and 1 < ¢ < q(z) < ¢t < N. Then v € L°O(Q) with o(-) =

q(-)2%2 and

2qt 2q—
/ |v|a(x) dx dt < C'max <‘|U|’L1:°(O,T,L2(Q)); |U||L]:°(0,T,L2(Q))>
T

q

a’ a_
= T
X max (/ IVo|9®) dxdt) b (/ V] 2@ dy dt) !
T Qr

+
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Proof. We set 6 = N—+2 in Theorem A.1, then o(-) = ¢(-)(¥F2), and

"N
lollecray < ClUISs 101500 -

We have - o~
o(x 0
/ ‘U’ ( )d.’IJ < max (H'UH [g(-)(Q); HUHZU(')(Q)> ’

By Gagliardo—Niremberg generalized inequalities (see Theorem 4.1), one has

—0)ot T
ol ey < Mol e ([ |W|q<>d:c) (/ Vol d:c) ,
ol ey < ol mase | [ oo dx) ( [ 1w da:)

Moreover, o(-) = q(-)(NJQ) implies eq‘f = 9;—__ =1, then
+ g
o7y < Ol gy o | [ 19008 s ([ 90199 o)
q_
+

o0y < Ol gy | [ 19007 s ([ 9017 )

Finally,
max ([0l o0 1011500 0))
2¢F q”
< Cmax (ol S 1915
at a_
= pes
X max (/ ||Vv]q<x)da:) </ |V)2® da:) ,
Q
and thus the proof of the corollary is complete. O
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IlepeHopMoBaHi pO3B’A3KM HEJIIHINHUX MMapaboJIivYHIX
cucteM y mpocropax Jlebera—CoboJjieBa 3 €KCIIOHEHTOIO,
1[0 3MIiHIOETHCS

B. El Hamdaoui, J. Bennouna, and A. Aberqi

Hagejieno pesysbpraT iCHyBaHHS II€PEHOPMOBAHUX PO3B’43KiB JJId KJIacy
HEJHHITHUX TTapabOJIITHUX CUCTEM 3 €KCIIOHEHTOIO, IO 3MiHIOETHCS, TUILY

ApeN @ _ div(|ug(x, £) [P 2w, (x, 1)
+ div(e(a, ) |ui (2, )" 2u; (2, 1) = fi(@,ur, uz) — div(F),
st ¢ = 1,2. CTpyKTypa HeJiHITHOCTI 3MIHIOETHCS BiJl TOYKM 10 TOYKU B

obuacti Q. HUsen jpKepesia Menin peryispauil (obmexxena mipa Pajona) i B
HEIMBEPTeHTHOMY “ieHi Husimoro mopsaxy div v(c(z, t)|u(z, t)]Y®) = 2u(z, t))
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BifcyTHsT KoepruTuBHICTh. OCHOBHUII BHECOK HAIOI POOOTH — I1€ JOBEJIEeH-
He ICHYBaHHS TEPEHOPMOBAHUX PO3B’SI3KiB 0€3 yMOB KOEPIIMTUBHOCTI Ha
HEJIHIHOCTI, IO JI03BOJISIE HAM CKOPUCTATHUCS JIjIs JIOBEJIEHHS TEOPEMOIO
Tlanbappo—Hipenbepra.

KmrowoBi coBa: mapabostiuni 3amadi, mpoctip Jlebera—CobosieBa, ekcio-
HEHTa, IO 3MIHIOETHCS, TEPEHOPMOBAHI PO3B’I3KM.
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