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Dimensional Minkowski Space
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In the paper, we give a classification of closed and connected Lie groups,
up to conjugacy in Iso(R1,2), acting by cohomogeneity one on the three
dimensional Minkowski space R1,2 in both proper and nonproper dynamics.
Then we determine causal properties and types of the orbits.
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1. Introduction

A basic question in most types of modern dynamics is which groups admit
actions of the type under consideration. A number of researchers have tried to
give a list of groups admitting nonproper (or orbit nonproper) isometric actions
on Lorentz manifolds up to local isomorphism or at most up to isomorphism (see,
for example, [1, 11, 21, 22]). Their main aim was not to study the induced orbits
and they did not consider homogeneity or cohomogeneity assumption as a dy-
namical restriction. Not many papers are found on cohomogeneity one Lorentzian
manifolds with some further dynamical restrictions in the literature (see, for in-
stance, [3, 9, 19,20]).

Cohomogeneity one Riemannian manifolds have been studied by many math-
ematicians (see [7, 14, 15, 17, 18]). In most works, finding representations of the
acting group in the full isometry group was not given priority. Instead, much em-
phasis is placed on the study of geometrical properties of the results of the action
such as the existence of slices, the induced orbits, the orbit space, etc. In these
papers the common hypothesis is that the acting group is a closed Lie subgroup
of Isog(M), where g denotes the Riemannian metric on the smooth manifold M .
This assumption causes a strong dynamical restriction, that is, the action should
be proper. When the metric is indefinite, this assumption in general does not
imply that the action is proper, so the study becomes much more difficult. Also,
some results and techniques of the definite metric fail for the indefinite metric.

In this paper, we give the list of closed and connected Lie groups, up to
conjugacy in Iso(R1,2) = O(1, 2)nR3, acting isometrically and by cohomogeneity
one on the three dimensional Minkowski space R1,2. Then we determine, for
each group in the list, wether its action is proper or nonproper. Finally, we
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study causal properties and types of the orbits both for proper and nonproper
actions. Also, we specify the orbit space when the action is proper. If the action
is nonproper, the orbit space may not be Hausdorff, and so the study seems to be
not interesting. Furthermore, we could not use the same definition of principal
and singular orbits which was used in [5]. So we use a new definition which is
compatible with that of proper actions (see Section 2).

As an interesting result of this paper one gets that if the action is proper, then
the linear part of the acting group is either compact or hyperbolic one parameter
subgroup, i.e., it has no nilpotent element. Another considerable result is about
the existence of exceptional orbits. A well-known result says that for proper
actions each exceptional orbit is nonorientable if the G-manifold M is orientable
and if M is simply connected, there is no exceptional orbit (see [7, p.185]), but
we see in Propositions 4.3–4.5 that for M = R1,2, which is simply connected and
orientable, there are orientable exceptional orbits!

2. Preliminaries

Let G be a Lie group which acts on a connected smooth manifold M . The Lie
algebra of G is denoted by g. For each point x in M , G(x) denotes the orbit of
x, and Gx is the stabilizer in G of x. The manifold M is called of cohomogeneity
one under the action of the Lie group G if an orbit has codimension one. The
action is said to be proper if the mapping ϕ : G ×M → M ×M , (g, x) 7→ (g ·
x, x) is proper. Equivalently, for any sequences xn in M and gn in G, gnxn → y
and xn → x imply that gn has a convergent subsequence. The G-action on M is
nonproper if it is not proper. Equivalently, there are sequences gn in G and xn
in M such that xn and gnxn converge in M and gn →∞, i.e., gn leaves compact
subsets. For instance, if G is compact, the action is obviously proper. The action
of G on M is proper if and only if there is a complete G-invariant Riemannian
metric on M (see [4]). This theorem makes a link between proper actions and
Riemannian G-manifolds. The orbit space M/G of a proper action of G on M
is Hausdorff, the orbits are closed submanifolds, and the stabilizers are compact
(see [2]). The orbits G(x) and G(y) have the same orbit type if Gx and Gy are
conjugate in G. This defines an equivalence relation among the orbits of G on M .
Denote by [G(x)] the corresponding equivalence class, which is called the orbit
type of G(x). A submanifold S of M is called a slice at x if there is a G-invariant
open neighborhood U of G(x) and a smooth equivariant retraction r : U → G(x)
such that S = r−1(x). A fundamental feature of proper actions is the existence
of a slice (see [16]), which enables one to define a partial ordering on the set of
orbit types. The partial ordering on the set of orbit types is defined by [G(y)] ≤
[G(x)] if and only if Gx is conjugate in G to some subgroup of Gy. If S is a
slice at y, it implies that [G(y)] ≤ [G(x)] for all x ∈ S. Since M/G is connected,
there is the largest orbit type in the set of orbit types. Each representative of
this largest orbit type is called a principal orbit. In other words, an orbit G(x)
is principal if and only if for each point y ∈ M the stabilizer Gx is conjugate to
some subgroup of Gy in G. Other orbits are called singular. We say that x ∈M
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is a principal point if G(x) is a principal orbit.

But for the nonproper action there is no slice in general, so we can not use the
same definitions that require the existence of slices, hence we use the definition
2.8.1 of [8] for determining the principal, singular or exceptional orbits. According
to it, for the action of a Lie groupG on a smooth manifoldM , the points x, y ∈M ,
are said to be of the same type, with notation x ≈ y , if there is a G-equivariant
diffeomorphism Φ from an open G-invariant neighborhood U of x onto an open
G-invariant neighborhood V of y. Clearly, this defines an equivalence relation ≈
in M . The equivalence classes will be called orbit types in M and denoted by M≈

x .
If each stabilizer has only finitely many components, then x ≈ y if and only if Gx
is conjugate to Gy within G and the actions of Gx and Gy, on TxM/TxG(x) and
TyM/TyG(y), respectively, are equivalent via a linear intertwining isomorphism
(see Chapter 2 of [8]). The orbit G(x) of x ∈ M is principal if its type M≈

x is
open in M . Any non-principal orbit is called a singular orbit. A nonprincipal
orbit with the same dimension as a principal orbit is an exceptional orbit.

Throughout the following, Rp,q denotes the p+q-dimensional real vector space
Rp+q with the scalar product of signature (p, q) given by 〈x, y〉 = −

∑p
i=1 xiyi +∑p+q

i=p+1 xiyi. If p = 0, we get the q-dimensional Euclidean space Eq. Let Iso(Rp,q)
denote the group of isometries of Rp,q, that is, the group O(p, q)nRp+q. We may
write the natural action of an isometry (A, a) ∈ Iso(Rp,q) as (A, a)(x) = A(x)+a,
where A ∈ O(p, q) is called its linear part and a ∈ Rp+q is called its translational
part. Denote by L : G −→ O(p, q) the projection on the linear part of O(p, q) n
Rp+q. If L(G) is trivial, then G is called a pure translation group. We will restrict
our study to the identity component of O(1, 2), consisting of orientation and time-
orientation preserving isometries, which we denote by SOo(1, 2), a subgroup of
O(1, 2) of index 4.

In the next section, we use an Iwasawa decomposition of SOo(1, 2) to classify
the Lie groups which act isometrically and by cohomogeneity one on R1,2. For
this, we introduce a fixed Iwasawa decomposition of SOo(1, 2). Let i, j ∈ {1, 2, 3}
and Eij be the 3×3 matrix whose (i, j)-entry is 1 and whose other entries are all
0. Let k = {t(E23 − E32) | t ∈ R}, a = {s(E12 + E21) | s ∈ R} and n = {u(E13 +
E23 + E31 − E32) | u ∈ R}. Then so(1, 2) = k ⊕ a ⊕ n (direct sum of vector
spaces) is the Iwasawa decomposition of the Lie algebra so(1, 2) (see [10, p. 372
]). Furthermore, SOo(1, 2) = KAN is the Iwasawa decomposition of SOo(1, 2), in
which K , A and N are the connected Lie subgroups of SOo(1, 2) associated to k,
a and n, respectively. Clearly, k is isomorphic to so(2) and using the exponential
map, one gets that K and A are the standard embeddings of SO(2) and SOo(1, 1)
in SOo(1, 2), respectively. Each C ∈ n is nilpotent, in fact, C3 = 0. It is easy to
check that [a, n] ⊆ n, so a ⊕ n is a Lie subalgebra of so(1, 2) and n is an ideal of
a⊕ n. This implies that N is normal in the group corresponding to a⊕ n, so AN
is a subgroup (in fact, nonabelian and solvable) of SOo(1, 2). By a well-known
result, any two-dimensional Lie subgroup of SOo(1, 2) is conjugate to AN .

We end this section by introducing some notations that are used in the sequel.
Let {i, j} ∈ {1, 2, 3}. We fix the notations Bi = Ei(i+1) + (−1)i+1E(i+1)i, where
i ∈ {1, 2}, and B3 = E13 +E31 +B2 throughout the paper. Also, At = exp(tB1)
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and Nt = exp(tB3), where t is a fixed real number. Let {e1, e2, e3} denote the
standard basis of R3. Then eij denotes the vector ei+ej , and e123 := e1 + e2 + e3.

3. Lie groups acting by cohomogeneity one on R1,2

In this section, we determine all connected closed Lie subgroups of Isoo(R1,2)
acting isometrically and, by cohomogeneity one on R1,2, up to conjugacy. If
the Lie group G is determined up to conjugacy, an immediate consequence is to
specify the orbits up to isometry. If dimL(G) = 0, since L : G → SOo(1, 2)
is a Lie group homomorphism and therefore continuous, L(G) is connected and
thus trivial. In this case, G is a two-dimensional pure translation Lie subgroup of
SOo(1, 2) n R3 whose natural action on R1,2 is obviously proper. If dimL(G) =
1, by a well-known result about one parameter Lie subgroups of SOo(1, 2), the
Lie group L(G) is conjugate to one of the groups SO(2) (= K), A or N . The
representations of these groups in SOo(1, 2) were introduced in the preceding
section. We will study the case of dimL(G) = 1 in the next three lemmas. In all
of the lemmas, it is assumed that G is a connected and closed Lie subgroup of
Iso(R1,2), which acts isometrically and by cohomogeneity one on R1,2.

Lemma 3.1. If L(G) is conjugate to SO(2), then G is conjugate to one of
the following Lie groups within SOo(1, 2) nR3:

(i) the standard embedding of SO(2)× R in SOo(1, 2) nR3,

(ii) the standard embedding of Isoo(E2) in SOo(1, 2) nR3.

Proof. By the assumption, L(G) is conjugate to SO(2). Then, up to conju-
gacy, l(g) = {tB2 | t ∈ R}. The action is of cohomogeneity one, so ker l should be
one- or two-dimensional ideal of g. First, assume that dim ker l = 1. Then g, as
a vector space, should be {(tB2, (uD+ tD′)e123) | u, t ∈ R}, where D and D′ are
two diagonal fixed 3 × 3 matrices. Choose a vector b in R3 such that (B2, b) ∈
g. Since ker l is an ideal in g, we have B2(ker l) ⊆ ker l. Hence ker l is a subspace
of the eigenspace of B2. The only one dimensional eigendirection of B2 is Re1.
Hence D22 = D33 = 0. Thus (C, c)−1g(C, c) = {(tB2, (uD11 + tD′11)e1)|u, t ∈
R}, where (C, c) = (I,D′33e2 −D′22e3) ∈ SO◦(1, 2) nR3. Thus G is conjugate to
SO(2)× R.

Now suppose that dim ker l = 2. This implies that dimG = 3. Then g, as
a vector space, should be {tB2, (uD + vD′ + tD′′)e123) | u, v, t ∈ R}, where D,
D′ and D′′ are three diagonal fixed 3 × 3 matrices. By rechoosing a basis for g,
we may assume that D33 = D′22 = 0, and up to conjugacy, D′′22 = D′′33 = 0. We
claim that both D22 and D′33 are nonzero. If D′33 = 0, then we choose two vectors
X1 = (E23 − E32, D

′′
11e1) and X2 = (0, (D + D′)e123) from g. Then [X1, X2] =

(0,−D22e3), the closeness of which under the bracket in g implies that D22 = 0.
This implies that dimG = 2, which contradicts to dimG = 3. Hence D′33 = 0. A
similar discussion shows that D22 6= 0. Hence, without loss of generality, we may
assume that D22 = D′33 = 1. Now choose three vectors X1 and X2 as above, and
X3 = (0, (−A+B)e123) from g. By the fact that [X1, X2] and [X1, X3] belong to
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g, one gets that D11 +D′22 = 0 and D11 −D′22 = 0. So D11 = D′22 = 0. If D′′11 6=
0, then G(0) = R3, which is in contradiction to the assumption that the action
is of cohomogeneity one. Hence D′′11 = 0. Thus G is conjugate to the standard
embedding of Isoo(E2) in SOo(1, 2) nR3.

Lemma 3.2. If L(G) is conjugate to A, then g is conjugate to one of the
following Lie algebras within so(1, 2)⊕π R3, where π : so(1, 2)→ Der(R1,2) is the
natural representation:

(i) a⊕ R,

(ii) {(tB1, ue1 + ve2) | u, v ∈ R},

(iii){(tB1, ue12 + ve3 | u, v ∈ R} or

(iv){(tB1, u(e1 − e2) + ve3 | u, v ∈ R},

(v) {(tB1, s(e1 ± e2) + tβe3) | t, s ∈ R},
where β is a fixed real number.

Proof. By the assumption, l(g) = {tB1 | t ∈ R} up to conjugacy. The action
is of cohomopgeneity one, so ker l is a one- or two-dimensional ideal of g. First
assume that dim ker l = 1. Then, by choosing a suitable coordinate, we may
assume that g, as a vector space, is {tB1, (tD + sD′)e123}, where D and D′ are
two diagonal matrices. Now we determine the relation between the entries of
D and D′, to make g a Lie algebra. Take the following two vectors in g, X1 =
(B1, De123) and X2 = (0, D′e123). Then [X1, X2] = (0, D′22e1 + D′11e2), and so
the closeness under the bracket implies the existence of a s0 ∈ R such that D′11 =
s0D

′
22, D

′
22s0 = D′11 and D′33s0 = 0. Thus, either D′11 = D′22 = 0, D′33 6= 0, or

D′11 = ±D′22 6= 0, D′33 = 0. The first case shows that (C, c)−1G(C, c) = A × R,
where (C, c) = (I,−(D22e1 + D11e2)), which is the case (i) of the lemma. The
second case implies that g is conjugate to one of the four Lie algebras {(tB1, s(e1±
e2) + tD33e3) | t, s ∈ R}, depending on whether the real number D33 is zero or
not, which is the case (v) of the lemma.

Now suppose that dim ker l = 2. Choose b ∈ R3 such that (B1, b) ∈ g. Then
B1(ker l) ⊆ ker l. Hence ker l is a subspace of the eigenspace of B1. This implies
that ker l is one of the spaces {(0, ue1 + ve2) | u, v ∈ R}, {(0, ue12 + ve3 | u, v ∈
R} or {(0, u(e1 − e2) + ve3 | u, v ∈ R}. Thus g is conjugate to one of the Lie
algebras {(tB1, ue1 + ve2)|u, v ∈ R}, {(tB1, ue12 + ve3|u, v ∈ R} or {(tB1, u(e1 −
e2) + ve3|u, v ∈ R}, which are the cases from (ii) to (iv) of the lemma.

Lemma 3.3. If L(G) is conjugate to N , then g is conjugate to one of the
following Lie algebras within so(1, 2)⊕π R3:

(i) {(tB3, r(e12) + βte3) | r, t ∈ R},

(ii) {(tB3, r(e12) + se3) | r, s, t ∈ R},
where β is a fixed real number.
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Proof. By the assumption, l(g) = {tB3 | t ∈ R} up to conjugacy. By a
similar discussion as in the proof of the previous lemma, one gets that ker l is a
one- or two-dimensional ideal of g. If dim ker l = 1, then g, as a vector space,
should be {(tB3, (uD + tD′)e123) | u, t ∈ R}, where D and D′ are two diagonal
fixed matrices. By the fact that the only one-dimensional eigendirection of B3

is R(e12) and using B3(ker l) ⊆ ker l, one gets that g = {(tB3, r(e12) + tD′33e3) |
r, t ∈ R} up to conjugacy. If dim ker l = 2 then the relation B3(ker l) ⊆ ker l
implies that ker l = R(e12) + Re3. Hence the cohomogeneity one assumption
implies that g = {(tB3, r(e12) + se3) | r, s, t ∈ R}.

Any two-dimensional Lie subgroup of SOo(1, 2) is conjugate to AN . Hence,
for the case dimL(G) = 2 we have the following Lemma.

Lemma 3.4. If L(G) is conjugate to AN , then g is conjugate to one of the
following Lie algebras within so(1, 2)⊕π R3 :

(i) (a⊕ n)× {0},

(ii) {(sB1 + tB3, u(αe12 + βe3)) | s, t, u ∈ R},

(iii){(sB1 + tB3, ue12 + ve3)) | s, t, u, v ∈ R},
where α and β are two fixed real numbers.

Proof. If L(G) = AN , then we have

l(g) = {sB1 + tB3 | s, t ∈ R}.

By the assumption of cohomogeneity one, we get that 0 6 dim ker l 6 2. If
dim ker l = 0, then G is conjugate to AN by a translation. If dim ker l = 1, then
ker l, as a vector space, is {uDe123 | u ∈ R}, where D is a fixed diagonal matrix.
By the fact that Bi(ker l) ⊆ ker l, i = 1, 3, one gets that D11 = D22. Hence, up
to conjugacy,

g = {(sB1 + tB3, u(D11e12 +D33e3)) | s, t, u ∈ R},

where D11 and D33 are fixed real numbers.

If dim ker l = 2, then ker l = {(uD + vD′)e123 | u, v ∈ R}, where D and D′

are two fixed diagonal matrices. By the same argument as above, one gets that
D11 = D′11 and D22 = D′22. Hence, by choosing a suitable basis for g, one gets
that

g = {(sB1 + tB3, ue12 + ve3)) | s, t, u, v ∈ R}

up to conjugacy.

Since dimL(G) 6 3, the following lemma ends the classification of Lie groups
acting isometrically and by cohomogeneity one on R1,2.

Lemma 3.5. If L(G) = SOo(1, 2), then G = SOo(1, 2)× {0}.
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Proof. If L(G) = SOo(1, 2), then {B1, B2, B3} is a basis for l(g). Since
Bi(ker l) ⊆ ker l, where i = 1, 2, 3, then ker l is either {0} or R3. The action
is of cohomogeneity one, so ker l = {0}. Thus G = SOo(1, 2)× {0}.

The main theorem of this section is the following.

Theorem 3.6. Let G be a closed and connected Lie subgroup of Iso(R1,2)
which acts isometrically and by cohomogeneity one on R1,2. Then the action is
proper if and only if G is conjugate to one of the following Lie groups:

(i) a pure translation group,

(ii) the standard imbedding of SO(2)× R in SOo(1, 2) nR3,

(iii) the standard imbedding of Isoo(E2) in SOo(1, 2) nR3,

(iv){(At, u(e1 ± e2) + βte3) | t, u ∈ R}, where β is a fixed nonzero real number.

Proof. By Lemmas 3.1–3.5, we know the Lie algebras of all Lie groups which
act isometrically and by cohomogeneity one on R1,2. Hence, to prove the theorem,
we need only to study those actings properly. If dimL(G) = 0, then G is a pure
translation group and the action is obviously proper. If L(G) = SO(2), then G is
conjugate to either SO(2)×R or Isoo(E2) and the action reduces to the action of
a closed Lie subgroup of Iso(E3), which is proper clearly. We claim that if L(G)
is noncompact, then the case (d) of the theorem occurs. If L(G) is not compact,
then g is conjugate to one of the Lie algebras stated in Lemmas 3.2–3.5. All
the Lie algebras listed in Lemma 3.2 (i) to (iv), Lemma 3.3 (ii), Lemmas 3.4,
3.5 cause a nonproper action since in each case the stabilizer of the origin is not
compact. If g is conjugate to that of Lemma 3.3 (i), then exp(h) is a closed and
noncompact subgroup of the stabilizer of each point (x, x+ β, 0)T ∈ R1,2, where
h = {(tB3, βte3) | t ∈ R}. This shows that the action is nonproper in case of
Lemma 3.3 (i). Thus, to complete the proof of our claim, we only need to verify
that the action caused by the Lie algebra stated in Lemma 3.2 (v) is proper if β
is nonzero. In that case, by a simple computation, one gets that

G = exp(g) = {(At, u(e1 ± e2) + βte3) | t, u ∈ R}.

Let {tn} and {un} be two real sequences. Let {Xn = (xn, yn, zn)T } be a sequence
in R1,2. Let {gn = (cosh tn(E11 + E22) + sinh tn(E12 + E21) + E33, un(e1 ± e2) +
βtne3)} be a sequence in G. Let gn · Xn → Y and Xn → X, when n → +∞.
If Y = (y1, y2, y3)

T and X = (x1, x2, x3)
T , then tn → y3−x3

β and un → y1 −
x1 cosh y3−x3

β −x2 sinh y3−x3
β . Hence {gn} is a convergent sequence in G, and thus

the action is proper.

As a consequence of Lemmas 3.2–3.4 and Theorem 3.6, one gets the following
corollary. The Lie groups in the list are obtained by the exponential map.

Corollary 3.7. Let G be a closed and connected Lie subgroup of Iso(R1,2)
which acts isometrically and by cohomogeneity one on R1,2. Then the action is
nonproper if and only if G is conjugate to one of the following Lie groups within
SOo(1, 2) nR3 :
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(i) {(At, se3) | t, s ∈ R},

(ii) Isoo(R1,1),

(iii) {(At, ue12 + ve3) | t, u, v ∈ R},

(iv) {At, u(e1 − e2) + ve3 | t, u, v ∈ R},

(v) (v) {(At, ue12) | t, u ∈ R},

(vi) {(At, u(e1 − e2) | t, u ∈ R},

(vii) {(Nt, ue12 + βte3) | t, u ∈ R},

(viii) {(Nt, ue12 + ve3) | t, u, v ∈ R},

(ix) AN ,

(x) AN nπ {u(αe12 + βe3) | u ∈ R},

(xi) AN nπ {ue12 + ve3) | u, v ∈ R},

(xii) SOo(1, 2),

where α and β are fixed real numbers and π : AN → R3 is the natural represen-
tation.

4. Causal properties of orbits

Assume that the connected and closed Lie subgroup G of Iso(R1,2) acts iso-
metrically and by cohomogeneity one on R1,2, we determine causal properties of
the orbits.

The orbit G(p) is said to be Lorentzian, degenerate or space-like if the induced
metric on G(p) is Lorentzian, degenerate or Riemannian, respectively. It is called
time-like or light-like if each nonzero tangent vector in TpG(p) is time-like or
null, respectively. The category into which a given orbit falls is called its causal
property.

4.1. The action is proper. Let a Lie group G act by cohomogeneity one
and properly on a smooth manifold M . The results obtained by Mostert (see [13])
for the compact Lie groups, and Berard Bergery (see [6]) for the general case, say
that the orbit space M/G is homeomorphic to one of the spaces:

R, S1, [0,+∞), [0, 1].

In the following theorem we will show that the cases [0, 1] and S1 can not occur
when M = R1,2.

Theorem 4.1. Let R1,2 be of cohomogeneity one under the isometric action
of a connected and closed Lie subgroup G ⊂ Iso(R1,2). If the action is proper,
then one of the following cases occurs:
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(1) G is a pure translation group. In this case, each orbit is a plane which is
obtained by a translation of G(0), and the orbit space is diffeomorphic to R.

(2) G is conjugate to SO(2)×R. In this case, there is a time-like singular orbit,
which is a one-dimensional affine subspace, and each other orbit is a cylinder
around the singular orbit, and thus the orbit space is diffeomorphic to [0,+∞).
In particular, each principal orbit is a Lorentzian cylinder.

(3) G is conjugate to Isoo(E2). In this case, each orbit is a space-like plane which
is obtained by a translation of G(0), and the orbit space is diffeomorphic to R.

(4) G is conjugate to {((E11 +E22) cosh t+ (E12 +E21) sinh t+E33, u(e1± e2) +
βte3) | t, u ∈ R}, where β is a fixed nonzero real number. In this case, an
orbit is a degenerate plane, and each other orbit is a Lorentzian generalized
cylinder. The orbit space is diffeomorphic to R.

Proof. The theorem is a direct consequence of Theorem 3.6, and only the case
(4) needs some explanations. Suppose that g = {(t(E12 + E21), s(e12) + tβe3) |
t, s ∈ R}, where β 6= 0. Let X1 = (E12 + E21, βe3) and X2 = (0, e12). Then
{X1, X2} is a basis for g. Fix an arbitrary point p = (x, y, z)T ∈ R1,2, then

d

dt
exp(tX1)(p)

∣∣∣∣
t=0

= ye1 + xe2 + βe3,

and

d

ds
exp(sX2)(p)

∣∣∣∣
s=0

= e12.

If x = y, then the vector N = e12 is normal to the above two vectors, and so
to G(p). This implies that G(p) is a degenerate principal orbit. It is easily seen
that this orbit is a plane.

If x 6= y, then the unit space-like vector N = β
y−x(1, 1, y−xβ ) is normal to G(p)

at p, so G(p) is a Lorentzian orbit, i.e., TpG(p) is isometric to R1,1, and the shape
operator associated to N is represented with respect to the pseudo-orthogonal
basis {v1 =

√
2/2(1, 1)T , v2 =

√
2/2(1,−1)T } as follows:

S =

[
0 0
1 0

]
.

Hence, the shape operator is not diagonalizable and G(p) is locally isometric to
a generalized cylinder by [12].

Corollary 4.2. Let R1,2 be of cohomogeneity one under the proper action of
a connected and closed Lie subgroup G ⊂ Iso(R1,2). Then one of the followings
holds:

1) If there is a singular orbit, then it is a time-like one-dimensional affine sub-
space and each principal orbit is isometric to R0,1 × S1(r) for some r > 0,
where R0,1 denotes E1 with the reversed negative definite metric.
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2) If there is a space-like orbit, then each orbit is a space-like hyperplane.

3) If there is a Lorentzian orbit isometric to R1,1, then each orbit is isometric
to R1,1.

4) If there is more than one degenerate orbit, then each orbit is a degenerate
hyperplane.

5) If there is exactly one degenerate orbit, then it is a degenerate hyperplane and
each other orbit is locally isometric to a generalized cylinder and there is no
singular orbit.

4.2. The action is nonproper. As a consequence of Corollary 3.7, one gets
that if the action is not proper, then L(G) is conjugate to one of Lie groups A,
N , AN or SOo(1, 2). In the following propositions we will consider the action of
each Lie group mentioned in Corollary 3.7, and then study the causal properties
of the orbits. Throughout this subsection p = (x0, y0, z0)

T denotes an arbitrary
fixed point in R1,2.

Proposition 4.3. Let R1,2 be of cohomogeneity one under the isometric and
nonproper action of a connected and closed Lie subgroup G ⊂ Iso(R1,2). If L(G) =
A, then one of the following cases occurs:

(i) There is a one-dimensional space-like affine subspace as a singular orbit.
There are four degenerate half-plans which are principal orbits. Each other
orbit is a branch of a Lorentzian hyperbolic cylinder which is principal.

(ii) Each orbit is a translation of a Lorentzian plane.

(iii)There is a degenerate plane as a unique exceptional orbit and there are two
open submanifolds as the orbits.

(iv) There are infinitely many one-dimensional light-like singular orbits. Each
other orbit is a Lorentzian principal orbit, which is not a closed submanifold.

Proof. By Corollary 3.7, G is conjugate to one of the Lie groups in (i)–(vi).
(i) Let G = {(At, se3) | t, s ∈ R}. If x0 = y0 = 0, then G(p) = {se3 | s ∈ R}

and so G(p) is a one dimensional space-like singular orbit. Let x0 6= 0 or y0 6= 0.
Then G(p) is a principal orbit since Gp is the trivial subgroup. It is easily seen
that if (u, v, w)T belongs to G(p), then u2 − v2 = x20 − y20. Hence, there are four
degenerate principal orbits for the cases x0 = ±y0 that depend on the sign of x0.
If x0 6= ±y0, then G(p) is a branch of a Lorentzian hyperbolic cylinder u2− v2 =
x20 − y20.

(ii) Let G = Isoo(R1,1). It is easily seen that each orbit is a translation of the
Lorentzian plane z = 0.

(iii) Let G = {(At, ue12 + ve3) | t, u, v ∈ R}. If x0 = y0, then G(p) = {ue12 +
ve3 | u, v ∈ R} and Gp = {(At, x0(et−1)e12) | t ∈ R}, and so G(p) is a degenerate
plane as an exceptional orbit. If x0 6= y0, then Gp is the trivial subgroup and
G(p) is an open submanifold. So, there are two open orbits corresponding to the
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cases x0 > y0 and x0 < y0. A similar discussion about the action of the Lie group
G = {At, u(e1 − e2) + ve3 | t, u, v ∈ R}, stated in Corollary 3.7 (iv), yields the
same result as in Proposition 4.3 (iii).

(iv) Let G = {(At, ue12) | t, u, v ∈ R}. If x0 = y0, then G(p) = {ue12 + z0e3 |
u ∈ R}. Hence (x, y, z)T belongs to G(p) if and only if x = y and z = z0. Hence,
there are infinitely many one-dimensional light-like singular orbits. If x0 6= y0,
then Gp is the trivial subgroup and G(p) = {ue1 + ve2 + z0e3 | (u − v)(x0 −
y0) > 0}. This shows that G(p) is a Lorentzian principal orbit, which is not a
closed submanifold. A similar discussion about the action of the Lie group G =
{(At, u(e1 − e2) | t, u ∈ R}, stated in Corollary 3.7 (vi), yields the same result as
in Proposition 4.3 (iv).

Proposition 4.4. Let R1,2 be of cohomogeneity one under the isometric and
nonproper action of a connected and closed Lie subgroup G ⊂ Iso(R1,2). If L(G) =
N , then one of the following cases occurs:

(i) The acting group is conjugate to {(Nt, ue12 +βte3) | t, u ∈ R}. There are two
cases. If β 6= 0, then each orbit is principal, which is obtained by a translation
of a fixed degenerate plane. If β = 0, then there are infinitely many light-like
one-dimensional singular orbits of the same type, where the union of them
is a degenerate plane. Each principal orbit is obtained by a translation of a
fixed degenerate plane. In both cases all the principal orbits are of the same
type.

(ii) The acting group is conjugate to {(Nt, ue12 + ve3) | t, u, v ∈ R}. Each orbit
is a degenerate plane as a principal orbit and the set of orbits is a foliation
of R1,2. All orbits are of the same type.

Proof. By Corollary 3.7, G is conjugate to one of Lie groups in (vii) and (viii).
So, we have the two cases.

(i) Let G = {(Nt, ue12 + βte3) | t, u ∈ R}. If x0 6= y0, then Gp is trivial and
G(p) = {p+ ue12 + ve3 | u, v ∈ R}, which is a degenerate plane. Since the union
of these orbits is an open subset of R1,2, then each of them is principal. Let x0 =
y0. If β = 0, then Gp = {(Nt, (−tz0)e12) | t ∈ R}. This shows that G(p), which is
equal to {p+ ue12 | u ∈ R}, is a one-dimensional light-like subspace as a singular
orbit. Let p′ = (x, y, z)T . It is easily seen that p′ belongs to G(p) if and only if
x = y and z = z0. Furthermore, if p′ /∈ G(p) and x = y, then Gp′ = g−1Gpg,
where g = (I, (z + z0)e3). Thus, there are infinitely many singular orbits of the
same type. Obviously, the union of the singular orbits is {ue12 + ve3 | u, v ∈
R}, which is a degenerate plane. If β 6= 0 (and x0 = y0), then Gp is the trivial
subgroup and G(p) is a degenerate plane as a principal orbit.

(ii) Let G = {(Nt, ue12 + ve3) | t, u, v ∈ R}. Then Gp = {Nt, ((y0 − x0) t
2

2 −
tz0)e12 + (y0 − x0)te3}, and G(p) = {p + ue12 + ve3 | u, v ∈ R}. Hence each
orbit is a degenerate plane as a principal orbit. All orbits are of the same type
since each of the stabilizers is conjugate to {(Nt, 0) | t ∈ R}. In fact, g−1Gpg =
{(Nt, 0) | t ∈ R}, where g = (I, (y0 − x0)e2 + z0e3).
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Proposition 4.5. Let R1,2 be of cohomogeneity one under the isometric and
nonproper action of a connected and closed Lie subgroup G ⊂ Iso(R1,2). If L(G) =
AN , then one of the following cases occurs:

(i) The acting group is conjugate to AN . Then there is one principal orbit type
and two singular orbit types. Each principal orbit is either a Lorentzian or
a space-like surface. There is a zero-dimensional singular orbit and infinitely
many one-dimensional light-like singular orbits.

(ii) The acting group is conjugate to G = AN nπ {u(αe12 + βe3) | u ∈ R}. If
α = 0, then there is a degenerate exceptional orbit and there are two orbits
which are open submanifolds of R1,2 (the orbit space consists of three points).
If α 6= 0, then there are infinitely many one-dimensional light-like singular
orbits of the same type and two orbits which are open submanifolds of R1,2.

(iii)The acting group is conjugate to G = AN nπ {ue12 + ve3 | u, v ∈ R}. Then
there is a degenerate exceptional orbit and there are two orbits which are open
submanifolds of R1,2 (the orbit space consists of three points).

Proof. By Corollary 3.7, G is conjugate to one of Lie groups in (ix)–(xi). So,
we have the two cases.

(i) Let G = AN . Then G fixes the origin, and thus the origin is a singular
orbit. Let p be not the origin. The set {B1, B3} is a basis for the Lie algebra g.
To determine causal properties of the orbits, let

Φp(t) = exp((tαB1 +B3))p,

where α is an arbitrary real number. Then

〈dΦp

dt
(0),

dΦp

dt
(0)〉 = α2(x20 − y20) + 2αz0(x0 − y0) + (x0 − y0)2. (4.1)

This implies that if x0 6= y0 and p, as a vector, is a nonzero space-like (respectively,
time-like) vector, then the polynomial (4.1) has two roots (respectively, has no
root). Hence the orbit G(p) is a Lorentzian (respectively, space-like) orbit. Since
Gp is trivial and the union of these orbits is an open subset of R1,2, all these
orbits are of the same type and principal. If x0 = y0, then G(p) = {ue12 + z0e3 |
ux0 > 0}, and so it is a one-dimensional light-like singular orbit. All these orbits
are of the same type since their stabilizers are conjugate to N .

(ii) Let G = AN nπ {u(αe12 + βe3) | u ∈ R}.
Let α = 0. If x0 = y0, then G(p) = {ue12 + ve3 | u, v ∈ R}, which is a

two-dimensional degenerate orbit. If x0 6= y0, then dimG(p) = 3 and (u, v, w)T ∈
G(p) if and only if (u− v)(x0− y0) > 0. Hence, there are two open submanifolds
as three-dimensional orbits. This implies that the two-dimensional degenerate
orbit is an exceptional orbit.

Let β = 0 (and so α 6= 0). If x0 = y0, then G(p) = {p + ue12 | u ∈ R},
which is a one-dimensional light-like singular orbit. Furthermore, (u, v, w)T ∈
G((x, y, z)T ) if and only if w = z. This implies that there are infinitely many
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singular orbits. Since their stabilizers are conjugate to AN , all of them are of the
same type. If x0 6= y0, then dimG(p) = 3, and (u, v, w)T ∈ G(p) if and only if
(u−v)(x0−y0) > 0. Hence, there are two open submanifolds as three-dimensional
orbits.

Now let α and β be nonzero. If x0 = y0, then G(p) = {p+αue12 +βue3 | u ∈
R}, which is a one-dimensional light-like singular orbit. As in the previous case,
there are infinitely many singular orbits of the same type and two open orbits in
R1,2.

(iii) Let G = AN nπ {ue12 + ve3 | u, v ∈ R}. If x0 = y0, then G(p) = {ue12 +
ve3 | u, v ∈ R}. If x0 6= y0 then dimG(p) = 3. In the later case, (u, v, w)T ∈
G((x, y, z)T ) if and only if (u − v)(x − y) > 0. Hence, there is a degenerate
exceptional orbit and two orbits which are open submanifolds of R1,2.

By Corollary 3.7, the only case that we have not studied in three previous
propositions is the case where G is conjugate to SOo(1, 2). Let G = SOo(1, 2)
and let G act on R1,2 naturally. Then the origin is a zero-dimensional singular
orbit, each component of the light-cone is an exceptional orbit, and each pseudo-
sphere and each pseudo-hyperbolic space is a principal orbit. Hence, there is one
singular orbit type, one exceptional orbit type and two principal orbit types. By
reviewing Propositions 4.3–4.5, we get that there are at most two exceptional
orbits and we obtain the following corollary.

Corollary 4.6. Let R1,2 be of cohomogeneity one under the isometric and
nonproper action of a connected and closed Lie subgroup G ⊂ Iso(R1,2). If there
is a unique exceptional orbit, then it is a degenerate plane and there are two
orbits which are open submanifolds. In particular, the orbit space, which consists
of three points, is not Housdorff.
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Динамiки кооднорiдностi один на тривимiрному
просторi Мiнковського

P. Ahmadi

У роботi надається класифiкацiя замкнутих i зв’язних груп Лi, з
точнiстю до спряженостi в Iso(R1,2), що дiють з кооднорiднiстю один на
тривимiрному просторi Мiнковського R1,2 як для власної, так i невласної
динамiки. Потiм визначаються причинно-наслiдковi властивостi i типи
орбiт.

Ключовi слова: кооднорiднiсть один, простiр Мiнковського.


	Introduction
	Preliminaries
	Lie groups acting by cohomogeneity one on R1,2
	Causal properties of orbits
	The action is proper.
	The action is nonproper.


