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Lagrange Stability of Semilinear
Differential-Algebraic Equations and
Application to Nonlinear Electrical Circuits

Maria S. Filipkovska

A semilinear differential-algebraic equation (DAE) is studied focusing
on the Lagrange stability (instability). The conditions for the existence and
uniqueness of global solutions (a solution exists on an infinite interval) of
the Cauchy problem, as well as the conditions of the boundedness of the
global solutions, are obtained. Furthermore, the obtained conditions of the
Lagrange stability of the semilinear DAE guarantee that every its solution
is global and bounded and, in contrast to the theorems on the Lyapunov
stability, allow us to prove the existence and uniqueness of global solutions
regardless of the presence and the number of equilibrium points. We also
obtain the conditions for the existence and uniqueness of solutions with a
finite escape time (a solution exists on a finite interval and is unbounded, i.e.,
is Lagrange unstable) for the Cauchy problem. The constraints of the type of
global Lipschitz condition are not used which allows to apply efficiently the
work results for solving practical problems. The mathematical model of a
radio engineering filter with nonlinear elements is studied as an application.
The numerical analysis of the model verifies theoretical studies.
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1. Introduction

Differential-algebraic equations (DAEs), which are also called descriptor,
algebraic-differential and degenerate differential equations, have a wide range
of practical applications. Certain classes of mathematical models in radioelec-
tronics, control theory, economics, robotics technology, mechanics and chemical
kinetics are described by semilinear DAEs. Semilinear DAEs comprise in par-
ticular semiexplicit DAEs and in turn can be attributed to quasilinear DAEs.
The Lagrange stability of a DAE guarantees that every its solution is global and
bounded. The presence of a global solution of the equation guarantees a suf-
ficiently long action term of the corresponding real system. The properties of
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boundedness and stability of solutions of the equations describing mathematical
models are used in the design and synthesis of the corresponding real systems and
processes. The application of the DAFE theory to the study of electrical circuits
can be found in various monographs and papers, [4,5,9,11,13-17] are among
them.

In the present paper, the semilinear differential-algebraic equation (DAE)

%[Am] + Bx = f(t,x) (1.1)
with a nonlinear function f: [0,00) x R™ — R™ and the linear operators A, B :
R™ — R™ is considered. The operator A is degenerate (noninvertible), the opera-
tor B may also be degenerate. Note that the solutions of a semilinear DAE of the
form A%x + Bx = f(t,x) must be smoother than the solutions of a semilinear
DAE of the form (1.1). The availability of a noninvertible operator (matrix) at
the derivative in the DAE means the presence of algebraic connections, which
influence the trajectories of solutions and impose restrictions on the initial data.
For the DAE (1.1) with the initial condition

x(to) = 2o, (1'2)

the initial value xyp must be chosen so that the initial point (¢g,x¢) belongs to
the manifold Ly = {(¢t,z) € [0,00) x R" | Q2[Bx — f(t,x)] = 0} (which is
also defined in (3.1), where @ is a spectral projector considered in Section 2).
The initial value xg satisfying the consistency condition (tg,xg) € Lo is called
a consistent initial value. A solution z(t) of the Cauchy problem (1.1), (1.2)
(see Definition 2.1) is called global if it exists on the whole interval [tg, c0).

The influence of the linear part %[Ax] + Bz of the DAE (1.1) is determined
by the properties of the pencil AA+ B (A is a complex parameter). It is assumed
that AA + B is a regular pencil of index 1, i.e., there exists the resolvent of the
pencil (AA + B)~! and it is bounded for sufficiently large || (see Section 2).
This property of the pencil allows one to use the spectral projectors Py, Ps, (1,
(2, which can be calculated by contour integration and reduce the DAE to the
equivalent system of a purely differential equation and a purely algebraic equa-
tion (see Section 2). This is one of the reasons why we use the requirement of
index 1 for the characteristic pencil AA + B of the linear part of the DAE and
not for the DAE, as, for example, in [11,12,22]. Another reason is as follows.
The requirement that the DAE have index 1 does not give us the necessary re-
sult and it is too restrictive for our research (this will be discussed in Section 2).
It is also worth noting that semilinear DAEs of the form (1.1) arise in many
practical problems, examples of which can be found in the books and papers by
R. Riaza, A.G. Rutkas, A. Favini, L.A. Vlasenko, A.D. Myshkis, S.L.. Camp-
bell, L.R. Petzold, K.E. Brenan, E. Hairer, G. Wanner, J. Huang, J.F. Zhang,
R.E. Showalter and other authors. However, in present literature these equations
are often written in the form %[Ax] = ¢(t,x) or in the form of semiexplicit DAE.

The objective of the paper is to find the conditions of the Lagrange stability
and instability of the semilinear DAE (see Definitions 2.4-2.6). A mathematical
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model of a radio engineering filter with nonlinear elements is considered as an
application. It should be noticed that if the operator A in the semilinear DAE is
invertible, then the results obtained in the paper remain valid (in this case, the
semilinear DAE is equivalent to an ordinary differential equation).

In Section 3, the theorem on the Lagrange stability, which gives sufficient
conditions for the existence and uniqueness of global solutions of the Cauchy
problem for the semilinear DAE, as well as conditions of the boundedness of
global solutions, is proved. Furthermore, the theorem gives conditions of the
Lagrange stability of the semilinear DAE, which ensure that each solution of the
DAE starting at the time moment ¢y € [0, 00) exists on the whole infinite interval
[to,0) (is global) and is bounded. In Section 4, the theorem on the Lagrange
instability, which gives sufficient conditions for the existence and uniqueness of
solutions with a finite escape time for the Cauchy problem, is proved. It is
important that the proved theorems do not contain restrictions of the type of
global Lipschitz condition, including the condition of contractivity, which enable
using them for solving more general classes of applied problems. Theorems on the
unique global solvability of semilinear DAEs that comprise conditions equivalent
to global Lipschitz conditions are known (cf. [23]). Also, the proved theorems do
not contain the requirement that the DAE have index 1 globally (this requirement
is found, for example, in [11, Theorem 6.7]). For comparison, the theorems
from [11,12,22] are considered in Sections 1 and 2.

The Lagrange stability of the ordinary differential equation (ODE) %ZL’ =
f(t,z) (t > 0, x is an n-dimensional vector) was studied in [10, Chapter 4]
using the method obtained by extending the direct (second) method of Lyapunov.
The results of [10, Chapter 4] concerning the Lagrange stability are extended to
semilinear DAEs in the present paper. The existence and uniqueness theorem of
a global solution of the Cauchy problem for the semilinear DAE with a singular
pencil AA + B was proved in the author’s paper [7]. The results on the Lagrange
stability of the semilinear DAE with the regular pencil, obtained by the author in
[6], have been improved and have been applied for a detailed study of evolutionary
properties of the mathematical model for a radio engineering filter in the present
paper.

The stability of linear DAEs and descriptor control systems described by
linear DAEs was studied by many authors (see, for example, [5,11,16,21] and
references therein).

In [12], R. Mérz studied the Lyapunov stability of an equilibrium point of the
autonomous “quasilinear” DAE

A%x +g(z) =0, (1.3)
where A € L(R") is singular (noninvertible) and g: D — R", D C R" open.
The theorem [12, Theorem 2.1] allows to prove the existence and uniqueness of
global solutions only in some (sufficiently small) neighborhood of an equilibrium
point z* of (1.3), i.e., g(z*) = 0, z* € D. If there are the two equilibrium
points z} € D and x5 € D, x} # %, then the theorem [12, Theorem 2.1] can



172 Maria S. Filipkovska

not guarantee the existence of a unique global solution in D. Namely, if the
conditions of the theorem are fulfilled for the equilibria 7 and 3, then for some
initial time moment ¢y there exists the unique global solution = = ¢(t) of (1.3)
(with the initial condition [12, (2.8)]) in some neighborhood of z7 and the unique
global solution = = 9 (t) of (1.3) in some neighborhood of x3, but this does not
guarantee the existence of a unique global solution in D. Theorem 3.1 allows to
prove the existence and uniqueness of global solutions for all possible initial points
(as noted in Remark 3.2), that is, regardless of the presence of an equilibrium
point, in the presence of several equilibrium points or the infinite number of
equilibrium points, and for a more general equation than (1.3).

A theorem similar to [12, Theorem 2.1] was proved by C. Tischendorf [22]
for the autonomous nonlinear DAE f(2/(¢),z(¢t)) = 0. The theorem [22, Theo-
rem 3.3] gives conditions for the asymptotic stability (in Lyapunov’s sense) of
a stationary solution z*, i.e., f(0,2*) = 0. The definition of asymptotic sta-
bility from [22, Section 3] is equivalent to the fulfillment of conditions (i)—(iii)
from [12, Theorem 2.1], and if we take f(2'(t), z(t)) = Az'(t) + g(x(t)), then [22,
Theorem 3.3] and [12, Theorem 2.1] are analogous.

For a global solution of a nonautonomous nonlinear DAE, the conditions for
the asymptotic stability (in Lyapunov’s sense) which can also be considered only
locally (in a sufficiently small neighborhood of this solution) are given in the
theorem [11, Theorem 6.16]. Under the conditions of the theorem, it is assumed
that the regular index-1 DAE has the global solution, and a DAE linearized along
this solution is strongly contractive [11, Definition 6.5].

It is important to note that the theorem on the Lagrange stability (Theo-
rem 3.1) gives conditions for the existence and uniqueness of global solutions
(as well as conditions of the boundedness) independently of the presence and the
number of equilibrium points. In contrast to Lyapunov stability, Lagrange stabil-
ity can be considered as the stability of the entire system, not just of its equilibria.
From this, in particular, it follows that a globally stable dynamic system can be
not only monostable (as in the case of the global stability in Lyapunov’s sense),
but also multistable (cf. [24, Section I]). In [24], A. Wu and Z. Zeng studied
the Lagrange stability of neural networks, which are described by ODEs with
delay. It is known that neural networks are also described by DAEs (including
semilinear DAEs), therefore the research of the present paper is useful for the
analysis and synthesis of the neural networks. Lagrange stability is also used
for the analysis of ecological stability. The theorem on the Lagrange instability
(Theorem 4.1) can be used, in particular, for the analysis of nonlinear control
systems. For example, the study of the Lagrange instability allows to find such
a property as a blow up of the solution for a nonlinear control system on a finite
time interval.

It is also important to note that even for an ordinary differential equation
containing a nonlinear part, the Lyapunov stability of a nontrivial solution does
not imply that the solution is bounded, i.e., Lagrange stable. Since the DAE
considered in the paper contains the nonlinear part, the Lyapunov stability of
its solution does not imply the Lagrange stability. Also, in the general case, the
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Lyapunov instability does not imply the Lagrange instability, but the converse
assertion is true. Therefore, the proved Lagrange instability theorem can also be
regarded as the Lyapunov instability theorem.

Thus, the results obtained on the Lagrange stability of semilinear DAEs are
important for the development of the DAE theory and for applied problems. The
Lagrange stability of various types of ODEs and its applications are considered
in many works, e.g., [1,3,10,24]. However, in [11,12,22] and other cited works,
the Lagrange stability of DAEs was not studied.

In Sections 5 and 6, the mathematical model of a radio engineering filter with
nonlinear elements is studied with the help of the theorems proved in the previ-
ous sections. The restrictions on the initial data and parameters for the electrical
circuit of the filter, which ensure the existence, uniqueness and boundedness of
global solutions, and the existence and uniqueness of solutions with a finite es-
cape time for the dynamics equation of the electrical circuit are obtained. Certain
functions and quantities (including nonlinear functions that are not global Lips-
chitz) defining the circuit parameters and satisfying the obtained restrictions are
given. The numerical analysis of the mathematical model is carried out.

The paper has the following structure. The main theoretical results are given
in Sections 3, 4. Namely, the theorems on the Lagrange stability and instabil-
ity of the DAE are proved. In Sections 5, 6, the mathematical model of the
nonlinear radio engineering filter is studied with the help of the obtained theo-
rems. The conclusions and explanations of the obtained results from a physical
point of view are given in Subsections 5.1, 6.1, and the numerical analysis of the
mathematical model is carried out in Subsections 5.2, 6.2. In Section 2, we give
a problem setting, preliminary information and definitions. Section 7 contains
general conclusions.

The following notation will be used in the paper: Ex is the identity operator
in the space X; Ay is the restriction of the operator A to X; L(X,Y) is the
space of continuous linear operators from X to Y, L(X, X) = L(X); the notation
fc+°° f(t)dt < +oo ( f;oo f(t) dt = co ) means that the integral converges (does
not converge); 2! is the transpose of x. Sometimes the function f is denoted by
the same symbol f(z) as its value at the point z in order to explicitly indicate
that the function depends on the variable z, but from the context it will be clear
what exactly is meant.

2. Problem setting and preliminaries

Consider the Cauchy problem (1.1), (1.2) for the semilinear DAE, where
t,to >0, z,x0 € R", f:]0,00) x R — R" is a continuous function, A, B: R" —
R™ are linear operators to which n x n matrices A, B correspond. The operator
A is degenerate (noninvertible), the operator B may also be degenerate. The

matrix pencil as well as the corresponding operator pencil AA + B is regular, i.e.,
det(AM + B) # 0.

Definition 2.1. A function z(¢) is called a solution of the Cauchy prob-
lem (1.1), (1.2) on some interval [to,t1), t1 < oo, if @ € C([to,t1),R"),
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Ax € C([to,t1),R™), z satisfies equation (1.1) on [tg, 1) and the initial condi-
tion (1.2).

It is assumed that AA + B is a regular pencil of index 1, that is, there exist
constants C1, Cy > 0 such that

|AA+B)7H|<C1, A= Co. (2.1)

For the pencil AA + B satisfying (2.1) there exist the two pairs of mutually
complementary projectors Pi, P» and Q1, Q2 (i.e., P;Pj = 6;jF;, Pi + P> = Egn,
and Q;Q; = 0;;Qi, Q1+ Q2 = Ern, 1,7 = 1,2, ;; is the Kronecker delta) first
introduced by A.G. Rutkas [17, Lemma 3.2]. The projectors can be constructively
determined by the formulas similar to [19, (5), (6)] (where X =Y =R") or [17,
(3.4)] (for the real operators A, B the projectors are real). These projectors
decompose the space R" into direct sums of subspaces

R" = X1+X,, R"=Y4Y,, X;=PFPR", Y, =Q;R", j=12 (22

such that the operators A, B map X; into Y}, and the induced operators
Aj: A|XjZXj—>}/}, Bj = B|Xj : X]' — Y}', j=172 (X2 = KerA, Y1 =
AR™ = A;X,) are such that Ay = 0, the inverse operators A1_1 € L(Yy, X1),
By' € L(Ya, X3) exist (cf. [17, Lemma 3.2], [19, Sections 2,6]), and

AP; = Q,;A, BPj=Q;B, j=12. (2.3)

With respect to the decomposition (2.2) any vector z € R™ can be uniquely
represented as the sum

T =Ty, + Tp,, Tp = Pz e X, Tp, = Py e Xo. (24)

This representation will be used further. We will also use the auxiliary operator
G € L(R™), (cf. [19, Sections 2, 6])

G=AP,+ BP, = A+ BP,, GXJ‘:}/J', =12,

which has the inverse operator G—! € L(R") with the properties G"*AP; = P,
G 'BP, = Py, AG™'Q1 = Q1, BG™'Q2 = Q.

By using the projectors Pi, P», @1, @2, the DAE can be reduced to the
equivalent system of a purely differential equation and a purely algebraic equa-
tion. Applying @1, Q2 to (1.1) and taking into account (2.3), we obtain the
equivalent system
d
a(APL’E) + BPiz = Qlf(t,l‘),
ng(t, x) — Bng =0.

Further, using G~!, we obtain the system, which is equivalent to the DAE (1.1):

d
a(Plx) = Gil [ - BP1$ + Qlf(t, Plx + PQ.CU)],

Gilef(t, P1:c + P2$) - ng = 0.

(2.5)
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Remark 2.1. We consider various notions of an index of the pencil, an index of
the DAE, a relationship between them and their relationship with the mentioned
notion of the pencil of index 1. In [23, Section 6.2], the maximum length of the
chain of an eigenvector and adjoint vectors of the matrix pencil A 4+ uB at the
point p = 0 is called the index of the matrix pencil AA + B. Following [23,
Sections 6.2, 2.3.1], the regular pencil AA + B with the property (2.1) is called
a regular pencil of index 1. Taking into account the properties of the projectors
P;, Q; and the induced operators A;, Bj, j = 1,2, if the condition (2.1) holds,
then the index of the pencil (or the index of nilpotency of the matrix pencil)
(A, B) is 1 in the sense as defined in the works of C.W. Gear, L.R. Petzold, for
example, [8, p. 717-718] (it is easy to verify using [8, Theorem 2.2]). In [11,
Definition 1.4], the index of nilpotency of the matrix pencil (4, B) [8] is called
the Kronecker index of the regular matrix pair {4, B} which forms the matrix
pencil AA + B. Also, by the index of the pencil one can determine the index
of the corresponding system of differential-algebraic equations [8, p. 718]. In
particular, the index of the pencil (A4, B) (the Kronecker index of the regular
matrix pair {A, B}) coincides with the index of the linear DAE (the Kronecker
index of the regular DAE [11, Definition 1.4]) A%erBx = ¢(t). This is analogous
to the fact that the pencil AA + B corresponds to the linear part %[Aac] + Bz of
the DAE (1.1) and the influence of the linear part is determined by the properties
of the corresponding pencil. For comparison with the notion of the “tractability
index” from the works of R. Méarz, C. Tischendorf and R. Lamour [11,12,22],
note that the linear DAE £ [Az] + Ba = q(t) with the regular pencil AA + B of
index 1 (i.e., (2.1) is fulfilled) is regular with tractability index 1 [11, p. 65, 91,
Definition 2.25].

But if we consider a semilinear DAE A%x + Bz = f(t,z) (in this case the
solution z(t) must be smoother than the solution of the DAE (1.1)), then for it
to have index 1 for all t > 0, x € D C R" (to be exact, (t,z) € Loy, where Ly is
defined in (3.1)), it is necessary that the pencil (A4, B — %f(t,x)) have index 1
for all ¢t > 0, x € D. This condition is too restrictive for our research and it
does not allow us to prove the existence of a unique global solution since the
uniqueness of the solution can be proved only locally (in [2, Ch. 9], the same is
shown for a “semi-explicit index-1” DAE).

One of the conditions for proving the existence of a unique global solution of
the Cauchy problem (1.1), (1.2) for any consistent initial value z is the condition
of the basis invertibility of an operator function (Definition 2.3) which will be
discussed below. To begin, we introduce the definitions.

Definition 2.2. A system of one-dimensional projectors {©4};_,, Or: Z —
Z such that ©,0; = §;;0; (d;; is the Kronecker delta) and Ez =) ;_, O is
called an additive resolution of the identity in an s-dimensional linear space Z.

The additive resolution of the identity generates a direct decomposition of Z
into the sum of s one-dimensional subspaces: Z = Z1+Zo+---+Z,, Z, = O Z.
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Definition 2.3. Let W, Z be s-dimensional linear spaces, D C W. An
operator function (a mapping) ®: D — L(W, Z) is called basis invertible on the
convex hull conv{w w} of vectors b, € D if for any set of vectors {w*}s_,
wk € conv{w,w}, and some additive resolution of the identity {Ok};_, in the
space Z the operator

A= Z@kcb ) e L(W, Z)

has the inverse operator A~! € L(Z, w).

Let us represent the operator ®(w) € L(W, Z) as a matrix relative to some
bases in the s-dimensional spaces W, Z:

Ppi(w) -0 Pys(w)
dw) = | :
D (w) - Dygg(w)

Definition 2.3 can be stated as follows: the matrix function ® is basis invertible

on the convex hull conv{w,w} of the vectors @,w € D if for any set of vectors
{wk}s_| C conv{w,w}, the matrix

CI>11(w1) <I>13(w1)

has the inverse A1

Note that the property of basis invertibility does not depend on the choice
of a basis or an additive resolution of the identity in Z. This statement follows
directly from Definitions 2.2, 2.3.

Obviously, if the operator function ® is basis invertible on conv{w, ﬁ)}, then
it is invertible at any point w* € conv{w,ﬁ;} (w* = b + (1 —-a)w, a € ]0,1]),

e., for each point w* € conv{ﬁ),ﬁ)}, its image ®(w*) under the mapping & is

an invertible continuous linear operator from W to Z. The converse is not true
unless the spaces W, Z are one-dimensional. We give an example.

Example 2.1. Let W = Z = R2, D = conv{w, 0}, & = (1,-1)7, w = (1,1)7,

= (a,0)"
(w) = <iﬁ alb> '

For the set of vectors {w!, w?} C conv{u?,@f}}, wt = (a1,01)", w? = (ag,b2)7,
the operator A has the form
. a1b1 1
A= < -1 a2b2> ’

Since det ®(w) = a?b?> +1 # 0 for any w € D, then ®(w) is invertible on D.
However, the operator A is not invertible for {w!, w?} = {w,w} and hence the
operator function @ is not basis invertible on D. If we take @ = (1,0)7, then ®
is basis invertible on D.
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Now we will explain why this definition is needed. As shown above, the DAE
(1.1) is equivalent to the system of a purely differential equation and a purely
algebraic equation. The algebraic equation defines one of the components of
a DAE solution as an implicitly given function. With the help of the implicit
function theorem this component can be defined as a (unique) explicitly given
function, but only locally, i.e., in some sufficiently small neighborhood. But we
need a unique globally defined explicit function for further application of the re-
sults on Lagrange stability to the differential equation, which will be obtained by
substitution of the found component (function). For this purpose, the condition
of the basis invertibility of an operator function (Definition 2.3), which was first
introduced in [18], is used. Note that this condition does not impose restrictions
of a type of a global Lipschitz condition, including the condition of contractivity,
and does not require the global boundedness of the norm for an inverse function
on the whole domain of definition (see Remark 3.1).

In the theorem [11, Theorem 6.7], the conditions of global solvability are
given for the nonlinear DAE f((D(t)z),z,t) = 0 [11, (41)]. It is as-
sumed that the DAE [11, (4.1)] is globally regular of index 1, i.e., for all
Dx € R*", x € R™, t € [0,00) [I1, Theorem 6.7]. This condition means
that the pencil )\%f(y,x,t)D(t) + %f(y,m,t) is regular with Kronecker in-
dex 1 for all y € R", z € R™, ¢t € [0,00) [11, p. 318-320]. Therefore, there
must exist the constants C7, Co > 0 independent of ¢, z, y and such that
H()\a%f(y,x,t)D(t) + %f(y,a:,t))_lu < Cpforally e R*, z € R™, t € [0,00),
IA\| > Oy, i.e., the norm is globally bounded. Also, the theorem contains the
requirement of the contractivity of the regular index-1 DAE (see [11, Definition
6.1, 6.5]) which is an additional condition. Taking into account Remark 3.1, in
the case of a semilinear DAE these conditions are more restrictive than those of
global solvability from Theorem 3.1.

Concerning the theorems [12, Theorem 2.1], [22, Theorem 3.3], note that
they are obtained for the autonomous DAE. If we consider the nonautonomous
DAEs, namely, Az’ + g(t,z) = 0 or f(2/,x,t) = 0, where f(2/,x,t) = Az’ +
g(t, ), then, as said above, the requirement that the pencil AA + 8%9(15, x*) have
index 1 means that there exist the constants C7,Cy > 0 independent of ¢ and
such that H()\A + a%g(t,x*))‘lu < Oy, [A = G for all £ € [0,00), ie., the norm
is globally bounded in ¢. Hence, this requirement is more restrictive than the
requirement that the operator function ® is basis invertible and the pencil AA +
B has index 1.

Also note that in [12, Theorem 2.1] and [22, Theorem 3.3], the nonlinear
function is required to be twice continuously differentiable, while in Theorem 3.1
f is required to be continuous and have the continuous % f(t,x).

Definition 2.4. A solution z(t) of the Cauchy problem (1.1), (1.2) has a
finite escape time if it exists on some finite interval [to, T') and is unbounded, i.e.,
there exists 1" < oo (T > tp) such that lim;_,7_¢ ||z(t)| = +o0.

If the solution has a finite escape time, it is called Lagrange unstable.
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Definition 2.5. A solution z(t) of the Cauchy problem (1.1), (1.2) is called
Lagrange stable if it is global and bounded, i.e., the solution z(t) exists on [tg, 00)
and SUPyefy, o0) |2(8) || < +o00.

Definition 2.6. Equation (1.1) is Lagrange stable if every solution of the
Cauchy problem (1.1), (1.2) is Lagrange stable.

Equation (1.1) is Lagrange unstable if every solution of the Cauchy problem
(1.1), (1.2) is Lagrange unstable.

3. Lagrange stability of the semilinear DAE

The theorem on the Lagrange stability of the DAE (1.1), which gives sufficient
conditions for the existence and uniqueness of global solutions of the Cauchy
problem (1.1), (1.2), where the initial points satisfy the consistency condition
(to,x0) € Lo (the manifold Ly is defined in (3.1)), and gives conditions of the
boundedness of the global solutions, is given below.

Theorem 3.1. Let f € C(]0,00)xR"™ R™) have the continuous partial deriva-
tive %f(t x) on [0,00) X R™, AA + B be a regular pencil of index 1 and
vVt > 0V, € X1 dzp, € Xo
(t,xp, + 2p,) € Lo = {(t,2) € [0,00) x R" | Q2[Bx — f(t,z)] = 0}, (3.1)

where X1, Xo from (2.2). Let for any Z,, i“pz € Xo such that (t., =y + Ip,),
(ts, T, + Ip,) € Lo the operator function

P: Xy — L(XQ,YQ), @(xpz) = |:(98I‘ (sz(t*,x;1 + .TpQ)) — B| P, (32)

be basis invertible on the convexr hull conv{zp,, ;f:pQ}. Suppose that for some self-
adjoint positive operator H € L(X1) and some number R > 0 there exist functions
ke C([0,0),R), U € C((0,00), (0,00)) such that

+oo v
/ Ud(v) =+o00 (¢>0),
(HPl.r,G [ Bpll‘—i-Qlf(t .%')])

<kt U(3(HPz, Piz)), (t,z)€ Lo, [|[Piz]| > R. (3.3)

Then for each initial point (to, xo) € Lo, there exists a unique solution z(t) of the
Cauchy problem (1.1), (1.2) on [tg,0).
If, additionally,

+oo
/ k(t) dt < +o0,
to

there exists T, € Xa such that for any I, € Xo such that (te, vy, + Tpy) € Lo
the operator function (3.2) is basis invertible on conv{Zp,, Zp,} \ {Zp, }, and

sup |Qaf(t, xp, + Tp,)| < +o00, M > 0 is a number,  (3.4)
tE[0,00), ||Ip1 IISM

then for the initial points (to,zo) € Lo the equation (1.1) is Lagrange stable.
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Remark 3.1. Now we explain the restriction which is imposed on & (3.2)
(for the existence and uniqueness of global solutions). In the case when the
space Xo is one-dimensional (then the basis invertibility is equivalent to the

invertibility), it is required that the continuous linear operator A = ®(x},),

« . 2 . . . «
Ty, € conv{Zyp,, Ip, }, have a continuous linear inverse operator for any fixed dy,,

Tpy, t, @y such that (t%, 2y + 2p,), (t*, 25, + Zp,) € Lo. In the case when
the dimension of Xs is greater than 1, the operator A € L(Xjs,Y3), which is
constructed from the operator function ® (as shown in Definition 2.3) for fixed
Zps, %pQ, t*, xp, such that (t*,zp, + Zp,), (t* =, + ém) € Ly, is required to
be invertible. At the same time, the global boundedness of the norm of the
mapping [@]71 on X9 and the global boundedness of the norm of the function
(2 (Qaf (t,2p, + Tp,)) P2 — BP,] “on [0, 00) x R™ are not required (i.e., the norm
of the function is not required to be bounded by a constant for all ¢, ,,, zp,).
For comparison, the condition of index 1 for the DAE was discussed above.

Proof. The DAE (1.1) is equivalent to system (2.5) (as shown in Section 2).
Denote dim X; = a, dim Xo = d (d = n — a). Any vector x € R™ can be repre-

z
sented as ¢ = u € R® x R%, where z € R, u € R? are column vectors. We

introduce the operators (the method of the construction of the operators is given
in [18, Section 2]) P,: R* — X1, P;: R? — X5, which have the inverse operators
P7li Xy - R Pyt Xo — R Then 2z = Py Pia, u= Py ' Pyw, v = Pz + Pyu
(recall that (2.4)), and P, 1P P, = ERga, Pd_ngPd = Epa. Multiplying the equa-
tions of system (2.5) by P, !, Pd_l, and replacing Pix and Pox by P,z and Pyu,
respectively, we get the equivalent system

%z =P 'G7'[-BP.z + Q1f(t, z,u)], (3.5)
Pd_lengf(t, z,u) —u =0, (3.6)

where f(t,z,u) = f(t, P,z + Pyu).

Thus, the semilinear DAE (1.1) is equivalent to system (3.5), (3.6).

Further we are going to prove the theorem in two steps.

I (The existence and uniqueness). We prove the first part of the theorem,
that is, the existence and uniqueness of global solutions.

Consider the mapping

F(t, z,u) = Pd_lengf(t, Z,u) — u. (3.7)
It is continuous on [0, 00) x R? x R? and has continuous partial derivatives

d 1 0

&F(t, z,u) =P, G %(ng(t,a:))Pa,

d 0

5. F(t2u) = Pt G_l%(ng(t, z)) — P2| Py = P G '®(Pyu) Py,

where @ is the operator function (3.2), ®(FPyu) = ®(xp,), p, = Pju € Xo.
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Let us prove that for any @, @ € R? such that (tsy Za, 0),y (Eiy 2y T ) € Ly, where
Lo = {(t,z,u) €[0,00) x R* x R? | Pd_lengf(t,z,u) —u= O} , (3.8)

the operator function ¥: R — L(R%), ¥(u) = & 5a ' (ts, 24, u), is basis invert-
ible on conv{a,a}. Since (3. 2) is basis 1nvert1ble on conv{ip,,zp,} for any
Ty Tpy € Xo such that (L., Tyt By ), (Bexp, + Ip,) € Lo, there exists an
additive resolution of the identity {G)k},C , in Y3 such that the operator Ay =
ZZ:1 Or®(zk,) € L(X,Y2) is invertible for any set of vectors {zk }¢_ 1 C
conv{dp,, Zp,}. With the help of the invertible operator N = PG Y, —
R? we introduce the system of one-dimensional projectors O = NO N1 Which
form the additive resolution of the identity {@k} d_ in R9. Chose any 1, i e RY
such that (., z«, @), (s, 24, U ) € Lo and any u* € conv{a,a}, k = 1,d. Taking
into account that (t,2z,u) € Ly < (t,xp, +p,) € Lo and for &, = Pyil, &, =

Pdu m = P, ¥ = P,z, the operator A; is invertible, the operator

p1

P G O(Pb) Py = NA Py

I
M=~
@

d
~ 0
Ay = Z@k—F(t*,z*,u
— ou

k=1

acting in R? is also invertible. Hence, W is basis invertible on conv{a, @} .

Let (4, z+) be an arbitrary (fixed) point of [0,00) x R%. Due to the condition
(3.1), choose u, € R4 such that (tay 24, Us) € Lo. From the basis invertibility of ¥,
it follows that there exists a continuous linear inverse operator [ 8uF (tiy 2, u*)] B
By the implicit function theorems [20], there exist neighborhoods Us(t.,zs) =
Us, (ti) X Us,(24) (if t, = 0, then Uy, (t+) =[0,01)), Us(us) and a unique function
u=u(t,z) € C(Us(ts, 2+), Us(uy)), which is continuously differentiable in z such
that F'(t,z,u(t,z)) =0, (t,2) € Us(t«, 2«), and u(ts, z«) = u.. We define a global
function u = n(t, 2): [0,00) x R® — R? at the point (£, z) as n(t, 2¢) = u(ts, 2s).

Let us prove that

Y(t,z) € [0,00) x R* 3w € R (¢, z,u) € L. (3.9)

Consider arbitrary (fixed) points (Z+, 2., @), (t«, 24, U @) € Lo. Clearly, F(t,, z., 1) =
0, F(ty,z, 1) = 0. The projections Fi(t,z,u) = OF(t,z,u), k=1,d, are
the functions with values in the one-dimensional spaces R, = @k]Rd 1somor—
phic to R. According to the formula of finite increments [20], Fj(t«, z«, ) -
Fi(ts, ze,0) = %Fk(t*,z*,uk)(ﬁ —a) = 0, v¥ e conv{n,a}, k = 1,d.
Hence, @k%F(t*,z*,uk)(ﬁ —4) = 0, k=1,d, from which, by summing

these expressions over k, we obtain that Ag(ﬁ — u) = 0, where the operator
Ay = Zzzl @ka%F(t*, 2y, uF) = ZZ:1 6, ¥ (u*) is invertible by virtue of the ba-
sis invertibility of ¥ (see above). Consequently, @ = .

Thus, (3.9) is proved. It is also proved that in some neighborhood of each
point (ts, zx) € [0,00) x R* there exists a unique solution v = v(t, z) of (3.6),
which is continuous in (¢, z) and continuously differentiable in z. So, the function



Lagrange Stability and Instability of Semilinear DAFEs and Applications 181

u = n(t, z) coincides with v(t, z) in this neighborhood and it is a solution of (3.6)
with the corresponding smoothness properties. Let us show that the function
u = n(t, z) is unique on the whole domain of definition. Indeed, if there exists
a function u = p(t, z) having the same properties as u = 7(t, z) at some point
(ts,z+) € [0,00)xR?, then by (3.9), n(t«, z+) = p(t«, z+) = us. Therefore, n(t, z) =
u(t, z) on [0,00) x R

Substituting the function u = n(t,2) into (3.5) and denoting g(t,2) =
Quf(t, 2 n(t, 2)), we get

%z = P 'G7Y=BP,z + ¢(t, 2)]. (3.10)

By the properties of 7, Q1 f, the function g(t,z) is continuous in (¢, z) and
continuously differentiable in z on [0,00) x R*. Hence, for each initial point
(to, z0) such that (to,z0,n(to,20)) € Lo there exists a unique solution z(t) of
the Cauchy problem for equation (3.10) on some interval [tg,e) with the initial
condition z(tp) = zp. Note that if (to, o) € Lo and xg = P,z0 + Pyn(to, 20), then
(to, 20, n(t0, 20)) € Lo.

Introduce the function

1 1 1 1, . N
V(Px) = §(HP11:,P1$) = §(HPa27Paz) = §(P;HPaz,z) = §(HZ’Z) =V(2),
where H = PyHP, and H is an operator from (3.3). Then grad V(z) = Hz,
where grad V is the gradient of the function V. Since (HPaz,G_l[—BPaz +
Q1f(t, Paz + Pm(t, 2))]) = (Hz, P, G [~BP,z +g(t,2)]), then, by (3.3), there
exists R > 0 such that

(Hz, P 'G7 [=BPaz + g(t,2)]) < k(O U(V), ¢>0, |z] = R, (3.11)

where k € C([0,00),R) and U € C((0,00), (0,00)) such that f+oo % = +o0.

C

Taking into account (3.11), for all ¢ > 0 and all z such that ||z|| > R, the

derivative V‘(s : of the function V along the trajectories of (3.10) (see the
3.10

definition in [10, Chapter 2]) satisfies the estimate

f/]( = (2 PG [ BPaz 4 (1,2)) < () Uw).

3.10
It follows from the properties of the functions k, U that the inequality
0 < k(t)U(v), t > 0, has no positive solution v(¢) with finite escape time (see [10,
Chapter 4]). Then, by [10, Ch. 4, Theorem XIII], every solution z(t) of (3.10) is
defined in the future (i.e., the solution is defined on [tg, 00)). Thus, the function
x(t) = Pyz(t) + Pyn(t, 2(t)) is a solution of the Cauchy problem (1.1), (1.2) on
[th OO)

Let us verify the uniqueness of the global solution. It follows from what
has been proved that the global solution z(t) is unique on some interval [tg,€).
Assume that the solution is not unique on [tg,00). Then there exists t, > ¢ and
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two different global solutions x(t), Z(¢) with the common value =, = z(t,) =
Z(ty). Let us take the point (t.,z.) as the initial point. Then there must be a
unique solution of (1.1) on some interval [t., 1) with the initial value x(t.) = .,
which contradicts the assumption.

IT (Boundedness). We prove the second part of the theorem, that is, the
Lagrange stability of the DAE. Suppose that the additional conditions of the
theorem are satisfied.

Since ft;roo k(t)dt < +oo, the inequality v < k(t)U(v), t > 0, has no un-
bounded positive solution for ¢ > 0 [10, Ch. 4]. Then by [10, Chapter 4, The-
orem XV], equation (3.10) is Lagrange stable. Hence, sup;cp, o0 [[2(?)[| < +o0,
ie.,

M, € (0,00) Yt € [tg,00) ||z(t)|| < M,. (3.12)

Taking into account the properties of ® (3.2) and the connection between
® and the operator function ¥: R? — L(R%) introduced in part I of the proof,
we get that there exists a point @ € R? (@ = P;'%,,) such that for any u €
RY, satisfying (ts,zs, %) € Lo, the operator function V¥ is basis invertible on
conv{a,u} \ {@}. Let (ts, 2, 1) € Lo be an arbitrary (fixed) point and @ be a
point with the property imposed above. Then using the formula of finite incre-
ments for Fy(t., 2, %) and Fj(ts, z«, @), where Fy(t, z,u) = ékF(t, z,u), F is the
mapping (3.7) and {ék}izl is an additive resolution of the identity in R?, and
summing the obtained equalities over k, we get that F(ts, z«, @) — F(t, 24, @) =
Ao(i—1), where Ay = Zizl OrT (uF), U(uk) = %F(t*, Ze,uF), uF € conv{a, a}\
{a}, ie., v = a+ (1 — )i, a € (0,1], k = 1,d. It follows from the ba-
sis invertibility of ¥ on conv{a,u} \ {@} that there exists the inverse operator
A;l € L(R?). The mentioned above and the fact that F(t,,z.,a) = 0, give us
U=1a— A;l[PJIG*IQQf(t*, Zs, 1) — ], which is fulfilled for an arbitrary point
(ty, 2z, 1) € Lg. Consequently, for each t, € [to, 00), the equality n(ts, z(ts)) =
ﬁ—A;l[Pd_lG_ngf(t*, z(ts), @) — ], where z(t) and n(t, z(t)) are components of
the global solution x(t) = P,z (t)+ Pyn(t, z(t)) of the Cauchy problem (1.1), (1.2),
holds. Denote M = ||i||. Taking into account that A; ' is a bounded linear opera-
tor (since Ay € L(R?)), there exists a constant N > 0 such that ||n(t., 2(t.))|| <
(1+N)M +N||P;7 G 1| ||Qaf (s, 2(t), @)|| for each t, € [tg,00). Then it follows
from (3.12), (3.4) that there exists a constant C' > 0 such that ||n(t., z(t4))| < C
for each ¢, € [tg, 00).

Since the estimate ||z(t)|| = ||P.2(t) + Pan(t, 2(t))|| < [|[Pal|Mx + || Pa]|C is
fulfilled for all ¢ € [tg,00), the solution x(t) of the Cauchy problem (1.1), (1.2)
is Lagrange stable, which holds for each initial point (tg,z¢) € Lo. Hence, for
the initial points (tg,z¢) € Lo, equation (1.1) is Lagrange stable. The theorem is
proven. ]

Remark 3.2. The consistency condition (tg,x9) € Lo for the initial point
(to, xo) is one of the necessary conditions for the existence of a solution of the
Cauchy problem (1.1), (1.2).

Remark 3.3. If & (3.2) is basis invertible on conv{d,,, Z,,} for any p,, :1::132 €
Xa, tx € [0,00), 7, € X1, then obviously it is basis invertible on conv{ay,, Zp, }
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for any #,,, &, such that (,, :U;I +ap, ), (tx, T, —I—:im) € Lo and on conv{Z,,, Zp, }\
{@p,} for any 7, and any &y, such that (t., 7 + Tpy) € Lo The verification

of the basis invertibility of ® on conv{:z:m,xpz} for any :cm,mm, ty, @
more convenient for applications.

*
5, may be

4. Lagrange instability of the semilinear DAE

Below is the theorem on the Lagrange instability of the DAE (1.1), which
gives sufficient conditions for the existence and uniqueness of solutions with a
finite escape time for the Cauchy problem (1.1), (1.2), where the initial points
(to,xo) satisfy the consistency condition (tg,z¢) € Lo and the corresponding
components Pyxzg belong to a certain region ).

Theorem 4.1. Let f € C([0,00) x R",R™) have a continuous partial deriva-
tive a%f(t, x) on [0,00) X IER", AA + B be a regular pencil of index 1 am{ (3.1) be
fulfilled. Let for any %p,,%p, € Xo such that (t.,z; + Tp,), (te, T, + Tp,) € Lo
the operator function (3.2) be basis invertible on conv{iy,,p, }. Further, let there
exist a region Q@ C X1 such that Pix = 0 ¢ Q and the component Pyx(t) of each
existing solution x(t) with the initial point (to, xo) € Lo, where Pixg € Q, remains
all the time in Q. Suppose for some self-adjoint positive operator H € L(X7) there
exist the functions k € C([0,00),R), U € C((0,00), (0,00)) such that

/+oo dv ( O) /+oo k( ) g
<400 (¢>0), t)dt = oo,
c U(U) to

(HPyz, GY[~BPix + Q1 f(t,x)])
> k(U (3(HPiz, Piz)), (t,2) € Ly, Plz € Q. (4.1)

Then for each initial point (to,zo) € Lo, where Pixg € ), there exists a unique
solution of the Cauchy problem (1.1), (1.2) and this solution has a finite escape
time.

Proof. The beginning of the proof of Theorem 4.1 coincides with the proof of
Theorem 3.1 up to the following statement. For each initial point (¢, zp) such that
(to, 20, (to, 20)) € Lo, there exists a unique solution z(t) of the Cauchy problem
for equation (3.10) on some interval [tg,e) with the initial condition z(ty) = zp.
Hence, for each initial point (to,xo) € Lo, where g = P,zo + Pin(to, z0), there
exists a unique solution x(t) = P,z(t) + Pyn(t, z(t)) of the Cauchy problem (1.1),
(1.2) on [to,€).

Further, the proof takes the form.

By the condition of Theorem 4.1, there exists a region ) C X; such that
Pz =0 ¢ Q and the component P;z(t) of each solution x(¢) with the initial point
(to, o) € Lo, where Pixo € €, remains all the time in Q. Taking into account
that Pyz = P,z, each solution z(t) of equation (3.10) starting in the region € =
{z € RY| P,z € Q} = P;'Q remains all the time in it, and z = 0 ¢ €. Introduce
the function V(z) = %(ﬁz,z), where H = P*HP, and H is an operator from
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(4.1). Clearly, the function V/(z) is positive for all z € Q. It follows from (4.1)
that

(Hz, P, G Y=BPz + g(t,2)]) > k(O U(V), t>0, z €, (4.2)

where k € C([0,00),R), U € C((0,0),(0,00)) such that [ oy < oo,
+0o0
Jo” k(t) dt = oo.
By (4.2), for all t > 0 and all z € €, the derivative of V along the trajectories
of (3.10) satisfies the estimate

V] 1) = 2 P G - BPaz 4 (0, 2))) 2 KOU (V)

It follows from the properties of the functions %k, U that the inequality
0 > k(t)U(v), t > 0, has no positive solution defined in the future (see [10, Chap-
ter 4]). By [10, Chapter 4, Theorem XIV], each solution z(t) of (3.10) satisfying
the condition z(tg) = 2o, where zg € Q and (to, 20, n(to, 20)) € Lo, has a finite
escape time, i.e., it exists on some finite interval [to,T) and lim;—7_¢||2(¢)]] =
+00. Then each function x(t) = P,z(t) + Pyn(t, 2(t)) with the corresponding
initial values (to,xo), where zo = P,z + P;n(to, 20), is a solution of the Cauchy
problem (1.1), (1.2) with a finite escape time, i.e., the solution z(t) is defined on
the corresponding finite interval [tg, T") and lim;_7_¢ ||z(t)|| = +oo.

Let us verify the uniqueness of the solution z(t), t € [ty,T). It was proved
that the solution z(t) is unique on some interval [tg, ). Assume that the solution
is not unique on [tg, 7). Then there exists ¢, € [¢,T) and two different solutions
x(t), Z(t) with the common value x, = x(t.) = Z(t«) such that (¢.,z.) € Lo and
Pyz, € Q. Let us take the point (¢, z.) as the initial point. Then there must be
a unique solution of (1.1) on some interval [t.,e1) C [to,T") with the initial value
x(ty) = x4, which contradicts the assumption. The theorem is proven. O

5. Lagrange stability of the mathematical model of a radio
engineering filter

Let us consider the electrical circuit of a radio engineering filter given in
Fig. 5.1. A voltage source e, nonlinear resistances ¢, g, ¥, a nonlinear con-
ductance h, a linear resistance r, a linear conductance g, an inductance L and a
capacitance C are given.

The currents and voltages in the circuit satisfy the Kirchhoff equations, as
well as the constraint equations which describe operation modes of the electric
circuit elements:

IL:I+I¢, U¢:U¢—|—UT+U0, SZU@O—FUL—FU?/,,
d(LI d(CU,
Uy, = (dtL), I= (dtc)—i-gU(j—i-hafc),

Ur = T’I, Utp = (,O(I), USOO = (po(IL), Uw = 1/J(I¢).
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U, U U

Fig. 5.1: The electric circuit diagram of the radio engineering filter.

From these equations we obtain the system with the variables x1 = I, z9 =
Uc, x3=1:

d
L@xl +xo+ 71wy =e(t) —o(x1) — p(z3), (5.1)

d
C%xQ + gro — x3 = —h(x2), (5.2)
xo + 13 = Y(xr1 — x3) — o(x3). (5.3)

The system describes a transient process in the electrical circuit (i.e., the
process of transition from one operation mode of the electric circuit to another).

It is assumed that the linear parameters L, C, r, g are positive and real,
o € CYHR), ¢ € CYHR), ¥ € CY(R), h € C(R) and e € C([0, c0), R).

The vector form of system (5.1)—(5.3) is the semilinear DAE

d

dt

where x = (z1, 22, 23)" = (I, Uc, I)T € R3,

[Az] + Bz = f(t,z), (5.4)

e(t) — vo(x1) — p(z3) L 0 0 01 vr
f(t,z) = —h(x3) , A=10 C 0], B=|0 g -1
P(z1 — x3) — p(x3) 0 0 O 01 r
It is easy to verify that AA + B is a regular pencil of index 1.
The projection matrices P;, @; and the matrix G~! have the form

1 0 0 0 0 0
0 —rt o0 0 rt 1
1 0 -1 0 0 1
Ql =10 1 rt 3 Q2 =10 0 —r! )
00 O 0 0 1
Lt 0 —L!
Gl=1| o0 c1 (Cr)~!
0 —(Cr)yt (Cr—1)C"1r2
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The projections of the vector z have the form

Ty, = Pix = (21,12, —r ‘x2)" = (a, —rb,b)T,
Tpy = Pz = (07 07 T_1$2 + x3)T = (07 07 U)T7
where a = 21, b= —r oo, u =rlzo + 23 € R.

The equation Q2[Bz — f(t,z)] = 0, determining the manifold Lo from (3.1), is
equivalent to equation (5.3). Taking into account the new notation, the condition
(3.1) holds if for any a,b € R there exists u € R such that

ru=1v(a—b—u)—p(b+u). (5.5)
Consider the operator function ®: Xy — L(R3,Y3),

~ 6 .
Boya) = | g (Qaf 0o, + 27)) ~ B
0 —r~t —1
= (@ b —uw) + ' (bs +u)+7r) [0 772 1],
0 —r~t —1

where ¢'(a — b —u) = %;y)‘ b O'(b+u) = dfl—éy)‘ bes] te € [0,00),
y=a—b—u y=b+u

ax,be € R,z = (ax, —7by, be)T. Since the spaces X», Y2 are one-dimensional,

the invertibility of the operator function & = é’x : Xo — L(X2,Y2) (i.e., the
2

operator ®(x,,) € L(Xa, Y) is the restriction of the operator ®(x,,) € L(R?, Y)

to X29) is equivalent to the basis invertibility of ®. Let for any (fixed) , @, as, by €

R satisfying (5.5), the condition ¥ (a, — bx — ux) + ¢ (bx + ux) # —r be fulfilled

for any u, € conv{i,a}. Then the operator A = A‘X € L(X,,Y5), where A =
2

é(x;‘u), Ty, = (0,0,u.)7, is ianzrtible since from /~\mp2 =0, zp, € Xo, it follows
that zp, = 0. Hence, for any @, 4, a., b, € R satisfying (5.5), the operator function

® (3.2) is basis invertible on the convex hull conv{#,,, Zp, }, where &,, = (0,0, )",
Tp, = (0,0,0)7.

Choose
2L 0 0
H=]10 Cr 0
0 0 Cr3
Then

(HPyz,G™'[-BPiz + Q1 f(t,2)))
= 2[—(gr+1)a3—z1p0(x1)+(22—21) (21 —3) —rw2h(22) —T20(03) +21€(1)].
Since ¢,9 € C(R), there exists a constant C' such that for any fixed
Tp, = (0,0,%)7, where @ € R, and for all t € [0,00), ||z, || < M, where M is
a number, the estimate

1Q2f (t,xp, + Tpy)| < V2+77% max [¢(a—b—1a)—pb+a)<C

[, [|<M
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is fulfilled. Hence, the condition (3.4) is satisfied for any fixed &,, = (0,0,a)
(i.e., any fixed @ € R).

5.1. Conclusions. By Theorem 3.1 for each initial point (g, 2°) € [0, 00) x
R3 (20 = (29, 29, 29)T) satisfying the consistency condition (the equation (5.3))

29 4+ ra§ = (2 — 28) — p(ah), (5.6)

there exists a unique solution z(¢) of the Cauchy problem for the DAE (5.4) with
the initial condition

z(ty) = 2° (5.7)
on the whole interval [tg, 00) if:
1) for any a,b € R there exists u € R such that (5.5) is fulfilled;

2) for any 4, ﬁ, ay, by € R satisfying (5.5), the condition W (as — by — i)+ (b +
uy) # —r is fulfilled for any u, € conv{u,u};

3) for some number R > 0, there exist the functions k € C([0,0),R), U €

C((0,00), (0,00)) such that [ % = +o00 and

—(gr 4+ )22 — z100(z1) + (20 — 21)¥ (21 — 3) — r22h(T2) — T20(23)+
+xzie(t) < k(t) U(Lx% + C’rm%)

for any ¢t > 0, € R?® such that (5.3), ||[Pyz|| = /23 + (1 + r~2)23 > R.
If, additionally, [,"°° k(t) dt < +oo0 and

4) there exists & € R such that for any @, a,, b, € R satisfying (5.5), the condition
V' (ay — by — uy) 4+ @ (by + uy) # —r is fulfilled for any u, € conv{a, u} \ {@}
(ie., uy = at+ (1 — ), a € (0,1]),

then for the initial points (¢p,2") equation (5.4) is Lagrange stable.

In terms of physics it means that if the input voltage e(t) € C([0,00),R), the
nonlinear resistances ¢, ¢, € C1(R) and the nonlinear conductance h € C*(R)
satisfy the aforementioned conditions 1)-3), then for any initial time moment
to > 0 and any initial values Iy (to), Uc(to), I(to) satisfying Uc(to) + r1(ty) =
W(IL(to) —I(to)) —¢(I(to)), there exist the currents I (t), I(t) and voltage Uc(t)
in the circuit (Fig. 5.1) for all ¢ > ¢y, which are uniquely determined by the
initial values. The functions I, (t), Uc(t) are continuously differentiable and the
function I(t) is continuous on [tg, 00). The currents and voltage are bounded for
all t > to (Lagrange stability) if, additionally, t;roo k(t) dt < 400, and condition
4) is satisfied. The remaining currents and voltages in the circuit are uniquely
expressed in terms of Iy (t), I(t), Uc(t).

Let us consider the particular cases:

®o(y)

a1 o(y) = aoy® ™t Y(y) = asy¥ Tl h(y) = asy®™ T, (5.8)
vo(y) = a a a

1w ply) =
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where k,1,5,5s €N, a; > 0,7 = 1,4, y € R. Note that the functions of the types
(5.8), (5.9) for nonlinear resistances and conductances are encountered in real
radio engineering devices.

For the functions of the form (5.8) and each initial point (to,x") satisfying
(5.6), there exists a unique solution of the Cauchy problem (5.4), (5.7) on [tg, c0)
if j <k, j < s and ag is sufficiently small. For the functions of the form
(5.9) and each initial point (¢, 2") satisfying (5.6), there exists a unique solution
of the Cauchy problem (5.4), (5.7) on [tg,00) if s + a3 < r. If, additionally,
SUPyc[0,00) |€(t)] < 400 or ftjoo le(t)| dt < 400, then for the initial points (tg, ")
the DAE (5.4) is Lagrange stable (in both cases), i.e., every solution of the DAE
is bounded. In particular, these requirements are fulfilled for voltages of the form

_ (t—a)?
2

e(t) =Bt +a)™", e(t) = B, e(t) = fe” o7, e(t) = Bsin(wt +6), (5.10)
where a > 0, 8, 0, w € R, n € N, 6 € [0, 27]. For voltage having the form
e(t)=p(t+a)", a, B€R, neN, (5.11)

global solutions exist, but they are not bounded on the whole interval [¢g, 00).

5.2. Numerical analysis. We find approximate solutions of the DAE
(5.4) (system (5.1)—(5.3)) with the initial condition (5.7) using the numerical
method given in [6].

Choose the parameters L = 500, C' = 0.5, r = 2, ¢ = 0.2 and the input
voltage e(t) = 100 e 'sin(5¢). For the nonlinear resistances and conductance of
the form (5.8) with k =1 =7 =5 =2, a; = 1, i = 1,4, the numerical solution
with the initial values to = 0, 2° = (0,0,0)7 is obtained. The components of the
obtained solution are shown in Fig. 5.2.

The components of the solution for the electrical circuit with the linear pa-
rameters L = 50, C' =1, r = 0.001, g = 1, the nonlinear parameters (5.8), where
k=l=j=s5=2,0;=1,i=1,3, ag = 0.01, and the input voltage e(t) = 2sint,
and for the initial values o = 0, 2 = (0,0,0)7, are shown in Fig. 5.3.

For the linear parameters L = 300, C' = 0.5, r = 2.6, g = 0.2, the nonlinear
resistances and conductance (5.9), where k = 2, a1 = 0.5, ag = 1.5, ag = 1,
ay = 3, and the voltage e(t) = 200sin(0.5¢) — 0.2, the solution components with
the initial values to = 0, 2° = (7/6,0.5,0)” are shown in Fig. 5.4.

For the linear parameters L = 1, C =5, r = 1.51, g = 5, the nonlinear param-
eters (5.9), where k = 2, ; = 1,7 = 1,2, 4, a3z = 0.5, the voltage e(t) = (¢ + 30) 2
and the initial values to = 0, 2° = (0,0,0)7 the solution components are shown
in Fig. 5.5.

The components of the solution for the electrical circuit with the linear pa-
rameters L = 1000, C' = 0.5, r = 2, g = 0.3, the nonlinear parameters (5.8) with
k=1=j=s=2a; =1,i=1,4, the input voltage e(t) = —t2, and for the
initial values to = 0, 2° = (0,0,0)” are shown in Fig. 5.6.
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Fig. 5.3: (a)—(c): The components of the numerical solution.

For the linear parameters L = 100, C' = 5, r = 3, g = 4, the nonlinear
parameters (5.9), where k = 2, a1 = 1, ag = 0.9, a3 = 2, ay = 5, the volt-
age e(t) = (t — 50)% and the initial values to = 0, 2° = (0,0,0)” the solution
components are shown in Fig. 5.7.
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Fig. 5.5: (a)—(c): The components of the numerical solution.

The numerical solutions shown in Figs. 5.2-5.5 are bounded on the corre-
sponding time intervals. When we increase the time intervals by a factor of 5-10,
the solutions are also bounded. The analysis of these numerical solutions indicates
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Fig. 5.7: (a)—(c): The components of the numerical solution.

that there exist bounded global solutions of equation (5.4) (system (5.1)—(5.3))
with the input voltage of the form (5.10) and the nonlinear resistances and con-
ductance of the form (5.8), (5.9). The analysis of the numerical solutions shown
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in Figs. 5.6, 5.7 indicates that there exist global solutions, increasing without
bound with increasing time (as t — o0), for equation (5.4) (system (5.1)—(5.3))
with the input voltage of the form (5.11) and the nonlinear parameters of the
form (5.8), (5.9). Similar results follow from the application of Theorem 3.1.
Therefore, the conclusions obtained with the help of this theorem are verified by
a numerical experiment.

6. Lagrange instability of the mathematical model of a radio
engineering filter

Consider system (5.1)—(5.3) (the DAE (5.4)) with the nonlinear resistances
and conductance

po(z1) = —a3, o(as) =123, Yz —a3) = (v1 —23)°, h(z2) =23. (6.1)

It is assumed that there exists Me = sup;cy, o) l€(t)| < +o0.

The verification of the condition (3.1) and the condition for the operator
function (3.2) is similar to that given in Section 5. Thus, it is easy to verify that
these requirements are fulfilled.

Denote z = (1, 22)T € R2. Choose

QR2—{Z—<m1)€R2x1>m1,
Z2
B 3/ 1 3C L r
ml_max{l—F\/Me, g+r, L,\/max{grc 3,0}},
3

2C
Tg < —TrxT] — X] — M2, My = Max {g— —T, 0}}, (6.2)

L
Q={zy =Pix e X |z Qp}.

Since xp, = (21,22, =1 tx2)T, then 2, € Q & 2 € Q2. Obviously, ,, =0 & Q.

The boundary of the region Qp2 consists of the parts 1 = my and zo +
TSC1+IE:{’+TTL2 = 0. Since 1 > mq, %xl > 0 and x2+rm1+:p‘;’+m2 <
0, d(zg+rzy+2f+mp) <0forallt>0,z= (21, 72, xg):i € R3 satisfying
(5.3) (the condition (t,z) € Lg), where z = (21, 22)7 € Qg2 (Qp2 is the closure
of Qg2), the component z(t) = (x1(t),22(t))? of each existing solution, which
starts at time ty > 0 in the region Qp2, cannot leave this region. Consequently,
the component xp, (t) = Piz(t) of each existing solution x(t) with the initial
point (tg,z°) € [0,00) x R? (20 = (29,29, 29)T) satisfying (5.6), where P20 € Q
(29,297 € Qp2), remains all the time in Q.

2L 0 0
We choose H = [ 0 C 0 |. Then for any # = (x1,22,23)" satisfying
0 0 Cr?

(5.3) and such that (z1,22)7 € Qge, the condition

(HPyz, G —BPiz + Q1 f(t,z)]) = 2[e(t)r1 — (g+r )23 + 2 +



Lagrange Stability and Instability of Semilinear DAEs and Applications 193

3 1 3/2

+ (T_lxg —x1)(x; —x3)° — a:%’ -7 xgxg] > 2 [—(g + r_l)x% + 1‘%’] > av/?,
where v = $(HPyz, Piz) = Lz}+C2% and a > 0 is a certain constant, is fulfilled.
Hence, the condition (4.1), where k(t) = 1, U(v) = av?/?, is fulfilled.

Thus, all the conditions of Theorem 4.1 are satisfied.

6.1. Conclusions. By Theorem 4.1, for each initial point (to,z°) €
[0,00) x R3 satisfying (5.6) and such that (29,29)T € Qge, where Qg2 is the
region (6.2), there exists a unique solution of the Cauchy problem for the DAE
(5.4) with the initial condition (5.7), where the functions g, ¢, 1, h have the
form (6.1) and sup;cp, o0) le(t)| < 400, and this solution has a finite escape time
(the solution exists on some finite interval and it is unbounded).

In terms of physics it means that if sup,cp, o) |e(t)| < +o0 and the nonlinear
resistances and conductance have the form (6.1), then for any initial time moment
to > 0 and any initial values Iy (o), Uc(to), I(to) satisfying Uc(to) + rl(ty) =
W(Ip(to) —I(to)) —p(I(to)) and such that (I1(to), Uc(to))T € Qp2, on some finite
interval tg < t < T there exist the currents I (t), I(t) and the voltage Uc(t) in
the circuit in Fig. 5.1, which are uniquely determined by the initial values, and
limy 7o ||(IL(t), Uc(t), I(t))"]| = +oo.

6.2. Numerical analysis. We find approximate solutions for the DAE

(5.4) (system (5.1)—(5.3)) with the functions of nonlinear resistances and conduc-
tance (6.1) and the initial condition (5.7). The initial values to, 2° = (29, 29, 23)7
are chosen such that (5.6) is satisfied and (29, 29)T € Qga, where Qg is (6.2).
Choose the parameters L = 10, C' = 0.5, r = 2, g = 0.2, the input voltage
e(t) = 2sint and the initial values to = 0, 20 = (2.45, —20.625125,2.5)7. The

components of the obtained numerical solution are shown in Fig. 6.1.
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Fig. 6.1: (a)—(c): The components of the numerical solution.

For the electrical circuit with the linear parameters L = 5, C = 0.5, r = 2,
g = 0.5 and the input voltage e(t) = 0, the components of the numerical solution
with the initial values o = 0, 2° = (1.1, —4.129,1.2)” have the form similar to
that shown in Fig. 6.1.
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The analysis of the obtained numerical solutions shows that the corresponding
exact solutions have a finite escape time and verifies the results obtained with
the help of Theorem 4.1.

7. Conclusions

The theorems, enabling to prove the existence and boundedness of global so-
lutions (Lagrange stability) of the semilinear DAE (1.1) or their non-existence
(solutions have a finite escape time, i.e., they are Lagrange unstable), are ob-
tained. Using these theorems, we have found the restrictions on the initial data
and the parameters of the electrical circuit (Fig. 5.1) of the nonlinear radio engi-
neering filter under which the mathematical model (the DAE (5.4)) of the circuit
is Lagrange stable, and the conditions under which the mathematical model is
Lagrange unstable. The functions and quantities defining the circuits parameters
(resistances, conductivities and others) and satisfying the obtained conditions
have been given. It has been checked that the mentioned conditions of the La-
grange stability are fulfilled for certain classes of nonlinear functions which do
not satisfy the global Lipschitz condition. In particular, it has been proven that
the presence of nonlinear resistances and conductivities of the form (5.8), (5.9)
in electric circuits admits the Lagrange stability of the corresponding mathemat-
ical models. Notice that nonlinear resistances and conductivities of this type are
often encountered in real radio engineering systems.

The results of the study of the mathematical model have shown that the
obtained theorems can be effectively applied in practice. The analysis of the
numerical solutions of the mathematical model verifies the results of theoretical
studies.

Supports. The publication is based on the research provided by grant
support of the State Fund for Fundamental Research of Ukraine (project
F83/45808).
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CriiikicTs 3a Jlarpan>kem HaIiBJIiHITHUX
audepeHIiaIbHO-AJIreOpaidyHux piBHIHDb Ta
3aCTOCYBAHHS 10 HEJIHIMHUX eJJeKTPUYIHUX KiJ
Maria S. Filipkovska

IIpoBomuThCsa HOCTIMKEHHS HAMBJIHIAHOTO audepeHiaabHo-aIredpa-
tqnoro pisusinaa (JAP) 3 aknentom Ha crifikicrts (HectiiikicTs) 3a Jla-
rpamkeM. OTPUMAHO yMOBH ICHYBAHHSI Ta €JIMHOCTI II0O6AJHHUX DPO3B’si3-
KiB (pO3B’sI30K icHye Ha HecKiHueHHOMY iHTepmasi) 3amaui Ko, a Takox
YMOBHU OOMEYKEHOCTI IJI00aJIbHUX PO3B’sI3KiB. Bkl TOro, OTpuMaHi yMOBU
crifikocti 3a Jlarpamxem nanisiiniiinoro JJTAP rapanTyioTs, 1o KoxKHUi #o-
IO PO3B’SI30K € IJI00AJBHUM 1 OOMEXKEHUM, Ta, Ha BiIMIHY Bil TeopeM mIpo
cTifikicTh 3a JIAMyHOBUM, TO03BOJISIOTH JOBECTH iCHYBaHHS Ta €IAHICTD TJI0-
OaJIbHUX PO3B’sA3KIB HE3aJeXKHO BiJI HASBHOCTI Ta KiJILKOCTI TOYOK PiBHO-
Baru. Tako»K OTpUMAaHO YMOBH ICHYBaHHSI Ta €IMHOCTI PO3B’S3KiB 31 CKiH-
YEHHUM 9aCOM BU3HAUEHHsI (PO3B’A30K ICHY€E Ha CKIHYEHHOMY IHTepBaJIi Ta €
HeoOMeKeHuM, ToOTOo HecTiiikuM 3a Jlarpamkem) s 3aa4i Komii. He Buko-
PUCTOBYIOTHCS OOMEXKEHHs TUITY 17100aabH01 yMoBH JIinmuris, 1o 103Bosise
eeKTHBHO BUKOPUCTOBYBATH PE3YJILTATH POOOTH Y MPAKTUIHUX 32CTOCYBa~
HHsAX. B SKOCTi 3aCTOCYBAHHS JIOCIII/I?KEHO MATEMaTHIHY MOJIEIbL PaJiioTe-
XHIYHOTO (DIIBTPY 3 HEJIHINHUME eJleMeHTaMU. JUCeJIbHUN aHAJi3 MOJesi
MiITBEPKYE PE3YJIBTATA TEOPETUIHUX TOCIIiIZKEHD.

KirouoBi cioBa: mudepenIiaabHO-aredpaivaie piBHIHH, CTIKICTD 3a
Jlarpam:keM, HECTIHKICTb, PETyJIIpHUN KMYTOK, OOMEXKeHHUit riobasbHmi
PO3B’SI30K, CKIHUYEHHUI YaC BU3HAYEHHs, HEJIIHIHE eJIeKTPUYIHE KOJIO.
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