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We used the analog of known Hayman’s theorem to study the bounded-
ness of L-index in joint variables of entire solutions of some linear higher-
order systems of PDE’s and found sufficient conditions providing the bound-
edness, where L(z) = (l1(z), . . . , ln(z)), lj : Cn → R+ is a continuous func-
tion j ∈ {1, . . . , n}. Growth estimates of these solutions are also obtained.
We proposed the examples of systems of PDE’s which prove the exactness
of these estimates for entire solutions. The obtained results are new even
for the one-dimensional case because of the weakened restrictions imposed
on the positive continuous function l.
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1. Introduction

W. K. Hayman [19] proved that if f(z) is analytic in |z| < 2p, where it satisfies

|f (p)(z)| ≤ max
0≤ν≤p−1

|f (ν)(z)|, (1.1)

then f(z) cannot have more than (p − 1) zeros in |z| <
√
p

e
√

20
. Q.I. Rahman,

J. Stankiewicz, V. Singh, and R.M. Goel [25,30] refined this result and enlarged

the value
√
p

e
√

20
.

On the other hand, an entire function f is called a function of bounded index
[22] if there exists a nonnegative integer p0 such that

|f (p)(z)|
p!

≤ max
0≤j≤p0

|f (j)(z)|
j!

for all z ∈ C and for all p ∈ Z+. In order that an entire function f be of bounded
index [19], it is necesssary and sufficient that (1.1) be satisfied for all z ∈ C.
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In the theory of functions of bounded index this necessary and sufficient con-
dition and its generalizations [1, 4, 15, 21, 28] are known as Hayman’s Theorem.
The criterion is very convenient [6,11,14] for studying the boundedness of index
of entire solutions of ordinary or partial differential equations. The functions of
this class have good properties: sharp growth estimates, uniform distribution of
zeros in some sense, certain regular behavior of the solution, etc.

There are two approaches to introduce and study the index boundedness in
Cn. The first approach uses a slice function gz0(t) := F (z0 + tb), t ∈ C, where
z0 ∈ Cn is an arbitrary fixed point, n ≥ 2, b ∈ Cn \ {0} is a given direction in
Cn, F : Cn → C is an entire function. Applying the slice function and directional
derivative, we considered the functions of bounded L-index in direction (see the
definition and properties in [5–7]). There were obtained sufficient conditions
for the boundedness of L-index in direction of entire solutions of some linear
PDE’s [5–7]. The second approach is based on partial derivatives. They are a
background for the concept of entire function of bounded index in joint variables
(see the definition and inequality (1.2) below).

Let L(z) = (l1(z), . . . , ln(z)), where lj(z) are positive continuous functions of
z ∈ Cn, j ∈ {1, 2, . . . , n}. An entire function F (z), z ∈ Cn, is called a function of
bounded L-index in joint variables [2] if there exists a number m ∈ Z+ such that
for all z ∈ Cn and J = (j1, j2, . . . , jn) ∈ Zn+:

|F (J)(z)|
J !LJ(z)

≤ max

{
|F (K)(z)|
K!LK(z)

: K ∈ Zn+, ‖K‖ ≤ m

}
, (1.2)

where for partial derivatives of the entire function F (z) = F (z1, . . . , zn) we use

the notation F (K)(z) = ∂‖K‖F
∂zK

= ∂k1+···+knF

∂z
k1
1 ...∂zknn

, and LK(z) = lk1
1 (z) · · · lknn (z), K! =

k1! · . . . · kn!, ‖K‖ = k1 + . . .+ kn, K = (k1, . . . , kn) ∈ Zn+.
If lj(zj) = lj(|zj |) for every j ∈ {1, 2, . . . , n}, then we obtain a concept of

entire functions of bounded L-index in a sense of the definition given in [12, 15].
And if lj(zj) ≡ 1, then the entire function F is called a function of bounded
index in joint variables [16–18, 20, 26]. The least integer m for which inequality
(1.2) holds is called L-index in joint variables of the function F and is denoted
by N(F,L).

There are many papers [1, 12, 15–18, 23, 24, 26] devoted to the class of entire
functions of bounded index in joint variables. The recent ones are about analytic
functions [3,4,8,9] in a ball or a polydisc satisfying (1.2). However, linear higher-
order systems of PDE were considered only in two theses [13, 27]. In particular,
in [13], there was considered the system

aj(z)f
(K0

j )(z) +
∑
‖K‖≤s−1

gK,j(z)f
(K)(z) = hj(z), j ∈ {1, . . . ,m}, (1.3)

where for all j ∈ {1, . . . ,m} ‖K0
j ‖ = s, {f (K0

j )(z) : j = 1, . . . ,m} is a set of all
possible s-order partial derivatives of the function f , the entire functions aj , gK,j ,
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hj are the functions with separable variables of the form

g(z) =
n∏
j=1

gj(zj). (1.4)

The author stated the conditions providing the boundedness of L-index in joint
variables for every entire solution, where L(z) = (l1(|z1|), . . . , ln(|zn|)) and each
function lj : R+→R+ is continuous. Obviously, restriction (1.4) is very strong.
Earlier M. Salmassi [27] proved that every entire solution of the system{
a0f

(n1,0)(z) + a1f
(n1−1,0)(z) + . . .+ an1f(z) = g(z), a0 6= 0,

b0f
(0,n2)(z) + b2f

(0,n2−1)(z) + . . .+ bn2f(z) = h(z), b0 6= 0,
z = (z1, z2), (1.5)

is a function of bounded index in joint variables, where aj ∈ C, bi ∈ C, h(z)
and g(z) are arbitrary entire functions in C2 of bounded index in joint variables.
Unlike in [13], it was not assumed that h(z) and g(z) are functions with separable
variables. Therefore, the following natural question arises: Is it possible to
deduce sufficient conditions of the boundedness of L-index in joint variables for
entire solutions of a linear higher-order system of PDE without assumption (1.4)?

This paper gives a positive answer to the posed question for system (3.1) which
is more general than (1.5). Theorems 3.1–3.4 are generalizations of Salmassi’s
results in the following directions:

– we do not assume that the coefficients in system (3.1) are constants;

– we consider a system that may also contain the mixed partial derivatives.

Theorems 3.1–3.4 are also improved analogs of the results from [13] for system
(3.1) in the following directions:

– we do not assume that the coefficients in (3.1) are the functions with separable
variables;

– the function L(z) = (l1(z), . . . , ln(z)) is of more general form than L(z) =
(l1(|z1|), . . . , ln(|zn|)), where z = (z1, . . . , zn) ∈ Cn;

– we obtain sharp, in general, growth estimates of entire solutions of the system.
Note that the growth estimates of solutions are not discussed at all in [13,27].

Recently, it has been proved in [10] that if F is an entire function of bounded
L-index in joint variables N(F,L) and the function L satisfies some additional
assumptions, then

lim
|R|→+∞

ln max{|F (z)| : z ∈ Tn(0, R)}
max

Θ∈[0,2π]n

∫ 1
0 〈R,L (τReiΘ)〉dτ

≤ N(F,L) + 1.

Thus, in the paper we will estimate the growth of the same fraction by some
constants. The paper uses the methods from [1, 2, 7, 10, 14] to study the entire
solutions of system (3.1).
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2. Auxiliary notations and propositions

We need some standard notations. Let R+ = [0,+∞). Denote 0 =
(0, . . . , 0) ∈ Rn+, 1 = (1, . . . , 1) ∈ Rn+, 1j = (0, . . . , 0, 1︸︷︷︸

j-th place

, 0, . . . , 0) ∈ Rn+.

For A = (a1, . . . , an) ∈ Cn, B = (b1, . . . , bn) ∈ Cn, z = (z1, . . . , zn) ∈ Cn, we
will use formal notations without violation of the existence of these expressions:

A+B = (a1 + b1, . . . , an + bn),

AB = (a1b1, · · · , anbn),

A/B = (a1/b1, . . . , an/bn),

AB = ab11 a
b2
2 · . . . a

bn
n (for B ∈ Zn), |z| =

 n∑
j=1

|zj |2
1/2

.

If A, B ∈ Rn, the notation A < B means that aj < bj (j ∈ {1, . . . , n}). The
relation A ≤ B is defined in a similar way. For z, w ∈ Cn, we define 〈z, w〉 =
z1w1 + · · ·+ znwn, where wk is the complex conjugate of wk.

For R = (r1, . . . , rn), we denote by

Dn(z0, R) := {z ∈ Cn : |zj − z0
j | < rj , j ∈ {1, . . . , n}}

the polydisc, by

Tn(z0, R) := {z ∈ Cn : |zj − z0
j | = rj , j ∈ {1, . . . , n}}

its skeleton and by

Dn[z0, R] := {z ∈ Cn : |zj − z0
j | ≤ rj , j ∈ {1, . . . , n}}

the closed polydisc.
By Qn (in particular, Q := Q1), we denote a class of positive continuous

functions L(z) = (l1(z), . . . , ln(z)) such that

∃R0 ∈ Rn+ ∃C, c ∈ Rn+ (0 < c ≤ C) ∀z0 ∈ Cn ∀z ∈ Dn[z0, R0/L(z0)]

c ≤ L(z)/L(z0) ≤ C. (2.1)

Note that if (2.1) holds for some R0, then (2.1) is valid for all R ∈ Rn+. Besides,
if for all z ∈ Cn, j, m ∈ {1, 2, . . . , n},∣∣∣∣∂lj(z)∂zm

∣∣∣∣ ≤ P (c+ |lj(z)|), P > 0,

then L∗ ∈ Qn, where L∗(z) = (c + |l1(z)|, . . . , c + |ln(z)|), c > 0. It is proved
in [10, Lemma 1]. Particularly, if L(z) = (l1(R), . . . , ln(R)), R = (|z1|, . . . , |zn|),
for every j ∈ {1, . . . , n} the function lj(R) is positive continuously differen-
tiable and |∇ ln lj(R)| ≤ P for all R ∈ Rn+, then L ∈ Qn, where ∇lj(R) =(
∂lj(R)
∂r1

, . . . ,
∂lj(R)
rn

)
.
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Every function L ∈ Qn has the property

max
Θ∈[0,2π]n

∫ 1

0

〈
R,L

(
τReiΘ

)〉
dτ → +∞ as |R| → +∞. (2.2)

We will need the following analog of Hayman’s Theorem.

Theorem 2.1 ([1]). Let L ∈ Qn. An entire function F has bounded L-index
in joint variables if and only if there exists p ∈ Z+, c ∈ R+ such that for each
z ∈ Cn:

max

{
|F (J)(z)|
LJ(z)

: ‖J‖ = p+ 1

}
≤ cmax

{
|F (K)(z)|
LK(z)

: ‖K‖ ≤ p

}
. (2.3)

By G, we denote the closure of a domain G ⊂ Cn. Every entire function
F : Cn → C is a function of bounded L-index in joint variables with arbitrary
continuos function L : Cn → R+ in any bounded domain G ⊂ Cn.

Theorem 2.2. Let F (z) be an entire function, G be a bounded domain in
Cn. If L : Cn → R+ is a continuous function and F (z) is an entire function, then
there exists m ∈ Z+ such that for all z ∈ G and J = (j1, j2, . . . , jn) ∈ Zn+:

|F (J)(z)|
J !LJ(z)

≤ max

{
|F (K)(z)|
K!LK(z)

: K ∈ Zn+, ‖K‖ ≤ m

}
. (2.4)

Proof. If F (z) ≡ 0, then (2.4) is obvious. Let F (z) 6≡ 0. For every fixed

z0 ∈ Cn, |F
(J)(z0)|
J ! is the modulus of a coefficient of power series expansion of the

function F (z), z ∈ Tn(z0, 1
L(z0)

) in the neighborhood of the point z0. Since F (z)

is entire, |F
(J)(z0)|

J !LJ (z0)
→ 0 as ‖J‖ → ∞ for every z0 ∈ G, i.e., there exists m0 =

m(z0) for which inequality (2.4) holds.
Assume on the contrary that the set of values m0 is not uniformly bounded

in z0, i.e., sup
z0∈G

m0 = +∞. Hence, for every m ∈ Z+, there exists zm ∈ G and

Jm ∈ Zn+:

|F (Jm)(zm)|
Jm!LJm(zm)

> max

{
|F (K)(zm)|
K!LK(zm)

: K ∈ Zn+, ‖K‖ ≤ m

}
. (2.5)

Since zm ∈ G, there exists the subsequence z′m → z′ ∈ G as m → +∞. By
Cauchy’s integral formula, for any J ∈ Zn+ we have

F (J)(z0)

J !
=

1

(2πi)n

∫
Tn(z0,R)

F (z)

(z − z0)J+1
dz.

We rewrite (2.5) in the form

max

{
|F (K)(zm)|
K!LK(zm)

: K ∈ Zn+, ‖K‖ ≤ m

}
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≤ 1

(2π)nLJm(zm)

∫
Tn(z0,R/L(zm))

|F (z)|
|z − zm|Jm+1

|dz|

≤ 1

RJm max{|F (z)| : z ∈ GR}, (2.6)

where GR =
⋃
z∗∈GDn[z∗, R/L(z∗)], R = (r1, . . . , rn) > 0. We choose R > 1.

Taking the limit in (2.6) as m→∞, we deduce

∀K ∈ Zn+
|F (K)(z′)|
K!LK(z′)

≤ lim
m→∞

1

RJm max{|F (z)| : z ∈ GR} = 0

as m→ +∞. Thus, all partial derivatives of the function F at the point z′ equal
0. By a uniqueness theorem, F (z) ≡ 0, which is impossible.

Remark 2.3. A similar proposition to Theorem 2.2 holds for entire functions
of bounded L-index in a direction b ∈ Cn \ 0. This is valid under the additional
assumption: ∀z ∈ G gz(t) := F (z + tb) 6≡ 0, t ∈ C (see [7]).

Using Theorems 2.1 and 2.2, we obtain the following corollary.

Corollary 2.4. Let L ∈ Qn, F be an entire function, G be a bounded domain
in Cn. The function F is of bounded L-index in joint variables if and only if there
exists p ∈ Z+ and c > 0 such that for all z ∈ Cn \G inequality (2.3) holds.

Let us denote a+ = max{a, 0}, A+ = (a+
1 , . . . , a

+
n ), where a ∈ R, A ∈ Rn.

Let L(z) = L(ReiΘ) be a positive continuously differentiable function in each
variable rk, k ∈ {1, . . . , n}, Θ ∈ [0, 2π]n, R = (r1, . . . , rn) > 0.

By QWn, we denote the class of functions L ∈ Qn such that〈
1

R
,

(
d

dt

1

L(tReiΘ)

∣∣∣∣
t=1

)+
〉
→ 0 (|R| → +∞, R ≥ R0 > 0)

uniformly in Θ ∈ [0, 2π]n. For simplicity, we write QW := QW 1.

Let L(z) = L(R) with rk = |zk|, k ∈ {1, . . . , n}, R = (r1, . . . , rn) > 0. Every
function L(R) nondecreasing in each variable rk belongs to the class QWn. In
particular, a polynomial

L(R) =
∑
‖J‖≤p

aJR
J

and an exponent

L(R) = exp

(∑
‖J‖≤p

aJR
J

)
belong to the same class with aJ ∈ Rn+. The function L(R) = ( 1

ln r1
, . . . , 1

ln rn
)

(rj > 1) is nonincreasing in each variable and also belongs to the class QWn.
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Lemma 2.5. Let L ∈ QWn, F be an entire function. If there exists R′ ∈
Rn+, p ∈ Z+, c > 0 such that for all z ∈ Cn \Dn(0, R′) inequality (2.3) holds, then

lim
|R|→∞

ln max{|F (z)| : z ∈ Tn(0, R)}
max

Θ∈[0,2π]n

∫ 1
0 〈R,L(τReiΘ)〉dτ

≤ max{1, c}. (2.7)

Proof. Let R = (r1, . . . , rn) ∈ Rn \ {0}, R > R′, Θ ∈ [0, 2π]n. Denote r∗ =
max1≤j≤n rj , αj =

rj
r∗ , j ∈ {1, . . . , n} and A = (α1, . . . , αn). We consider the

function

g(t) = max

{∣∣F (S)
(
AteiΘ

)∣∣
LS (AteiΘ)

: ‖S‖ ≤ p

}
, (2.8)

where AteiΘ = (α1te
iθ1 , . . . , αnte

iθn) and |At| > |R′|, t ∈ R+.

Since the function |F (S)(AteiΘ)|
LS(AteiΘ)

is continuously differentiable by real t ∈
[0,+∞) outside the zero set of the function |F (S)(AteiΘ)|, the function g(t) is
a continuously differentiable function on [0,+∞) except, perhaps, for a count-
able set of points.

Let us denote uj(t) = uj(t, R,Θ) = lj
(
tR
r∗ e

iΘ
)
, where t ∈ R+, j ∈ {1, . . . , n}.

Let L(ReiΘ) be a positive function continuously differentiable in each variable
rk, k ∈ {1, . . . , n}, Θ ∈ [0, 2π]n. It is easy to check that L ∈ QWn if

r∗
(
− (uj(t, R,Θ))′t=r∗

)+
/
(
rjl

2
j

(
ReiΘ

))
→ 0 (2.9)

uniformly in Θ ∈ [0, 2π]n, j ∈ {1, . . . , n} as |R| → ∞, R ≥ R0 > 0.

Therefore, using the inequality d
dr |g(r)| ≤ |g′(r)| which holds except for the

points r = t such that g(t) = 0, we deduce

d

dt

(∣∣F (S)(AteiΘ)
∣∣

LS(AteiΘ)

)
=

1

LS(AteiΘ)

d

dt

∣∣∣F (S)
(
AteiΘ

)∣∣∣
+
∣∣∣F (S)

(
AteiΘ

)∣∣∣ d
dt

1

LS(AteiΘ)

≤ 1

LS(AteiΘ)

∣∣∣∣∣∣
n∑
j=1

F (S+1j)
(
AteiΘ

)
αje

iθj

∣∣∣∣∣∣−
∣∣F (S)(AteiΘ)

∣∣
LS(AteiΘ)

n∑
j=1

sju
′
j(t)

lj(AteiΘ)

≤
n∑
j=1

∣∣F (S+1j)(AteiΘ)
∣∣

LS+1j (AteiΘ)
αjlj(Ate

iΘ) +

∣∣F (S)(AteiΘ)
∣∣

LS(AteiΘ)

n∑
j=1

sj(−u′j(t))+

lj(AteiΘ)
. (2.10)

For absolutely continuous functions h1, h2, . . . , hk and h(x) := max{hj(z) : 1 ≤
j ≤ k}, h′(x) ≤ max{h′j(x) : 1 ≤ j ≤ k}, x ∈ [a, b] (see [29, Lemma 4.1, p. 81]).
The function g is absolutely continuous, therefore, from (2.3) and (2.10) it follows
that

g′(t) ≤ max

{
d

dt

(∣∣F (S)(AteiΘ)
∣∣

LS(AteiΘ)

)
: ‖S‖ ≤ p

}



Analog of Hayman’s Theorem and its Application to Some System 177

≤ max
‖S‖≤p


n∑
j=1

αjlj(Ate
iΘ)
∣∣F (S+1j)(AteiΘ)

∣∣
LS+1j (AteiΘ)

+

∣∣F (S)(AteiΘ)
∣∣

LS(AteiΘ)

n∑
j=1

sj(−u′j(t))+

lj(AteiΘ)


≤ g(t)

max{1, c}
n∑
j=1

αjlj(Ate
iΘ) + max

‖S‖≤p


n∑
j=1

sj(−u′j(t))+

lj(AteiΘ)




= g(t)(β(t) + γ(t)),

where

β(t) = max{1, c}
n∑
j=1

αjlj(Ate
iΘ), γ(t) = max

‖S‖≤p

{ n∑
j=1

sj(−u′j(t))+

lj(AteiΘ)

}
.

Thus,

d

dt
ln g(t) ≤ β(t) + γ(t) and g(t) ≤ g(t0) exp

∫ t

t0

(β(τ) + γ(τ)) dτ,

where t0 is chosen such that g(t0) 6= 0. The condition L ∈Wn gives

γ(t)

β(t)
=

∑n
j=1

sj(−u′j(t))+

lj(AteiΘ)

max{1, c}
∑n

j=1 αjlj(Ate
iΘ)
≤ p

n∑
j=1

(−u′j(t))+

αjl2j (Ate
iΘ)
≤ pε,

where ε = ε(R)→ 0 uniformly in Θ ∈ [0, 2π]n, t = r∗ as |R| → ∞.

But ∣∣F (AteiΘ)
∣∣ ≤ g(t) ≤ g(t0) exp

∫ t

t0

(β(τ) + γ(τ)) dτ

and r∗A = R. Then we put t = r∗ and obtain

ln max{|F (z) : z ∈ Tn(0, R)} = ln max
Θ∈[0,2π]n

∣∣F (ReiΘ)∣∣ ≤ ln max
Θ∈[0,2π]n

g(r∗)

≤ ln g(t0) + max
Θ∈[0,2π]n

∫ r∗

t0

(β(τ) + γ(τ))dτ

≤ ln g(t0) + max
Θ∈[0,2π]n

∫ r∗

t0

max{1, c}
n∑
j=1

αjlj
(
AτeiΘ

)
(1 + pε) dτ

= ln g(t0) + max{1, c} max
Θ∈[0,2π]n

∫ r∗

t0

n∑
j=1

rj
r∗
lj

( τ
r∗
ReiΘ

)
(1 + pε) dτ.

This implies (2.7).
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Lemma 2.6. Let L ∈ QWn, F be an entire function. If there exists R′ ∈
Rn+, p ∈ Z+, c > 0 such that for all z ∈ Cn \ Dn(0, R′) the inequality

max

{∣∣F (J)(z)
∣∣

J !LJ(z)
: ‖J‖ = p+ 1

}
≤ cmax

{∣∣F (K)(z)
∣∣

K!LK(z)
: ‖K‖ ≤ p

}
(2.11)

holds, then

lim
|R|→∞

ln max{|F (z)| : z ∈ Tn(0, R)}
max

Θ∈[0,2π]n

∫ 1
0 〈R,L(τReiΘ)〉dτ

≤ (p+ 1) max{1, c}. (2.12)

Proof. The proof of Lemma 2.6 is similar to that of Lemma 2.5. Let R =
(r1, . . . , rn) ∈ Rn \ {0}, R > R′, Θ ∈ [0, 2π]n. As in the proof of Lemma 2.5,
we denote r∗ = max1≤j≤n rj , αj =

rj
r∗ , j ∈ {1, . . . , n} and A = (α1, . . . , αn). We

consider the function

g(t) = max

{∣∣F (S)(AteiΘ)
∣∣

S!LS(AteiΘ)
: ‖S‖ ≤ p

}
, (2.13)

where AteiΘ =
(
α1te

iθ1 , . . . , αnte
iθn
)
, |At| > |R′|, t ∈ R+.

As above, the function |F (S)(AteiΘ)|
S!LS(AteiΘ)

is continuously differentiable by real t ∈
[0,+∞) outside the zero set of the function

∣∣F (S)
(
AteiΘ

)∣∣ , the function g(t) is a
continuously differentiable function on [0,+∞) except, perhaps, for a countable
set of points.

Therefore, using the inequality d
dr |g(r)| ≤ |g′(r)|, which holds except for the

points r = t such that g(t) = 0, we deduce

d

dt

(
|F (S)(AteiΘ)|
S!LS(AteiΘ)

)

=
1

S!LS(AteiΘ)

d

dt
|F (S)(AteiΘ)|+ |F (S)(AteiΘ)| d

dt

1

S!LS(AteiΘ)

≤ 1

S!LS(AteiΘ)

∣∣∣∣∣∣
n∑
j=1

F (S+1j)(AteiΘ)αje
iθj

∣∣∣∣∣∣− |F
(S)(AteiΘ)|

S!LS(AteiΘ)

n∑
j=1

sju
′
j(t)

lj(AteiΘ)

≤
n∑
j=1

|F (S+1j)(AteiΘ)|
(S+1j)!LS+1j (AteiΘ)

αj(sj+1)lj(Ate
iΘ)

+
|F (S)(AteiΘ)|
S!LS(AteiΘ)

n∑
j=1

sj(−u′j(t))+

lj(AteiΘ)
. (2.14)

For absolutely continuous functions h1, h2, . . . , hk and h(x) := max{hj(z) : 1 ≤
j ≤ k}, h′(x) ≤ max{h′j(x) : 1 ≤ j ≤ k}, x ∈ [a, b] (see [29, Lemma 4.1, p. 81]).
The function g is absolutely continuous. Therefore, (2.3) and (2.14) yield

g′(t) ≤ max

{
d

dt

(∣∣F (S)(AteiΘ)
∣∣

S!LS(AteiΘ)

)
: ‖S‖ ≤ N

}
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≤ max
‖S‖≤p


n∑
j=1

αj(sj+1)lj(Ate
iΘ)
∣∣F (S+1j)(AteiΘ)

∣∣
(S + 1j)!LS+1j (AteiΘ)

+

∣∣F (S)(AteiΘ)
∣∣

S!LS(AteiΘ)

sj(−u′j(t))+

lj(AteiΘ)


≤ g(t)

max{1, c} max
‖S‖≤p


n∑
j=1

αj(sj + 1)lj(Ate
iΘ)


+ max
‖S‖≤p


n∑
j=1

sj(−u′j(t))+

lj(AteiΘ)




= g(t)(β(t) + γ(t)),

where

β(t) = max{1, c} max
‖S‖≤p


n∑
j=1

αj(sj + 1)lj(Ate
iΘ)

 ,

γ(t) = max
‖S‖≤p


n∑
j=1

sj(−u′j(t))+

lj(AteiΘ)

 .

Thus,

d

dt
ln g(t) ≤ β(t) + γ(t) and g(t) ≤ g(t0) exp

∫ t

t0

(β(τ) + γ(τ)) dτ,

where t0 is chosen such that g(t0) 6= 0. Denote β̃(t) =
∑n

j=1 αjlj(Ate
iΘ). Since

L ∈Wn, for some S∗, ‖S∗‖ ≤ p and S̃, ‖S̃‖ ≤ p, we obtain

γ(t)

β̃(t)
=

∑n
j=1

s∗j (−u′j(t))+

lj(AteiΘ)∑n
j=1 αjlj(Ate

iΘ)
≤

n∑
j=1

s∗j
(−u′j(t))+

αjl2j (Ate
iΘ)
≤ p

n∑
j=1

(−u′j(t))+

αjl2j (Ate
iΘ)
≤ pε

and

β(t)

β̃(t)
=

max{1, c}
∑n

j=1 αj(s̃j+1)lj(Ate
iΘ)∑n

j=1 αjlj(Ate
iΘ)

= max{1, c}

(
1 +

∑n
j=1 αj s̃jlj(Ate

iΘ)∑n
j=1 αjlj(Ate

iΘ)

)

≤ max{1, c}

1 +

n∑
j=1

s̃j

 ≤ (1 + p) max{1, c},

where ε = ε(R)→ 0 uniformly in Θ ∈ [0, 2π]n, t = r∗ as |R| → ∞.
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But ∣∣F (AteiΘ)
∣∣ ≤ g(t) ≤ g(t0) exp

∫ t

t0

(β(τ) + γ(τ)) dτ

and r∗A = R. Then we put t = r∗ and obtain

ln max{|F (z) : z ∈ Tn(0, R)} = ln max
Θ∈[0,2π]n

|F (ReiΘ)| ≤ ln max
Θ∈[0,2π]n

g(r∗)

≤ ln g(t0) + max
Θ∈[0,2π]n

∫ r∗

t0

(β(τ) + γ(τ)) dτ

≤ ln g(t0) + max
Θ∈[0,2π]n

∫ r∗

t0

n∑
j=1

αjlj(Aτe
iΘ) (max{1, c}(1 + p) + pε) dτ

= ln g(t0) + max
Θ∈[0,2π]n

∫ r∗

t0

n∑
j=1

rj
r∗
lj

( τ
r∗
ReiΘ

)
(max{1, c}(1 + p) + pε) dτ.

This implies (2.12).

Remark 2.7. Note that condition (2.11) means that

max

{∣∣F (J)(z)
∣∣

LJ(z)
: ‖J‖ = p+ 1

}
≤ max

{
|F (J)(z)|
J !LJ(z)

: ‖J‖ = p+ 1

}
max
‖J‖=p+1

J !

≤ c(p+ 1)! max

{∣∣F (K)(z)
∣∣

K!LK(z)
: ‖K‖≤ p

}

≤ c(p+ 1)!

min
‖K‖≤p

K!
max

{∣∣F (K)(z)
∣∣

LK(z)
: ‖K‖≤ p

}

≤ c(p+ 1)! max

{∣∣F (K)(z)
∣∣

LK(z)
: ‖K‖ ≤ p

}
.

Hence, by Lemma 2.5, we have

lim
|R|→∞

ln max{|F (z)| : z ∈ Tn(0, R)}
max

Θ∈[0,2π]n

∫ 1
0 〈R,L(τReiΘ)〉dτ

≤ max{1, c(p+ 1)!}.

Since c(p+1)! > c(p+1) for p > 1, we see that Lemma 2.6 does not imply Lemma
2.5. Clearly, Lemma 2.5 does not imply Lemma 2.6 as well. Therefore we need
both Lemma 2.5 and Lemma 2.6.

3. Growth and boundedness of L-index in joint variables of
entire solutions of system of PDE’s

Using the proved lemmas, we will formulate and prove the propositions that
provide the growth estimates of entire solutions of the following system of partial
differential equations:

Gpj1j (z)F
(pj1j)(z) +

∑
‖Sj‖≤pj−1

GSj (z)F
(Sj)(z) = Hj(z), j ∈ {1, . . . , n}, (3.1)
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pj ∈ N, Sj ∈ Zn+, Hj and GSj are entire functions. Note if L ∈ Qn, then L
satisfies (2.2). It is proved in (Lemma 2, [10]).

We will say that nonhomogeneous system of PDE’s (3.1) belongs to the class
A(G,H,L), if L ∈ QWn, for all z ∈ Cn and for every j ∈ {1, . . . , n} the entire
functions Hj and GSj satisfy the following conditions:

1) for every ‖Sj‖ ≤ pj − 1 and M ∈ Zn+,

‖M‖ ≤ 1 +
n∑

k=1
k 6=j

pk,
∣∣∣G(M)

Sj
(z)
∣∣∣LSj−M (z) ≤ BSj ,M l

pj
j (z)

∣∣Gpj1j (z)
∣∣ ,

and ∣∣∣G(M)
pj1j

(z)
∣∣∣ ≤ Bpj1j ,MLM (z)

∣∣Gpj1j (z)
∣∣ ,

2) for every I ∈ Zn+,

‖I‖ = 1 +

n∑
k=1,k 6=j

pk,
∣∣∣H(I)

j (z)
∣∣∣ ≤ DI,jL

I(z) |Hj(z)| ,

3) Gpj1j (z) 6= 0,

where BSj ,M , DI,j , Bpj1j ,M are positive constants, H(z) = (H1(z), . . . ,Hn(z)),
G(z) is a matrix consisting of the coefficients GSJ

(z) of system (3.1).

A homogeneous system of PDE’s (3.1) belongs to the class A(G,0,L) if con-
dition 1) holds for M ∈ Zn+ such that ‖M‖ ≤

∑n
k=1,k 6=j pk and Gpj1j (z) 6= 0.

Condition 2) is not required.

Instead of the condition Gpj1j (z) 6= 0, we can require the validity of conditions
1) and 2) for all z ∈ Cn \ Dn(0, R′). It is possible in view of Theorem 2.2. If for

some M ∈ Zn+ G
(M)
Sj

(z) ≡ 0 or H
(M)
j (z) ≡ 0, then we suppose BSj ,M = 0 or

DM,j = 0, respectively.

Theorem 3.1. If nonhomogeneous system of PDE’s (3.1) belongs to the class
A(G,H,L) and an entire function F (z) satisfies (3.1), then F has bounded L-
index in joint variables, and

lim
|R|→∞

ln max{|F (z)| : z ∈ Tn(0, R)}
max

Θ∈[0,2π]n

∫ 1
0 〈R,L(τReiΘ)〉 dτ

≤ max{1, c}, (3.2)

where c is defined in (3.8).

Proof. Taking into account that the function F (z) satisfies system (3.1), we
calculate the partial derivative I ∈ Zn+ in each equation of the system

∑
0≤M≤I

CMI

G(M)
pj1j

(z)F (pj1j+I−M)(z)
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+
∑

‖Sj‖≤pj−1

G
(M)
Sj

(z)F (Sj+I−M)(z)

 = H
(I)
j (z), (3.3)

where CMI = i1!...in!
m1!(i1−m1)!...mn!(in−mn)! and ‖I‖ = 1 − pj +

∑n
k=1 pk = 1 +∑n

k=1,k 6=j pk. Using condition 2) of the theorem, we obtain∣∣∣H(I)
j (z)

∣∣∣ ≤ DI,jL
I(z)|Hj(z)|

≤ DI,jL
I(z)

∣∣Gpj1j (z)
∣∣∣∣F (pj1j)(z)

∣∣+
∑

‖Sj‖≤pj−1

∣∣GSj (z)
∣∣∣∣F (Sj)(z)

∣∣. (3.4)

Equation (3.3) yields

F (pj1j+I)(z) =
1

Gpj1j (z)

H(I)
j (z)−

∑
0≤M≤I,M 6=0

CMI G
(M)
pj1j

(z)F (pj1j+I−M)(z)

−
∑

0≤M≤I
CMI

∑
‖Sj‖≤pj−1

G
(M)
Sj

(z)F (Sj+I−M)(z)

 . (3.5)

From (3.5) and condition 2) it follows that

∣∣∣F (pj1j+I)(z)
∣∣∣ ≤

DI,jL
I(z)

∣∣∣F (pj1j)(z)
∣∣∣+

∑
‖Sj‖≤pj−1

|GSj (z)|
|Gpj1j (z)|

∣∣∣F (Sj)(z)
∣∣∣


+
∑

0≤M≤I,M 6=0

CMI

∣∣∣G(M)
pj1j

(z)
∣∣∣

|Gpj1j (z)|

∣∣∣F (pj1j+I−M)(z)
∣∣∣

+
∑

0≤M≤I
CMI

∑
‖Sj‖≤pj−1

∣∣∣G(M)
Sj

(z)
∣∣∣

|Gpj1j (z)|
|F (Sj+I−M)(z)|


≤ DI,jL

I(z)

∣∣∣F (pj1j)(z)
∣∣∣+

∑
‖Sj‖≤pj−1

BSj ,0l
pj
j (z)L−Sj (z)

∣∣∣F (Sj)(z)
∣∣∣


+
∑

0≤M≤I,M 6=0

CMI Bpj1j ,MLM (z)
∣∣∣F (pj1j+I−M)(z)

∣∣∣
+

∑
0≤M≤I

CMI
∑

‖Sj‖≤pj−1

BSj ,M l
pj
j (z)LM−Sj (z)

∣∣∣F (Sj+I−M)(z)
∣∣∣ . (3.6)

Dividing this inequality by l
pj
j (z)LI(z), we obtain that for every I, ‖I‖ = 1 +∑n

k=1,k 6=j pk and j ∈ {1, . . . , n}:∣∣F (pj1j+I)(z)
∣∣

Lpj1j+I(z)
≤ DI,j

∣∣F (pj1j)(z)
∣∣

l
pj
j (z)

+
∑

‖Sj‖≤pj−1

BSj ,0

∣∣F (Sj)(z)
∣∣

LSj (z)


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+
∑

0≤M≤I,M 6=0

CMI Bpj1j ,M

∣∣F (pj1j+I−M)(z)
∣∣

Lpj1j+I−M (z)

+
∑

0≤M≤I
CMI

∑
‖Sj‖≤pj−1

BSj ,M

∣∣F (Sj+I−M)(z)
∣∣

LSj+I−M (z)

≤

DI,j

1 +
∑

‖Sj‖≤pj−1

BSj ,0

+
∑

0≤M≤I,M 6=0

CMI Bpj1j ,M

+
∑

0≤M≤I
CMI

∑
‖Sj‖≤pj−1

BSj ,M

max


∣∣F (S)(z)

∣∣
LS(z)

: ‖S‖ ≤
n∑
j=1

pj

 .

Obviously, ‖pj1j + I‖ = 1 +
∑n

j=1 pj . This implies

max


∣∣F (K)(z)

∣∣
LK(z)

: ‖K‖ = 1 +
n∑
j=1

pj


≤ max{1, c}max

 |F (S)(z)|
LS(z)

: ‖S‖ ≤
n∑
j=1

pj

 , (3.7)

where

c = max
‖I‖=1−pj+

∑n
k=1

pk,

j∈{1,...,n}

DI,j

1 +
∑

‖Sj‖≤pj−1

BSj ,0


+

∑
0≤M≤I,M 6=0

CMI Bpj1j ,M +
∑

0≤M≤I
CMI

∑
‖Sj‖≤pj−1

BSj ,M

 (3.8)

for all z ∈ Cn \ Dn(0, R′). Thus, by Lemma 2.5, estimate (3.2) holds, and by
Corollary 2.4, the entire function F has bounded L-index in joint variables.

If system (3.1) is homogeneous (Hj(z) ≡ 0), the previous theorem can be
simplified.

Theorem 3.2. If homogeneous system of PDE’s (3.1) belongs to the class
A(G,0,L) and an entire function F is a solution of the system, then F has
bounded L-index in joint variables, and

lim
|R|→∞

ln max{|F (z)| : z ∈ Tn(0, R)}
max

Θ∈[0,2π]n

∫ 1
0 〈R,L(τReiΘ)〉dτ

≤ max{1, c}, (3.9)

where c is defined in (3.8) with DI,j = 0 and ‖I‖ = −pj +
∑n

k=1 pk instead of
‖I‖ = 1− pj +

∑n
k=1 pk.
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Proof. If Hj(z) ≡ 0, then (3.5) implies

F (pj1j+I)(z) =
1

Gpj1j (z)

− ∑
0≤M≤I,M 6=0

CMI G
(M)
pj1j

(z)F (pj1j+I−M)(z)

−
∑

0≤M≤I
CMI

∑
‖Sj‖≤pj−1

G
(M)
Sj

(z)F (Sj+I−M)(z)

 . (3.10)

Hence we obtain

∣∣∣F (pj1j+I)(z)
∣∣∣ ≤ 1∣∣Gpj1j (z)

∣∣
 ∑

0≤M≤I,M 6=0

CMI

∣∣∣G(M)
pj1j

(z)
∣∣∣ ∣∣∣F (pj1j+I−M)(z)

∣∣∣
+

∑
0≤M≤I

CMI
∑

‖Sj‖≤pj−1

∣∣∣G(M)
Sj

(z)
∣∣∣ ∣∣∣F (Sj+I−M)(z)

∣∣∣
 .

Dividing the obtained inequality by Lpj1j+I(z) and using the assumptions of the
theorem on the functions GSj , we deduce∣∣F (pj1j+I)(z)

∣∣
Lpj1j+I(z)

≤
∑

0≤M≤I,M 6=0

CMI Bpj1j ,M

∣∣F (pj1j+I−M)(z)
∣∣

Lpj1j+I−M (z)

+
∑

0≤M≤I
CMI

∑
‖Sj‖≤pj−1

BSj ,M

∣∣F (Sj+I−M)(z)
∣∣

LSj+I−M (z)

≤

 ∑
0≤M≤I,M 6=0

CMI Bpj1j ,M +
∑

0≤M≤I
CMI

∑
‖Sj‖≤pj−1

BSj ,M


×max


∣∣F (S)(z)

∣∣
LS(z)

: ‖S‖ ≤ −1 +
n∑
j=1

pj

 .

Obviously, ‖pj1j + I‖ =
∑n

j=1 pj . Therefore,

max


∣∣F (K)(z)

∣∣
LK(z)

: ‖K‖ =

n∑
j=1

pj


≤ max{1, c}max

 |F (S)(z)|
LS(z)

: ‖S‖ ≤ −1 +

n∑
j=1

pj


for all z ∈ Cn \ Dn(0, R′). Thus, all conditions of Corollary 2.4 are satisfied.
Hence the function F has a bounded L-index in joint variables and, by Lemma
2.5, estimate (3.9) holds.
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Note that estimates (3.2) and (3.9) cannot be improved (see examples for n =
1 in [14]). Let us consider the case n = 2. For example, the entire function w =
1 + e−z1−z2 is a solution of the nonhomogeneous system{

w′z1 + w = 1,

w′z2 + w = 1.
(3.11)

In view of (3.1) and (3.11), we have H1(z) = H2(z) = 1, G1,1(z) = G1,2 ≡ 1,
G2,1(z) = G2,2 ≡ 1, where Gi,j is the coefficient in the i-th equation of system
(3.11) at j-th order partial derivative in variable zi of the function w. Obviously,
the entire function w has bounded index in joint variables, that is, L(z1, z2) =
(1, 1). Validating the assumptions of Theorem 3.1, we deduce Bi,j,M ≡ 0 for M 6=
0 and Bi,j,0 = 1. Also, all second order partial derivatives of H1 and H2 equal
0. Then DI,1 = DI,2 = 0, where I ∈ I := {(2, 0), (1, 1), (0, 2)}. Hence, in view
of (3.8), c = 1. Thus, by Theorem 3.1,

lim
|R|→∞

ln max{|w(z)| : z ∈ T2(0, R)}∫ 1
0

∑2
j=1 rj dτ

≤ 1.

But

lim
|R|→∞

ln max{|1 + exp(−z1 − z2)| : (z1, z2) ∈ T2(0, R)}∫ 1
0 (r1 + r2) dτ

= lim
|R|→∞

r1 + r2

(r1 + r2)τ
∣∣1
0

= 1.

Therefore, estimate (3.2) is sharp.
By analogy, we can consider a homogeneous system{

w′z1 − z2w = 0,

w′z2 − z1w = 0.

The function w(z1, z2) = exp(z1z2) is its entire solution of bounded L-index in
joint variables, where L(z1, z2) = (|z2|, |z1|). Using Theorem 3.2, it is easy to
show that

lim
|R|→∞

ln max{|w(z)| : z ∈ T2(0, R)}∫ 1
0 (r1r2τ + r2r1τ) dτ

≤ 1.

Direct calculations prove that this estimate is exact too. Thus, (3.9) is non-
improvable.

Moreover, using Corollary 2.4 and Lemma 2.6, we can supplement two pre-
vious Theorems 3.1 and 3.2 with the propositions that contain the estimates
max{|F (z)| : z ∈ Tn(0, R)} which sometimes can be better than (3.9) and (3.2).

Two following theorems have the proofs similar to those of Theorems 3.1
and 3.2.

Theorem 3.3. If nonhomogeneous system of PDE’s (3.1) belongs to the class
A(G,H,L) and an entire function F (z) satisfies (3.1), then F has bounded L-
index in joint variables, and

lim
|R|→∞

ln max{|F (z)| : z ∈ Tn(0, R)}
max

Θ∈[0,2π]n

∫ 1
0 〈R,L (τReiΘ)〉 dτ

≤

1 +

n∑
j=1

pj

max{1, c′}, (3.12)
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where c′ is defined in (3.13).

Proof. As in the proof of Theorem 3.1, dividing (3.6) by (pj1j+I)!Lpj1j+I(z),
we obtain that for every ‖I‖ = 1 +

∑n
k=1
k 6=j

pk and j ∈ {1, . . . , n}:

∣∣F (pj1j+I)(z)
∣∣

(pj1j + I)!Lpj1j+I(z)
≤

DI,j

∣∣F (pj1j)(z)
∣∣

(pj1j + I)!Lpj1j (z)
+

∑
‖Sj‖≤pj−1

DI,jBSj ,0

∣∣F (Sj)(z)
∣∣

(pj1j + I)!Lpj1j−Sj (z)

+
∑

0≤M≤I,M 6=0

CMI Bpj1j ,M

∣∣F (pj1j+I−M)(z)
∣∣

(pj1j + I)!Lpj1j+I−M (z)

+
∑

0≤M≤I
CMI

∑
‖Sj‖≤pj−1

BSj ,M

∣∣F (Sj+I−M)(z)
∣∣

(pj1j + I)!LSj+I−M (z)

≤ DI,j

 ∣∣F (pj1j)(z)
∣∣

(pj1j + I)!Lpj1j (z)

+ B
∑

‖Sj‖≤pj−1

∣∣F (Sj)(z)
∣∣

(pj1j + I)!Lpj1j−Sj (z)


+

∑
0≤M≤I,M 6=0

CMI B
∣∣F (pj1j+I−M)(z)

∣∣
(pj1j + I)!Lpj1j+I−M (z)

+
∑

0≤M≤I
CMI

∑
‖Sj‖≤pj−1

B
∣∣F (Sj+I−M)(z)

∣∣
(pj1j + I)!LSj+I−M (z)

≤

DI,j

 pj !

(pj1j + I)!
+B

∑
‖Sj‖≤pj−1

(pj1j − Sj)!
(pj1j + I)!


+B

∑
0≤M≤I

M 6=0

CMI
(pj1j + I −M)!|

(pj1j + I)!

+ B
∑

0≤M≤I
CMI

∑
‖Sj‖≤pj−1

(Sj + I −M)!

(pj1j + I)!


×max


∣∣F (S)(z)

∣∣
LS(z)

: ‖S‖ ≤
n∑
j=1

pj

 ,

where

B = max

BSj ,M , Bpj1j ,M : j ∈ {1, . . . , n},0 ≤M ≤ I, ‖I‖ = 1 +
n∑

k=1, k 6=j
pk

 .

Obviously, ‖pj1j + I‖ = 1 +
∑n

j=1 pj . For all z ∈ Cn \ Dn(0, R′), it implies
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max


∣∣F (K)(z)

∣∣
K!LK(z)

: ‖K‖ = 1 +
n∑
j=1

pj


≤ max{1, c′}max

 |F (S)(z)|
S!LS(z)

: ‖S‖ ≤
n∑
j=1

pj

 ,

where

c′ = max
‖I‖=1−pj+

∑n
k=1

pk,

j∈{1,...,n}

DI,j

 pj !

(pj1j + I)!
+B

∑
‖Sj‖≤pj−1

(pj1j − Sj)!
(pj1j + I)!


+B

∑
0≤M≤I,M 6=0

CMI
(pj1j + I −M)!|

(pj1j + I)!

+ B
∑

0≤M≤I
CMI

∑
‖Sj‖≤pj−1

(Sj + I −M)!

(pj1j + I)!

 . (3.13)

In view of Theorem 2.2, the entire function F has bounded L-index in joint
variables. And by Lemma 2.6, estimate (3.12) holds.

By analogy to the proofs of Theorems 3.2 and 3.3, the following assertion can
be proved.

Theorem 3.4. If homogeneous system of PDE’s (3.1) belongs to the class
A(G,0,L) and an entire function F is a solution of the system, then F has
bounded L-index in joint variables, and

lim
|R|→∞

ln max{|F (z)| : z ∈ Tn(0, R)}
max

Θ∈[0,2π]n

∫ 1
0 〈R,L(τReiΘ)〉dτ

≤
n∑
j=1

pj max{1, c},

where c′ is defined in (3.13) with DI,j = 0 and ‖I‖ = −pj +
∑n

k=1 pk instead of
‖I‖ = 1− pj +

∑n
k=1 pk.

If L(z) ≡ 1, then Theorem 3.1 implies the following corollary.

Corollary 3.5. For all z ∈ Cn \ Dn(0, R′) and for every j ∈ {1, . . . , n}, the
entire functions Hj and GSj satisfy the following conditions:

1) for every ‖Sj‖ ≤ pj − 1 and for each M ∈ Zn+, ‖M‖ ≤ 1 +
∑n

k=1
k 6=j

pk,∣∣∣G(M)
Sj

(z)
∣∣∣ ≤ BSj ,M |Gpj1j (z)| and

∣∣∣G(M)
pj1j

(z)
∣∣∣ ≤ Bpj1j ,M |Gpj1j (z)|,

2) for every I ∈ Zn+, ‖I‖ = 1 +
∑n

k=1
k 6=j

pk,
∣∣∣H(I)

j (z)
∣∣∣ ≤ DI,j |Hj(z)|,

3) Gpj1j (z) 6= 0,
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where BSj ,M , DI,j , Bpj1j ,M are positive constants. If an entire function F (z)
satisfies (3.1), then F has bounded index in joint variables, and

lim
|R|→∞

ln max{|F (z)| : z ∈ Tn(0, R)}
r1 + . . .+ rn

≤ max{1, c},

where c is defined in (3.8).

Similar corollaries also can be obtained from Theorems 3.2–3.4.

Suppose that all coefficients in (3.1) are polynomials. Let l0(z) = max
1≤j≤n

|zj |,

degGSj (z) be the degree of a polynomial GSj (z) that is the highest degree of its
terms. Then Theorem 3.1 implies the following corollary.

Corollary 3.6. Let Hj(z) be a monomial, GSj (z) be a polynomial,
Gpj1j (z) ≡ 1 in (3.1) for every j ∈ {1, . . . , n} and for each ‖Sj‖ ≤ pj − 1,

s = maxj,Sj

degGSj
(z)

‖pj1j−Sj‖ , L(z) = (ls0(z), . . . , ls0(z)). Then every entire solution F of

(3.1) has bounded L-index in joint variables, and the inequality

lim
|R|→∞

ln max{|F (z)| : z ∈ Tn(0, R)}
(r∗)s

s+1

∑n
j=1 rj

≤ max{1, c}

holds, where c is defined in (3.8).

Remark 3.7. We should like to note that the obtained propositions are im-
provements of the corresponding theorems for n = 1 in [14]. Indeed, the author
considered a positive continuous function l = l(|z|) such that l′(t) = o(l2(t)) as
t→ +∞. But our restrictions on the function l are weaker. We study a positive
continuous function l = l(z) such that (−(u(r, θ))′r)

+/l2(r, θ) → 0 uniformly in
θ ∈ [0, 2π] as r →∞, where u(r, θ) = l(reiθ).

For example, if n = 1, then system (3.1) reduces to the following equation:

gp(z)f
(p)(z) +

p−1∑
j=0

gj(z)f
(j)(z) = h(z), (3.14)

where h and gj are entire functions. Theorem 3.1 implies the corollary for n = 1.

Corollary 3.8. Let l ∈ QW and for all z ∈ C such that |z| > r′ entire
functions h and gj satisfy the following conditions:

1)
∣∣∣g(m)
j (z)

∣∣∣ ≤ Bj,mlp−j+m(z)|gp(z)| for every j ∈ {0, . . . , p}, m ∈ {0, 1},

2) |h′(z)| ≤ Dl(z)|h(z)|,

3) gp(z) 6= 0,
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where Bj,m and D are positive constants. If an entire function f satisfies (3.14),
then f has bounded l-index in joint variables, and

lim
r→∞

ln max{|f(z)| : |z| = r}
max
θ∈[0,2π]

∫ r
0 l (τe

iθ) dτ
≤ max{1, c},

where c = D(1 +
∑p−1

j=0 Bj,0) +
∑p

j=0Bj,1 +
∑p−1

j=0 Bj,0.

Similar corollaries can be obtained from Theorems 3.2–3.4 for n = 1. Partic-
ularly, in a corollary from Theorem 3.2 the constant c equals

∑p−1
j=0 Bj,0, but in

a corollary from Theorem 3.4 the constant c′ equals maxj{p, 2, 2Bj,0}, where p is
the order of differential equation. Each of these constants may be greater than
or lesser than the other [14].

Suppose that all coefficients in (3.14) are polynomials.

Corollary 3.9. Let h(z), gj(z) be polynomials for every j ∈ {0, . . . , p − 1},
gp(z) ≡ 1 in (3.14), s = max

0≤j≤p−1

deg gj(z)
p−j , l(z) = |z|s, z ∈ C. Then every entire

solution f of (3.14) has bounded l-index, and

lim
r→∞

ln max{|f(z)| : |z| = r}
rs+1/(s+ 1)

≤ max{1, c},

where J =
{
j :

deg gj
p−j = s, 0 ≤ j ≤ p− 1

}
, gj(z) = bj,mz

m + · · · + bj,0, c =∑
j∈J
|bj,deg gj |.

Note that Theorems 3.1–3.4 are proved for system (3.1). Perhaps, the follow-
ing conjecture is true.

Conjecture 3.10 (O.B. Skaskiv). The counterparts of Theorems 3.1–3.4 for
entire solutions of system (1.3) are valid.
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Аналог теореми Хеймана та його застосування до
однiєї системи лiнiйних рiвнянь з частинними

похiдними
Andriy Bandura and Oleh Skaskiv

Аналог вiдомої теореми Хеймана застосовується до дослiдження
обмеженостi L-iндексу за сукупнiстю змiнних цiлих розв’язкiв деяких
лiнiйних систем рiвнянь з частинними похiдними вищих порядкiв та
знайдено достатнi умови, якi гарантують цю обмеженiсть, де L(z) =
(l1(z), . . . , ln(z)), lj : Cn → R+ — неперервна функцiя, j ∈ {1, . . . , n}. Та-
кож отримано оцiнки зростання цих розв’язкiв. Наведено приклади си-
стем РЧП, якi доводять точнiсть встановлених оцiнок для цiлих розв’яз-
кiв. Отриманi результати також є новими в одновимiрному випадку, бо
послаблено додатковi умови на додатну неперервну функцiю l.

Ключовi слова: цiла функцiя, обмежений L-iндекс за сукупнiстю
змiнних, лiнiйна система РЧП вищих порядкiв, аналiтична теорiя РЧП,
цiлий розв’язок, лiнiйне диференцiальне рiвняння вищого порядку.
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