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Renormalized Solutions for Nonlinear

Parabolic Systems in the Lebesgue–Sobolev

Spaces with Variable Exponents

B. El Hamdaoui, J. Bennouna, and A. Aberqi

The existence result of renormalized solutions for a class of nonlinear
parabolic systems with variable exponents of the type

∂te
λui(x,t) − div(|ui(x, t)|p(x)−2ui(x, t))

+ div(c(x, t)|ui(x, t)|γ(x)−2ui(x, t)) = fi(x, u1, u2)− div(Fi),

for i = 1, 2, is given. The nonlinearity structure changes from one poi-
nt to other in the domain Ω. The source term is less regular (bounded
Radon measure) and no coercivity is in the nondivergent lower order term
div(c(x, t)|u(x, t)|γ(x)−2u(x, t)). The main contribution of our work is the
proof of the existence of renormalized solutions without the coercivity
condition on nonlinearities which allows us to use the Gagliardo–Nirenberg
theorem in the proof.
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1. Introduction

One of the driving forces for the rapid development of the theory of variable
exponent function spaces was the model of electrorheological fluids introduced
by Rajagopal and Rusic̃ka [25]. The model leads naturally to a functional set-
ting involving function spaces with variable exponents. Electrorheological fluids
change their mechanical properties dramatically when an external electric field
is applied. In the mathematical community these materials have been inten-
sively studied in the recent years. In the case of an isothermal, homogeneous,
incompressible electrorheological fluid, the governing equations read

∂tv +−divS + [∇v]v +∇π = g + [∇E]P in Ω,

div v = 0 in Ω, v = 0 on ∂Ω,
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where v is the velocity, [∇v]v is the convective term, π denotes the pressure, S
denotes the extra stress tensor, g is the external body force, E is the electric field,
and P is the electric polarization. The extra stress tensor is given by

S = α21((1 + |D|2)
p−1
2 − 1)E ⊗ E + (α21 + α21|E|2)(1 + |D|2)

p−2
2 ),

p = p(|E|2) is a Hölder continuous function with 1 < p− < p+ < N ; this
requirement also ensures that the operator induced by −divS(D,E) is coercive
and satisfies appropriate growth conditions. For the mathematical treatment,
we have additionally to assume that the operator induced by −divS(D,E) is
strictly monotone.

The first systematic study of spaces with variable exponents was carried out
by Nakano in [23], later in [22] Museilak and in [19] Kovacik investigated the
modular spaces which are more general frameworks.

In the real line, the Lebesgue space with variable exponents was developed
by Tsenov, Sharapudinov, and Zhikov [27, 28]. The reader can find numerous
references in the overview paper by Antontsev [3] and in the monograph on
evolution PDEs by Antontsev and Shmarev [7]. In this paper, we consider a
problem with potential application in electrorheological fluids (smart fluids), the
flow through the porous media [7].

Let Ω be a bounded-connected domain of RN (N ≥ 2) with Lipschitz bound-
ary ∂Ω, QT = Ω× (0, T ), the generic cylinder of an arbitrary finite hight T <∞,
and consider the following strongly nonlinear parabolic system:

∂b1(x, u1)

∂t
− div(a(x, t, u1,∇u1)) + div(φ1(x, t, u1)),

= f1(x, u1, u2)− div(F1) in QT ,

∂b2(x, u2)

∂t
− div(a(x, t, u2,∇u2)) + div(φ2(x, t, u2)),

= f2(x, u1, u2)− div(F2) in QT ,

u1(x, t) = u2(x, t) = 0 on ∂Ω× (0, T ),

b1(x, u1(x, 0)) = b1(x, u0
1(x)) in Ω,

b2(x, u2(x, 0)) = b2(x, u0
2(x)) in Ω.

(1.1)

Let p : Ω → [1,+∞) be a continuous real-valued function and let p− =
minx∈Ω p(x) and p+ = maxx∈Ω p(x) with 1 < p− < p+ < N . The operator
−div

(
a(x, t, u,∇u)

)
is a Leray–Lions operator defined from some generalized

Sobolev space V into its dual space V ∗ (the two functional spaces will be devel-
oped bellow, see (2.3), φi(x, t, ui) are the Carathéodory functions (see assump-
tions (3.6)–(3.8)), and bi : Ω×R→ R are the Carathéodory functions such that
for every x ∈ Ω, bi(x, ·) is a strictly increasing C1-function, the function u0,i is in
L1(Ω) such that bi(·, u0,i) in L1(Ω). The functions fi : Ω × R × R → R are the

Carathéodory functions (see assumptions (H4) below), and Fi ∈
(
Lp
′(·)(QT )

)N
.

Under our assumptions, problem (1.1) does not admit, in general, a solution
in the sense of distribution since we cannot expect to have the field φi(x, t, ui)
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in
(
L1

loc(QT )
)N

. For this reason, we consider the framework of renormalized
solutions (see definition 3.1). The notion of renormalized solutions was introduced
by R.-J. DiPerna and P.-L. Lions [17] to study the Boltzmann equation. It was
then adapted to the study of some nonlinear elliptic or parabolic problems and
evolution problems in fluid mechanics [10,14].

It should be mentioned that the existence and uniqueness of the renormalized
solution for parabolic equations in the form

ut = −div(a(x, t, u,∇u) + div(φ(u)) = f

have been studied by many authors under various conditions on the data in the
classical Sobolev spaces (see, e.g., [1, 2, 11, 15]), and by J. Bennouna [9] in the
setting of Orlicz spaces.

In the framework of Sobolev spaces with variable exponents, S.N. Antontsev et
al. in [4–6] studied the existence and blow up properties of energy weak solutions
for parabolic equations with nonstandard growth conditions of the type

ut = (a(x, t, u,∇u)xi + b(x, t, u)xi + f. (1.2)

In [8,26], P. Wittbold studied equations (1.2) with the p(x)-Laplacian opera-
tor. In this paper, we extend these results to nonlinear parabolic equations with
the terms b(x, u(x, t))t and a lower order term of type (c(x, t)|u(x, t)|γ(x))xi , where
γ(x) is suitably given (in terms of p(·) and the dimension N), and we overcome
the lack of coercivity by using the approach of renormalized solutions.

The paper is organized as follows. In Section 2, we recall some basic notations
and properties of Sobolev spaces with variable exponents. In Section 3, we give
basic assumptions and introduce the definition of a renormalized solution. In
Section 4, we prove the main result of this paper, Theorem 4.1, on the existence
of a renormalized solution. In Appendix A, some technical results are given.

2. Functional spaces

We recall some definitions and basic properties of the generalized Lebesgue–

Sobolev spaces Lp(·)(Ω), W 1,p(·)(Ω) and W
1,p(·)
0 (Ω), where Ω is an open subset of

RN . We refer to Fan and Zhao [18] for further properties of Lebesgue–Sobolev
spaces with variable exponents.

Let p : Ω → [1,+∞) be a continuous real-valued function and let p− =
minx∈Ω p(x) and, p+ = maxx∈Ω p(x) with 1 < p(·) < N . We define the Lebesgue
space with variable exponent

Lp(·)(Ω) =

{
u : Ω→ R; u is measurable with

∫
Ω
|u(x)|p(x)dx <∞

}
.

We define the norm, the so-called Luxemburg norm, on this space by the formula

‖u‖Lp(·)(Ω) =

{
µ > 0;

∫
Ω

∣∣∣∣u(x)

µ

∣∣∣∣p(x)

dx ≤ 1

}
.
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The following inequality will be used later:

min
{
‖u‖p

−

Lp(·)(Ω)
, ‖u‖p

+

Lp(·)(Ω)

}
≤
∫

Ω
|u(x)|p(x) dx

≤ max
{
‖u‖p

−

Lp(·)(Ω)
, ‖u‖p

+

Lp(cdot)(Ω)

}
. (2.1)

If p− > 1, then Lp(·)(Ω) is reflexive, and the dual space of Lp(·)(Ω) can be identified
with Lp

′(·)(Ω), where 1
p(·) + 1

p′(·) = 1. For any u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω), the
Hölder type inequality∫

Ω
|uv| dx ≤

(
1

p−
+

1

p′−

)
‖u‖Lp(·)(Ω)‖v‖Lp′(·)(Ω) (2.2)

holds true.
Extending a variable exponent p : Ω → [1,∞) to QT = [0, T ] × Ω by setting

p(t, x) := p(x) for all (t, x) ∈ QT , we can also consider the generalized Lebesgue
space

Lp(·)(QT ) =

{
u : QT → R;u is measurable with

∫
QT

|u(t, x)|p(x) d(t, x) <∞
}

endowed with the norm

‖u‖Lp(·)(QT ) = inf

{
µ > 0;

∫
QT

∣∣∣∣u(t, x)

µ

∣∣∣∣p(x)

d(t, x) ≤ 1

}

which has the same properties as Lp(·)(Ω). We also define the variable Sobolev
space

W 1,p(·)(Ω) =
{
u ∈ Lp(·)(Ω); |∇u| ∈ Lp(·)(Ω)

}
.

In W 1,p(·)(Ω) we may consider one of the following equivalent norms:

‖u‖W 1,p(·)(Ω) = ‖u‖Lp(·)(Ω) + ‖∇u‖Lp(·)(Ω),

or

‖u‖W 1,p(·)(Ω) = inf

{
µ > 0;

∫
Ω

(∣∣∣∣∇u(x)

µ

∣∣∣∣p(x)

+

∣∣∣∣u(x)

µ

∣∣∣∣p(x)
)
dx ≤ 1

}
.

Then we define W
1,p(·)
0 (Ω) := C∞c (Ω)W

1,p(·)(Ω). Assuming 1 < p− ≤ p+ <∞, the

spaces W 1,p(·)(Ω) and W
1,p(·)
0 (Ω) are separable and reflexive Banach spaces. The

space
(
W

1,p(·.)
0 (Ω)

)∗
is denoted as the dual space of W

1,p(·)
0 (Ω).

For priori estimates, it is necessary to introduce more restrictions on the vari-
able exponents supposing them to be log-Hölder continuous. This concept was
introduced for the first time by V.V. Zhikov in [29] (see Theorem 2.2, Paragraph
2 for sufficient conditions for regularity; see also [16] for more details). More-
over, the concept is used to obtain several regularity results for Sobolev spaces
with variable exponents, in particular that C∞(Ω) is dense in W 1,p(·)(Ω) and

W
1,p(·)
0 (Ω).
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Remark 2.1 ([16,29]). The variable exponent p : Ω→ [1,∞) is said to satisfy
the log-continuity condition if

∀x1, x2 ∈ Ω, |x1 − x2| < 1, |p(x1)− p(x2)| < w(|x1 − x2|),

where w : (0,∞)→ R is a nondecreasing function with

lim sup
α→0+

w(α) ln (1/α) < +∞.

Lemma 2.1. Let a variable exponent p(·) satisfy the log-continuity such that
1 ≤ p− ≤ p+ < N ,

∀u ∈W 1,p(·)
0 (Ω), ‖u‖Lp∗(·)(Ω) ≤ C‖∇u‖Lp(·)(Ω),

with C = C(N,Clog(p), p
+) and 1

p∗(·) = 1
p(·) −

1
N for p(x) < N a.e. in Ω, p∗(·) =

∞ otherwise.

We introduce the functional space

V =
{
v ∈ Lp−(0, T ;W

1,p(·)
0 (Ω)); |∇v| ∈ Lp(·)(QT )

}
, (2.3)

which, endowed with the norm

‖v‖V := ‖∇v‖Lp(·)(QT ),

or, the equivalent norm

‖v‖V := ‖v‖
Lp− (0,T ;W

1,p(·)
0 (Ω))

+ ‖∇v‖Lp(·)(QT ),

is a separable Banach space. We state some further properties of V in the fol-
lowing lemma.

Lemma 2.2 (see [8]). Let V be defined as in (2.3) and its dual space be
denoted by V ∗. Then

(i) we have the following continuous dense embedding:

Lp
+
(

0, T ;W
1,p(·)
0 (Ω)

)
↪→ V ↪→ Lp

−
(

0, T ;W
1,p(·)
0 (Ω)

)
. (2.4)

In particular, since D(QT ) is dense in Lp
+
(

0, T ;W
1,p(·)
0 (Ω)

)
, it is also dense

in V , and for the corresponding dual space, we have

L(p−)
′ (

0, T ;
(
W

1,p(·)
0 (Ω)

)∗)
↪→ V ∗ ↪→ L(p+)

′ (
0, T ;

(
W

1,p(·)
0 (Ω)

)∗)
; (2.5)

(ii) one can represent the elements of V ∗ as follows: if F̃ ∈ V ∗, then there exists

F = (f1, . . . , fN ) ∈
(
Lp(·)(QT )

)N
such that F̃ = divx F and, for any v ∈ V,

〈F̃ , v〉V ∗,V = 〈divx F, v〉V ∗,V =

∫ T

0

∫
Ω
F∇v dxdt,

moreover, we have, ‖F̃‖V ∗ = max
{
‖fi‖Lp(·)(QT ), i = 1, . . . , n

}
.
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Remark 2.2. Notice that V ∩ L∞(QT ), endowed with the norm

‖v‖V ∩L∞(QT ) := max
{
‖v‖V , ‖v‖L∞(QT )

}
, v ∈ V ∩ L∞(QT ),

is a Banach space. In fact, it is the dual space of the Banach space V ∗+L1(QT ),
endowed with the norm

‖v‖V ∗+L1(QT ) := inf
{
‖v1‖V ∗ + ‖v2‖L1(QT ); v = v1 + v2, v1 ∈ V ∗, v2 ∈ L1(QT )

}
.

Lemma 2.3. The following holds:

W :=
{
u ∈ V ; ut ∈ V ∗ + L1(QT )

}
↪→ C

(
[0, T ];L1(Ω)

)
, (2.6)

and
W ∩ L∞(QT ) ↪→ C

(
[0, T ];L2(Ω)

)
. (2.7)

Proof. The proof of this lemma follows the same lines as the proof of the
corresponding result for the case of a constant exponent p, Theorem 1.1 from
[8].

3. Assumptions on the data and definition of renormalized
solution

Throughout this paper, we will assume that the following assumptions hold
true:

Assumption (H1):

bi : Ω× R→ R is a Carathéodory function (3.1)

such that for every x ∈ Ω, bi(x, ·) is a strictly increasing C1(R)-function with
bi(x, 0) = 0; for any k > 0, there exists a constant λik > 0 and the functions Aik ∈
L∞(Ω) and Bi

k ∈ Lp(·)(Ω) such that for almost every x in Ω,

λik ≤
∂bi(x, s)

∂s
≤ Aik(x) and

∣∣∣∣∇x(∂bi(x, s)∂s

)∣∣∣∣ ≤ Bi
k(x), |s| ≤ k. (3.2)

Assumption (H2): Let a : QT × R × RN → RN be a Carathéodory function
such that for any k > 0, there exists hk ∈ Lp

′(·)(QT ) with

|a(x, t, s, ξ)| ≤ ν[hk(x, t) + |ξ|p(x)−1], |s| ≤ k with ν > 0, (3.3)

a(x, t, s, ξ)ξ ≥ α|ξ|p(x) with α > 0, (3.4)

(a(x, t, s, ξ)− a(x, t, s, η))(ξ − η) > 0 with ξ 6= η. (3.5)

Assumption (H3): For i = 1, 2, let φi : QT × R → RN be a Carathéodory
function such that

|φi(x, t, s)| ≤ ci(x, t)|s|γ(x), (3.6)
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ci(x, t) ∈
(
Lτ(x)(QT )

)N
, τ(·) =

N + p(·)
p(·)− 1

, (3.7)

γ(·) =
N + 2

N + p(·)
(p(·)− 1), γ− = min

x∈Ω
γ(x), γ+ = max

x∈Ω
γ(x) (3.8)

for almost every (x, t) ∈ QT , for every s ∈ R, and every ξ, η ∈ RN .

Assumption (H4): For i = 1, 2, fi : Ω×R×R→ R is a Carathéodory function
with f1(x, 0, s) = f2(x, s, 0) = 0 a.e. x ∈ Ω, ∀s ∈ R. And for almost every x ∈ Ω,
for every s1, s2 ∈ R,

sign(si)fi(x, s1, s2) ≥ 0. (3.9)

The growth assumptions on fi are as follows: for each k > 0, there exists σk > 0
and a function H1,k in L1(Ω) such that

|f1(x, s1, s2)| ≤ H1,k(x) + σk|b2(x, s2)| a.e. in Ω, |s1| ≤ k, s2 ∈ R; (3.10)

for each k > 0, there exists µk > 0 and a function H2,k in L1(Ω) such that

|f2(x, s1, s2)| ≤ H2,k(x) + µk|b1(x, s1)| a.e. in Ω, |s2| ≤ k, s1 ∈ R, (3.11)

Fi ∈ Lp
′(·)(QT ) for i = 1, 2, (3.12)

u0,i ∈ L1(Ω) such that bi(x, u0,i) ∈ L1(Ω). (3.13)

The definition of the renormalized solution for problem (1.1) can be stated as
follows.

Definition 3.1. A couple of measurable functions (u1, u2) defined on QT is
called a renormalized solution of (1.1) if for i = 1, 2, the function ui satisfies

bi(x, ui) ∈ L∞
(
0, T ;L1(Ω)

)
, (3.14)

Tk(ui) ∈ Lp
−
(

(0, T );W
1,p(·)
0 (Ω)

)
, k > 0, (3.15)

∇Tk(ui) ∈
(
Lp(·)(QT )

)N
, k > 0, (3.16)

lim
n→+∞

1

n

∫
{|ui|≤n}

a(x, t, ui,∇ui)∇ui dx dt = 0, (3.17)

and if for every function S in W 2,∞(R), which is piecewise C1 and such that S′

has a compact support, the following holds:

∂Bi,S(x, ui)

∂t
− div

(
a(x, t, ui,∇ui)S′(ui)

)
+ S

′′
(ui)a(x, t, ui,∇ui)∇ui

+ div
(
φi(x, t, ui)S

′(ui)
)
− S′′(ui)φi(x, t, ui)∇ui

= fi(x, u1, u2)S′(ui)− div(S′(ui)Fi)

+ S′′(ui)Fi∇ui in D′(QT ), (3.18)

Bi,S(x, ui)|t=0 = Bi,S(x, ui,0) in Ω, (3.19)

where Bi,S(x, z) =

∫ z

0

∂bi(x, s)

∂s
S
′
(s)ds.
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Remark 3.1. Equation (3.18) is formally obtained through multiplication of
(1.1) by S′(u). However, as a(x, t, ui,∇ui) and φi(x, t, ui) do not in general make
sense in D′(QT ), all the terms in (3.18) have a meaning in D′(QT ) (see, e.g., [14]).

We have
∂Bi,S(x, ui)

∂t
belongs to L1(QT ) + V ∗. (3.20)

The properties of S, assumptions (3.2) and (3.15) imply that if K is such that
suppS

′ ⊂ [−K,K],∣∣∣∇Bi,S(x, ui)
∣∣∣ ≤ ‖AiK‖L∞(Ω)|DTK(ui)|‖S′‖L∞(R) +K‖S′‖L∞(R)B

i
K(x), (3.21)

and

Bi,S(x, ui) belongs to V ∩ L∞(QT ), (3.22)

then (3.20) and (3.22) imply that Bi,S(x, ui) belongs to C0([0, T ];L1(Ω)) (for the
proof of this trace result see [24]). Hence the initial condition (3.19) makes sense.

4. Main result: existence of renormalized solution

Our main results are collected in the following theorem.

Theorem 4.1. For i = 1, 2, let bi(x, u0,i) ∈ L1(Ω). Assume that (H1)–(H4)
hold true, then there exists at least one renormalized solution (u1, u2) of problem
(1.1) (in the sense of Definition 3.1).

Proof. The above theorem is to be proved in five steps.

Step 1: A regularized problem. For i = 1, 2 for each ε > 0, let us introduce
the following regularization of the data:

bi,ε(x, r) = bi(x, T1/ε(r)) + εr a.e. in Ω, r ∈ R, (4.1)

aε(x, t, s, ξ) = a(x, t, T1/ε(s), ξ) a.e. in QT , s ∈ R, ξ ∈ RN , (4.2)

φi,ε(x, t, r) = φi(x, t, T1/ε(r)) a.e. in QT , r ∈ R, (4.3)

f1,ε(x, s1, s2) = f1(x, T1/ε(s1), s2) a.e. in Ω, s1, s2 ∈ R,
f2,ε(x, s1, s2) = f2(x, s1, T1/ε(s2)) a.e. in Ω, s1, s2 ∈ R. (4.4)

Let ui,0ε ∈ D(Ω) such that

bi,ε(x, ui,0ε)→ bi(x, ui,0) strongly in L1(Ω). (4.5)

In view of (4.1), for i = 1, 2, bi,ε is a Carathéodory function which satisfies (3.2).
There exists λi + ε > 0 and functions Aiε ∈ L∞(Ω) and Bi

ε ∈ Lp(·)(Ω) such that

λi + ε ≤ ∂bi,ε(x, s)

∂s
and |bi,ε(x, s)| ≤ max

|s|≤1/ε
|bi(x, s)| a.e. in Ω, s ∈ R. (4.6)
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Let us now consider the regularized problem

∂bi,ε(x, ui,ε)

∂t
− div(aε(x, t, ui,ε,∇ui,ε))

+ div(φi,ε(x, t, ui,ε))

= fi,ε(x, u1, u2)− div(Fi) in QT ,

ui,ε(x, t) = 0 on ∂Ω× (0, T ),

bi,ε(x, ui,ε)|t=0 = bi,ε(x, ui,0ε) in Ω.

(4.7)

In view of (3.10)–(3.11), there exist H1,ε ∈ L1(Ω), H2,ε ∈ L1(Ω), σε > 0, and
µε > 0 such that

|f1,ε(x, s1, s2)| ≤ H1,ε(x) + σε max
|s|≤1/ε

|bi(x, s)| a.e. in Ω, s1, s2 ∈ R,

|f2,ε(x, s1, s2)| ≤ H2,ε(x) + µε max
|s|≤1/ε

|bi(x, s)| a.e. in Ω, s1, s2 ∈ R. (4.8)

As a consequence, it is easy to prove the existence of a weak solution uε ∈ V of
(4.7) (see [21]).

Step 2: A priori estimates for the solutions and their gradients. Let t1 ∈
(0, T ) and t be fixed in (0, t1). Using in (4.7) Tk(ui,ε)χ(0,t) as a test function, we
integrate in the interval (0, t). By the conditions (4.3) and (3.6), we have∫

Ω
Bε
i,k(x, ui,ε(t)) dx+

∫
Qt

aε(x, t, ui,ε,∇ui,ε)∇Tk(ui,ε) dx ds

≤
∫
Qt

ci(x, t)|ui,ε|γ(x)|∇Tk(ui,ε)| dx ds

+

∫
Qt

fi,ε(x, u1,ε, u2,ε)Tk(ui,ε) dx ds

+

∫
Ω
Bε
i,k(x, ui,0ε)dx+

∫
Qt

Fi∇Tk(ui,ε) dx ds, (4.9)

where Bε
i,k(x, r) =

∫ r
0 Tk(s)

∂bi,ε(x,s)
∂s ds. By (4.6),∫

Ω
Bε
i,k(x, ui,ε(t)) dx ≥

λi + ε

2

∫
Ω
|Tk(ui,ε)|2 dx ≥

λi
2

∫
Ω
|Tk(ui,ε)|2 dx. (4.10)

Under the definition of Bε
i,k, the inequality

0 ≤
∫

Ω
Bε
i,k(x, ui,0ε) dx ≤ k

∫
Ω
|bi,ε(x, ui,0ε)| dx, k > 0, (4.11)

holds. According to (4.8)–(4.11), and (3.4), we obtain

λi
2

sup
t∈(0,t1)

∫
Ω
|Tk(ui,ε)|2 dx+ α

∫
Qt

|∇Tk(ui,ε)|p(x) dx ds

≤
∫
Qt

ci(x, t)|ui,ε|γ(x)|∇Tk(ui,ε)| dx ds
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+ k(‖bi,ε(x, ui,0ε)‖L1(Ω) + ‖fi,ε‖L1(QT ))

+

∫
Qt

Fi∇Tk(ui,ε) dx ds. (4.12)

If we take the supremum for t ∈ (0, t1) and define Mi = (‖fi,ε‖L1(QT ) +
‖bi,ε(x, ui,0ε)‖L1(Ω)), we can deduce

λi
2

sup
t∈(0,t1)

∫
Ω
|Tk(ui,ε)|2 dx+ α

∫
Qt1

|∇Tk(ui,ε)|p(x) dx ds

≤Mik +

∫
Qt1

ci(x, t)|ui,ε|γ(x)|∇Tk(ui,ε)| dx ds

+

∫
Qt1

Fi∇Tk(ui,ε) dx ds. (4.13)

Now we estimate
∫
Qt1

ci(x, t)|ui,ε|γ(x)|∇Tk(uε)| dx ds. Using the generalized

Hölder inequality, we have∫
Qt1

ci(x, t)|ui,ε|γ(x)|∇Tk(ui,ε)| dx dt

≤ C‖ci(x, t)‖Lτ(·)(Qt1 )‖|Tkui,ε|
γ(x)‖Lω(·)(Qt1 )‖∇Tk(ui,ε)‖Lp(·)(Qt1 ), (4.14)

where ω(·) > p(·)(N+p(·))
N(p(·)−1) , maxx∈Ω ω(x) = ω+, and minx∈Ω ω(x) = ω−.

By applying Gagliardo–Niremberg generalized inequalities (see Appendix,
Corollary A.1), one has∫

Qt1

|Tk(ui,ε)|
p(x)(N+2)

N dx ds

≤ C max


(∫

Qt1

|∇Tk(ui,ε)|p(x) dx ds

) p+

p−

,

(∫
Qt1

|∇Tk(ui,ε)|p(x) dx ds

) p−

p+


×max


(

sup
t∈(0,t1)

∫
Ω
|Tk(ui,ε)|2dx

) p+

N

,

(
sup

t∈(0,t1)

∫
Ω
|Tk(ui,ε)|2dx

) p−
N

 . (4.15)

Since

min

(
1

Cp+
‖Tkui,ε‖p

+

Lp
∗(·)(Qt1 )

,
1

Cp−
‖Tkui,ε‖p

−

Lp
∗(·)(Qt1 )

)
≤
∫
Qt1

|∇TKui,ε|p(x) dx ds

and

‖Tk(ui,ε)‖2L2(Ω) ≤ sup
t∈(0,t1)

∫
Ω
|Tk(ui,ε)|2dx,

we get

β1

(
sup

t∈(0,t1)

∫
Ω
|Tk(ui,ε)|2dx

)
≥ 1 and β2

∫
Qt1

|∇Tk(ui,ε)|p(x) dx ds ≥ 1,

(4.16)
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where

β1 =
1

‖Tkui,ε‖2L2(Ω)

,

β2 =

(
min

(
1

Cp+
‖Tkui,ε‖p

+

Lp
∗(·)(Qt1 )

,
1

Cp−
‖Tkui,ε‖p

−

Lp
∗(·)(Qt1 )

))−1

.

After doing some calculations and by using (4.15) and (4.16), we obtain∫
Qt1

|Tk(ui,ε)|
p(x)(N+2)

N dx ds

≤ C

β1β2
max

β1− p
+

N
1

(
β1 sup

t∈(0,t1)

∫
Ω
|Tk(ui,ε)|2dx

) p+

N

,

β
1− p

−
N

1

(
β1 sup

t∈(0,t1)

∫
Ω
|Tk(ui,ε)|2dx

) p−
N


×max

β1− p
+

p−
2

(
β2

∫
Qt1

|∇Tk(ui,ε)|p(x) dx ds

) p+

p−

,

β
1− p

−

p+

2

(
β2

∫
Qt1

|∇Tk(ui,ε)|p(x) dx ds

) p−

p+


≤ C1

(
sup

t∈(0,t1)

∫
Ω
|Tk(ui,ε)|2dx

) p+

N
(∫

Qt1

|∇Tk(ui,ε)|p(x) dx ds

) p+

p−

. (4.17)

In the same way, we arrive to the following inequality:

‖∇Tk(ui,ε)‖Lp(·)(Qt1 ) ≤ C2

(∫
Qt1

|∇Tk(ui,ε)|p(x) dx ds

) 1
p−

. (4.18)

Combining (4.17) and (4.18), we can conclude that

‖|Tkui,ε|γ(x)‖Lω(·)(Qt1 )‖∇Tk(ui,ε)‖Lp(·)(Qt1 )

≤ C3

(
sup

t∈(0,t1)

∫
Ω
|Tk(ui,ε)|2dx

)λp+

N

×

(∫
Qt1

|∇Tk(ui,ε)|p(x) dx ds

)λp+

p− + 1
p−

, (4.19)

where

λ =

{
1
ω+ if ‖|Tkui,ε|γ(x)‖Lω(·)(Qt1 ) ≥ 1,
1
ω− if ‖|Tkui,ε|γ(x)‖Lω(·)(Qt1 ) ≤ 1.
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Since γ(x) = (N+2)(p(x)−1)
N+p(x) for all x ∈ Ω and γ−

γ+
p− < p(x), we have γ(x) <

(N+2)(p(x)−1)

N+ γ−
γ+

p−
for all x ∈ Ω. Moreover, if p(·)(N+p(·))

N(p(·)−1) = p(x)(N+2)
Nγ(x) , then we can find

that p(x)(N+2)
Nγ+

< ω(x) for all x ∈ Ω.

Then the continuity of γ(·) and p(·) on Ω implies that for all x ∈ Ω, there
exist some constants δ1 > 0 and δ2 > 0 such that

max
x∈B(x,δ1)∩Ω

p(x)(N + 2)

Nγ+
< min

x∈B(x,δ1)∩Ω
ω(x), (4.20)

max
x∈B(x,δ2)∩Ω

γ(x) < min
x∈B(x,δ2)∩Ω

(N + 2)(p(x)− 1)

N + γ−

γ+
p−

. (4.21)

By taking δ = min(δ1, δ2), we can see that inequalities (4.20) and (4.21) hold
on B(x, δ) ∩ Ω for all x ∈ Ω. So, recalling that Ω is compact, we can cover it with
a finite number of balls (Bj)j=1,...,k. By p+

j , p
′+
j , γ

+
j , ω

+
j and λ+

j we denote the

local maximum of p, p′, γ, ω, and λ on Bj ∩ Ω and by p−j , p′−j , γ
−
j , ω−j and λ−j

we denote the local minimum of p, p′, γ, ω and λ on Bj ∩ Ω ). Hence
p+j (N+2)

Nγ+j
<

ω−j < ω+
j , which implies

λjp
+
j

p−j
<

Nγ+
j

p−j (N + 2)
and

λjp
+

N
<

γ+
j

N + 2
. (4.22)

From (4.16), (4.19), and (4.22), it easy to check that instead of global estimate
we can find

‖|Tkui,ε|γ(x)‖
Lω(·)(Qjt1

)
‖∇Tk(ui,ε)‖Lp(·)(Qjt1 )

≤ C4

(
sup

t∈(0,t1)

∫
Bj∩Ω

|Tk(ui,ε)|2dx

) γ+
j

N+2
(∫

Qjt1

|∇Tk(ui,ε)|p(x) dx ds

) Nγ+
j

p−
j

(N+2)
+ 1

p−
j

≤ C4

(
k2 mes(Ω)

) γ+
j
γ−
j

γ−
j

(N+2)


(

1

k2 mes(Ω)
sup

t∈(0,t1)

∫
Bj∩Ω

|Tk(ui,ε)|2dx

) γ+
j

γ−
j


e
γ−
j

N+2

×

(∫
Qjt1

|∇Tk(ui,ε)|p(x) dx ds

) Nγ+
j

p−
j

(N+2)
+ 1

p−
j

.

Therefore, by
∫

Ω |Tk(ui,ε)|
2dx ≤ k2 mes(Ω), we get

1

k2 mes(Ω)
sup

t∈(0,t1)

∫
Bj∩Ω

|Tk(ui,ε)|2dx ≤ 1,
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and as
γ+j
γ−j

> 1, we can claim that

‖|Tkui,ε|γ(x)‖
Lω(·)(Qjt1

)
‖∇Tk(ui,ε)‖Lp(·)(Qjt1 )

≤ C5

(
sup

t∈(0,t1)

∫
Bj∩Ω

|Tk(ui,ε)|2 dx

) γ−
j

N+2

×

(∫
Qjt1

|∇Tk(ui,ε)|p(x) dx ds

) Nγ+
j

p−
j

(N+2)
+ 1

p−
j

. (4.23)

Finally, using (4.14), we get the estimate∫
Qjt1

ci(x, t)|ui,ε|γ(x)|∇Tk(ui,ε)| dx ds

≤ C‖ci(x, t)‖Lτ(·)(Qjt1 )

(
sup

t∈(0,t1)

∫
Bj∩Ω

|Tk(ui,ε)|2dx

) γ−
j

N+2

×

(∫
Qjt1

|∇Tk(ui,ε)|p(x) dx ds

) Nγ+
j

p−
j

(N+2)
+ 1

p−
j

. (4.24)

According to (4.24) and using Young inequalities, we obtain∫
Qjt1

ci(x, t)|ui,ε|γ(x)|∇Tk(ui,ε)| dx ds

≤ C‖ci(x, t)‖Lτ(·)(Qjt1 )
(
γ−j

N + 2
) sup
t∈(0,t1 )

∫
Bj∩Ω

|Tkui,ε|2dx+ C‖ci(x, t)‖Lτ(·)(Qjt1 )

× (
N + 2− γ−j
N + 2

+ ε1)

(∫
Qjt1

|∇Tkui,ε|p(x) dx ds

) N+2

N+2−γ−
j

(
1

p−
j

+
Nγ+

j

p−
j

(N+2)

)
. (4.25)

In view of (4.21), we deduce

N + 2 + γ+
j N

p−j (N + 2)− γ−j p
−
j

≤ 1. (4.26)

Since (
1

p−j
+

Nγ+
j

P−j (N + 2)

)
N + 2

N + 2− γ−
=

N + 2 + γ+
j N

p−j (N + 2)− γ−j p
−
j

and β2

∫
Qjt1
|∇Tkui,ε|p(x) dx ds ≥ 1, using (4.25), we obtain that
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Qjt1

ci(x, t)|ui,ε|γ(x)|∇Tk(ui,ε)| dx ds

≤ C
γ−j

N + 2
‖ci(x, t)‖Lτ(·)(Qjt1 )

sup
t∈(0,t1 )

∫
Bj∩Ω

|Tkui,ε|2dx

+ C
N + 2− γ−j
N + 2

‖ci(x, t)‖Lτ(·)(Qjt1 )

∫
Qjt1

|∇Tkui,ε|p(x) dx ds. (4.27)

Combining (4.13) and (4.27) and using Young inequality, we have

λi
2

∫
Bj∩Ω

|Tk(ui,ε)||2 dx+ α

∫
Qjt1

|∇Tk(ui,ε)|p(x) dx ds

≤Mik + C
γ−j

N + 2
‖ci(x, t)‖Lτ(·)(Qjt1 )

sup
t∈(0,t1 )

∫
Bj∩Ω

|Tk(ui,ε)|2 dx

+ C
N + 2− γ−j
N + 2

‖ci(x, t)‖Lτ(·)(Qjτ1 )

∫
Qjt1

|∇Tk(ui,ε)|p(x) dx ds

+
1

p′−j
‖Fi‖βLp′(·)(QT )

+
1

p−j

∫
Qjt1

|∇Tk(ui,ε)|p(x) dx ds,

where

β =

{
p′+j if ‖Fi‖Lp′(·)(QT ) ≥ 1,

p′−j if ‖Fi‖Lp′(·)(QT ) ≤ 1,

which is equivalent to(
λi
2
− C

γ−j
N + 2

||ci(x, t)||Lτ(·)(Qjt1 )

)
sup

t∈(0,t1 )

∫
Bj∩Ω

|Tk(ui,ε)|2 dx

+

(
α− C

N + 2− γ−j
N + 2

||ci(x, t)||Lτ(·)(Qjt1 )
− 1

p−j

)∫
Qjt1

|∇Tk(ui,ε)|p(x) dx ds

≤M ′i,jk,

where M ′i,j = Mi + 1
kp′−j
‖Fi‖βLp′(·)(QT )

.

If we choose t1 such that(
λi
2
− C

γ−j
N + 2

||ci(x, t)||Lτ(·)(Qjt1 )

)
> 0, (4.28)(

α− C
N + 2− γ−j
N + 2

||ci(x, t)||Lτ(·)(Qjt1 )
− 1

p−j

)
> 0, (4.29)

then, denoting by Ci,j the minimum between (4.28) and (4.29), we obtain
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sup
t∈(0,t1 )

∫
Bj∩Ω

|Tk(ui,ε)|2 dx+

∫
Qjt1

|∇Tk(ui,ε)|p(x) dx dt ≤ Ci,jM ′i,jk

for all j = 1, . . . , k.

Hence we obtain the desired result

sup
t∈(0,t1 )

∫
Ω
|Tk(ui,ε)|2 dx+

∫
Qt1

|∇Tk(ui,ε)|p(x) dx dt ≤ CiM ′ik. (4.30)

Then, by (4.30), we conclude that Tk(ui,ε) is bounded in V independently of ε
and for any k ≥ 0. Thus, there exists a subsequence still denoted by ui,ε such
that

Tk(ui,ε) ⇀mi,k in Lp
−

(0, T,W
1,p(·)
0 (Ω)). (4.31)

We turn now to proving the almost every convergence of ui,ε and bi,ε(ui,ε).
Consider a nondecreasing function gk ∈ C2(R) such that gk(s) = s for |s| ≤ k

2
and gk(s) = k for |s| ≥ k. Multiplying the approximate equation by g′k(ui,ε), we
get

∂Bi,ε
g (x, ui,ε)

∂t
− div

(
aε(x, t, ui,ε,∇ui,ε)g′k(ui,ε)

)
+ aε(x, t, ui,ε,∇ui,ε)g′′k(ui,ε)∇ui,ε + div

(
φi,ε(x, t, ui,ε)g

′
k(ui,ε)

)
− g′′k(ui,ε)∇ui,εφi,ε(x, t, ui,ε)∇ui,ε

= fi,εg
′
k(ui,ε)− div(Fig

′
k(ui,ε)) + Fig

′′
k(ui,ε)∇ui,ε in D′(QT ), (4.32)

where Bi,ε
g (x, z) =

∫ z
0
∂bi,ε(x,s)

∂s g′k(s)ds.
In view of (3.3) and (4.2) and taking into account that Tk(ui,ε) is bounded

in V , we deduce that gk(ui,ε) is bounded in V and
∂Bi,εg (x,ui,ε)

∂t is bounded in
L1(QT )+V ∗. Indeed, since supp(g′k) and supp(g′′k) are both included into [−k, k],
by (4.3), it follows that for all 0 < ε < 1

k , we have∣∣∣∣∫
QT

φi,ε(x, t, ui,ε)
p′(x)g′k(ui,ε)

p′(x) dx dt

∣∣∣∣
≤
∫
QT

ci(x, t)
p′(x)|T 1

ε
(ui,ε)|p

′(x)γ(x)|g′k(ui,ε)|p
′(x) dx dt

=

∫
{|ui,ε|≤k}

ci(x, t)
p′(x)|Tk(ui,ε)|p

′(x)γ(x)|g′k(ui,ε)|p
′(x) dx dt.

Furthermore, by the Hölder and the Gagliard–Niremberg inequalities, it results∫
{|ui,ε|≤k}

ci(x, t)
p′(x)|Tk(ui,ε)|p

′(x)γ(x)|g′k(ui,ε)|p
′(x) dx dt

≤ ‖g′k‖L∞(R)‖ci(x, t)‖
η1
Lτ(·)(QT )

×

 sup
t∈(0,T )

(∫
Ω
|Tk(ui,ε)|2 dx

) p−
N
(∫

QT

|∇Tk(ui,ε)|p(x) dx dt

) p+

p−

η2 ≤ ck,
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where

η1 =

{
τ+

µ− if ‖ci(x, t)‖Lτ(·)(QT ) ≥ 1,
τ−

µ+
if ‖ci(x, t)‖Lτ(·)(QT ) ≤ 1,

η2 =

{
1
ν− if ‖|Tk(ui,ε)|γ(x)p′(x)‖Lν(·)(QT ) ≥ 1,
1
ν+

if ‖|Tk(ui,ε)|γ(x)p′(x)‖Lν(·)(QT ) ≤ 1,

µ(·) =
τ(·)
p′(·)

, and ν(·) =
τ(·)

τ(·)− p′(·)
,

and ck is a constant independent of ε which varies from line to line. In the same
way, by (4.3), we have∣∣∣∣∫

QT

φi,ε(x, t, ui,ε)
p′(x)(g′′k(ui,ε)∇ui,ε)p

′(x) dx dt

∣∣∣∣
≤
∫
QT

(g′′k(ui,ε)
p′(x)|ci(x, t)|p

′(x)|T 1
ε
(ui,ε)|p

′(x)|∇ui,ε|p
′(x) dx dt. (4.33)

Furthermore, by the Hölder and the Gagliardo–Niremberg inequalities, for 0 <
ε < 1

k , we obtain∫
QT

(g′′k(ui,ε)
p′(x)|ci(x, t)|p

′(x)|T 1
ε
(ui,ε)|γ(x)p′(x)|∇ui,ε|p

′(x) dx dt

=

∫
QT

(g′′k(ui,ε)
p′(x)|ci(x, t)|p

′(x)|Tk(ui,ε)|γ(x)p′(x)|∇Tk(ui,ε)|p
′(x) dx dt

≤ ‖g′′k‖L∞(R) sup
|r|≤k
|b′(r)|

∫
QT

|ci(x, t)|p
′(x)|Tk(ui,ε)|γ(x)p′(x)|∇Tk(ui,ε)|p

′(x) dx dt

≤ ck.

By (4.32), we may conclude that

∂gk(bi,ε(x, ui,ε))

∂t
is bounded in L1(QT ) + V ∗. (4.34)

Arguing again as in [12], estimates (4.31) and (4.34) imply that there exists a
subsequence, still indexed by ui,ε,

ui,ε → ui a.e. in QT , (4.35)

where ui is a measurable function defined on QT .
Let us prove that bi(x, ui) belongs to L∞((0, T );L1(Ω)). Using (4.9), (4.27),

and (4.30), we deduce that∫
Ω
Bi,ε
k (x, ui,ε)dx ≤M ′ikCi + C1. (4.36)

In view of (4.35) and passing to the limit-inf in (4.36), as ε tends to zero, we
obtain that

1

k

∫
Ω
Bi,k(x, ui(τ)) dx ≤ C2 (4.37)
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for almost any τ in (0, T ), with

Bi,k(x, r) =

∫ r

0

∂bi(x, s)

∂s
Tk(s) ds.

Due to the definition of Bi,k(x, s) and the fact that 1
kBk(x, ui) converges pointwise

to ∫ ui

0
sign(s)

∂bi(x, s)

∂s
ds = |bi(x, ui)|,

as k tends to +∞, it is possible to show that bi(x, ui) ∈ L∞(0, T ;L1(Ω)).

Step 3: The limit of the solution of the approximated problem.

Lemma 4.1. For i = 1, 2, the subsequence of ui,ε defined in Step 1 satisfies

lim
n→+∞

lim sup
ε→0

1

n

∫
|ui,ε|≤n}

aε(x, t, ui,ε,∇ui,ε)∇ui,ε dx dt = 0. (4.38)

Proof. Using the admissible test function 1
nTn(ui,ε) from (4.7), and by (4.3),

(4.24), (4.26) and using again the elliptic condition on a, the Young inequality
and the boundedness of Tn(ui,ε) in V , we can claim that for all R < n for ε < 1

n :

1

2n

∫
{|ui,ε|≤n}

a(x, t, ui,ε,∇ui,ε)∇Tn(ui,ε) dx dt

≤ 1

n

∫
{|ui,ε|≤R}

ci(x, t)|TR(ui,ε)|γ(x)|∇TR(ui,ε)| dx dt

+
1

n

∫
Ω
Bi,n(x, ui,0ε)dx+ C6‖ci(x, t)χ{|ui,ε|>R}‖

N+2
γ−

Lτ(·)(QT )

+
1

n

∫
QT

fi,εTn(ui,ε) dx dt+
1

n

(
2

ω

) p′+

p−

‖Fi‖λQT . (4.39)

Due to the fact that ui,ε converges to u almost everywhere, for |Tn(r)| ≤ r,
the Lebesgue dominated convergence theorem implies that Tn(ui,ε) converges to
Tn(ui) in L∞(QT ) weakly-∗.

By (4.37) and (3.2), we obtain∫
Ω
|ui(x, t)|dx ≤

3

2
C1k|Ω|+ C2

for almost any t ∈ (0, T ), which shows that ui ∈ L∞(0, T ;L1(Ω)).

As a consequence, we have that Tn(ui)/n tends to zero almost everywhere in
QT .

In view of (3.9), (4.4), (4.5), (4.30), (4.31) and (4.35), using the Lebesgue
convergence theorem and passing to limit in (4.39), as ε tends to zero (then n
tends to +∞ and then R tends to +∞), it is obvious that ui,ε satisfies Lemma 4.1.
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Step 4: Here we are to prove that the weak limit hk of a(x, t, Tk(ui,ε),∇Tk(ui,ε))
can be identified with a(x, t, Tk(ui),∇Tk(ui)) for i = 1, 2. In order to show this
result we recall the lemma below.

Lemma 4.2. For i = 1, 2, the subsequence of ui,ε satisfies

lim sup
ε→0

∫
QT

∫ t

0
a(x, s, ui,ε,∇Tk(ui,ε))∇Tk(ui,ε) ds dx dt

≤
∫
QT

∫ t

0
hk∇Tk(ui) dx ds dt, (4.40)

lim
ε→0

∫
QT

∫ t

0

(
a(x, t, Tk(ui,ε),∇Tk(ui,ε))− a(x, t, Tk(ui,ε),∇Tk(ui))

)
×
(
∇Tk(ui,ε)−∇Tk(ui)

)
= 0, (4.41)

hk = a(x, t, Tk(ui),∇Tk(ui)) a.e. in QT , for any k ≥ 0, as ε tends to 0, (4.42)

a(x, t, Tk(ui,ε),∇Tk(ui,ε))∇Tk(ui,ε) ⇀ a(x, t, Tk(ui),∇Tk(ui))∇Tk(ui)
weakly in L1(QT ). (4.43)

Proof. For i = 1, 2, we introduce a time regularization of the Tk(ui) for k >
0 in order to perform the monotonicity method. This specific time regularization
was first introduced by R. Landes in [20]. By (Tk(ui))µ, we denote the regularized
function of Tk(ui) with µ > 0. Thus, by using the same argument as in [11], we
can show the following lemma.

Lemma 4.3. Let k ≥ 0 be fixed. Let S be an increasing C∞(R)-function
such that S(r) = r for |r| ≤ k, and suppS′ is compact. Then,

lim inf
µ→+∞

lim
ε→0

∫ T

0

∫ t

0

〈
∂bi,ε(x, ui,ε)

∂t
, S′(ui,ε)(Tk(ui,ε)− (Tk(ui))µ)

〉
≥ 0,

where 〈·, ·〉 denotes the duality pairing between L1(Ω)+W−1,p′(·)(Ω) and L∞(Ω)∩
V (Ω).

Let Sn be a sequence of increasing C∞(R)-functions such that

Sn(r) = r for |r| ≤ n, suppS′n ⊂ [−2n, 2n] and ‖S′′n‖L∞(R) ≤
3

n
for any n ≥ 1.

For i = 1, 2, we use the sequence (Tk(ui))µ of approximation of Tk(ui) and con-
sider the test function S′n(ui,ε)(Tk(ui,ε) − (Tk(ui))µ) for n > 0 and µ > 0. For

fixed k ≥ 0, we define W i,ε
µ = Tk(ui,ε) − (Tk(ui))µ and by integrating over (0, t)

and then over (0, T ), we get∫ T

0

∫ t

0

〈
∂bi,ε(x, ui,ε)

∂t
, S′n(ui,ε)W

i,ε
µ

〉
ds dt

+

∫ T

0

∫ t

0

∫
Ω
aε(x, t, ui,ε,∇ui,ε)S′n(ui,ε)∇W i,ε

µ dx ds dt
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+

∫ T

0

∫ t

0

∫
Ω
aε(x, t, ui,ε,∇ui,ε)S′′n(ui,ε)∇ui,εW i,ε

µ dx ds dt

−
∫ T

0

∫ t

0

∫
Ω
φi,ε(x, t, ui,ε)S

′
n(ui,ε)∇W i,ε

µ dx ds dt

−
∫ T

0

∫ t

0

∫
Ω
S′′n(ui,ε)φi,ε(x, t, ui,ε)∇ui,εW i,ε

µ dx ds dt

=

∫ T

0

∫ t

0

∫
Ω
fi,εS

′
n(ui,ε)W

i,ε
µ dx ds dt.

+

∫
QT

∫ t

0
FiS

′
n(ui,ε)∇W i,ε

µ ds dt dx

+

∫
QT

∫ t

0
FiS

′′
n(ui,ε)∇ui,εW i,ε

µ ds dt dx. (4.44)

Now we pass to the limit in (4.44) as ε → 0, µ → +∞, n → +∞ for k real
number fixed. In order to perform this task, we prove below the following results
for any fixed k ≥ 0:

lim inf
µ→+∞

lim
ε→0

∫ T

0

∫ t

0

〈
∂bi,ε(x, ui,ε)

∂t
, S′n(ui,ε)W

i,ε
µ

〉
ds dt ≥ 0 for any n ≥ k, (4.45)

lim
µ→+∞

lim
ε→0

∫ T

0

∫ t

0

∫
Ω
φi,ε(x, t, ui,ε)S

′
n(ui,ε)∇W i,ε

µ dx ds dt = 0

for any n ≥ 1, (4.46)

lim
µ→+∞

lim
ε→0

∫ T

0

∫ t

0

∫
Ω
φi,ε(x, t, ui,ε)∇ui,εW i,ε

µ dx ds dt = 0 for any n ≥ 1, (4.47)

lim
n→+∞

lim sup
µ→+∞

lim sup
ε→0

∫ T

0

∫ t

0

∫
Ω
aε(x, t, ui,ε,∇ui,ε)

× S′′n(ui,ε)∇ui,εW i,ε
µ dx ds dt = 0, (4.48)

lim
µ→+∞

lim
ε→0

∫ T

0

∫ t

0

∫
Ω
fi,εS

′
n(ui,ε)W

i,ε
µ dx ds dt = 0, (4.49)

lim
µ→+∞

∫
QT

∫ t

0
FiS

′
n(ui,ε)∇W i,ε

µ ds dt dx = 0, (4.50)

lim
µ→+∞

∫
QT

∫ t

0
FiS

′′
n(ui,ε)∇ui,εW i,ε

µ ds dt dx = 0. (4.51)

Proof of (4.45): The function Sn belongs to C∞(R) and it is increasing. We
have n ≥ k, Sn(r) = r for |r| ≤ k because suppS′n is compact. In view of the
definition of W i,ε

µ we apply Lemma 4.3 with S = Sn for fixed n ≥ k. As a
consequence, (4.45) holds true.

Proof of (4.46): Let us recall the main properties of W i,ε
µ . For fixed µ > 0,

W i,ε
µ converges to Tk(ui) − (Tk(ui))µ weakly in Lp

−
(0, T ;W

1,p(·)
0 (Ω)) as ε → 0.

Taking into account that

‖W i,ε
µ ‖L∞(QT ) ≤ 2k for any ε > 0, µ > 0, (4.52)
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we can deduce that

W i,ε
µ ⇀ Tk(ui)− (Tk(ui))µ a.e. in QT and L∞(QT ) weakly- ∗ as ε→ 0. (4.53)

For any fixed n ≥ 1 and 0 < ε < 1
2n ,

φi,ε(x, t, uε)S
′
n(ui,ε)∇W i,ε

µ = φi,ε(x, t, T2n(ui,ε))S
′
n(ui,ε)∇W i,ε

µ a.e. in QT ,

since suppS′ ⊂ [−2n, 2n]. On the other hand,

φi,ε(x, t, T2n(ui,ε))S
′
n(ui,ε)→ φ(x, t, T2n(u))S′n(u) a.e. in QT ,

|φi,ε(x, t, T2n(ui,ε))S
′
n(ui,ε)| ≤ Cc(x, t)(2n)γ

+
for n ≥ 1.

By (4.53) and the strong convergence of Tk(ui,ε)µ to Tk(ui) in Lp
−
(0, T,W

1,p(·)
0 (Ω)),

we obtain (4.46).

Proof of (4.47): For any fixed n ≥ 1 and 0 < ε < 1
2n , we have

φi,ε(x, t, ui,ε)S
′′
n(ui,ε)∇ui,εW i,ε

µ = φi,ε(x, t, T2n(ui,ε))S
′′
n(ui,ε)∇T2n(ui,ε)W

ε
µ

a.e. in QT ;

by (4.53) and (4.35), as in the previous step, it is possible to pass to the limit for
ε→ 0:

φi,ε(x, t, Tn+1(ui,ε))S
′′
n(ui,ε)W

i,ε
µ → φi(x, t, T2n(ui))S

′′
n(ui)Wµ a.e. in QT .

Since

|φi(x, t, Tn+1(ui))S
′′
n(ui)Wµ| ≤ 2Ck|c(x, t)|(2n)γ

+
a.e. in QT

and (Tk(ui))µ converges to Tk(ui) in Lp
−

(0, T ;W
1,p(·)
0 (Ω)), we obtain (4.47).

Proof of (4.48): In view of the definition of Sn, we have suppS′ ⊂ [−2n,−n]∪
[n, 2n] for any n ≥ 1. Thus,∣∣∣∣∫ T

0

∫ t

0

∫
Ω
aε(x, t, ui,ε,∇ui,ε)S′′n(ui,ε)W

i,ε
µ dx ds dt

∣∣∣∣
≤ T‖S′′n(ui,ε)‖L∞(R)‖W i,ε

µ ‖L∞(QT )

∫
n≤|ui,ε|≤2n

a(x, t, ui,ε,∇ui,ε)∇ui,ε dx ds dt

for any n ≥ 1, any 0 < ε < 1
2n and any µ > 0. Since ‖S′′n‖L∞(R) ≤ 3

n , by (4.38), it
is possible to establish (4.48).

Proof of (4.49): By (4.4), due to the pointwise convergence of ui,ε and W i,ε
µ ,

and their boundness, it is possible to pass to the limit for ε→ 0 :

lim
ε→0

∫ T

0

∫ t

0

∫
Ω
fi,εS

′
n(ui)(Tk(ui)− (Tk(ui))µ) dx ds dt

=

∫ T

0

∫ t

0

∫
Ω
fiS
′
n(ui) (Tk(ui)− (Tk(ui))µ)dx ds dt

for any µ > 0 and any n ≥ 1. Now, for fixed n ≥ 1, it is possible to pass to the
limit as µ tends to +∞ in the above inequality.
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Proof of (4.50): We have

FiS
′
n(ui,ε)→ Fi.S

′
n(ui) a.e. in QT ,

|FiS′n(ui,ε)| ≤ 2n‖Fi‖Lp′(·)(QT ) a.e. in QT .

We obtain (4.50), by (4.53) and the strong convergence of Tk(ui,ε)µ to Tk(ui) in

Lp
−
(

0, T,W
1,p(·)
0 (Ω)

)
.

Proof of (4.51): For any fixed n ≥ 1 and 0 < ε < 1
2n , we have

FiS
′′(ui,ε)∇ui,εW i,ε

µ = FiS
′′(ui,ε)∇T2n(ui,ε)W

ε
µ a.e. in QT .

As in the previous step, we can obtain (4.51) by passing to the limit for
ε → 0, where (4.52), (4.53), and the strong convergence of Tk(ui,ε)µ in

Lp
−(

0, T,W
1,p(·)
0 (Ω)

)
are taken into account. Recalling (4.45)–(4.51), we can

pass to the limit-sup in (4.44) as µ tends to +∞, and to the limit as n tends to
+∞. Using the definition of W i,ε

µ , we deduce that for any k ≥ 0,

lim
n→+∞

lim sup
µ→+∞

lim sup
ε→0

∫ T

0

∫ t

0

∫
Ω
S′n(ui,ε)aε(x, t, ui,ε,∇ui,ε)

× (∇Tk(ui,ε)−∇(Tk(ui))µ) dx ds dt ≤ 0.

Since

S′n(ui,ε)aε(x, t, ui,ε,∇ui,ε)∇Tk(ui,ε) = a(x, t, ui,ε,∇ui,ε)∇Tk(ui,ε)

for k ≤ 1
ε and k ≤ n, by using the properties of S′n, the above inequality implies

that for k ≤ n,

lim sup
ε→0

∫ T

0

∫ t

0

∫
Ω
aε(x, t, ui,ε,∇ui,ε)∇Tk(ui,ε) dx ds dt

≤ lim
n→+∞

lim sup
µ→+∞

lim sup
ε→0

∫ T

0

∫ t

0

∫
Ω
S′n(ui,ε)aε(x, t, ui,ε,∇ui,ε)

×∇(Tk(ui,ε))µ dx ds dt. (4.54)

On the other hand, for ε < 1
2n ,

S′n(ui,ε)aε(x, t, ui,ε,∇ui,ε) = S′n(ui,ε)a(x, t, T2n(ui,ε),∇T2n(ui,ε)) a.e. in QT .

Furthermore, we have

aε(x, t, Tkui,ε,∇Tkui,ε) ⇀ hk weakly in
(
Lp
′(·)(QT )

)N
. (4.55)

It follows that for a fixed n ≥ 1,

S′n(ui,ε)aε(x, t, ui,ε,∇ui,ε)→ S′n(ui,ε)h2n weakly in Lp
′(·)(QT )
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as ε tends to zero. Finally, using the strong convergence of (Tk(ui))µ to Tk(ui) in

Lp
−(

0, T ;W
1,p(·)
0 (Ω)

)
as µ tends to +∞, we get

lim
µ→+∞

lim
ε→0

∫ T

0

∫ t

0

∫
Ω
S′n(ui,ε)aε(x, t, ui,ε,∇ui,ε)∇(Tk(ui,ε))µ dx ds dt

=

∫ T

0

∫ t

0

∫
Ω
S′n(ui,ε)h2n∇Tk(ui) dx ds dt (4.56)

as soon as k ≤ n. Now, for k ≤ n, we have

a(x, t, T2n(ui,ε),∇T2n(ui,ε))χ{|ui,ε|≤k}

= a(x, t, Tk(ui,ε),∇Tk(ui,ε))χ{|ui,ε|≤k} a.e. in QT (4.57)

which implies that, by (4.35), (4.55) and by passing to the limit when ε tends
to 0,

h2nχ|ui|≤k = hkχ{|ui|≤k} a.e. in QT − {|ui| = k} for k ≤ n. (4.58)

Finally, by (4.55) and (4.58), we have h2n∇Tk(ui) = hk∇Tk(ui) a.e. in QT for
k ≤ n. Thus the proof of (4.51) is complete.

Now we are able to prove Lemma 4.2.

Proof of (4.41): Using (3.4), we have

lim
ε→0

∫ T

0

∫ t

0

∫
Ω

(
a(x, t, Tk(ui,ε),∇Tk(ui,ε))− a(x, t, Tk(ui,ε),∇Tk(ui))

)
×
(
∇Tk(ui,ε)−∇Tk(ui)

)
≥ 0. (4.59)

Further, by (3.3), (4.35), and the growth condition, we show

a(x, t, Tk(ui,ε),∇Tk(ui))→ a(x, t, Tk(ui),∇Tk(ui))

strongly in
(
Lp
′(·)(QT )

)N
. (4.60)

Furthermore, we have

aε(x, t, ui,ε,∇ui,ε) ⇀ hk weakly in
(
Lp
′(·)(QT )

)N
. (4.61)

Finally, the use of (4.35), (4.60), and (4.61) makes it possible to pass to the
limit-sup as ε tends to 0 in (4.59), and we have (4.41).

Proof of (4.42): We observe that for for any k > 0, any 0 < ε < 1
k and any

ξ ∈ RN :

aε(x, t, Tk(ui,ε), ξ) = a(x, t, Tk(ui,ε), ξ) = a 1
k
(x, t, Tk(ui,ε), ξ) a.e. in QT .
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Since

Tk(ui,ε) ⇀ Tk(ui) weakly in Lp
−
(

(0, T ),W
1,p(·)
0 (Ω)

)
, (4.62)

then by (4.41), we obtain

lim
ε→0

∫ T

0

∫ t

0

∫
Ω
a 1
k
(x, t, Tk(ui,ε),∇Tk(ui,ε))∇Tk(ui,ε) dx ds dt

=

∫ T

0

∫ t

0

∫
Ω
hk∇Tk(ui) dx ds dt. (4.63)

Since, for fixed k > 0, the function a 1
k
(x, t, s, ξ) is continuous and bounded with

respect to s, by applying the usual Minty’s argument in view of (4.61)–(4.63),
it follows that (4.42) holds true. In order to prove (4.43), by (3.4), (4.61) and
proceeding as in [11,12], it is easy to obtain (4.43).

Thus Lemma 4.2 is proved.

Passing to the limit: Using the same argument as in [1], we can prove that ui
for i = 1, 2 satisfies (3.17)–(3.19). The proof of Theorem 4.1 is complete.

A. Appendix

Theorem A.1 (Gagliardo–Nirenberg generalized inequality). Let v be a

function in W
1,q(·)
0 (Ω) ∩ Lρ(·)(Ω) with q, ρ ∈ P log(Ω), 1 < q− ≤ q(x) ≤ q+ ≤

N , 1 < ρ− ≤ ρ(x) ≤ ρ+ ≤ N .

Then there exists a positive constant C, depending on N, q(x) and ρ(x), such
that

‖v‖Lγ(·)(Ω) ≤ C‖∇v‖
θ
(Lq(·)(Ω))N

‖v‖1−θ
Lρ(·)(Ω)

for every θ and γ(·) satisfying: 0 ≤ θ ≤ 1, 1 ≤ γ(·) ≤ +∞, 1
γ(·) = θ( 1

q(·) −
1
N ) +

1−θ
ρ(·) .

The proof follows the same lines as the proof for the case of constant exponent
[13, p. 147].

Corollary A.1. Let v ∈ Lq
−(

(0, T ),W
1,q(·)
0 (Ω)

)
∩ L∞

(
(0, T ), L2(Ω)

)
, with

q ∈ P log(Ω) and 1 < q− ≤ q(x) ≤ q+ ≤ N . Then v ∈ Lσ(·)(Ω) with σ(·) =
q(·)N+2

N and∫
QT

|v|σ(x) dx dt ≤ C max

(
‖v‖

2q+

N

L∞(0,T,L2(Ω))
; ‖v‖

2q−
N

L∞(0,T,L2(Ω))

)

×max

(∫
QT

|∇v|q(x) dxdt

) q+

q−

;

(∫
QT

|∇v|q(x) dx dt

) q−

q+

 .
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Proof. We set θ = N
N+2 in Theorem A.1, then σ(·) = q(·)(N+2

N ), and

‖v‖Lσ(·)(Ω) ≤ C‖v‖
(1−θ)
L2(Ω)

‖v‖θ
Lq(·)(Ω)

.

We have ∫
Ω
|v|σ(x)dx ≤ max

(
‖v‖σ+

Lσ(·)(Ω)
; ‖v‖σ−

Lσ(·)(Ω)

)
.

By Gagliardo–Niremberg generalized inequalities (see Theorem 4.1), one has

‖v‖σ+

Lσ(·)(Ω)
≤ C‖v‖(1−θ)σ

+

L2(Ω)
max

(∫
Ω
|∇v|q(x) dx

) θσ+

q+

;

(∫
Ω
|∇v|q(x) dx

) θσ+

q−

 ,

‖v‖σ−
Lσ(·)(Ω)

≤ C‖v‖(1−θ)σ
−

L2(Ω)(Ω)
max

(∫
Ω
|∇v|q(x) dx

) θσ−
q+

;

(∫
Ω
|∇v|q(x) dx

) θσ−
q−

 .

Moreover, σ(·) = q(·)(N+2
N ) implies θσ+

q+
= θσ−

q− = 1, then

‖v‖σ+

Lσ(·)(Ω)
≤ C‖v‖2

q+

N

L2(Ω)
max

∫
Ω
|∇v|q(x) dx;

(∫
Ω
|∇v|q(x) dx

) q+

q−

 ,

‖v‖σ−
Lσ(·)(Ω)

≤ C‖v‖2
q−
N

L2(Ω)
max

∫
Ω
|∇v|q(x) dx;

(∫
Ω
|∇v|q(x) dx

) q−

q+

 .

Finally,

max
(
‖v‖σ+

Lσ(·)(Ω)
; ‖v‖σ−

Lσ(·)(Ω)

)
≤ C max

(
‖v‖

2q+

N

L2(Ω)
; ‖v‖

2q−
N

L2(Ω)

)

×max

(∫
Ω
‖∇v|q(x)dx

) q+

q−

;

(∫
Ω
|∇v|q(x)dx

) q−

q+

 ,

and thus the proof of the corollary is complete.
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Перенормованi розв’язки нелiнiйних параболiчних
систем у просторах Лебега–Соболєва з експонентою,

що змiнюється
B. El Hamdaoui, J. Bennouna, and A. Aberqi

Наведено результат iснування перенормованих розв’язкiв для класу
нелiнiйних параболiчних систем з експонентою, що змiнюється, типу

∂te
λui(x,t) − div(|ui(x, t)|p(x)−2ui(x, t))

+ div(c(x, t)|ui(x, t)|γ(x)−2ui(x, t)) = fi(x, u1, u2)− div(Fi),

для i = 1, 2. Cтруктура нелiнiйностi змiнюється вiд точки до точки в
областi Ω. Член джерела менш регулярний (обмежена мiра Радона) i в
недивергентному членi низшого порядку div v(c(x, t)|u(x, t)|γ(x)−2u(x, t))
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вiдсутня коерцитивнiсть. Основний внесок нашої роботи — це доведен-
ня iснування перенормованих розв’язкiв без умов коерцитивностi на
нелiнiйностi, що дозволяє нам скористатися для доведення теоремою
Гальярдо–Нiренберга.

Ключовi слова: параболiчнi задачi, простiр Лебега–Соболєва, експо-
нента, що змiнюється, перенормованi розв’язки.
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