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The paper is a continuation of work [15] in which the general sett-
ing for analogs of the Szeg6 theorem for ergodic operators was given and
several interesting cases were considered. Here we extend the results of [15]
to a wider class of test functions and symbols which determine the Szego-
type asymptotic formula for the one-dimensional Schrédinger operator with
ergodic random potential. We show that in this case the subleading term of
the formula is given by a Central Limit Theorem in the spectral context,
hence the term is asymptotically proportional to L'/2, where L is the length
of the interval to which the Schrédinger operator is initially restricted. This
has to be compared with the classical Szeg6 formula, where the subleading
term is bounded in L, L — co. We prove an analog of standard Central Li-
mit Theorem (the convergence of the probability of the corresponding event
to the Gaussian Law) as well as an analog of the almost sure Central Limit
Theorem (the convergence with probability 1 of the logarithmic means of the
indicator of the corresponding event to the Gaussian Law). We illustrate our
general results by establishing the asymptotic formula for the entanglement
entropy of free disordered fermions for non-zero temperature.
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1. Introduction

The Szeg6 theorem (also known as the strong Szegd theorem) is an interesting
asymptotic formula for the restrictions of functions of the Toeplitz operators as
the size of the domain of restriction tends to infinity. The theorem has a number
of applications and extensions pertinent to analysis, mathematical physics, oper-
ator theory, probability theory and statistics and (recently) quantum information
theory, see [5,6,8,26,27]. In this paper we consider an extension of the theorem
viewed as an asymptotic trace formula for a certain class of selfadjoint operators.
We will start with an outline of the continuous version of the Szegd theorem
presenting it in the form which explains our motivation.
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Let k : R — R be an even and sufficiently smooth function from L!(R),
A=[-M,M], |Al=2M, (1.1)

K and K, := K| be a selfadjoint convolution operator in L?(R) and its restric-
tion to L?(A) given by

(Ku)(z) = / " ke — y)uly)dy, TER, (1.2)
e
(Knu)(x) = / k= pula)ds reA.

Set A = 172®) + K and Ay = 1725y + Kp and consider ¢ : R — R such that
@(Ap) is of trace class in L?(A). Then we have according to Szegd and subsequent
works

Tra @(Ap) = |A] /OO (a(t)dt +T +o(1), |A] = oo, (1.3)

where Try is the trace in L2(A), a(t) = 1+k(t), t € R, k is the Fourier transform
of k and the subleading term T is a A-independent functional of ¢ and a. We
will call ¢ and a the test function and the symbol respectively.

Let P = i% be the selfadjoint operator in L?(R). Then the r.h.s. of is
Trp p(ap(P)), i.e., is determined by the triple (¢, a, P), and since a is even and
smooth enough, we have a(z) = b(x?), hence the triple (¢, b, P?). It was proposed
in [15] to consider instead of P? the Schrédinger operator H = P? 4+ V, where
the potential V' : R — R is an ergodic process. It seems that the replacement is
of interest in itself since the ergodicity of the potential guarantees the sufficient
regular large A behavior of Try ¢(ap(H)), hence a well defined asymptotic formu-
las. Besides, the quantity Try ¢(aa(H)) for certain ¢, a and V arises in quantum
information theory and quantum statistical mechanics, see [10], Remark 2.4 and
references therein.

Similar setting is also possible in the discrete case. In fact, it is this case of
which was initially studied by Szego for Toeplitz operators, while the continuous
case outlined above was considered later by Akhiezer, Kac and Widom, see,
e.g., [6] for a review. We will also consider in this paper the discrete case.

In [15] simple but rather non-trivial discrete cases were studied. There a(z) =
r and p(x) is (x —20)~! or log(z — ), where x¢ is outside the spectrum of the
discrete Schrodinger operator with ergodic potential (random and almost peri-
odic). In particular, it was shown that if the potential in the discrete Schrédinger
equation is a collection of independent identically distributed (i.i.d.) random
variables, then the leading term on the right of the analog of (1.3) is again of the
order |A| and is not random, but the subleading term is of the order |A|'/2 and
is a Gaussian random variable. In fact, a certain Central Limit Theorem for an
appropriately normalized quantity Try ¢(ap(H)) was established. In this paper
we extend this result for those ¢ and a which, roughly speaking, have the Lipshitz
derivative (see condition (2.17) below). Note that similar conditions were used
Szeg6 in his pioneering works, although the conditions were seriously weakened
in subsequent works, see [6,8,26,27].
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2. Problem and results

Let H be the one-dimensional Schrédinger operator in [2(Z)

H=Hy+V, (2.1)
where
(Hou)j = —ujt1 —uj—1, JjE€Z, (2.2)
and o
(Vu); =Viu,, |V <V <oo, jeZ, (2.3)

is a potential which we assume to be a sequence of independent and identically
distributed (i.i.d.) random variables bounded for the sake of technical simplicity.
The spectrum o(H) is a non-random closed set and

o(H)CK:=[-2-V,2+V], (2.4)

see [19].
an Let also a : o(H) — R (symbol) and ¢ : a(c(H)) — R (test function) be
bounded functions. Introduce the integer valued interval (cf. (1.1))

A=[-M,M|CZ, |Al=2M+1, (2.5)

and the operator xa : [?(Z) — [*(A) of restriction, i.e., if x = {z;};ez € 1*(2),
then xaz = x5 := {x;}jen € [2(A). For any operator A = {4} rez in 12(Z) we
denote (cf. (1.2))

An = xaAxa = {Aji}jken (2.6)

its restriction to [2(A). Note that the spectra of A and A, are related as follows
og(Ap) C o(H). (2.7)
Our goal is to study the asymptotic behavior of
Trap(an(H)) =Y (plaa(H)))j;  |A] — oo, (2.8)
JEA
where
Trp---=Trxa - xa- (2.9)

As was mentioned above, this problem dates back to works of Szegé [12] and has
been extensively studied afterwards for the Toeplitz and convolution operators,
see, e.g., [6,8,26] and references therein. Recall that any sequence

{Aj}jez, Aj=A_; Y |4l <o (2.10)
JEZ,

determines a selfadjoint (discrete convolution) operator in I2(Z), cf. (1.2)

A={Aj t}inez,  (Au); =D Aj_pup. (2.11)
keZ
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Let o
a(p) = A;e™, peT=0,1),
JEL
be the Fourier transform of {A4;};cz. Then, according to Szegé (see, e.g., [12]), if

 and a are sufficiently regular, then we have the two-term asymptotic formula
(cf 1.3)

Tra @(Ap) = \A]/Tgp(a(t))dt +T +o(1), |Al— oo, (2.12)

where the subleading term 7 is again a A-independent functional of ¢ and a.
Note that the traditional setting for the Szegd theorem uses the Toeplitz op-
erators defined by the semi-infinite matrix {A4;_;}; ez, and acting in *(Zy).
The restrictions of Toeplitz operators are the upper left blocks {Ajfk}ﬁkzo of
{Aj—k}ﬁzo- On the other hand, we will use in this paper the convolution op-
erators (2.11) defined by the double infinite matrix {A;_}; ez, acting in [%(Z)
and having their central L x L, L = 2M + 1 blocks as restrictions. The latter
setting seems more appropriate for the goal of this paper dealing with ergodic
operators where the setting seems more natural. The same setting is widely used
in multidimensional analogs of Szegd theorem [6].

Note now that the convolution operators in [?(Z?) and L?(R%), d > 1 admit
a generalization, known as ergodic (or metrically transitive) operators, see [19].
We recall their definition in the (discrete) case of I2(Z).

Let (2, F, P) be a probability space and T is an ergodic automorphism of the
space. A measurable map A = {A;;};rez from 2 to bounded operators in [?(Z)
is called ergodic operator if we have with probability 1 for every t € Z

Ajiprt(w) = Ajp(T'w),  j,k € Z. (2.13)

Choosing Q = {0}, we obtain from (2.13) that A is a convolution operator (2.11).
Thus, ergodic operators comprise a generalization of convolution operators, while
the latter can be viewed as non-random ergodic operators.

It is easy to see that the discrete Schrodinger operator with ergodic potential
(2.1)—(2.3) is an ergodic operator. Moreover, if o(H) is the spectrum of H, then
o(H) is non-random, for any bounded and measurable f : 0(H) — R the operator
f(H) is also ergodic and if {f;r};kez is its matrix, then {f;;};ecz is an ergodic
sequence [19]. Besides, there exists a non-negative and non-random measure N
on o(H), N(R) =1 such that

E{fjj(H)} = E{foo(H)} = " S)Nu(dA). (2.14)

The measure Ny is an important spectral characteristic of selfadjoint ergodic
operators known as the Integrated Density of States [19]. In particular, we have
for any bounded f : o(H) — R with probability 1

i A T () = [ oy FON(@) (2.15)
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This plays the role of the Law of Large Numbers for Tr f(Hj).
Accordingly, it is shown in [15] (see also formula (2.18) below) that the leading
term in an analog of (2.12) for an ergodic Schrédinger operator is always

A @(a(A))Nu (dA). (2.16)
o(H)
On the other hand, the order of magnitude and the form of the subleading
term depend on the “amount of randomness” of an ergodic potential and on
the smoothness of ¢ and, especially, a, see, e.g., [6,8,11,15,22,27] for recent
problems and results.

In this paper we consider the discrete Schrédinger operator with random i.i.d.
potential, known also as the Anderson model. Thus, our quantity of interest (2.8)
as well as the terms of its asymptotic form are random variables in general (except
the leading term (2.16), which is not random). Correspondingly, we will prove
below two types of asymptotic trace formulas, both having the subleading terms
of the order |[A['/? (cf. (2.12)). The formulas of the first type are valid in the
sense of distributions, i.e., are analogs of the classical Central Limit Theorem
(see Theorems 2.1 and 2.3), while the formulas of the second type are valid with
probability 1, i.e., are analogs of the so called almost sure Central Limit Theorem
(see Theorem 2.5).

Theorem 2.1. Let H be the ergodic Schrodinger operator (2.1)—(2.3) with a
bounded i.i.d. potential and let o(H) be its spectrum. Consider bounded functions
a:o(H) = R and ¢ : a(c(H)) — R and assume that a, ¢ and v := g oa :
o(H) — R admit extensions a, ¢ and ¥ on the whole axis such that their Fourier
transforms a, @ and 7 satisfy the conditions

/ (1 + |t|9) 1F(t)|dt <00, 6>1, f=a,p,7. (2.17)
Denote
£a = A7 (TYA plan(H)) —[A] /( )'V()‘)NH(CD‘)> (2.18)
o(H
and
ox =E{Z31}. (2.19)
Then:
(1) there exists the limit
lim o3 = o, (2.20)
A—oo
where
t=> "G (2.21)
lEZ
with

Cj =E{Yoo(H)v;;(H)},  7;(H) = 55(H) — B{y;;(H)}, (2:22)



Szego-Type Theorems for One-Dimensional Schrédinger Operator . . . 367

and also
0? = E {(E{A0lF5°} — E {AolF})*}
= E{Var {E{A4|F;"} [F{°}}, (2.23)
where .
A = Vo/ Yoo (H v —uvp ) du (2.24)
0

and F?, —0o < a < b < 00 is the o-algebra generated by {V;}"

j:a 5

(ii) if v is non constant monotone function on the spectrum of H, then
02> 0 (2.25)
and we have
P{o 'Sy € A} =®(A)+0(1), M — oo, (2.26)

where A C R is an interval and ® is the standard Gaussian law (of zero mean
and unit variance).

Remark 2.2. The theorem is an extension of Theorem 2.1 of [15], where the
cases a(A) = X and p(A) = (A — 20)~! or p(A) = log(\ — xq), zg ¢ o(H) were
considered. In these cases a, p and v = @ oa are real analytic on o(H) (see (2.4)),
hence admit real analytic and fast decaying at infinity extensions to the whole
line. Besides, 7 is monotone on o(H), hence Theorem 2.1 applies.

It is worth also mentioning that conditions (2.17) are not optimal in general.
Consider, for instance, the case where p(\) = X(—o0,5](A), £ € o(H), a(N) = A
with X(_s, k) being the indicator of (—oo, E] C R. Here v := 9 oa = X(_q, ) and

Tra (an(H)) = Tra X(—co,r)(H) := NA(E) (2.27)

is the number of eigenvalues of Hy not exceeding E. It is known that if the
potential in H is ergodic, then with probability 1

l‘lﬁl [AITINVA(E) = N(B),

where N (FE) is defined in (2.14). This plays the role of the Law of Large Numbers
for NA(F) [19]. The Central Limit Theorem for Nj(E) is also known [25]. Its
proof is based on a careful analysis of a Markov chain arising in the frameworks
of the so called phase formalism, an efficient tool of spectral analysis of the one
dimensional Schrédinger operator [19]. It can be shown that the theorem can
also be proved following the scheme of proof of Theorem 2.1, despite that ~ is
discontinuous in this case. However, one has to use more sophisticated facts on
the Schrodinger operator with i.i.d. random potential, in particular the bound

supE {‘(H —FE— is);kl‘s} < Qe ekl (2.28)
e>0
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valid for some s € (0,1), C' < oo and ¢ > 0 [2] if the probability law of potential
possesses certain regularity, e.g., a bounded density. The bound is one of the
basic results of the spectral theory of the random Schrédinger operator, implying
the pure point character of the spectrum of H and a number of its other impor-
tant properties. It is worth noting that the monotonicity of v on the spectrum
remains true in this case. Thus, the monotonicity of v seems a pertinent sufficient
condition for the positivity of the limiting variance.

Here, however, is a version of Theorem 2.1, applicable to the case where -y is
a certain convex function on o(H).

Theorem 2.3. Consider the functions rq : [0,1] — [0,1] and np : R — [0, 1]
given by

ra(A) = (1 —a)tlogy A\ + (1= XN)%), Xe0,1], a >0, (2.29)

and
-1
np(\) = <eﬁ<A—EF> + 1) . AER, B>0, Ep € o(H). (2.30)

Assume that the random i.i.d. potential in (2.1)—(2.3) has zero mean E{Vp} =0
and that the support of its probability law contains zero. Then the conclusions of
Theorem 2.1 remain valid for ¢ = ro and a = np, i.e., the random variable Xp
of (2.18) converges in distribution to the Gaussian random variable of zero mean
and a certain variance o > 0.

Remark 2.4. The quantity Trp ro((np(H))a) is known in quantum statistical
mechanics and quantum information theory as the Rényi entanglement entropy
of free fermions in the thermal state of the inverse temperature S~ > 0 and the
Fermi energy Efr and having H as the one body Hamiltonian, see, e.g., [1,3,10].
An important particular case where v = 1, hence hj(A) = —Alogy A — (1 —
A)logs(1—=X), A € [0,1], is known as the von Neumann entanglement entropy. One
is interested in the large-|A| asympotic form of the entanglement entropy. In the
translation invariant case, i.e., for the case of constant potential in (2.1)—(2.3) one
can use the Szegd theorem (see (2.12) and (2.38)) to find a two-term asymptotic
formula for the entanglement entropy. In this case the term proportional to |A|
in (2.12) and (2.38), i.e., to the one dimensional analog of the volume of the
spatial domain occupied by the system, is known as the volume law, while the
second term in (2.12), which is independent of |A[, i.e., proportional to the one
dimensional analog {—M, M} of the surface area of the domain, is known as the
area law [10]. In view of the above theorem we conclude that in the disorder
case (random potential in H) the leading term of the entanglement entropy is
non-random and is again the volume law while the subleading term is random,
proportional to |A|'/? and describes random fluctuations of the volume law. The
O(1) in |A| term can also be found for some ¢ and a [15]. It is random and is
now the “subsubleading” term of the asymptotic formula. Of particular interest
is the zero-temperature case 3 = oo, where nr = X _, g and this term is leading.
We refer the reader to recent works [1,11,18,21,22,24,27] for related results and
references.



Szego-Type Theorems for One-Dimensional Schrédinger Operator . . . 369

The above results can be viewed as stochastic analogs of the Szegd theorem
(see more on the analogy in [15] and below). It is essentially a Central Limit
Theorem in its traditional form, i.e., an assertion on the convergence of distri-
bution of an appropriately normalized sums of random variables to the Gaussian
random variable. In recent decades there has been a considerable interest to the
almost sure versions of classical (distributional) limit theorems. The prototype of
such theorems dates back to P. Levy and P. Erdés and is as follows, see, e.g., [4,9]
for reviews.

Let {X;}°, be a sequence of i.i.d. random variables of zero mean and unit
variance. Denote S,, = Z?ip Lo, = m_l/QSm. Then we have with probability 1

M

loglM mz_:l %M(Z’”) = ®(A) +o(l), M — oo, (2.31)

In other words, the random (“empirical”) distribution of Z,, converges with prob-
ability 1 to the (non-random) Gaussian distribution.
On the other hand, the classical Central Limit Theorem implies

M
i 0 B} = #(A) Foll), Moo, ()
m=1

i.e., just the convergence of expectations of the random distributions on the 1.h.s.
of (2.31). Thus, replacing the expectation by the logarithmic average, a sequence
of random variables satisfying the CLT can be observed along all its typical
realizations.

The situation with the almost sure CLT (2.31) for independent random vari-
ables is rather well understood, see, e.g., [4,9] and references therein, while
the case of dependent random variable is more involved and diverse, see, e.g.,
[7,13,16,23]. As in the case of classical CLT (2.32), the existing results con-
cern mostly the weakly dependent stationary sequences, e.g., strongly mixing
sequences. This and the approximation techniques developed [14, Section 18.3],
allow us to prove an almost sure version of Theorem 2.1.

Theorem 2.5. We have with probability 1 under the conditions of Theo-
rem 2.1

M
1 1 .
o 11 mz::l —1a (0 'S m) = ®(A) +0(1), M — oo, (2.33)
where X_p, 1) 5 given by (2.18) with A = [-m,m], A CR is an interval and ®
is the standard Gaussian law.

Remark 2.6. Given a sequence {&,,}m>1 of random variables and a random
variable &, write

e 2 MY2% 40 (M1/2) . M = o0, (2.34)
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if we have

P{&u/MY?2 € A} = G(A) +o(1), M — oo, (2.35)
where G is the probability law of £, and write

e E MY2%¢ 40 (Ml/Z) . M — oo, (2.36)

if we have with probability 1 (assuming that all {&,, m > 1} ) are defined on
the same probability space)

M
logl TRE (gm/ml/Q) =G(A) +o(1), M — cc. (2.37)
m=1

Then, we can formulate Theorems 2.1 and 2.5 in the form similar to that of the
Szego theorem (cf. (2.12)), namely as

Ton p(aa(H) 21A] [ 2()Nu(a)
o(H)
+\A\1/20_1§+o<\A\1/2), Al = (2M +1) = 00,  (2.38)

for Theorem 2.1 and with probability 1 as

Tonp(aa(H) £ 1A [ 2()N(a)
o(H)
+1A1Y20 (671A) + 0 (JAI2) Al = (2M +1) = o0, (2.39)

for Theorem 2.5, i.e., as two-term “Szego-like” asymptotic formulas valid in the
sense of the D- and the L-convergence, the latter valid with probability 1. An
apparent difference between the Szegé formula (2.12) and its stochastic coun-
terparts (2.38) and (2.39) is that the subleading term of the Szegd theorem is
independent of |A| while the subleading term of its stochastic counterparts grows
as |A|"/? although with stochastic oscillations (see below).

We will comment now on the errors bounds in the above asymptotic formulas.
We will mostly use known results on the rates of convergence for the both CLT
(2.35) and (2.37) with &, being the sum of i.i.d. random variable (see (2.32) and
(2.31)), despite that in our (spectral) context the terms of the sum in (2.8) are
always dependent even if the “input” potential is a collection of i.i.d. random
variables. It seems plausible that the error bounds for the i.i.d. case provide
best possible but not too overestimated versions of the error bounds for the case
of sufficiently weakly dependent terms. Known results on the sums of weakly
dependent random variables support this approach, see, e.g., [4,7,9,13,16,23].

Recall first that for the classical Szegd (non-random) case (2.12), i.e., for the
Toeplitz and convolution operators, the subleading term is A-independent and
the error is just o(1) in general. However, if ¢ and a are infinitely differentiable,
one can construct the whole asymptotic series in the powers of |[A|~! [29].
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On the other hand, it follows from the standard CLT for bounded i.i.d. ran-
dom variables (see (2.35)) and the Berry-Esseen bound that we have in (2.35)
the error term O(M~1/2) instead of o(1), and, hopefully, O(|A~/2|) in the D-
convergence stochastic analog (2.26) of the Szeg6 theorem.

As for the “point-wise” case treated in Theorem 2.5, we note first that this
is a “frequency”-type result, analogous to the Law of Large Numbers or, more
generally, to the ergodic theorem. This is clear from the following observation
on the well known Gaussian random processes [4]. Namely, let W : [0,00) — R
be the Wiener process and U : R — R be the Uhlenbeck—Ornstein process. They
are related as U(s) = e~*/2W (e®), s € R, thus

1/2 logM
1OgM/ 1A (t)/t )dt 1OgM/ 1A(U(s)) ds.

Since U is ergodic and its one-point (invariant) distribution is the standard Gaus-
sian, the r.h.s. converges with probability 1 to ®(A) as M — oo according to
the ergodic theorem. We obtained the almost sure Central Limit Theorem for
the Wiener process, the continuous time analog of the sequence of i.i.d. Gaussian
random variables, see (2.31).

In view of this observation (explaining, in particular, the appearance of the
logarithmic average in the almost sure Central Limit Theorem) and the Law of
Iterated Logarithm we have to have with probability 1 in (2.35) the oscillat-
ing error term O((logloglog M/log M)'/?) instead of o(1), hence the error term
O((logloglog|A|/log A)Y/?) in the L-convergence stochastic analog (2.33) of the
Szego theorem. More precisely, it follows from the invariance principle that with
probability 1 we have to have the additional terms aW (log M) + O(log M*/?=¢),
M — oo in (2.37) and, correspondingly, the terms

W (log |A]) + O (| log \A]l/Q‘E) . log |A| — oo,

with & > 0 and some £ > 0 in (2.33).

We prove in this paper asymptotic formulas for traces of certain random
operators related to the restrictions to the expanding intervals A = [-M, M| C
Z, M — oo of the one dimensional discrete Schrodinger operator H assuming
that its potential is a collection of random i.i.d. variables. We do not use,
however, a remarkable property of H, the pure point character of its spectrum.
This spectral type holds for any bounded i.i.d. potential [2] and can be contrasted
with the absolute continuous type of the spectrum of H with constant or periodic
potential. Moreover, if the common probability law of the on-site potential is
Lipschitzian, we have the bound (2.28). It can be shown that the use of the
bound makes the conditions of our results somewhat weaker (it suffices to have
§ = 1in (2.17), certain bounds somewhat stronger (O(1) instead o(|A|'/2) in (3.1),
Ce~P instead C/p? in (4.16), etc.) and proofs simpler (Lemmas 4.2 and (4.4)
are not necessary). On the other hand, the bound (2.28) holds only under the
condition of some regularity of the common probability law of the i.i.d. potential
(e.g., the Lipschitz continuity of its probability law). This is why we prefer to
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use rather standard spectral tools, somewhat less optimal conditions (2.17) on
a and ¢ and somewhat more involved proofs but to have corresponding results
valid for a larger class of random i.i.d. potentials of Theorems 2.1 and 2.5.

It is worth noting, however, that the bound (2.28) is an important necessary
tool in the analysis of the large-A behavior of Trap(aa(H)) with not too smooth
a and @, e.g., @ = NF|g=cc = X[Ep,00) With np of (2.30) and ¢ = 74, a < 1 with
ro of (2.29) corresponding to the entanglement entropy of the ground state of
free disordered fermions at zero temperature, see [11,22] and references therein.

3. Proof of results

Proof of Theorem 2.1. It follows from (2.17) and Lemma 4.5 that we have
uniformly in potential

Tra p(an(H)) = Tra p(a(H)) + o <\A]1/2> LA = oo (3.1)

Hence, we obtain in view of (2.14) and the definition (2.9) of Trp

Tra p(an(H |A|/ N(dN) +7A+o(|A\1/2)
where

Yo =71 — B{} = (v (H) — B{y;(H)}),
JEA

E{a(H)}) = [A| / N Nir(d). (3.2)

The above formulas reduce the proof of the theorem to that of the Central Limit
Theorem for [A|~1/24,, i.e., for the sequence {v;;(H)}jez. The sequence is er-
godic according to (2.13) for j = k.

We use in this case a general Central Limit Theorem for stationary weakly
dependent sequences given by Proposition 4.1 with X; =V}, j € Z and Yy =
Yoo(H). To verify the approximation condition (4.1) of the proposition it is
convenient to write V = (V, V), where Vo = {V}};|<, and V5 = {V}} ;5 are
independent collections of independent random variables whose probability laws
we denote P and P- so that the probability law P of V' is symbolically P =
P - P-. Denoting y9o(H) = g(V<,V~), we have

B{lhon(H) ~ B0 (H) 172,
/ sV o) = [ (v v)piavy)

< [ ([ lotveve) = g vy pavs) ) plave) plave.

P(dVs)P(dV<)

Applying to the difference in the third line of the above formula Lemma 4.6 with
f = 00, we find that the expression in the first line of the formula is bounded by
C/p?. Thus, the series (4.1) is convergent in our case.
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This and Proposition (4.1) imply the validity of (2.20)—(2.22). The formula
for the limiting variance (2.23)—(2.24) is proved in Lemma 4.7.

Let us prove now the positivity of the limiting variance o2 (2.25). According
0 (2.23)—(2.24), the hypothesis 0 = 0 implies that for an almost every event
from F7° the expression

1
Vo / ds B{vo(Hvyosury)|F} du (3.3)
0

is independent of Vj € suppF. Assume without loss of generality that zero is in
support of F'. Then the above expression is zero. On the other hand, if our i.i.d.
random potential is non-trivial, then there exists a non-zero point Vj # 0 in the
support. If, in addition, 7' does not change the sign on the spectrum of H and
is not zero, then (3.3) cannot be zero, and we have a contradiction.

Now it suffices to use a general argument (see, e.g., Theorem 18.6.1 of [14] or
Proposition 3.2.9 of [20]) to finish the proof of Theorem 2.1. O

Proof of Theorem 2.3. We will first use Theorem 2.1. Indeed, according to
(2.4) and (2.30), a = np is real analytic on the finite interval K of (2.4) and
admits a real analytic and fast decaying at infinity extension to the whole axis.
Besides, a(K) = [a—,a+], 0 < a_— < aq < 1 is also finite, hence, ¢ = r, of (2.29)
is real analytic on a(K) and admits a real analytic and fast decaying at infinity
extension to the whole axis. Thus, assertion (i) of Theorem 2.1 is valid in this
case.

We cannot, however, use assertion (ii) of Theorem 2.1, since v = r, o np is
not monotone but convex on K. Here is another argument proving the positivity
(2.25) of the limiting variance (2.23)—(2.24).

Assuming that the variance is zero and using the fact that zero is in support
of the probability law F' of the potential, we obtain from (2.23)—(2.24), as in the
proof of Theorem 2.1, that for almost every event from F° we have

vo/ E {v0o(Ho(u))|F{°} du =0, Vj € suppF,
where Ho(u) := H|yy—uy;- Integrating here by parts with respect to u, we get
VoE{~00(Ho(0))[F7°}
#3 [ B Lafy(H)IF | (1) du=0. Vi € suppF,

and since E{Vy} = 0 and ~(,(Ho(0)) is independent of Vj, the expectation with
respect to Vj yields for almost every event from F7°

[ a-w fvim {(ivéo(H(U))IFf"} P =0 ()

We will now use the formula

0
%700 =W // 2):“H(u) (d)\l):u‘H(u)(d)\Q)7
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where p, .\ (dA) = (Eg(u)(dA))oo, and Exy) is the resolution of identity of H (u).
Thus, po > 0 and po(R) = 1. The formula can be obtained by iterating twice the
Duhamel formula (4.3).

Plugging the r.h.s. of the formula in (3.4) and recalling that ~ is strictly
convex on the spectrum, hence (y(A1) —v(A2))(A1 — A)~! < 0, we conclude that
the r.h.s. of (3.4) is not zero. This implies the positivity of the variance. O

Proof of Theorem 2.5. As in the proof of Theorem 2.1 we will start with
passing from Try @(ap(H)) to Tra @(a(H)) = Tray(H) with the error o(|A|'/?)
by using (2.17) and Lemma 4.5 (see (3.1)), thereby reducing the proof of the
theorem to the proof of the almost sure CLT for |A|7Y/24, (see 3.2) i.e., for the
same ergodic sequence {v;;(H)} ez as in Theorem 2.1.

Our further proof is essentially based on that in [23] of the almost sure CLT
for ergodic strongly mixing sequences (see (3.12)) and on the procedure of ap-
proximation of general ergodic sequences by strongly mixing sequences (see (4.1))
given in [14], Section 18.3. In particular, according to Proposition 4.8 (see The-
orem 1 in [23]), it suffices to prove the bound

Var{ flfw) = 0(1/(log M)), M — (3.5)
ar longzlm m) ¢ = og , o0, .

for any bounded Lipschitzian f (see (4.39)),
Zm = 1 *S ]y Hm = 2m+ 1, (3.6)

and some ¢ > 0.
To this end we denote

Vi (H) =5 (H) = E{y;;(H)} =Y;, jEL, (3.7)
and introduce for every positive integer s the ergodic sequences {§§S)}jez and
{1 }jez with

§" =e{viAn} ) =v-g 8)

Denote also

1 &
Fyy = = (Zm
M longZ:lmf( )

and

Fi) =

M
1 1
—_ Z(S) Z(S) :Zm s) - .
IOngZ::lmf( m)’ m ‘3/j_>£](_) (3.9)

We have then from the elementary inequality Var{¢} < 2Var{n} + 2Var{{ —n}
and (4.39):

Var{F)} <2Var {FE)} + 2Var {FM — FJS)}
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M

(s) 2C7 1 (s)
<2var {F{}'} + og 17 mz_:l —Var (RO}, (3.10)
where C] is defined in (4.39) and
RY) = Zp — 2 = u 1?3 n. (3.11)
lj1<m

Recall now that an ergodic sequence is said to be strongly mixing if

ar = sup |P(AB)— P(A)P(B)| — 0, (3.12)
AeFr

BEFR,

as k — oo through positive values and «; is called the mixing coefficient.
Since the random potential is a sequence of i.i.d. random variables, the se-
quence {fj(s)}jez of (3.8) is strongly mixing and its mixing coefficient is (see

(3.12))
o [<1, k<o2s
ol = { ° (3.13)
0, k> 2s.

We are going to bound the first term on the right of (3.10) by using Lemma
1 of [23] on the almost sure CLT for strongly mixing sequences and we will
deal with the second term on the right of (3.10) by using the sufficiently good
approximation of {Y}},ecz of (3.7) by {{;S)}jez of (3.8) as s — oo following from
Lemma 4.6. Note that similar argument has been already used in the proof of
Theorem 2.1, see (4.1) in Proposition 4.1 and Theorem 18.6.3 in [14]. This is
obtained in Lemmas 4.9 and 4.10 below for M — oo and s — oo. They allow us
to continue (3.10) as

Var{Fy} =0 (log s/log M) + 0(1/39*1> ,

where 6 > 1 (see (2.17)). Choosing here s = (log M)!~¢, ¢ € (0,1), we obtain
(3.5), hence, the theorem. O

4. Auxiliary results

We start with a general Central Limit Theorem for ergodic sequences of ran-
dom variables, see [14], Theorems 18.6.1-18.6.3, more precisely. with its version
involving i.i.d. random variables.

Proposition 4.1. Let {X;};ez be i.i.d. random variables, FC be the o-algebra
generated by {Xj}g':aa Yo be a function measurable with respect to F = F>.

Denote T' the standard shift automorphism (Xj41(w) = X;(Tw)) and set Yj(w) =
Yo(Tw). Assume that

(i) Yo is bounded;
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(ii) Y E{Yo-E{Y|F,}|} < oo (4.1)
p=1
Then

(a) 0 := ZCOV{Y(),Yk} < 00;
k=0

(b) if 02 > 0, then
A2 Y, (42)
lil<M

converges in distribution to the Gaussian random variable of zero mean and
2

variance o-.

The proof of the proposition is based on the proof of the CLT for strongly
mixing ergodic sequences (see (3.12)) and on the approximation of more general
ergodic sequences by strongly mixing sequences provided by condition (4.1).

We will also need several facts on the one-dimensional discrete Schrodinger
operator with bounded potential.

We recall first the Duhamel formula for the difference of two one-parametric
groups Uy (t) = ¢4 and U;(t) = 41 corresponding to two bounded operators
Al and AQ .

0
Us(t) — Uy (1) = 1/0 Us(t— $)(As — AUy (s)ds, t€R.  (4.3)

Lemma 4.2. Let H = Hy+ V be the one-dimensional discrete Schréodinger
operator with real-valued bounded potential, U(t) = e be the corresponding
unitary group and {U;i(t)};kez be the matriz of U(t). Then we have for anyt €
R and § >0

U (t)] < e OU=kIFs@I " 5(6) = 2sinh 6. (4.4)

Proof. Introduce the diagonal operator D = {Dj}; ez, with D, = epjéjk,
p € R and consider

DU(wal — DHD™! _ JitH+itQ

where
Q=DHD'— H=DH,D™! — H,.

Since Hy is the operator of second finite difference with the symbol —2 cosp, p
€ T, the symbol of @ is

—2cos(p +1ip) + 2cosp = —2cos p(cosh p — 1) + 2i sin psinh p.
Hence @ = Q1 + iQ2, where @)1 and )2 are selfadjoint operators and

|Q2]| < 2sinh|p].
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Now, denoting As = H + Q1 + iQ2 and Ay = H + @1, iterating the Duhamel
formula (4.3) and using ||e®41|| = 1, we obtain

eitH—1@ || < (lHIQall — olti2sinhlpl

This and the relation

(DU)D™Y).

k= eijjk(t)e_pk

imply (4.4). O

Remark 4.3. Bound (4.4) is an analog of the Combes-Thomas bound for the
resolvent {((H — z) 1) i };kez of H and the above proof uses an essentially same
argument as that in the proof of the bound, see, e.g., [2].

Lemma 4.4. Let H = Hy+ V' be the one-dimensional discrete Schrodinger
operator with real-valued potential and a : R — R admits the Fourier transform
a and

h 1+ |t)°) [a(t)| dt < 0o, 6> 0. (4.5)
[ ()

—0o0

If A= a(H) = {Fji};rez, then we have
Akl <C/lj =k, C <o, j#k. (4.6)

Proof. It follows from the spectral theorem
A= a(H) = / AU dt, (@.7)
hence, we have for any 7" > 0

A= [ a0

—00

- / AU (t)dt + / AU @) dt =T + I,
|t <T >
We have further -
|Il| < 8—5j—k+s(6)T/ |a(t)|dt

—00
by using Lemma 4.2 and
Bl < g [ (1+1) ala
—00

by condition (4.5) of the lemma.
Now, choosing T' = g|j — k| —0log|j — k|, we obtain (4.6). O
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Lemma 4.5. Let A = {Aj;}jrez be bounded selfadjoint operator in I*(Z)
such that
Al < CJlj—k°, C<oo, 6>1, (4.8)

and Axn = xaAxa = {Ajr}jken be its restriction to A. Then for any f: R — C
admitting the Fourier transform f such that

/OO (1+tDIF)] dt < o (4.9)

—00

we have uniformly in V satisfying (2.3)
‘ Trxaf(Aa)xa — TrXAf(A)XA‘ = o(Ll/Z), L — o0. (4.10)

Proof. Consider Ay ® Ag, A=7Z\A and

0 XAAXTK

Thus, writing an analog of (4.7) for A instead of H and using the Duhamel
formula (4.3), we obtain

f(A) — f(Ar © Ap\a)
0o |¢]
=/ f(t)dt ; U(t — s)(xgAxa + xaAxz)Ua(s) © Ux(s) ds, (4.11)
and

Tr xaf(A)xa — Tr xaf(Ar)xa

oo t
= (t)dt/ TrxaUn(s)xaU(t — s)xxAxa ds. (4.12)
—o00 0
Denoting
B = xaUA(8)XAU(t — 8) : 1(Z) — 1*(A) (4.13)

we can write the integrand J in (4.12) as

J = Ap;Bj, (4.14)
JEA
keA

hence

1/2 1/2
7<) (ZAkaszk2) <> (ZAkaZBij) :

jeA \keA keA jeA \keA kezZ

We have in view of (4.13)
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Z ’Bjk‘ BB*)"

keZ
= (Ua($)xaU(t = s)U"(t — s)xaU"(s))j; = (xaUn(s)Ux(s))j; = 1

since U(t — s) is unitary in [2(Z) and Uy (s) is unitary in [2(A). Thus, we have in
view of (4.8)

1/2 1/2

<Y 1Al ) <CY (D=7 =o(L'?)

jeA \keA jeA \keA

and (4.11) follows. Note that for § > 3/2 the r.h.s. of the above bound is
O(1). O

Similar result was obtained in [17] by another method.

Lemma 4.6. Let Hy and Hs be the one dimensional discrete Schrodinger
operators with bounded potentials Vi and Vs coinciding within the integer valued
interval [—p,p]. Consider f: R — C whose Fourier transform f is such that

/OO (1 + \t\9> 1F(t)|dt < o0, 6> 1. (4.15)

—0o0

Then we have
| foo(H1) — foo(H2)| < C/p°, (4.16)

where C' is independent of V1 and V5.

Proof. We denote
Vi={Vjss U{Vityics V2= {V] Hjms U{Vihpj12ss

UMD (t) = e and UP)(t) = e and use (4.7) and the spectral theorem to
write for any 17" > 0

rmwa<mwms/ FoIvR @) - vl @)t

)<

+/ FOIu@w - v =L+ L. (417)
|t|>T

We have then by the Duhamel formula (4.3) and (2.3)

[l
Ilg/ Ft) ydt/ STUE (v - VU (t)]dt!
It <T

|J|>$

<9V / )|dt / Ut — oDy
er (t)] i > U (= )T ()]

71>
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We will use now Lemma 4.2 implying

[ < 2Ve-2rts(@T / (1+ )Tt dt. (4.18)
To estimate [ of (4.17), we write
L < 2/ ()]t < / L+ 10°) IFGo) (4.19)
[t|I>T

Choosing now in (4.18) and (4.19) T = 26p/s(d) — 0 log p, we obtain (4.16). [

Lemma 4.7. Consider a bounded v : R — R admitting the Fourier transform
~ such that

/_OO (1+ [E)IA()] dt < oo, (4.20)

and set v(H) = {vjx(H)};jkez, where H is the one-dimensional Schrédinger
operator (2.1)—(2.3) with random i.i.d. potential. Let vy be defined in (3.2) and

o3 = |A|7Var{y,}. (4.21)
Then there exists the limit
o?i= lim of = E{(M(°>)2}, (4.22)
where
MO = E{A(Vo, {V;}j20) | F5°}
- / E{Ao(V], {V;}ip0) | FEHE(AV]) (4.23)
and .
A0(Vo, {V3}i40) = Vo / (' (D)l v oo d. (4.24)
0

Proof. Tt is convenient to consider
TA := Tray(Hp) (4.25)
instead of ya of (3.2). It follows from Lemma 4.5 that
o3 = |A|""Var{m\} +o(1), [A] = . (4.26)

To deal with Var{mp} we will use a simple version of the martingale tech-
niques (see, e.g., [20], Proposition 18.1.1), according to which if {Xj}j]\/ifM
are the iid. random variables, ® : R+l _ R is bounded and ® =
S(X_pr, X pryt1, .-, Xar), then

Var{®} := {|® — E{®}|*}
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> E{yq><m>—<1><m+1>|2}, (4.27)

Im|<M

where

o =E{o|FM}, oM =9, oM+ = E(s). (4.28)

We choose in (4.27), (4.28) X; =V}, [j| < M and ® = 7 (see (4.25)) and we
obtain

M

A Var{ry} = A7 Y E{W(Am)\?}, (4.29)
m=—M
M = ) _ o),
where (see (4.28))
T1(\m) =E{nlF)}, Tz(\iM) =TA; T/(\MH) = E{m}. (4.30)

By using the formula

1 0
TA — TA| V=0 = / dua*Tl“A Y(HA V= Vi)
0 u

1
_ / (' (HA Vv = Ar Vi (V] jm)s (431)
0
we can write

M = B { Ay (Vi AV } o) | FA

_ / ANV AV} o) | FM Y F(QVL). (4.32)
Let us show now that
. 1 (m)j2\ _ (0)}2
Jim [A] %E{WA 2} =E{MmOP}, (4.33)

where for any m € Z
Mm) — E{A(Vi, {V }jzm)| F o }

-/ T E{AW V) | ER (V). (4.34)

—00

Note first that since Aa(Vin,{V}jzm) does not depend on {V;}jj>a, We can

replace F by F° Next, it is easy to see that Mg\m) is bounded in A and V,
thus the proof of (4.33) reduces to the proof of validity with probability 1 of the
relation
lim M = pmlm), (4.35)
A—o0,
dist(m,{M,—M})—oc0
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Note that M™) of (4.34) differs from its prelimit form Mg\m) of (4.32) by the
replacement of Hy by H in the r.h.s. of (4.31).

Indeed, if (4.35) is valid, then we can replace ./\/lfxm) by M) in the Lh.s. of
(4.33) and then take into account that V' is a collection of i.i.d. random variables,
hence E{|M™)|2} = E{|M©)|2} for any m € Z.

To prove (4.35) we will use a version of formula (4.11) with f = 4/ implying
for m e A

(V(H) — ' (HA) ) = i /

—00

o0

[t
Be)dt [ (Ualt = XU (9 ds. (430

Taking into account that the non-zero entries of xAHxx are —d; a0k a+1 and
_5j,—M5k,—(M+1)a ’j’ < M, ’k“ > M, we obtain

[(Ua(t = $)XaHX5U (8))mm| < [Unt41,m ()| + [U—(a141),m ()] (4.37)

We write now the integral over ¢ in (4.36) as the sum of the integral I over |t| <
T and that Iy over [t| > T for some T, cf. the proofs of Lemmas 4.4 and 4.6. We
have by Lemma 4.2 and (4.37)

1| <26 04+sT / 12 A dt
1 <T

<2e~0d+sT / t[5(t)| dt, d = dist(m, {M,—M})
jt|<T

and by (4.37) and the unitarity of U(s)
<2 [ )
[tI>T

Now, choosing sT' = dd/2 and taking into account (4.20), we obtain (4.35), hence,
the assertion of the lemma. O

Proposition 4.8. Let {X;};cz be a sequence of random variables on the
same probability space with E{X;} =0, E{X?} < co. Put (cf. (2.18), (2.19))

Sm= Y Xi, Zm=pp"Sm, pm=2m+1, o, =E{Z2}, (438
l7l<m
and assume:

. D . . .
(i) Zm = &, m — oo, where & is the Gaussian random variable of zero mean
and variance 0% > 0;

(ii) for every bounded Lipschitz f:
[flo) <C [f(z) = fy)] < Cilz -y (4.39)

there exists € > 0, such that

vard S Lr b oastes ), M
ar longzzlm m) p = og , — 00.
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Then { X} ez satisfies the almost sure Central Limit Theorem, i.e., we have with

probability 1
1 L1
—1a(Zy) =@ (c71A),
M—>oolong:1m a(Zm) (U )

where A s an interval and ® is the standard Gaussian law.

The proposition is a version of Theorem 1 of [23], where the case of semi-
infinite stationary sequences {X;}7°, was considered. For another criterion of
the validity of the almost sure CLT see [13].

Lemma 4.9. Let {gj(.s)}. , be defined in (3.8), Z be defined in (3.6) and
j€
(3.9) and
(o)) =B {2z}

Then we have:

(i) for everym =1,2,...
08 — g, < /s,

where oy, > 0 is given in (4.38), C is independent of m and s and 6 > 1 is
given in (2.17);

(ii) for any 6 > 0 there exists mg > 0 and so > 0 such that
08 — 0| < 00
if m >mg and s > so and o > 0 is given in Theorem 2.1;

(iii) for every m =1,2,...
E{(Rﬁ,‘?)Q} <c/s
where C' is independent of m and s and 6 > 1 is given in (2.17).

Proof. The lemma is a version of the obvious fact limg_,o 57(,‘? =Y, valid
with probability 1 for every m and following from (3.8).

(i) Since {Yj};jez and {5](-8)}]@2 are ergodic sequences, we can write

2= (=3 (= (/) (Cr =€)

1]<2s
+ > (= [Ul/pm)C, (4.40)

2s<|l|<2m

where C; = E{YyY;} and Cl(s) = E{§(()S)§l(s)} are the correlation functions of the
corresponding sequences (see (2.22)) and we took into account (3.13) implying
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that Cl(s) =0, |{| > 2s (and that the second term on the right is present only if

m > 2s). Since Y; = 51(8) + nl(s)

= =B L&} + B{n L+ E L0}
Since 7 is bounded, it follows from (3.7), (3.8) that

E{nY| < cv, [E{INY] < cvs, [NV} < 00 @an)

where

, we have

v =E{Ini"|} (4.42)
and by (3.8) and Lemma 4.6

s =0(1/s%), 6>1. (4.43)

This and (4.40) imply uniformly in m

o2 — (o00)) ‘ Z ’CZ (s)‘+ Z leA
li]<2s 2s<|l|<2m

—0(81/}5)+O(1/80 1) (1/80 1)7 5 — 00. (4.44)
(ii) oy, of (4.38) is strictly positive for every m and according to Theorem 2.1

and Lemma 4.7

lim 02 =c2>0.
m—0o0

This and (4.44) imply the assertion.
(iii) The ergodicity of {nj(s)}jez implies (cf. (4.40))

var {R)L = > (0= /) E{n"n" b= >0 4 > (4an)
[1|<2m [1]<6s 6s<|l|<2m

It follows then from the proof of Proposition 4.1 (see [14], Theorem 18.6.3) and
(3.13 ) that

E {’7(()8)771(8)} < Cpyg, |l > 6s. (4.46)

We will use now (4.41)—(4.43) in the first sum on the r.h.s. of (4.45) and (4.43)
and (4.46) in the second sum (cf. (4.44)) to get the bound

Var {R,(;?} <C | sps + Z Yy | < /%1,

[1|>6s

proving the assertion. O

Lemma 4.10. Let {fj(.s)}‘ , and F]E/‘;) be defined in (3.8) and (3.9) respec-
j€
tively. Then we have:

Var{ (5)} O(logs/logM), s— o0, M — cc.
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Proof. Repeating almost literally the proof of Lemma 1 in [23] (where the case
of semi-infinite strongly mixing sequences {X;}7°, was considered), we obtain

c’ ol M a(s)

()| « m

Var{Fm } ~ log M2 + longZ1 m
"

(10gM Tog 317 Mz: (2m*1/2 () o E{ -1 )fos

where C’,C”,C" depend only on C in (4.39) and o' is the mixing coefficient

(3.12) of {@S)}ZEZ given by (3.13). In view of (3.13) the second term is bounded
by

7 2s
1 log s
L o < ) (4.48)
log M —m log M
as M — oo and s — oo.

Consider now the third term of the r.h.s. of (4.47). It follows from (3.8) and

our assumption on the boundedness of Yy that the contribution of E{\§SS)|} is
O(1/(log M)?). Next, given an M-independent My of Lemma 4.9 (ii), we write

22 ZWZZ >y

l=m+1 m=1 [=m+1 m=Moy+11l=m+1

The first double sum on the right is bounded in M in view of Lemma 4.9 (i) and
the fact that oy,, m = 1,2,..., My are bounded (e.g., o, < EY2{V?}). The
second double sum is in view of Lemma 4.9 (ii)

M—1
0 Z 1/2 Z 53/2 = O (log M).
m=Moy+1 l=m+1

Hence, the third term on the right of (4.47) is O (1/log M). This and (4.48)
imply that the r.h.s. of (4.47) is O(log s/(log M)). O
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Teopemu Tuny Cere 1jis OJHOBUMipHOTO omepaTropa
HlIpeniarepa 3 BUDagKOBUM IIOTEHI[iaJIOM
(rnagkwuii BUnma oK)
L. Pastur and M. Shcherbina

s crarTst € npojoBXKeHHsIM poboru [15], me Gysno mocrasieHo 3aady
po auaJior Teopemu Cere /il eproJMIHUX OTIEPATOPIB 3araJIbHOTO BUTJISILY
Ta PO3IVISTHYTO JEKiJIbKa IIKABUX BUITQJKIB. ¥y JIaHii CTATTI MU PO3IOBCIO-
JKyeMO pe3ysbrard [15] Ha mumpinuii kiac TectoBux dyHKIH Ta CUMBOJIB,
o 3a7210Th dopmysn tuiy Cere miist ogaoBuMipHOTO oneparopa [pesin-
repa 3 BUIAIKOBUM IMOTeHIiaoM. My T0BOAUMO, 110 B IbOMY BUIAJIKY “JICH,
IO TI0 IIOPSIJIKY € HACTYIHUM Ticjist rosioBHOrO y dopmyiti Cere, Bimamosinae
[EHTPAJIbHIN I'PAHUYIHIN TeopeMi y CIIeKTPaJIbHOMY KOHTEKCTi, TOOTO € IIpo-
nopmiitany L2, ne L € MOBKIHOIO IHTEPBATY, HA SIKOMY MH PO3IISIIAEMO
onepatop Illpenirrepa. Ileit pe3yabTaT C/1i1 MOPIBHATH 3 KIACHIHOIO POp-
mysioro Cere, Je BijoBinHMii 4jieH € obmexxeHuM 3a L, koau L — oco. Mu
JOBOJIMMO aHAJIOT CTaHIAPTHOI IEHTPAJLHOI TPAHUYHOI TeOPEMU (T06T0 30i-
JKHICTH HMOBIPHOCTI BIANOBIIHUX TO/I# 10 TAYCCIBCHKOIO 3aKOHY ), & TAKOXK
AHAJIOT MalizKe HAIIEBHO IEHTPAJILHOI IPAHUYHOI TeopeMu (T06TO 3012KHICTH
3 #iMoBipHicTIO 1 JTorapr@dMiTHOrO CepeaHbOrO IHANKATOPA BiAMOBITHOI O~
Ii1l 10 raycciBCbKOro 3akoHY). $IK LimiocTpaliiio HAIoro 3arajbHOIO METOILY
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MU HAJQEMO ACUMITOTHYHY (DOPMYJIy I “3allIyTaHol’ eHTPONil BlIbHIX
depmioHIB TPy HEHYJIBOBIH TeMIepaTypi.

KirrouoBi cjioBa: BUTIAKOBI OIlepaTOpU, aCUMIITOTUYIHI (POPMYIU CHiTy,
IPAHUYHI TEOPEMU.
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