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Spectral Analysis of Discontinuous
Boundary-Value Problems with Retarded
Argument
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In the paper, we are concerned with spectral properties of discontinuous
Sturm-Liouville type problems with retarded argument. We extend and
generalize some approaches and results of the classical regular and disconti-
nuous Sturm-Liouville problems. First, we study the spectral properties of
a Sturm-Liouville problem on the half-axis and obtain lower bounds for
the eigenvalues of this problem. Then we study spectral properties of a
Sturm—Liouville problem with discontinuous weight function which contains
a spectral parameter in the boundary conditions. We also obtain asymptotic
formulas for eigenvalues and eigenfunctions of this problem and bounds for
the distance between eigenvalues.
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1. Introduction

The study of many physical phenomena, such as the vibration of strings, the
interaction of atomic particles, the earth’s free oscillations yields Sturm—Liouville
problems. A Sturm-Liouville problem with eigenparameter contained in the
boundary condition arises upon separation of variables in the one-dimensional
wave and heat equations for a varied assortment of physical problems, e.g., in
the diffusion of water vapour through a porous membrane and several electric
circuit problems involving long cables. Differential equations with deviating ar-
gument, in particular differential equations with retarded argument, describe pro-
cesses with after-effect. They have many applications in economics, biophysics,
medicine, robotics, problems connected with combustion in rocket engines, etc.

Boundary-value problems with discontinuities inside the interval and regular
boundary-value problems have been studied by many authors [1-24]. The asymp-
totic formulas for the eigenvalues and eigenfunctions of a boundary problem of
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Sturm-Liouville type for the second order differential equation with retarded ar-
gument were obtained in [3,4,16,17,19-21]. In [17], S.B. Norkin considered the
equation

" (t) + Az (t) + M(t)z(t — A(t)) =0

with boundary conditions

z (0)cosa + 2’ (0) sina = 0,

x(t—A(t) = z(0)p(t — A(t)) if t—A(t) <0,
[212)) |z ()] < oo.

Here M (t) and A (t) > 0 are defined and continuous on the half-axis [0,00), A
is a real parameter (—oo < A < +00), « is an arbitrary real number, and ¢ ()
is a continuous initial function on the initial set Ey with ¢ (0) = 1. S.B. Norkin
proved the existence theorem and obtained lower bounds for eigenvalues of this
problem. Motivated by [17], in this paper we study some spectral properties of
eigenvalues and eigenfunctions of a discontinuous boundary value problem with
retarded argument. Namely, we consider the boundary value problem for the
differential equation

u’(z) + M (z)u(z — A(z)) + du(x) =0 (1.1)
on [0,7) U (r,00) with boundary conditions

u(0)cosa + ' (0)sina = 0,
sup Ju (z)] < 00, @ € [0,7) U (1 00).,

w(0)p1(z — A(z)) if x — Ax) <0,
u(x — Axr)) = .
( () {u(r)gbg(:c —Az)) if z—A(z) <, (1.4)
and with transmission conditions
u(r —0) = du(r +0),
{u/(T—O) = 6u'(r +0). (1.5)

Here the real-valued function M (x) is continuous on [0,7) U (7, 00) and it has the
finite limits

M(r+0)= lim M(z);

z—r30

¢1(x), x € Ey,

9@, ) = {gbg (), x€ Fy,

is an initial function with ¢1 (0) = 1 and ¢2 (r) = 1; the real-valued function
A(x) > 0 is continuous on [0,7) U (r,00) and it has the finite limits

A(r£0)= lim A(x);

z—r+0
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A is a real parameter (—oo < A < 00), and a,r,0 # 0 (0 < r < 00) are arbitrary
real numbers.

The paper is organized as follows: after the Introduction, we show that all
positive values of the parameter A\ are eigenvalues of the problem (1.1)—(1.5)
and then we prove the existence theorem for the problem (1.1)—(1.5). In the next
section, we obtain lower bounds for the eigenvalues of the problem (1.1)—(1.5). In
Section 4, the spectral properties of a Sturm—Liouville problem with discontinuous
weight function which contains a spectral parameter in the boundary condition is
studied. In Section 5, the asymptotic formulas for eigenvalues and eigenfinctions
of the problem (4.1)—(4.5) are obtained. And in Section 6, which is the last
section of the paper, we obtain bounds for the distance between the eigenvalues
of the problem (4.1)—(4.5).

Let w (z,\) be as

w /\):{wl(:c,)\), xz e 0,r),
’ wy (z,\), € (r,00).

Here w; (x, A) is a solution of equation (1.1) on [0, ) satisfying the initial condi-
tions

(1.6)

wy (0,\) =sina, w) (0,\) = —cosq,
wy (xr —A(z),\) =sinag; (r —A(z)), ifz—A(z)<0.

After defining the above solution, we will define the solution ws (x, \) of equation
(1.1) on (r,00) by means of the solution wy (z, A) by the initial conditions

(1.7)

{ wy (1, A) = 0 twy (r,\),  wh (r,\) =0 w) (r,\),
wy (x— A (2),N) =0 twy (1) é2 (x— A(z)), ifzx—Ax)<r

Now we will state the following lemma which can be proved by using the method
similar to that given in [3].

Lemma 1.1. Let w (x, \) be a solution of equation (1.1). Then the following
integral equations hold:

cos

wi(z, ) = sin acos sz — sin sx
s
1 xX
—/ M (t)sins (x — 1) wy (1 — A (1), A) dr,
s Jo
s=vV\ A>0, (1.8)
cos

sinh mx

wi(z, A) = sin @ coshma —

_;/OzM(T)sinhm(a}—T)wl (1 —A(1),\) dr,
m=+v-\ <0, (1.9)
wh(r, \)

wa(z, \) = %wl(r, A)coss(z—r)+ sins (x —r)
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_ i/zM(T)sins(x—T)wg (r—A(7),A) dr,
' s=vVA\A>0,  (1.10)
wh(ry \)

mo

wa(z, ) = %wl(r, A)coshm (z —r) +

_sl/mesmhm(x—T)wQ(T—A(T),A) dr,
' m=v—AA<0, (1.11)

sinhm (z — r)

wy(z,0) =sina — zrcosw

_/oxM(T) (@ —7)wi (r—A(7),\) dr. (1.12)

2. Existence theorems

Theorem 2.1. Let

sup ¢ (z)] = ¢o < 00 (2.1)
e FEgUE]
and, in equation (1.1), let
/ |M (7)| dT = My < 0. (2.2)
0

Then all positive values of the parameter A are eigenvalues of the boundary-value
problem (1.1)—(1.5).

Proof. By (1.8), if A > 0, then
1 T
wy (z,A) = Rysin (sz — 1)) — s/ M (1)sins(x — 1)wy (1 — A (1), A) dr,
0
where

cos? o —cosa —sina
Ry = {/sin?a + , COSYy =——— sinyy = 0< < 27).
A=/ 3 {5 N (5N N (0 < 4hy < 2m)

Let zo € (0,7), and let Ny (zo) = max(g 4] |w1 (2, A)|. In a similar way as in [17],
for s > 0, we obtain that

M i M
N (z9) < maX{R,\expoo;RA + ’SHIO(|(Z)()OO} < o0.
s s

But the proof for ws (x, \) needs a separate consideration. By (1.10), if A > 0,
then

wy (7, \) = Qxsin (s (z —71) — x»)
- i/ M (r)sins(x — 1) ws (r— A(7), ) dr, (2.3)
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where

— ’ 2
Q- \/ 5 (r, ) + AL

5_1w’1 (r,A) —6twy (1, \)
sQx Qx '

Let z, € (r,00), and let K) (x,) = max, ., |w2 (z,A)[. Obviously, K (z,) >
K (z) (zp > ) and from (1.7), (2.1)—(2.3), one of the following inequalities holds:

COS X\ = sin y) = 0 < x) <2m.

Kaloy) < @u s [0 (0] K () dr 2.4

r

or

5wy (1, N)] po Moo

5_1w1 (T, )\)‘ ¢0
S

K,\(xp)SQA+‘ /mp|M(T)’dT§Q)\+‘

By Lemma 2.3.5 from [17], it follows from (2.4) that

1 [ M,
Ky (zp) < Qxexp 3 |M ()| dT < Qxexp 5

r

and for s > 0,

61 M| o Moo
K (p) EmaX{QAeXp]\ioo; QA—{—‘ w (r, >}¢0 }<oo.

S

The bound obtained is valid for any A > 0 and is independent of x, which proves
the theorem. O

Remark 2.2. Let sup |w (x,\)] = Q). Then Q) for A > € > 0 is bounded
[0,7)U(r,00)
uniformly with respect to A.

Lemma 2.3. In equation (1.1), let the functions M(x) and A(x) > 0 be
defined and continuous on [0,7) U (r,00),

r—A(x)>A (xz>A4), (2.5)
sup |M (z)| = M, < oo,
[A,r)U(r,00)

and for A = s% (s > 0), let the number n be such that
WA > M,. (2.7)

Also let us define the solution of (1.1) as

() = {ul (), ze€l0,r),

ug (), x € (r,00).
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Then the following bound holds for ui(x) and us(x) and their derivatives:

W (@)| < Buexp (@ —4), i =01 j=0,1;
re{r: A<z <oo}/{r}, (2.8)
where B; are constants (to be defined in the proof).

Proof. The bounds for u;(z) and u)(x) can be obtained in the same way as
in Lemma 4.2.1 from [17]. But the bounds for us(x) and u}(z) need a separate
consideration. Let v(x) = ug () exp (—nx). Then, from (2.3.7) in [17], we have

v(x) = Qsin(s(x — 1) + o) exp (—nz)
—/ M (1T)exp[-n(x — 7+ A(7))]sins (z — 1) v (T — A (7)) dr. (2.9)
If @ = 0, the bound (2.8) is trivial. Suppose Q@ >0,z € {z: A <z < oo} /{r}

and Dy, = max(4, |v (z)[. For s > 0 from (2.5) and (2.9), we obtain

Tp

Doy < Qexp (=n4) + Dops [ M (7| exp =, = )] dr
< Qexp (—nA) + ti]\f’ (1 —exp [=n (z, — A)])

D, \M,

< Qexp(—nA) +
s1)

and, according to inequality (2.7),

() oo () < TYAQexp (—nA)
o @) = b ()] exp () < OGP A,

We multiply this expression by exp (nx) and obtain the bound (2.8) for the so-

lution ug(z). Here By = m”}é%p The bound for u(z) can be obtained in a
similar way. O
Theorem 2.4. In (1.2) and (1.6), letsina = 0, and in (1.1), let 0 < M(x) <

My < o0, 2€(0,7); 0< M(x) <M, <o0, z€(r,o00),

/OT(M()—M(T)) dT—{—/OO(Mp—M(T)) dr < 00,
x— A(x) >0 for x > 0. Moreover, assume that n > 0, € >0 and C > 0 are the
numbers such that
0<A(zx)<Cexp[-xz(n+e), ze€l0,r)U(r,oc0).
Then all values of A\ which satisfy the inequality
VA > max { My, M}
are eigenvalues of the boundary-value problem (1.1)—(1.5).

Proof. The proof is similar to that of Theorem 4.2.2 in [17] and Theorem 2
n [18]. O
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3. Theorems on lower bounds for eigenvalues of the prob-
lem (1.1)—(1.5)

Lemma 3.1. In (1.4) and (1.6), let
¢(x) >0, z€ EyUE, (3.1)

sinacosa <0, (3.2)

and in (1.1), let M (z) <0 and 6 >0 on [0,7)U(r,00). If A <0, then w (z, \) #

0 and w' (x,A\) #0 on (0,7) U (r,00).
Proof. Without loss of generality, we consider the case
sina > 0 and cosa <0 (3.3)

in (3.2). Let A <0. From (1.12)—(1.11), we have

w] (x,0) = |cos al + /x |M (7)|wy (1 — A(7),0) dr, = €[0,r), (3.4)
wy (x,\) = msinasini mzx + |cos a| cosh ma:
+ /Ox |M (7)|coshm (x — 7)wy (T — A (7),A) dr,
m=v-\ z€[0,r), (3.5)

wh (z,\) = %wl (r,A\)sinhm (z —r) + %w'l (r,A)coshm (z — )

+/x|M(7')|coshm(x—7')w2 (1 —A(1),\) dr,
m=v-\ z€(r,00). (3.6)

Assume w; (z, A) has a zero for 0 < x < r (if not, from (1.6), (1.9), (3.1), (3.3),
and (3.4), wi (z,A) # 0 and w (z,A) # 0 for all z € (0,7)). Let 2’ be the
greatest lower bound of the zeros of wy (z,\). From (1.6), (1.9) and (3.1), it
follows that 2; > 0, w1 (,A) >0 (0 < 2 < z;) and wi (2, A) = 0. According to
(3.3), wi (x —A(x),A\) >0if x — A(z) < 0. Thus, wi (x —A(x),A) >0 (0 <
z < 2;), and by (3.4) and (3.5), wy (z,A) >0 (0 <2 < z;). But this contradicts
the assumption that wy (2, A) = 0.

Now assume wy (z, A) has a zero for x > r (if not, from (1.7), (1.11), (3.1),
(3.3), and (3.6), w2 (,A) # 0 and wy (,A) # 0 for all z € (r,00)). Let 2% be the
greatest lower bound of the zeros of wy (x, ). From (1.7), (1.11), (3.1), (3.3) and
(3.6), it follows that zt > 7, wa (¥,A) > 0 (r < 2 < 2) and wa(z’f,A) = 0. Ac-
cording to (3.3), wa (x — A(x),A) > 0if x—A (z) < r. Thus, we (z — A (x), ) >
0 (r <z <2), and by (1.9), (3.1), (3.3), (3.5), and (3.6), wh (z,\) >0 (r <z <
2'{). But this contradicts the assumption that w (2, A) = 0. O

Theorem 3.2. Under the hypothesis of Lemma 3.1, the problem (1.1)—(1.5)
has no negative eigenvalues.



... Boundary-Value Problems with Retarded Argument 85

Proof. Tt suffices to consider the case (3.3). Then, by (1.9) and (1.11), it
implies that

|cos a|
m

w1 (z, A) = sinawcoshmaz + sinh ma

+;/Ox|M(7')|sinhm(x—T)w1 (tr—A(7),A) dr,

1 /
wa(z,\) = gwl(r, A)coshm (z —r) + wlr(:(;)\)

+;/x|M(T)|sinhm(x—7')w2 (tr—A(71),A) dr,

sinhm (x — r)

and the assertion of the theorem follows from Lemma 3.1. O

Theorem 3.3. In equation (1.1), suppose that 0 < M (x) < My < o0, = €
[0,7) U (r,00) and that (3.1) and (3.2) hold, with ¢ (x) < 1. Then the boundary-
value problem (1.1)—(1.5) has no eigenvalues less than —Mj.

Proof. Tt suffices to consider the case (3.3). Together with (1.1), we consider
the equation without retardation

u"(z) + (M(z) — Mo) u(z) =0 (3.7)

and suppose that z (z) is a solution of equation (3.7), which satisfies the conditions

21 (0) = wy (0, \) =sinc,
{ 21 (0) = w) (0,\) = — cos a, (3:8)
{ z? (r) = w,2 (r,A) = 5:1z} (r), (3.9)
2 (r) =wy (r,A) =021 (r)
We will show that if A < —Mj, then
w(x,\) > z(x), x€l0,r)U(r,c0). (3.10)

We will prove it first for the solution we (z, \) of (1.1) satisfying the conditions

wie (0,A) =sina +¢,  wi, (0,\) = —cosa + ¢,

woe (1, A) = 0 twye (1, N),  wh (r,\) = 8w, (r, N,

wie(r —A(z),\) = (sina+e€) e (z —A(z)), fz—A(x) <0,
wae (x — A (x),\) = 0 wie (r, \) doe (x — A (x)), ifx—Ax)<r

(3.11)

Here € > 0 is arbitrary, and

o, e >e
¢ () {e, if ¢ (x) <e.

We also show that on [0,7) U (7, 00),

we (z,A) > z (z). (3.12)
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Assume the contrary. Let z, be the greatest lower bound of the values of x for
which w! (z,X) < 2/ (z). From (3.7)—(3.9) and (3.11), it follows that x, > 0. By
definition of the point z,, we have w, (zp, ) = 2’ (x,) and

wl (z,\) > 2 (x), we(x,\) > 2(x), 0<z<z,<r. (3.13)

Therefore, 827“”5(3;”’)‘) < ‘9253(;517) and from (1.1) and (3.7),

T

—AWe (Tp, A) = M (zp)we (T — A (2p) , A) < (Mo — M (2p)) 2 (2p) -

Applying Lemma 3.1 to equation (3.7), we find by (3.4) that 2’ (x) > 0 on [0,7r)U
(r,00), and from (3.11) and (3.13),

we (2, ) > we (x — A(x),\) > >0, 0<z<z,<r. (3.14)

Then,
(=A = M(zp)) we (zp, A) < (Mo — M (xp)) 2 (xp) - (3.15)

Let M(xp) # My (otherwise inequalities (3.14) and (3.15) are contradictory, and
thus (3.12) is proved). Then —\ — M(zp) > Mo — M (z) > 0, and from (3.15),
We (xp, A) < z(xp), which contradicts the second inequality in (3.13). Inequality
(3.12) is therefore constructed. (3.10) now follows from Theorem 1.3.1 in [17].

If cosa # 0 or M(z) # M)y, then applying it to equation (3.7), we obtain
lim, o0 2z (x) = 00, and the assertion of the theorem follows from (3.10).

But if cosa = 0 and M (z) = My, then z(x) = 1, and therefore (3.7) cannot
be used as a comparison equation.

Suppose that in (1.2) and (1.6), cosa =0 and in (1.1), M (x) = My (if My =
0, the theorem evidently holds) and A = — (Mp + 6) (6 > 0). The solution of the
equation

u” (x) — gu(x) =0,

satisfying the initial conditions u (0) = w (0,A) = 1, ¢/ (0) = w'(0,\) = 0, is
given by u(x) = cosh \/0/2x. We can now verify that

w (x,\) > u(z) = cosh \/ga:, z € [0,r)U(r,00),

in a way analogous to the proof of (3.10). Thus the proof is completed. O

4. A Sturm—Liouville problem with discontinuous weight
function which contains a spectral parameter in the bound-
ary conditions

In this section, we consider the boundary value problem for the differential
equation
u"(x) + q(z)u(z — A(z)) + M (z) u(z) =0 (4.1)

on [0, z) U (5 71] with boundary conditions

u(0) =0, (4.2)
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o' (7)) + du(mr) =0 (4.3)

and transmission conditions
%u(g —0) - 61u(g +0) =0, (4.4)
72u’(g —0)— m’(% +0) =0, (4.5)

where w (z) is a weight function such that w(z) = wi if z € [0,%) and w(z) = w3

ifze (7r ] the real-valued function ¢(z) is continuous on [0, %) U (g, 77] and it

has a finite limit ¢(5 +0) = lim, x40 ¢(z), the real-valued function A(z) > 0 is
continuous on [O, 2) U (2,7'('] and has a finite limit A(§ £0) = 1imx—>gio Alx),
x—A(x) >0,if =€ [O, %) sx—A(r) > 5, ifx € (g,ﬂ] ; A is a real spectral
parameter; w1, wa, Y1, Y2, 01, 02 are arbitrary real numbers, and w; > 0,7; # 0,6; #
0 fori=1,2.

Let x1(z, ) be a solution of equation (4.1) on [0, 5] satisfying the initial
conditions

x1(0,A) =0, x;(0,\)=-1. (4.6)

The conditions (4.6) define a unique solution of (4.1) on [0, Z] [17, p. 2].

After defining the above solution, we will define the solution xs (z, A) of equa-
tion (4.1) on [, 7] by means of the solution w; (z,\) and using the initial con-
ditions:

T _ T ™
X2 <§7)\> = 7151 1X1 (57)‘) 3 X,2(§7 )\) 7262 X1(2 /\) (47)

The conditions (4.7) are defined as a unique solution of (4.1) on [%,7].

Consequently, the function y (z, \) , defined on [ ) 2) (f } by the equality

() = {Xl(x’”’ eing)

X2(‘T?)‘)a T € (%777]7

is the solution of equation (4.1) on [O, %) U (%,77] , which satisfies one of the
boundary conditions and both transmission conditions.

Lemma 4.1. Let x (x,\) be a solution of equation (1.1), u = /A and X > 0.
Then the following integral equations hold:

x1(z,\) = ——— sinwy ux
wip
- % 4 (r)sinwip (x —7) x1 (1 = A(7),A) dr, (4.8)
x2(x, ) = (F )\) COS fiw2 (iL‘ — —) + Msinc@u (x - f)
51 2 w262 2
T
_ 2 q(7)sinwop (x —7) x2 (T — A(T),A) dr. (4.9)

w/2
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Proof. To prove this, it is enough to substitute —w?u?x1(7, ) — X7 (7, \)
and —wip?x2(m,\) — x5(1,A) for —wiq(T)x1(r — A(7), ) and —w3q(7)x2(T —
A(7),A) in the integrals in (4.8) and (4.9), respectively, and integrate by parts
twice. O

Theorem 4.2. The problem (4.1)—(4.5) can have only simple eigenvalues.
Proof. The proof is similar to that of Theorem 2.1.1 from [17]. O

The function x(z, ), which is defined above, is a nontrivial solution of equa-
tion (4.1) satisfying conditions (4.2), (4.4), and (4.5). Putting x(z, A) into (4.3),
we get the characteristic equation

G(A\) = X' (m, \) + Ax(m, A\) = 0. (4.10)

By Theorem 4.2, the set of eigenvalues of the boundary-value problem (4.1)—
(4.5) coincides with the set of real roots of equation (4.10).
Differentiating (4.8) and (4.9) with respect to x, we have

8X1({§55’)‘) = — COSWIUT — w%/ q(1)coswip(z — 1) x1(T — A (1), A) dr, (4.11)
r 0
Ixa(z,N)  wapm (TN m
ar o (2’)‘> Sk (x_ 2)
12X (5,2 o
+ 5 COS Wa 4 (:c 2)
—ws // q(1) coswap (x — 7) x2(T7 — A (T) , A) dT. (4.12)
/2

Let Q1 = foﬂ/Z lg(T)|dT and Q2 = f q(T)dr.
/2

Let A > v?max {Q%,Q3} for v > 1 (v € R). Then for the solution x1 (z, A) of
equation (4.8), the following inequality holds:

! b we [0, g} . (4.13)

e )< — =
|X1( )’ |U—UJ1|W1‘Q1

Let us denote L, by L, = m Then for the solution x2 (z, \) of equation

(4.9), the following inequality holds:

SowaQ1y1v Ly + 0172 (1 4+ wiQ1Ly) [W }
, T&E |Z,m|.
0102w2Q1 (v — w2)

2
Theorem 4.3. The problem (4.1)—(4.5) has infinitely many positive eigen-
values.

|wa (z, )| < (4.14)

Proof. From (4.8)-(4.12), we get

Cwopm [ 1 g LT
01 w

1K 2
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us
w1 2

- q(7) Sinwm(g —7)x1(T — A(7),\) dT) sin w2

mJo

+ % (— cos w12mr — w%/2 q(7) coswm(g —7)x1(T — A(7),\) dT)
2 0

X COS w22,u77 - w%/ q(7) coswap(m — T)x2(T — A(T),\) dT
w/2

1
+ A (’Yl [— sin wipm

51 MWt 2

us
w1 2

- q(7) sinwm(g —7)x1(T — A(7), \) dT] cos 2K

moJo

v | wpm o [ T B
52“2#[ cos 5 w1/0 q(T)coswl,u(2 T)x1(7T A(T),)\)dT]

woum  wa [T

I

X sin

jus
2

q(7) sinwap(m — 7)x2 (T — A(T), \) d7'> =0. (4.15)

Let A be sufficiently large and ~1dows = y201wi. Then, by (4.10) and (4.11),
equation (4.15) can be written in the form

pusin W +0(1) = 0. (4.16)
Obviously, for large p , equation (4.16) has an infinite set of roots. Thus the
theorem is proved. ]

5. Asymptotic formulas for eigenvalues and eigenfunctions of
the problem (4.1)—(4.5)

Now we begin to study asymptotic properties of eigenvalues and eigenfunc-
tions. In the following, we will assume that p is sufficiently large. From (4.8)
and (4.13), we get

1 ™
a(e)=0(0), we 0.5 (5.1)
From (4.9), (4.11) and (4.14), we get
1 T
xa(e ) =0()), we EXiE (5.2)

The existence and continuity of the derivatives %}f’)‘) for 0 <2 <3, | <oo,

and %}f’)‘) for T <2 <m, |\ < oo, follow from Theorem 1.4.1 in [17]:
oxi(z, ) T oxa(z,\) T

Let N be a natural number. We say that the number A is close to the number
4N? 2N < L
(@rtwa)? © |wter T H S o7
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Theorem 5.1. Let N be a natural number. For each sufficiently large N,

there is exactly one eigenvalue of the problem (4.1)—(4.5) that is close to (w4ﬁj 72
1 2

Proof. We consider the expression which is denoted by O(1) in equation
(2.8). If formulas (5.1)—(5.3) are taken into consideration, it can be shown by
differentiation with respect to p that for large p this expression has a bounded
derivative. It is obvious that for large p the roots of equation (4.16) are close to
entire numbers. We show that for large N, only one root (4.16) is close to each

(wﬁ\i)g. We consider the function 6(u) = psin M +0O(1). Its derivative,

which has the form 6'(u) = sin M(w;rwz) + /ﬂ(wl;w) cos “”(w§+w2) + O(1), does
not vanish for p close to N for sufficiently large N . Thus, by Rolle’s theorem,
we get the assertion of the theorem. O

Let N be sufficiently large. In what follows, we denote by Ay = ,u?v the
4N?

eigenvalue of the problem (4.1)—(4.5) that is close to P We set uy =
wfﬁ% + . From (4.16), it follows that dy = O (%) Consequently,
2N 1
= Oo(—=). 5.4
=240 () (5.4

Formula (5.4) makes it possible to obtain asymptotic expressions for the eigen-
function of the problem (4.1)—(4.5). From (4.8), (4.11), and (5.1), we get

1 1
r,\) = ———sinwpur+ 0| — |, 5.5
) = s+ 0 () (5.5)
dale,A) = —coswipx + O <1> : (5.6)
Ox 1
From (4.9), (4.12), (5.1), and (5.2), we get

N T 1

xX2(z,\) = Sy sin ((wl +wa)x 2) +0 <M2> . (5.7)

By substituting (5.4) into (5.5) and (5.7), we derive that

2N 1
un = X1 (2, ) = DL i w11:+0< >,

- 2Nwq w1 + wa N2

N 1
_stm(mx_ ™ >+O<2>.
w1 + woy N

2N 51001
Hence the eigenfunctions uy(x) have the asymptotic representation

uaN = X2 (T, An) =

2N 1
e e BN L 0( for z € [0,7),

2N w1 St w1 + wo m ’
M (w1 + w2) N

1
in 2Nz — O —— f 5,m|.
ONS100 s1n< x w1+w2>+ <N2>’ orxG(Z,w]

Under some additional conditions the more exact asymptotic formulas, which
depend on the retardation, can be obtained. Let us assume that the following
conditions are fulfilled:

un(x) =
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a) the derivatives ¢'(z) and A”(x) exist and are bounded on [0, §) J(5, 7] and
have finite limits ¢'(§ £0) = lim ¢'(z) and A"(§ £0) = lim A"(x),

:c—)%:l:O z—)%:l:[)

respectively;

b) A'(z) <1 on [0,%)U(5, 7], A(0)=0 and lim 0A<Hf) =0.
T3+
By using b), we have
s T ™
x—A(x) >0, forxel0, 5) and = — A(z) > 5 forx € (5,7[']. (5.8)

From (5.5), (5.7), and (5.8), we have

(= A(r),A) = —wiusin(wlu(T—A(T)))—i—O (;) (5.9)
X2 (T—A(T),\) = _511’11M sin y1 <w2 (1—A(7)) + W)

Under conditions a) and b) the formulas

Jy a(r)sin (e (27 = A (7)) dr, 0< <
1y Jo a(r) cos (pwr (217 — A(7))) dr, 0<a<73;

0] <N> = fg q(7)sin (pwp (27 — A (7)) dr, T <z <m; (5.11)
2 g(r) cos (s (27 — A (7)) dr, <z <7

N

can be proved by using the same technique as in Lemma 3.3.3 from [17]. Putting
these expressions into (4.15), we have

w2 [ 1 pom w [2 . 7r
— - sin - — q () sin (uwl (— - 7‘))

(51 w1l 2 wJo 2
w [~ sinipr— A +0 (=) dr|sin 22T
W1k H p? 2
+ gf — Cos ua;ﬂr —w%/oz q(7) cos (uwl (g - 7‘))

(st -amm+o(4)) dT] cos 127

Wi K

~ 3 [ () cos e (7 — 1)

« <_5111W sin 1 (m (r—A() + W) +0 (;)) dr

1 us
+ Al [— sip P @1 [ q (7)sin (Mwl (g - 7')

pw 2 ©Jo
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< (= st - 2@ +0 () dT] cos K427

3
+ 522;22M [_ Ccos ,U(A;UT . w%/o q (7’) COS (Iuwl (g _ 7—))

(- Lsmtane-amm+o(+)) dT] i 7

wy [T

=2 [ g (r)sin o (~ 7))

2

x(wﬁmww<mh—Ahﬁ+@”;”M>+O<;>>m

py o pm (Wi we) e pm (Wi +ws)

=— sin cos
o1wi 2 d2 2
n w2 A (5, A) L (Wi +w2) 7MweB (%)) sin 1T (w1 + wa)
O1pt 2 01 b 2
B(Z,\ A(Z, N
+71 (3 )COSMW(W1+OJ2)+71 (3, )Sinuw(w1+wg)

5 2 5 2
O (ot en) | D) (o + )
u&lwl 2 ,UJ51W1 2
n woy1 D (m, A) cos T (w1 + w2) L w1 C (m, A) sin BT (w1 + w2)
(51(4.)1 2 (51&)1 2

1
Here,
1 /7 . oo
Az, \) = / q(7) sin (1 A (1)) dr, x € |0, —] ;
2 Jo i)
1 [ oo
M%M:/qﬁkwmmAﬁ»m, xeoﬁk
2 Jo 2
1 [* . T
C(z,\) = 3 q(7) sin (pwaA (1)) dr, x € 5,71'] ;
% L
1 [* rT
D(z,\) = 2/ q(7) cos (pw2A (7)) dr, x € 5,#]
% L

It is evident that these functions are bounded in the domain of definition for 0 <
A < oo. Thus, from (5.11), we have

pr(wi +wz) 1 [1 m (w1 A (5,)) — woC (, )\))]

tan ——— =

2 w po1wy
d1w1Y2 ™ 1
— Bl —= D — .
X [ s + wq (2,/\>+w2 (ﬂ',)\):| +O<M3)

2N
w1tws2

And using py = + dn, we have



... Boundary-Value Problems with Retarded Argument 93

tan (5]\[71' (w1 —i—wg))
2
2N 2N
W + w2 1— n (wl + wQ) (wlA (%’ w1+wz> — w2l (7T, w1+w2>>
N 2N 2N51W1

1) 2N 2N 1
X [— w172 + w1 B <7T, > + we D <7T, )} + O (3> .
7102 27wy +ws wi + wa n

L o+ w2) (@A (5, 525 ) -0 (m 525

and finally,

o, [, e (oa (5.5) e (5t
w1 + w2 Niﬂ' 2N51(.U1

(51&)1’)/2 <7T 2N ) < 2N >:| < 1 >
X | — 4w B | -, 4+ woD | m, +0(—=]. (5.12
[ Y102 ! 2" w1+ wo 2 w1 + wo N3 (5.12)

Thus, we have proven the following theorem.

KN =

Theorem 5.2. If conditions a) and b) are satisfied, then the positive eigen-

values Ay = p3%; of the problem (4.1)—~(4.5) have asymptotic representation (5.12)
for N = oco.

We now can give a sharper asymptotic formula for the eigenfunctions. From
(4.8) and (5.9), we obtain

1 .
x1(z,\) = —m sin (wy px)
w z .
— = q(r)sin (wip (z — 7))
Ko Jo

« (—1sin(w1,u(T—A(T)))+O (12)) dr

wip K

= ——— sin (wypx)
w1

+ :2 (B (2, \) cos (pwrz) + A (z, \) sin (uwiz)] + O (;) . (5.13)

Replacing p by py and using (5.12), we have

uin(z) = x1(z, Any) =

2
2N
_w1+w2+(w1+w2) Az,
2Nwy 4N?2 w1 + wo

. < 2Nwiz >
sin
w1 + wo
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w1 + wsy 51(,01’)/2 ™ 2N 2N
- - B(Z D
+ I: 2N2w17r ( "}/1(52 Wl <2, w1 + woy W ™ w1 + wo

(w1 + w)? 2N 2Nw;x 1
B — |- .14
+ N2 x, o cos 1+ +0 NE (5.14)

From (4.11) and (5.9), we have

0 A
Xla(:;) = —cos (w1 px)

w . 1
+ 71 [—B (2, \) sin (uwiz) + A (2, A) cos (uwiz)] 4 O (M) . (5.15)

From (4.9), (5.10), (5.11), (5.13), and (5.15), we have

Xe (e, 3) = 3 {—ujusin(”l“) 2[5 (5 ) s (757)
—i—A(%,A)sin w”“r + (:)}Coswgu a;—§>
b { o (2 ”)“’;[3( 3)sin (57)
#a(GA) oos (07)] 40 (1) fsinean (- )
— 2 [ o) sinwap (2 — 7)

/j/ s

2

« {51‘&‘ sin 1 (wQ <T—A(T))+(“1_2“’2)”> 10 (:2>} dr

~ [t e (045 wenc0)]

Xﬁnu<wﬂy%ﬂwﬂ;wﬁ>

7 ™ (@1 — w)
+ [51w1,u2 (w1B (57)\) —i—sz(ﬂU,)\))} COS [t (wﬂ + 2)
1
e <) |
113

Now, replacing u by puyn and using (5.12), we have

v (W1 +we) (w14 w2)?m T 2N
= pr— —_— A —
2N (.%') X2 (x, )\N) [ 2N(51w1 + 4N2(51w1 “i 2 ’ w1 + wo

2N 2N N —
+ woC' | x, sin wo + N (w1 —wp)
w1 + wo w1 + w2

1 (w1 — (/.)2) ™ 51&11"}/2 7T 2N
R _ Bl —
() (e ) (5 e (5555




... Boundary-Value Problems with Retarded Argument 95
2N 7 (w1 + wa)
D _ A\l T
+ w2 (ﬂ’ w1 —i-WQ)) ( 2N 61wy

(w1 +wa2)? 71 ™ 2N 2N
—_— Bl = D
+ ANZ61w; w1 2’ w1 + wo T w2 . w1 + wo

X cos <2Nw2x+N(wl _w2)ﬂ> +0 <1> (5.16)

w1 + w2

Thus, we have proven the following theorem.

Theorem 5.3. If conditions a) and b) are satisfied, then the eigenfunctions
un(z) of the problem (4.1)—(4.5) have the following asymptotic representation for
N — o0 :

un () = {ulN(l‘) forx € [O, g) ,

ugn(z) forx € (g,ﬂ ,

where uin(x) and uon(x) are defined as in (5.14) and (5.16), respectively.

6. Bounds for the distance between eigenvalues

Let us define

o [min {5Q2 G4
Q2 ifx|g(x)| = [Tqt)dt, 0<z<m,

where [y and 7y are the unique real roots of the equations

B = (Ww@ e/ and 4= {f <\/9+4x/§+3> e/,

respectively;

Qs = /O o(a)| do and Qo= maxlg (@)

Assume that A 2 xo and let Ay, AN41,...; AN4p, ... be the eigenvalues of the
problem (4.1)—(4.5) listed in increasing order, N be the number of zeros on the
set (0,7/2) U (7/2,7) of the eigenfunctions corresponding to the eigenvalue Ay.
In what follows, the eigenvalues with an odd index will be called odd, and those
with an even index will be called even.

Now we will state the following theorem which can be proven easily using the
same method as in [17].

Theorem 6.1 (Asymptotic Oscillation Theorem). The eigenvalues of the
problem (4.1)—(4.5) form an unbounded increasing sequence AN, AN41,---; AN-+p;
.., In the region X = xo. Moreover, the eigenfunction corresponding to the eigen-
value An4p has exactly N +p zeros on the set (0,7/2)U (7w /2, ), where N is the
number of zeros of the eigenfunction corresponding to the first eigenvalue Ay of
the sequence.
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Lemma 6.2. Suppose that X\ = xo in (4.1) and that X' is an eigenvalue of
the problem (4.1)~(4.5). Then VN = pu' = wfﬁ;2 + 0y, where n' is an integer,

1 VA : ! .
and [0,] < oo, Moreover, if X is an odd eigenvalue, then n' is even; for an

even eigenvalue, n' is odd.

Proof. Suppose that X is an odd eigenvalue of the problem (4.1)—(4.5) and
that

VN = = 2’ S (6.1)
w1 + wa
where n' is an integer, and
1
O] < . 6.2
bl € —— (6:2)

Differentiating (4.9) with respect to z and evaluating its value at z = m, we

obtain /
2
pr (o tw)| V2 (6.3)
2 2
However, if X 2 xq, from (4.6) and Lemma 2.3.6 in [17] it follows that

< \f (6.4)

COS

1

W

/; q (7) cos (H/OJ2 (m — T)) X2 (T — A(7), /\/) dr

yields, and it follows from (6.3) and (6.4) that the sign of the derivative coincides

with the sign of cos M From Theorem 6.1 and Lemma 2.3.3 in [17], we

obtain %I’X) > (. Therefore we get

!/
cos W > 0. (6.5)

From (6.1), it now follows that

/ 2 /
cos HrL T &2) (w1 +wn) = cos (< i + 5n'> T o) (w1 + w2)>

2 w1 + wo 2
, O (w1 + w2)
= cosn'mcos —————— -,
2
If the equality sign holds in (6.2), then COSM = 0, and therefore

COSM = 0, which contradicts (6.5). The integer n’ is defined uniquely

0, (w1 +w2)
2

> 0 and, from (6.5), cosn'm > 0.

and 5n/7r(o;1 +wa)

< m/2. Then cos
Thus the proof is completed. O

Theorem 6.3. Let N = p2, N = p3, N =2 (V" > N > N = xo) be three
successive eigenvalues of the problem (4.1)—(4.5). Then

4

< , 6.6
Ho = < o (6.6)
2
< — < , 6.7
w1 + wo U3 — 1 w1 + w (6.7)
p3 — p2 < (6.8)

w1 +wsy
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Proof. By Lemma 6.2, g = —2%3— 4 Ons and pp = g On,, With nz —

1 w145w2 w1tw2
ny > 2 and |6, | < =2, [0ns| < - Therefore,
2 (ng — nl) 2
- > —=— (|9 ) > —.
o = i1 2 = P (15 (o) > ———

The inequalities (6.6), (6.8), and the second inequality in (6.7) can be proved by

using the same method as in the proof of Theorem 3.6.1 from [17]. t
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CriekTpaysbHUIT aHAJII3 PO3PUBHUX 33124
MIrypma—JliyBisis i3 3ami3sHEHHAM apryMeHTY

Erdogan Sen

Y jmaHili cTaTTi MU MAEMO CIPaBy i3 CIIEKTPAJbHUMU BJIACTHBOCTIMU
pospuBHux 3aga4 tumny lrypma—JliyBinans i3 3amiznenusm aprymenty. Mun
POBIIMPIOEMO 1 y3araJIbHIOEMO JIesKi IMJIXOJIM 1 Pe3yJIbTaTh KJIACHYHUX pe-
ryjasipaux i pospuaux 3aja4 [Irypma—Jliysimiss. CriouaTky My BUBYAEMO
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crekTpaJsbHi BiractusocTi 3aga4i IlItypma—Jliysinms sHa miBoci it oTpuMyemo
HYKHI OIIHKY JIJIsI BJIACHUX 3HaYeHb 3a/a49i. [loTiM My BUBYaEMO CIIeKTpaJIb-
ui BractuBocti 3ama4ai Hrypma—JliyBisuisa 3 po3puBHOIO BaroBoio pyHKITEIO,
K& MICTUTDH CIEeKTPaJbHUIT TapaMeTp B KpailoBux ymMoBax. Mu TakoX OTpu-
MYEMO ACUMITOTUYHI (DOPMYJIH JIjIsI BJIACHUX 3HAYEHDb i BJIACHUX (PYHKITIH
3aJ1adi Ta MexKi BiJicTaHi MiXK BJIACHUMU 3HAYEHHSIMU.

KrrowoBi ciioBa: mudepeHIiiagabue piBHAHHS 13 3aIli3HEHHAM apryMeHTy,
BJIACHHUI ITapaMeTp, YMOBHU Ilepesadi, aCHMITOTAKA BJIACHUX 3HAYEHb, MEXKI
BJIACHUX 3HAYCHb.
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