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Hypersurfaces with L,.-Pointwise 1-Type
Gauss Map

Akram Mohammadpouri

In this paper, we study hypersurfaces in E"*! whose Gauss map G sati-
sfies the equation L,.G = f(G + C) for a smooth function f and a constant
vector C, where L, is the linearized operator of the (r+1)-st mean curvature
of the hypersurface, i.e., L.(f) = Tr(P. o V2f) for f € C>(M), where
P, is the r-th Newton transformation, V2f is the Hessian of f, L,G =
(L-G1,...,L,Gpy1) and G = (G4,...,Gpy1). We focus on hypersurfaces
with constant (r 4 1)-st mean curvature and constant mean curvature. We
obtain some classification and characterization theorems for these classes of
hypersurfaces.
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1. Introduction

The study of submanifolds of finite type began in the late seventies with
B.Y. Chen’s attempts to find the best possible estimate of the total mean cur-
vature of compact submanifolds of a Euclidean space and to find a notion of
“degree” for submanifolds of a Euclidean space (see [8] for details). Since then
the subject has had a rapid development and many mathematicians contributed
to it (see the excellent survey of B.Y. Chen [6]). By definition, an isometrically
immersed submanifold z : M™ — E"** is said to be of finite type if z has a finite
decomposition as © — zg = > -_; z;, for some positive integer p, such that Az; =
Aizi, i € R)1 <4 < p, xg is constant, x;,1 < ¢ < p, are non-constant smooth
maps z; : M™ — E"* and A is the Laplace operator of M. In [10], this definition
was similarly extended to differentiable maps, in particular, to the Gauss map of
hypersurfaces. The notion of finite type Gauss map is an especially useful tool in
the study of hypersurfaces (cf. [2-5,9,12,16,19]). If an oriented hypersurface M
of a Euclidean space has a 1-type Gauss map G, then G satisfies AG = A\(G + C)
for a constant A € R and a constant vector C. In [10], Chen and Piccinni made
a general study on compact hypersurfaces of Euclidean spaces with finite type
Gauss map; they proved that a compact hypersurface M of E**! has a 1-type
Gauss map G if and only if M is a hypersphere in E**1.
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As is well known, the Laplace operator of a hypersurface M immersed into
E"*! is an (intrinsic) second-order linear differential operator which arises natu-
rally as the linearized operator of the first variation of the mean curvature for nor-
mal variations of the hypersurface. From this point of view, the Laplace operator
A can be seen as the first one of a sequence of n operators Lo = A, Ly, ..., Ly,_1,
where L, stands for the linearized operator of the first variation of the (r + 1)-
st mean curvature arising from normal variations of the hypersurface (see [22]).
These operators are given by L,.(f) = Tr(P, o V2f) for any f € C*°(M), where
P, denotes the r-th Newton transformation associated to the second fundamental
form of the hypersurface, and V2f is the Hessian of f (see the next section for
details).

From this point of view, S.M.B. Kashani introduced the notion of L,-finite
type hypersurface in the Euclidean space [15], as an extension of the finite
type theory. Omne can find our results in the last section of the last chapter
of B.Y. Chen’s book [8].

Notice that sometimes the symbol [ is used to denote the operator L; which is
the Cheng—Yau operator introduced in [11]. Later, in [17], the notion of pointwise
1-type Gauss map for the surfaces of the Euclidean 3-space E? was extended in
a natural way in terms of the Chen—Yau operator [J as follows:

Definition 1.1. A surface M of the Euclidean space E? is said to have an
Li-pointwise 1-type Gauss map if its Gauss map satisfies

0G = f(G+C) (1.1)

for a smooth function f € C°°(M) and a constant vector C' € E3. More precisely,
an Li-pointwise 1-type Gauss map is said to be of the first kind if (1.1) is satisfied
for C' = 0; otherwise, it is said to be of the second kind. Moreover, if (1.1) is
satisfied for a constant function f, then we say that M has an L;-(global) 1-type
Gauss map.

Rotational, helicoidal and canal surfaces in E? with Li-pointwise 1-type Gauss
map were studied in [18,21]. Motivated by this study, we define the hypersurfaces
with L,-pointwise 1-type Gauss map in this paper. In Section 2, we give the
definition of a hypersurface with L,-pointwise 1-type Gauss map and the basic
definitions of the theory of hypersurfaces in E"*!. In Section 3, we focus on
the hypersurfaces with constant (r + 1)-st mean curvature and constant mean
curvature. We obtain some classification and characterization theorems for the
hypersurfaces with L,.-pointwise 1-type Gauss map.

2. Preliminaries

In this section, we recall the basic concepts of the theory of hypersurfaces [1].
Let 2 : M™ — E™*! be an isometrically immersed hypersurface in the Euclidean
space with Gauss map G. We denote by V° and V the Levi-Civita connections
on E"*! and M™, respectively. The Gauss and Weingarten formulae are given
by V&Y = VxY + (SX,Y)G and SX = —V{G for all tangent vector fields



Hypersurfaces with L.-Pointwise 1-Type Gauss Map 69

X,Y € X(M™), where S : X(M™) — X (M™") is the shape operator (Weingarten
endomorphism) of M™ with respect to the Gauss map G.

As is well known, for every point p € M"™, S defines a linear self-adjoint en-
domorphism on the tangent space T,M", and its eigenvalues \i(p), A2(p), ...,
An—1(p), An(p) are the principal curvatures of the hypersurface. The characteris-
tic polynomial Qg(t) of S is defined by

n

Qs(t) =det(t] — 8) = (t— M)t = Aa) ... (t = A1) (E— An) = > _(—D)Fapt™F,
k=0

where ay, is given by

ap = Z )‘il"'/\ika with ag = 1.

1<i1 << <n

The r-th mean curvature H, of M™ in E"*! is defined by (2) H, = a,, with
Hy=1.

If H.41 = 0, then we say that M" is an r-minimal hypersurface. The r-th
Newton transformation of M™ is the operator P, : X(M") — X(M™) defined by

r

P = g)(—l)j( " )= 31 e

r —
J =0

Equivalently,
Ph=1, P = <n>HrI —SoP,._1.
r

Along with each Newton transformation P,., we consider the second-order lin-
ear differential operator L, : C*°(M") — C*°(M") given by L.(f) = Tr(P, o
V2f). Here, V2f : X(M™) — X(M") denotes the self-adjoint linear operator
metrically equivalent to the Hessian of f and it is given by (V2f(X),Y) =
(Vx(VF),Y), X,Y € X(M").

Now we state the following lemma from [1], which we will need later.

Lemma 2.1. Let  : M™ — E"! be a connected orientable hypersurface
immersed into the Fuclidean space with Gauss map G. Then the Gauss map G
of M satisfies

n n
L.G=-— (1" n 1> VHrJrl — (7" " 1) (nH1Hr+1 — (TL - 7r— 1)Hr+2)G. (21)

Next we will give the definition for a hypersurface with L,-pointwise 1-type
Gauss map.

Definition 2.2. An oriented hypersurface M of a Euclidean space E"*! is
said to have an L,-pointwise 1-type Gauss map if its Gauss map satisfies

L.G = f(G+C) (2.2)
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for a smooth function f € C°°(M) and a constant vector C € E"*!. More
precisely, an L,-pointwise 1-type Gauss map is said to be of the first kind if (2.2)
is satisfied for C' = 0; otherwise, it is said to be of the second kind. Moreover, if
(2.2) is satisfied for a constant function f, then we say M has a (global) 1-type
Gauss map.

A function (or mapping) ¢ defined on M is said to be harmonic if its Laplacian
vanishes identically, i.e., if A¢ = 0. After changing the Laplace operator A by
the operator L,., we give the following definition.

Definition 2.3. An oriented hypersurface M of a Euclidean space E"*! is
said to have an L.-harmonic Gauss map if its Gauss map satisfies L,G = 0.

We also need the following remark, theorem and lemma for later use.

Remark 2.4 ([7]). A hypersurface of a Euclidean space E"! is called isopara-
metric if its principal curvatures are constant counting multiplicities. An isopara-
metric hypersurface of E"*! has ¢ distinct principal curvatures with ¢ < 2. If ¢ =
2, one of principal curvatures must be 0. Isoparametric hypersurfaces of E"*!
are locally hyperspheres, hyperplanes or a standard product embedding of S* x
E"~*. This result was proved in [20] for n = 2, and in [23], for arbitrary n.

Theorem 2.5 ([14]). Let M3 be an oriented 3-dimensional complete Rie-
mannian manifold, and x : M3 — E* be a minimal isometric immersion with
constant Gauss—Kronecker curvature. Then the Gauss—Kronecker curvature is
identically zero.

Lemma 2.6. Let M be an oriented hypersurface in E"! with at most 2
distinct principal curvatures of multiplicities ¢ and n — q (1 < ¢ < n). Suppose
that {e1,...,en} is an orthonormal frame corresponding to the principal directions
and the principal curvatures K1, ko such that Se; = k1e;, 1 <1 < q and Se; =
Kkeej, ¢+ 1< j < n. If a vector field C € C®°(M,E"*1) is constant, then

ei(Cny1) = —k1C5, 1<i<g, (2.3)
62'(C'n+1) = —ko(}, qg+1<1<n, (2.4)

//\

where C; = (C, ¢;) and Cry1 = (C,G).

Proof. By the definition above, we have C' = Z?:l Cie; + Cpr1G. Suppose
that wfj = (Veej,er), 1 <1i,j,k < n; by a direct calculation, we have

viC = Zez ej—l—el(CnHG—l—ZCV ej+Crn1 VG

7=1

= Zel iej + €i(Cnt1)G + Z C,; wwek + CikiG — Cpy1Ki€4,
7,k=1

where [ =1if 1 <i<qgandl=2if ¢+ 1< i< n. SincevgiC’:O,wegetthe
result. O
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3. Characterization theorems on hypersurfaces with L, .-point-
wise 1-type Gauss map

In this section, we will give some characterization theorems on the hypersur-
faces of E™*! in terms of their Gauss map. We focus on the hypersurfaces with
constant (r + 1)-st mean curvature and on hypersurfaces with constant mean
curvature.

3.1. Hypersurfaces with constant (r + 1)-st mean curvature.

Theorem 3.1. If an oriented hypersurface M of a Euclidean space E"*! has
L,-harmonic Gauss map, then the (r + 1)-st mean curvature of M is constant,
in particular, if n =r + 1, then M is minimal or (n — 1)-minimal, i.e., H, = 0.

Proof. By Lemma 2.1, M has the L,-harmonic Gauss map if the (r + 1)-st
mean curvature of M is constant. If n = r 4+ 1, then Lemma 2.1 implies that
HH, =0, hence M is minimal or (n — 1)-minimal. O

In particular, when n = 2, we deduce from Theorem 3.1 and Remark 2.4 the
following corollary proved by Kim and Turgay in [17].

Corollary 3.2. An oriented surface M in E3 has an Li-harmonic Gauss
map if and only if it is flat, i.e., its Gaussian curvature vanishes identically.

From Theorem 3.1 and Theorem 2.5 we can easily deduce the following corol-
lary.

Corollary 3.3. If an oriented complete hypersurface M in E* has an Lo-
harmonic Gauss map, then M is 2-minimal.

In [10], Chen and Piccinni proved that there is no compact hypersurface in
E"*+! with harmonic Gauss map. To extend this result to the case of L,-harmonic
Gauss map, we state and prove the following theorem.

Theorem 3.4. There is no compact hypersurface in E" T with L,-harmonic
Gauss map.

Proof. Let M be a compact hypersurface in E"*! with L,-harmonic Gauss
map. By Lemma 2.1, the (r 4+ 1)-st mean curvature of M is constant. It is well
known that every compact hypersurface in a Euclidean space has elliptic points,
that is, the points where all the principal curvatures are positive (or negative).
In particular, this implies that there exists no compact hypersurface in E**! with
vanishing (r + 1)-st mean curvature for every » = 0,...,n — 1. Since M™ has
elliptic points, after an appropriate choice of the Gauss map G of M"™, if r is
odd, we can suppose that H,.q > 0. Also, if H,;1 > 0, then H; > 0 for all j =
1,...,r. Moreover,

1/2 1

Hi 1 Hyy <H? and Hy>H?>H>...>H"  i=1.r
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(see page 52 of [13]). Thus, the above inequalities yield
HiHyiq > Hyyo. (3.1)

On the other hand, by using formula (2.1), when r = n—1, we get H; = 0, which
is impossible. When r < n — 1, we have H1H,{1 < H,t2, which contradicts
(3.1). O

Using Definition 2.2 and equation (2.1), we now state the following theorems
which characterize the hypersurfaces of Euclidean spaces with L,-1-type Gauss
map of the first kind.

Theorem 3.5. An oriented hypersurface M in E"! has an L,-pointwise 1-
type Gauss map of the first kind if and only if it has a constant (r + 1)-st mean
curvature.

Theorem 3.6. An oriented hypersurface M in E"™! has an L,-(global) 1-
type Gauss map of the first kind if and only if both Hy+1 and nH1H,11 — (n —
r — 1)H,4o are constant.

We can deduce the following corollary on hypersurfaces with L,-1-type Gauss
map.

Corollary 3.7. All oriented isoparametric hypersurfaces of a Euclidean space
E"*! have an L,-(global) 1-type Gauss map.

So, by Remark 2.4, hyperplanes, hyperspheres and the generalized cylinder
Sk x EF of E"*! have the L,-1-type Gauss map. We can also state some
characterization corollaries about hypersurfaces with at most 2 distinct principal
curvatures.

Corollary 3.8. An oriented hypersurface M in "1 with at most 2 distinct
principal curvatures has an Ly-(global) 1-type Gauss map of the first kind, where
n # r+ 1, if and only if it is an open domain of a hypersphere, a hyperplane or
a generalized cylinder.

Proof. By Theorem 3.6, we conclude that M has the L,-(global) 1-type Gauss
map of the first kind if and only if it is isoparametric, and thus Remark 2.4 gives
the result. ]

Corollary 3.9. An oriented hypersurface M in E"! with at most 2 distinct
principal curvatures has an L,_1-(global) 1-type Gauss map of the first kind if
and only if it is either an (n — 1)-minimal hypersurface or an open domain of a
hypersphere, a hyperplane or a generalized cylinder.

Proof. By Theorem 3.6, M has the L,_;-(global) 1-type Gauss map of the
first kind if and only if H,, and H H,, are constant. If H,, # 0, then H is constant.
Therefore, M is isoparametric, so, Remark 2.4 gives the result. O



Hypersurfaces with L.-Pointwise 1-Type Gauss Map 73

In particular, when n = 2, we have the following result that was also proved
by Kim and Turgay in [17].

Corollary 3.10. An oriented surface M in E3 has an Li-(global) 1-type
Gauss map of the first kind if and only if it is either o flat surface or an open
domain of a sphere.

3.2. Hypersurfaces with constant mean curvature. Now, we study
the hypersurfaces in E"*! with at most 2 distinct principal curvatures and a
constant mean curvature which have an L,-pointwise 1-type Gauss map. First,
we focus on minimal hypersurfaces.

Corollary 3.11. An oriented minimal hypersurface M in E" T with at most
2 distinct principal curvatures has an L,.-pointwise 1-type Gauss map of the first
kind if and only if it is an open domain of a hyperplane.

Proof. The proof follows directly from Theorem 3.5 and Remark 2.4. 0

In particular, the following result follows directly from Corollary 3.11 that
was proved for minimal surfaces by Kim and Turgay [17].

Corollary 3.12. An oriented minimal surface M in B3 has an Ly -pointwise
1-type Gauss map of the first kind if and only if it is an open domain of a plane.

Next, we prove the following proposition.

Proposition 3.13. Let M be a connected orientable hypersurface in E"H!
with at most 2 distinct principal curvatures. Suppose that nH1H,41 = (n — 1 —
1)Hy42. Then M has an L,.-pointwise 1-type Gauss map of the second kind if
and only if it is an open domain of a hyperplane.

Proof. Let M be a connected orientable hypersurface in E"*! with at most
2 distinct principal curvatures of multiplicities ¢ and n — ¢, 1 < g < n. If M has
an L,-pointwise 1-type Gauss map of the second kind, then (2.2) is satisfied for
a constant vector C' and a smooth function f. Let O = {p € M | f(p) # 0}. We
now suppose O # @. Since nH1H,11 = (n —r — 1)H, 12, (2.1) and (2.2) imply
f(G+C) =—(,,)VHy41. Therefore, we have Cry1 = (C,G) = —1 on O. Thus,

r—+1
from (2.3) and (2.4), we obtain

5101:"'::‘110(1:/%‘20,14_1ZH'ZFLQCnZO on O.

Let O = {p € O | k1k2(p) # 0}. Then, C; = --- = C,, = 0 on O;. Thus, the
constant vector C = —G on O and thus O; is a part of a hyperplane, which
is a contradiction. Therefore, we have O = @&, which implies k1x2 = 0. Since
nH1H,y1 = (n—1r —1)H,12, O is an open domain of a hyperplane. Moreover,
by the continuity, we have M = O.

Conversely, suppose M is an open domain of a hyperplane. Then its Gauss
map G is a non-zero constant vector, which implies L,G = 0. Therefore, (2.2) is
satisfied for C' = —G # 0 and an arbitrary smooth function f. Hence, M has the
L-pointwise 1-type Gauss map of the second kind. O
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By combining Corollary 3.11 and Proposition 3.13, we obtain.

Corollary 3.14. An oriented connected minimal hypersurface M in EPT1
with at most 2 distinct principal curvatures has an L,_1-pointwise 1-type Gauss
map if and only if it is an open domain of a hyperplane.

In particular, when n = 2, by combining Corollary 3.12 and Proposition 3.13,
we obtain the following corollary proved by Kim and Turgay in [17].

Corollary 3.15. An oriented connected minimal surface M in E® has an
Li-pointwise 1-type Gauss map if and only if it is an open domain of a plane.

Next, we give a complete classification of hypersurfaces with constant mean
curvature and at most 2 distinct principal curvatures whose Gauss map satisfies
L,G = \(G + C) for a constant A and a constant vector C'.

Theorem 3.16. Let M be a hypersurface with constant mean curvature and
at most 2 distinct principal curvatures in E"T. Then M has an L,-(global) 1-
type Gauss map if and only if it is an open domain of a hypersphere, a hyperplane
or a generalized cylinder.

Proof. Let M be an oriented hypersurface in E"*t! with at most 2 distinct
principal curvatures of multiplicities ¢ and n — ¢, 1 < ¢ < n. Suppose that
{e1,...,en} is an orthonormal frame of its principal directions to the principal
curvatures k1, ko such that Se; = k1e;, 1 <@ < g, Sej = kaej, ¢+ 1 < j < n.
Let us consider an open set U = {p € M : VH,11(p) # 0}. Our objective is to
show that U is empty. Since M has a constant mean curvature, we have gxq +
(n — q)k2 = ho for a constant hg, which implies

q—n

61'(!421) = €i(l~€2), 1= 1,...,77,. (3.2)

Now we suppose that M has an L,-(global) 1-type Gauss map. Therefore, from
(2.1) and (2.2), we obtain

— VHT_;,_l - (hoHr+1 - (TL - T — 1)H7»+2)G = )\(G + C) (33)

From (3.2), we conclude that there exist polynomials f and g with constant
coefficients such that

ei(Hr+1) = f(m)ei(/il), ei(Hr+2) == g(lil)ei(l-il), 1= 1, ey n. (34)
From (3.2)—(3.4), we get

)\Cl = —ei(Hr+1) = ei(ﬁl)f(lil), 1= 1, ceey Ny (35)
A(Cn-i-l + 1) = —hoH,41 + (n —-r— 1)Hr+2. (36)

By using (3.4) and (3.6), we obtain

Aei(Cni1 +1) = (=hof (k1) + (n — 7 = 1)g(k1))ei(k1).
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Therefore, from (2.3) and (3.5), we get

)\CZ |:_l€1+h0_(n_r_1)g(/{1):| :07 izla'-'aQa on Ua (37)

f (k1)
>\CZ |:_f€2+h0_(n—7"_l)g(ﬁl):|_07 i:Q+17"‘7n7 on U. (38)

f (k1)
Note that if A = 0, then we have L,G = 0, and it implies that the (r 4+ 1)-st mean
curvature is constant on U, which is a contradiction. If k1 = hg— (n—r—1) ?E:i%
or ke =hg—(n—r— 1)?%23, we conclude that H, 1 is constant on U, which is
a contradiction. Therefore, C; = --- = C;, = 0 on U. Thus, (3.5) implies that

H, 1 is constant on U, which is a contradiction. Hence, U is empty and H, 41
is constant on M. Since M has a constant mean curvature, we get that M is
isoparametric, and therefore Remark 2.4 gives the result. O

In particular, when n = 2, we obtain the following corollary that was proved
by Kim and Turgay in [17].

Corollary 3.17. Let M be a surface with constant mean curvature in E3.
Then M has an Li-(global) 1-type Gauss map if and only if it is an open domain
of a sphere, a plane or a cylinder.
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I'inepnoBepxHi 3 L,-TOYKOBUM THUNy 1 rayccoBUM
BitoOpakeHHAM

Akram Mohammadpouri

VY crarti BuBualoThCsa rimepmosepxmi B E"t!) rayccoee Bimobparkemms
G axux 3a1n0BoabHse piBugnag L,.G = f(G 4+ C) pia ronaakoi byl f
i mocriiinoro Bekropa C, ne L, € sineapusoBanum oneparopom (r + 1)-oi
cepeIHBOI KPUBHU3HHM TinmepriosepxHi, 10610 L,.(f) = Tr(P. o V2f) ana f €
C>®(M), a P, € r-um niepersopenrsm Hetotona, V2 f € reccianom f, L,.G =
(L,G1y...,L.Gpri1) 1 G = (Gy,...,Gpy1). Hama ysara 3ocepejzkeHa Ha
rilepIoBEePXHAX 3 MOCTifHOIO (7 1)-0I0 cepeIHBOI0 KPUBU3HOIO 1 MOCTIHHOIO
CEepeIHBOI0 KPUBU3HOIO. JIJ1st TIUX KIaciB rieproBepXoHb OTPUMAHO TEOPEMU
ktacudikarii i xapakTepusartii.

KirrowoBi ciioBa: nineapuzoBani oneparopu L,., L,-ToukoBe Tuiry 1 rayc-
COBe Bi0OparkeHHs, T-MiHIMAIbHA TiePIOBEPXHS.
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