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Analog of Hayman’s Theorem and its
Application to Some System of Linear
Partial Differential Equations
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We used the analog of known Hayman’s theorem to study the bounded-
ness of L-index in joint variables of entire solutions of some linear higher-
order systems of PDE’s and found sufficient conditions providing the bound-
edness, where L(z) = (I1(2),...,1,(2)), I; : C* — Ry is a continuous func-
tion j € {1,...,n}. Growth estimates of these solutions are also obtained.
We proposed the examples of systems of PDE’s which prove the exactness
of these estimates for entire solutions. The obtained results are new even
for the one-dimensional case because of the weakened restrictions imposed
on the positive continuous function /.
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1. Introduction

W. K. Hayman [19] proved that if f(z) is analytic in |z| < 2p, where it satisfies

fPE) < max |fY(z), (1.1)

T 0<v<p-1

then f(z) cannot have more than (p — 1) zeros in |z| < %. Q.I. Rahman,

J. Stankiewicz, V. Singh, and R.M. Goel [25,30] refined this result and enlarged

VP
the value V30"
On the other hand, an entire function f is called a function of bounded index

[22] if there exists a nonnegative integer py such that

for all z € C and for all p € Z,. In order that an entire function f be of bounded
index [19], it is necesssary and sufficient that (1.1) be satisfied for all z € C.
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In the theory of functions of bounded index this necessary and sufficient con-
dition and its generalizations [1,4, 15,21, 28] are known as Hayman’s Theorem.
The criterion is very convenient [6,11,14] for studying the boundedness of index
of entire solutions of ordinary or partial differential equations. The functions of
this class have good properties: sharp growth estimates, uniform distribution of
zeros in some sense, certain regular behavior of the solution, etc.

There are two approaches to introduce and study the index boundedness in
C™. The first approach uses a slice function g,,(t) := F(z° + tb), t € C, where
20 € C" is an arbitrary fixed point, n > 2, b € C"\ {0} is a given direction in
C", F : C" — C is an entire function. Applying the slice function and directional
derivative, we considered the functions of bounded L-index in direction (see the
definition and properties in [5-7]). There were obtained sufficient conditions
for the boundedness of L-index in direction of entire solutions of some linear
PDE’s [5—7]. The second approach is based on partial derivatives. They are a
background for the concept of entire function of bounded index in joint variables
(see the definition and inequality (1.2) below).

Let L(z) = (l1(2), ..., ln(2)), where [;(2) are positive continuous functions of
z€C" j€{1,2,...,n}. An entire function F(z), z € C", is called a function of
bounded L-index in joint variables [2] if there exists a number m € Z such that
for all z € C" and J = (j1,J2,-.-,Jn) € Z'}:

[FU ()] [FUO(2)]

— < : Ke7Zl, |K| < 1.2

JILI(z) — ax KILE () €Zi, K| <m,, (1.2)
where for partial derivatives of the entire function F(z) = F(z1,...,2,) we use

the notation F(5)(z) = %KJ{F = 81@1:'”%:1?, and LE(2) = (¥ (2) .- Ik (2), K! =
z 8211...an”

ke R LK =k 4 A R, K= (k.. k) €20

If [;(2;) = lj(]z]) for every j € {1,2,...,n}, then we obtain a concept of
entire functions of bounded L-index in a sense of the definition given in [12, 15].
And if [;(z;) = 1, then the entire function F is called a function of bounded
index in joint variables [16-18,20,26]. The least integer m for which inequality
(1.2) holds is called L-index in joint variables of the function F and is denoted
by N(F,L).

There are many papers [1, 12, 15-18, 23,24, 26] devoted to the class of entire
functions of bounded index in joint variables. The recent ones are about analytic
functions [3,4,8,9] in a ball or a polydisc satisfying (1.2). However, linear higher-
order systems of PDE were considered only in two theses [13,27]. In particular,
in [13], there was considered the system

(DY o) = (), G e (L m), (13)

where for all j € {1,...,m} ||KJ0|| = s, {f(K.?)(z) :j=1,...,m} is a set of all
possible s-order partial derivatives of the function f, the entire functions a;, gx ;,
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h; are the functions with separable variables of the form
n
9(2) = [ 95(2)- (1.4)
j=1

The author stated the conditions providing the boundedness of L-index in joint
variables for every entire solution, where L(z) = (I1(|z1]),...,ln(|zn|)) and each
function I; : Ry — Ry is continuous. Obviously, restriction (1.4) is very strong.
Earlier M. Salmassi [27] proved that every entire solution of the system

{ao Fr0 ) 4 ap f10 () 4 4an, f(2) = g(2), ag #0,

bo fO12) (2) 4 by fOM2 "V (2) 4 .. 4 b, f(2) = h(z), by #£0, z = (21,2), (1.5)

is a function of bounded index in joint variables, where a; € C, b; € C, h(z)
and g(z) are arbitrary entire functions in C? of bounded index in joint variables.
Unlike in [13], it was not assumed that h(z) and g(z) are functions with separable
variables. Therefore, the following natural question arises: Is it possible to
deduce sufficient conditions of the boundedness of L-index in joint variables for
entire solutions of a linear higher-order system of PDE without assumption (1.4)7

This paper gives a positive answer to the posed question for system (3.1) which
is more general than (1.5). Theorems 3.1-3.4 are generalizations of Salmassi’s
results in the following directions:

— we do not assume that the coefficients in system (3.1) are constants;

— we consider a system that may also contain the mixed partial derivatives.

Theorems 3.1-3.4 are also improved analogs of the results from [13] for system
(3.1) in the following directions:

— we do not assume that the coefficients in (3.1) are the functions with separable
variables;

— the function L(z) = (I1(2),...,l,(z)) is of more general form than L(z) =
(l1(Jz1])s - - -y tn(J2n])), where z = (21,...,2,) € C™;

— we obtain sharp, in general, growth estimates of entire solutions of the system.
Note that the growth estimates of solutions are not discussed at all in [13,27].

Recently, it has been proved in [10] that if F' is an entire function of bounded
L-index in joint variables N(F, L) and the function L satisfies some additional
assumptions, then

i Inmax{|F(z)|: z€ T"(0,R)}

| R|—+o00 YR, L (1Rei®))d
@$%p5<’“'6»7

< N(F,L) +1.

Thus, in the paper we will estimate the growth of the same fraction by some
constants. The paper uses the methods from [1,2,7,10, 14] to study the entire
solutions of system (3.1).
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2. Auxiliary notations and propositions

We need some standard notations. Let Ry = [0,+00). Denote 0 =
0,...,00€R?, 1=(1,...,1) €R?, 1; =(0,...,0, _1_ ,0,...,0)€R".
j-th place

For A = (a1,...,a,) € C", B = (by,...,b,) € C", 2 = (21,...,2,) € C", we
will use formal notations without violation of the existence of these expressions:
A+ B= (a1 +b1,...,an+by),
AB - (a1b17 T 7anbn)a

A/B = (al/bl,...,an/bn),
1/2

n
AB = a?lagz ...l (for BeZ"), |z| = Z |22
j=1

n

If A, B € R", the notation A < B means that a; < b; (j € {1,...,n}). The
relation A < B is defined in a similar way. For z, w € C", we define (z,w) =
21W1 + - - - + 2pWy,, where Wy, is the complex conjugate of wy.

For R = (r1,...,7y,), we denote by

D"(z°,R) :={z € C": \zj—z?| <r;, je{l,...,n}}
the polydisc, by

T"(:°,R) := {z € C": |zj—z§-) =rj, je{l,...,n}}
its skeleton and by

D"[2°, R] := {z € C": \zj—z?| <rj, je{l,...,n}}

the closed polydisc.
By Q" (in particular, Q := Q'), we denote a class of positive continuous
functions L(z) = (l1(2),...,l,(2)) such that

dRy € R} 3C,c € R} (0 <c < C) Vzo € C" Vz € D"[20, Ro/L(20)]
¢ <L(z2)/L(2) < C. (2.1)

Note that if (2.1) holds for some Ry, then (2.1) is valid for all R € R"}. Besides,
if for all z € C", j, m € {1,2,...,n},

‘ oL;(2)

0zZm

< Ple+li(2)]), P >0,

then L* € Q", where L*(2) = (c+ [l1(2)],...,¢ + |ln(2)]), ¢ > 0. It is proved
in [10, Lemma 1]. Particularly, if L(z) = (I1(R),...,ln(R)), R = (|z1],---,|2nl])s
for every j € {1,...,n} the function [;(R) is positive continuously differen-
tiable and |VInl;j(R)| < P for all R € R"}, then L € Q", where V[;(R) =
<3lj(R) alj(R)> '

ory 7Ty
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Every function L € Q™ has the property

1
max / (R,L (TR€i®)> dr — 400 as |R| = +oo. (2.2)
e€[0,2x]™ Jo

We will need the following analog of Hayman’s Theorem.

Theorem 2.1 ([1]). Let L € Q™. An entire function F' has bounded L-index
in joint variables if and only if there exists p € Z,, ¢ € Ry such that for each
ze C":

() (4 (K) (4
mﬂ{”;éyﬂ|uw:p+1}gcmw{“;wg”:nKnép}- (23)

By G, we denote the closure of a domain G C C". Every entire function
F:C" — C is a function of bounded L-index in joint variables with arbitrary
continuos function L: C" — R, in any bounded domain G C C".

Theorem 2.2. Let F(z) be an entire function, G be a bounded domain in
C" IfL: C" — Ry is a continuous function and F(z) is an entire function, then
there exists m € Zy such that for all z € G and J = (j1,J2,...,Jn) € Z}:

) (2 (K) (4
5&&JSmw{§m§3:Kezaqum}. (2.4)

Proof. If F(z) = 0, then (2.4) is obvious. Let F(z) # 0. For every fixed

(DN . . . .
20 ecCn, w is the modulus of a coefficient of power series expansion of the

function F(z), z € T"(2°, ﬁ) in the neighborhood of the point 2°. Since F(z)

[FUD(20)]
I LD
m(2°) for which inequality (2.4) holds.

Assume on the contrary that the set of values mg is not uniformly bounded

is entire — 0 as ||J|| — oo for every 2 € G, i.e., there exists mg =

in 20, i.e., sup mg = +oo. Hence, for every m € Z,, there exists 2™ € G and
2VeG

JmeZl:
|F(Jm)(zm | ’F(K)(zm” . i
TR (gmy X LR gy ¢ K €2 Kl sme. o (25)

Since 2™ € G, there exists the subsequence 2™ — 2/ € G as m — +oo. By
Cauchy’s integral formula, for any J € Z’ we have

FOEY 1 / F(2) p
T T @R o gy (= 20)7

We rewrite (2.5) in the form

[FUO ()] n
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S FOL
= 2m)"LI"(2™) Jreo mynzmy) |2 — 2™ 7T
1
< — max{|F(2)|: z € Ggr}, (2.6)

where G = (J,..gD"[2*, R/L(2")], R = (r1,...,7) > 0. We choose R > 1.

Taking the limit in (2.6) as m — oo, we deduce

W PO
VRS R S ik BT

max{|F(z)]: z€ Gr} =0

as m — +oo. Thus, all partial derivatives of the function F at the point 2’ equal
0. By a uniqueness theorem, F'(z) = 0, which is impossible. ]

Remark 2.3. A similar proposition to Theorem 2.2 holds for entire functions
of bounded L-index in a direction b € C™ \ 0. This is valid under the additional
assumption: Vz € G g.(t) :== F(z +tb) £ 0, t € C (see [7]).

Using Theorems 2.1 and 2.2, we obtain the following corollary.

Corollary 2.4. Let L € Q", F be an entire function, G be a bounded domain
in C™. The function F is of bounded L-index in joint variables if and only if there
exists p € Z+ and ¢ > 0 such that for all z € C" \ G inequality (2.3) holds.

Let us denote at = max{a,0}, A* = (af,...,qa;}}), where a € R, A € R".

Let L(z) = L(Re™®) be a positive continuously differentiable function in each
variable ri, k € {1,...,n}, © € [0,27]", R= (r1,...,m) > 0.

By QW™ we denote the class of functions L € Q" such that

1(d_ 1
R’ \ dt L(tRe'®)

uniformly in © € [0, 27]". For simplicity, we write QW := QW!.

Let L(z) = L(R) with r, = |zx|, k € {1,...,n}, R = (r1,...,m) > 0. Every
function L(R) nondecreasing in each variable 7 belongs to the class QW". In
particular, a polynomial

_ J
L(R) = ZHJHSP askt

_l’_
) >—>0 (|R| = 400, R > Ry > 0)
t=1

and an exponent

L(R) = exp <Z||J||§p aJRJ)
1 =)

belong to the same class with a; € R}. The function L(R) = (5= 7y
(rj > 1) is nonincreasing in each variable and also belongs to the class QW™.
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Lemma 2.5. Let L € QW™, F be an entire function. If there exists R’ €
R%, p € Zy, ¢ > 0 such that for all z € C*\D"™(0, R') inequality (2.3) holds, then

e In max{|F(z)|: z € T"(0, R)}

|R|—00 (R,L(TRe©))d
olhax Jo (R, L(TRei®))dr

< max{l,c}. (2.7)

Proof. Let R = (r1,...,m,) € R\ {0}, R > R', © € [0,27]". Denote r* =

maxi<j<n7j, 0 = %, jeA{l,....,n} and A = (a1,...,,). We consider the
function
[P (Ate’®) |
where Ate™® = (ate’® ... ante®) and |At| > |R|, t € R,.
(S) i
Since the function % is continuously differentiable by real t €

[0, +00) outside the zero set of the function |F(5)(Ate'®)|, the function g(t) is
a continuously differentiable function on [0,+0c0) except, perhaps, for a count-
able set of points.

Let us denote u;(t) = u;j(t,R,©) =; (i—?ei@) , where t e Ry, j € {1,...,n}.
Let L(Re™®) be a positive function continuously differentiable in each variable
T, k€ {1,...,n}, © € [0,27]|™. It is easy to check that L € QW™ if

(= (ui(t, R, ©))_,.) "/ (512 (Re™®)) — 0 (2.9)
uniformly in © € [0,27]", j € {1,...,n} as |[R| = oo, R > Ry > 0.

Therefore, using the inequality d%|g(r)| < |¢'(r)| which holds except for the
points r = ¢ such that g(t) = 0, we deduce

d [(|FO(Ate®)]) 1 d | s o
i (o) = oy [P )

ol d 1
) (aeiy| 4L
+)F (Ate ))dtLS Atei@))
1 Z PO (Atc®)] &
= L5(Ate®) ZF ST (A1) aje™ ) - LS(Ate®) Zz Atez@

_l’_

n F(S+1J)(At629)‘ ‘o | Atel@ | s] U4
Z:: 57, (419 a;jlj(Ate™®) + STATe) Z Ate@ . (2.10)
For absolutely continuous functions hy, ha, ..., hy and h(z) := max{h;(z) : 1 <

j <k}, h(z) <max{hj(z) : 1 <j <k}, x € [a,b] (see [29, Lemma 4.1, p. 81]).
The function g is absolutely continuous, therefore, from (2.3) and (2.10) it follows

that
b < |[FO)(Ate™®)| ) gl <
9() max dt W SIS <p
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< Zn: a;li(Ate'®) ’F(S“'lj)(Atei@)‘
a .
< o 2 e ey
+‘ Atel@‘ n 5]( u‘ +
S(Ate®) = ¥ (Atel@

d o 5 ()
< g(t) | max{l,} ) oyl (Ate’®) + max 0 > =
j=1 - Jj=1
= 9(t)(B(t) + (1)),

where
n ' Sl (t +
Bt) = max{1,c} 3 osly(Ate®), 7(t) = o {ZW}'
j=
Thus,

%lng() B(t) +~(t) and g(t)ﬁg(to)eXP/(/B(T)+7(T))d7,

to

where t( is chosen such that g(tp) # 0. The condition L € W™ gives

n sicule)t .
2j=1 Jl(AtJeZ@) Z (—U' )+

B(t)  max{l, C}Z il (Atei®) — (Ate’@) < pe,

where € = ¢(R) — 0 uniformly in © € [0,27]", t = r* as |R| — oo.
But
t
|F(Ate™®)| < g(t) < g(to) exp/ (B(r) +~(7)) dr

to
and 7*A = R. Then we put ¢t = r* and obtain
Inmax{|F(z): z€ T"0,R)} =In max_|F (Re’e)‘ <In max g(r")

o¢c[0,27]™ ©¢€[0,27]"

*

< Ingto) + max / (B(r) +(r))dr

0€l0,2x|"

<lIng(to) + @611[(1)32>7<r]n/ max{1, c} Zoz] (Are’ ) (1 +pe) dr

=Ing(tp) + max{l,c} max / Z T]l Rei®> (1+ pe) dr.

0€0,2x|"

This implies (2.7). O
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Lemma 2.6. Let L € QW™, F be an entire function. If there exists R’ €
R%, p € Zy, ¢ > 0 such that for all z € C" \ D"(0, R') the inequality

‘F J) (z ‘ |F(K)(2)}
holds, then

I In max{|F'(z)|: z € T"(0, R)}

|R| L(TRe©))d
—00 Qen[%a;( fo (R,L(TRe™®))dr

< (p+1)max{1,c}. (2.12)

Proof. The proof of Lemma 2.6 is similar to that of Lemma 2.5. Let R =
(r1,...,rn) € R"\ {0}, R > R/, © € [0,27]™. As in the proof of Lemma 2.5,

we denote r* = maxi<j<p1j, @ = %, je{l,...,n} and A = (aq,...,ay). We
consider the function
FO) (Ate)|
g(t) = maX{S!LS(Atei@) IS <pyp, (2.13)
where Ate™® = (ayte®, ... ante), |At] > |R/|, t € R;.

|F(5)(Ate™®)|
SILS (Atei®)
[0, 4+00) outside the zero set of the function ‘F(S) (Ate™)|, the function g(t) is a
continuously differentiable function on [0, +00) except, perhaps, for a countable
set of points.

Therefore, using the inequality <|g(r)| < |¢’(r)|, which holds except for the
points r = t such that g(t) = 0, we deduce

d [ |F9)(Ate®))
dt \ SILS(Ate®)

1 d s i© s i©

As above, the function is continuously differentiable by real t €

d__ 1
dt S'LS (Atei@)

1 = . : 0, PO (Ate®)| &
< - - F(S+1 ) A 0y, b
= SILS(A1e) ; H(AteT)age™ = oS Ate@ Zz Ate@

L [FSH) (At
et (S+1;)IL, (Atele)

a;(sj4+1)1;(Ate'®)

+

L PP AL = 5
S'LS Ate@ ; Li( Ateze (2.14)

For absolutely continuous functions hq, ha, ..., hy and h(z) := max{h;(z) : 1 <

j <k}, W(z) <max{hj(z):1<j<k} ze€ [a,b] (see [29, Lemma 4.1, p. 81]).
The function g is absolutely continuous. Therefore, (2.3) and (2.14) yield

(4
gt < max{ a (M) 81l < N}
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S max zn: a](s]—i_l)lj(AteZ@) ‘F(S+1j') (Atel@)‘
BEAL T 6 I aee)

=1
|F5) (Ate'®)] s5(—uj ()"
SILS (Ate®®)  1;(Ate™®)

_|_

ISli<p

(sj +1)I (Ate’(a)}

+
AteZ@

< g(t) (max{l ¢} max {Z
{z

|S||<p
=g (B(t) +
where
B(t) = max{1, c} HrgHaécp {Z a;(sj+ 1)1 Ate’@)}
B " (1)
0= {Z [ (Ate) } '
Thus,

d t

o mg(t) < B(t) +(t) and g(t) < g(tO)eXP/ (B(1) + (7)) dr,
to

where tg is chosen such that g(to) # 0. Denote 3(t) = > i a;lj(Ate™®). Since

L € W", for some S*, ||S*|| < p and S, ||S|| < p, we obtain

n o s;(-up()*T n n
y(t) =1 "L AeD) L (Fui@)" (—uj(t)*
_ < < g 5 a0y = DPE
— ol (Ate™®)

g(t) N Z;L:1 Oljlj(Atei@) - ;SJOW <p

and

B(t) max{1,c}> ", ;i (3;+1)1;(Ate™®)
B(t) N Z;‘:la-l-(Atei@)
>y sl (Ate™®)
:max{l,c}( + Xj: oL (Atc®) )

< max{1,c} (1 +Zsj> (14 p) max{1, ¢},

7j=1

where € = ¢(R) — 0 uniformly in © € [0,27]", t = r* as |R| — 0.
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But
[F(Ate'®)] < g(t) < g(to) exp / (B(r) + (7)) dr

to
and 7*A = R. Then we put ¢t = r* and obtain
1 F(z): ze T"0,R)} =1 F(Re®)| <1 *
nmax(|F(): =€ T'0.R)} =In_max |F(R) <l max o)

*

<lnglty) + max / (B(r) + (7)) dr

e¢c[0,27]"

<lIng(to) + eer%a;; /to Zajlj(ATeie) (max{1,c}(1+p)+ pe)dr

=Ing(to) + eer{(l)ag); / Z 7ajl Re’e) (max{1, c}(1 + p) + pe) dr.

This implies (2.12). O

Remark 2.7. Note that condition (2.11) means that

FO) )
mx{'”‘ ||Ju—p+1}gmax{‘F<z)’: ||Ju—p+1} max !
: =p

L7(2) JILY(2) I|J||=p+1
(K) (4
<c(p+ 1)‘max{ ‘I]:'LK((;)’ C K < p}
c(p+1)! ‘F(K)(z)|
e - s

Hence, by Lemma 2.5, we have

T In max{|F(z)|: z € T"(0, R)}
|R|—o00 eerf(l)%x]n fo (R,L(TRe®))dr

< max{l,c(p+ 1)!}.

Since ¢(p+1)! > ¢(p+1) for p > 1, we see that Lemma 2.6 does not imply Lemma
2.5. Clearly, Lemma 2.5 does not imply Lemma 2.6 as well. Therefore we need
both Lemma 2.5 and Lemma 2.6.

3. Growth and boundedness of L-index in joint variables of
entire solutions of system of PDE’s

Using the proved lemmas, we will formulate and prove the propositions that
provide the growth estimates of entire solutions of the following system of partial

differential equations:

Gp1, (2)FP ) (z)+ > Go(2) P9 (2) = Hj(2), j€{1,...,n}, (3.1)

1S;]1<p;—1
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p; € N, S5 € Z, H;j and Gg; are entire functions. Note if L € Q", then L
satisfies (2.2). Tt is proved in (Lemma 2, [10]).

We will say that nonhomogeneous system of PDE’s (3.1) belongs to the class
A(G,H,L), if L € QW™", for all z € C" and for every j € {1,...,n} the entire
functions H; and G, satisfy the following conditions:

1) for every ||S;|| <pj —1and M € Z7,

2] < 1+Zpk, el
/ﬁéj

)| LM (2) < By, ml? (2) |Gp1,(2)]

and u
‘Gl(’jl)j(z)’ < By, LY (2) |Gy, (2)]

2) for every I € Z,

=14 > e [HOG| < D) G,

k=1,k#j

3) Gpjlj (Z) 7& 0,
where Bg; v, Drj, Bp;1,,m are positive constants, H(z) = (Hi(2), ..., Hu(2)),
G(z) is a matrix consisting of the coefficients Gg,(2) of system (3.1).

A homogeneous system of PDE’s (3.1) belongs to the class A(G, 0, L) if con-
dition 1) holds for M € Z7 such that [[M| < 73, ,;pk and Gp1,(2) # 0.
Condition 2) is not required.

Instead of the condition G,1,(2) # 0, we can require the validity of conditions
1) and 2) for all z € C™"\ D"™(0, R'). It is possible in view of Theorem 2.2. If for
some M € Z7 Gg;/[)(z) =0 or H(M)( ) = 0, then we suppose Bg; ;s = 0 or
Dyy; = 0, respectively.

Theorem 3.1. If nonhomogeneous system of PDE’s (3.1) belongs to the class
A(G,H,L) and an entire function F(z) satisfies (3.1), then F has bounded L-
index in joint variables, and

T Inmax{|F(z)|: z € T"(0,R)}

|R|=00 (R,L(rRe®))d
olhax Jo (R, L(rRei®)) dr

< max{1, ¢}, (3.2)

where ¢ is defined in (3.8).

Proof. Taking into account that the function F'(z) satisfies system (3.1), we
calculate the partial derivative I € Z"} in each equation of the system

M 1] —
S oM [ @0 (o) pet )
o<M<I
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M - I
+ > GyFe M>(z>> =H:),  (33)
1S;ll<p;—1
where C¥ = (= mf)lllf,?; [ ——— and [[I]| = 1 —pj+ >jpqpe = 1+

> h—1k+; P- Using condition 2) of the theorem, we obtain
I
1 ()| < DrgL ()] (2)]

< Dr;Ll(2) (Gp] ()| [FP ()] + > GS](Z>HF<SJ>(,Z)).(3.4)

1S;]1<p;—1

Equation (3.3) yields

1, 1 I M 1]
F(pg1J+I)(z) - m (HJ( )(z) _ Z C}\JG]()jl)J_(Z)F(pjljﬂ M)(Z)
i) 0<M<I,M+#0
CM G(M) F(SfFI*M) 3.5
oot Y ol ()] - (3.5)
0=M<I [1S;11<p;—1

From (3.5) and condition 2) it follows that

‘F(lefrl)(z)

4 Z oM ‘Gis)ja\/ifl); (Z)‘ ‘F(pjlj-‘rf—M) (Z)‘

0<M<I,M#0 |Gpj1;(2)]
M

! Gpr (2)]
O0<M=I I1S;lI<py—1 P

< Dy LI(2) (Fpa (>)+ 3 BSJ,OZ;?J'(Z)LSa(z)F@ﬂ(z))

1S;11<p;—1

+ Z C}‘/[BpjlijLM(z) ‘F(pj1j+[_M)(Z)’

0<M<I,M#0
+ Y o ¥ st,Mz?(z)LM*Sf(z)‘F@W*M)(z). (3.6)
0SM<T  |S,]<p;—1

Dividing this inequality by 1/ (z)L’(z), we obtain that for every I, |I]| = 1+
Zzzl,k;ﬁjpk and j € {1,...,n}:

(i1 )Z pJJ) ()
Ia 1+I()|<Dw(F ()| S B yps ))

ijlri'f(z) lpj( ) sz (
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’F(pjlj'f‘I—M)(z)‘

M
+ Z C1 Bpj1;.m LPi LM ()

0<M<I,M+#0

|F(Sj+]*M)(Z)‘
+ Z cr' Z Bs; m LS+-M ()

0<M<I 1S;11<pj—1

S|\ DPrj| 1+ Z Bs;o | + Z C}WBpjlij

1S;]1<p;—1 0<M<I,M+#0
(S) n
M |[FS)(2)|
+ 2.0 ), Bsr|max W-HSII SZPJ'
0<MSI|IS;]<p;-1 =

Obviously, [lp;1; +I|| =1+ >°7_; p;. This implies

}F(K)(z)\ n
FS) n
< max(1,cpmax § Fo sy < 3o (3.7
z
j=1
where
c= max Dy |1+ Bg.
=15 4537, g 1,5 Z 55,0
jefl,on} I1S511<pj—1
+ Z C}VIBleij + Z C}M Z Bs;m | (3.8)
0<M<I,M#0 0<M<I 1S511<p;—1

for all z € C*\ D"(0, R). Thus, by Lemma 2.5, estimate (3.2) holds, and by
Corollary 2.4, the entire function F' has bounded L-index in joint variables. [

If system (3.1) is homogeneous (H;(z) = 0), the previous theorem can be
simplified.

Theorem 3.2. If homogeneous system of PDE’s (3.1) belongs to the class
A(G,0,L) and an entire function F is a solution of the system, then F has
bounded L-index in joint variables, and

T Inmax{|F(z)|: z € T"(0,R)}

" T R L RO < max{1, c}, (3.9)
—00 7

OB Jo (R, L(7Re?®))dr
where ¢ is defined in (3.8) with Dy ; = 0 and ||I|| = —pj + > _p_, P instead of

1l =1 = pj + > 5=1 Pr-



184 Andriy Bandura and Oleh Skaskiv

Proof. If Hj(z) =0, then (3.5) implies

1

F@lith(z) = ——— | - CMGM) (o) FeititI=M) ()
Gp1,(2) OSMgI:,M#O I 7pil
- ot Y Al EESHIE )L 3.a0)
0<M<I 1S;11<p;—1
Hence we obtain
o]t (5 oo frenen)

|Gy, (2)] 0<M<I,M#0

+ Y oy ‘Ggﬂj@(z)HF@ﬁf*M)(z)‘

0=M=I 15511<p;—1

Dividing the obtained inequality by LPi%i*/(z) and using the assumptions of the
theorem on the functions Gg,, we deduce

‘F(pjlfrf)(z)‘ ‘F(pjlﬁl—M)(Z)‘

7 < CMBya, -
LpJ1J+I(Z) OgMgI:,M;éO Pjlj LpJIJ+I M(z)

FSHI=M) ()
+ Z C}w Z Bs;m LS]-—H—M(Z)}

0<M<I 1S;]1<p;—1
< Z C}WBpjlij t Z crt Z Bs; m
0<M<I,M+#0 0<M<I [155l1<p;—1
X — |5 < -1 )
maxq s IS < =1+

J=1

Obviously, [p;1; + I|| = >_i_, p;. Therefore,

FE)(2) "
|LK(z)‘ K= ij

=1

max

[F)(2)| -
< : < - i
< max{1, ¢} max 50) S| < -1+ jglp]

for all z € C™\ D"(0,R’). Thus, all conditions of Corollary 2.4 are satisfied.
Hence the function F' has a bounded L-index in joint variables and, by Lemma
2.5, estimate (3.9) holds. O
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Note that estimates (3.2) and (3.9) cannot be improved (see examples for n =
1 in [14]). Let us consider the case n = 2. For example, the entire function w =
1+ e #1772 ig a solution of the nonhomogeneous system

w, +w =1,
. (3.11)
w,, +w=1.

In view of (3.1) and (3.11), we have Hi(z) = Ha(z) = 1, G11(2) = G12 = 1,
G2,1(z) = Ga2 = 1, where G, ; is the coefficient in the i-th equation of system
(3.11) at j-th order partial derivative in variable z; of the function w. Obviously,
the entire function w has bounded index in joint variables, that is, L(z1,22) =
(1,1). Validating the assumptions of Theorem 3.1, we deduce B; j » = 0 for M #
0 and B; o = 1. Also, all second order partial derivatives of H; and Hy equal
0. Then Dy = Dy = 0, where I € 7 := {(2,0),(1,1),(0,2)}. Hence, in view
of (3.8), ¢ = 1. Thus, by Theorem 3.1,

— Inmax{|w(z)|: 2 € T?(0, R)}

lim = < 1.
|R|—o0 fO Zj:l rjdr
But
Tm In max{|1 +exp(—f1 — 29)|: (21, 22) € T?(0, R)} _ T M + 79 1
|R|—00 fO (ri+ro)dr |Rl—=o0 (rq + 7“2)7"0

Therefore, estimate (3.2) is sharp.
By analogy, we can consider a homogeneous system

w’z1 — 2w =0,
w’z2 —ziw = 0.
The function w(z1,22) = exp(z122) is its entire solution of bounded L-index in

joint variables, where L(z1, 22) = (|22, |z1|). Using Theorem 3.2, it is easy to

show that
m In max{|w(z)|: z € T30, R)}

|R|—00 fol(’l“17"27' + rori7)dT

<1.

Direct calculations prove that this estimate is exact too. Thus, (3.9) is non-
improvable.

Moreover, using Corollary 2.4 and Lemma 2.6, we can supplement two pre-
vious Theorems 3.1 and 3.2 with the propositions that contain the estimates
max{|F'(z)|: z € T"(0, R)} which sometimes can be better than (3.9) and (3.2).

Two following theorems have the proofs similar to those of Theorems 3.1
and 3.2.

Theorem 3.3. If nonhomogeneous system of PDE’s (3.1) belongs to the class
A(G,H,L) and an entire function F(z) satisfies (3.1), then F has bounded L-
index in joint variables, and

— 1 : " "
im nmax{‘ngﬂ €0 R} +Y py | max{1l, ¢}, (3.12)
|R|—00 @n{r(l)azx] Jo (R, L (7Rei®)) dr =

€|0,2mr|™
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where ¢ is defined in (3.13).
Proof. As in the proof of Theorem 3.1, dividing (3.6) by (p;1;+I)!LPitiT1(2),
we obtain that for every |[I|| =1+ > %, pr and j € {1,...,n}:
by

‘F(lejﬂ)(z)}
(pj]-j + I)!ijlj“(z)

DI,j |F(pj1j)(z)‘ DLjBSj,O |F(Sj)(2)‘

(pj1; + I)'Lriti(z) + Z (p;1; + I)ILPsLi=5i(2)
15511<p;—1

<

‘F(lej-ﬁ-I—M)(Z)’
(pj]-j + [)!ij1j+I—M(z)

‘F(Sj+I—M)(Z)’

T Z cr! E Bg; m
’ 1 IT,S;+H—M
0Sv<r  sigyr Pl H DIDSTERE)

M
+ E Cr Bpjlj,M
0<M<I, M40

H ‘F(pjlj)(z)‘
< .
= (i1 + DI (2)

‘F(Sj)(z)}
p;jl; + IILPiLi—5i(2)

+ B (
1S5l <p;—1
C}V[B |F(pj1j+I—M)(Z)‘

+ B
OSM;:,M#) (pj1; + I)ILPili+I=M(2)

o B ‘F(Sj‘FI*M)(z)}
2oy (p;1; + IILS+I=M(2)

0<M<I 1S5l1<p;—1
P! (pj1; — 5;)!
<D | —~L—~ +B e AL
> 1. | 1. |
Pl + DU g1, Pils + D)
1.+ 1 — M)
—1—326’}\4@]]—; [l)’
oI (pj1; +1)!
M40
(S;+1—M)!
0<§<1 ! Z (psLj + !
<M< 1S;l1<p;—1
}F(S)(z)| n
X max LS5(z) ST < jz;pj )

where

n
B =max{ Bs,m, By, j€{l,...,n},0<S M< LI =1+ > m
k=1, k]

Obviously, |lp;j1; +I|| =1+ > 7_; p;. For all 2 € C*\ D"(0, R'), it implies
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TN £
< max{1, '} max S'Lsz S| Zpﬂ J
where
! (pj1; — 5;)!
J— max D, | P g WPjtj = 25>
P I,j (pj1;+1)! ”S_”Z:__l (pj1; + 1)
jefl, . n} ilI=P
(L + T — M)
+B Z CI (p.1.+j)l
0<M<I,M#0 I
(Sj+1— M)
MDD AND Dl e v ol EECEE)
0<M<I S;i=p-1 I TS

In view of Theorem 2.2, the entire function F' has bounded L-index in joint
variables. And by Lemma 2.6, estimate (3.12) holds. O

By analogy to the proofs of Theorems 3.2 and 3.3, the following assertion can
be proved.

Theorem 3.4. If homogeneous system of PDE’s (3.1) belongs to the class
A(G,0,L) and an entire function F is a solution of the system, then F has
bounded L-index in joint variables, and

o Inmax{|F(z)|: z € T"(0,R)}

1,c},
] O 5 ]
|R|— @En[é%x fo (R, L(TRe’®))dr — 1=

where ¢ is defined in (3.13) with Dr; =0 and ||I|| = —p; + >_p_, Pk instead of
1] =1 = pj + > k1 Pr-

If L(z) =1, then Theorem 3.1 implies the following corollary.

Corollary 3.5. For all z € C"\ D"(0, R") and for every j € {1,...,n}, the
entire functions H; and Gg; satisfy the following conditions:

1) for every ||S;ll < p; — 1 and for each M € Z7, |[M| < 1+ ZZ;I-pk’
J

(M M
GED(:)| < Bs, |Gy, (2)] and |GST(2)] < By, aal Gy, (2)]
2) Jor every 1€ 2, |1 =1+ S ps [ < Dl 2)
J

3) Gpjlj (Z) #0,
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where Bgs; v, Drj, Bpji,m are positive constants. If an entire function F(z)
satisfies (3.1), then F' has bounded index in joint variables, and

o Inmax{|F(z)|: z € T"(0,R)}
|R|—00 r+...+7r,

< max{1, c},

where c is defined in (3.8).

Similar corollaries also can be obtained from Theorems 3.2-3.4.
Suppose that all coefficients in (3.1) are polynomials. Let lo(z) = max. 251,
<<

deg G's;(z) be the degree of a polynomial Gs; () that is the highest degree of its
terms. Then Theorem 3.1 implies the followmg corollary.

Corollary 3.6. Let Hj(z) be a monomial, Gs.(z) be a polynomial,

Gp,1,(2) = 1in (3.1) for every j € {1,...,n} and for each ||S;| < p; — 1,
deg G

§ = max;g; H;gliiéz‘)‘, L(z) = (I5(2),...,1§(2)). Then every entire solution F' of

(3.1) has bounded L-index in joint variables, and the inequality

I In max{|F(z)|: z € T"(0, R)}

(r*)s < _
|Rl—=00 ST 217

< max{l,c}

holds, where c is defined in (3.8).

Remark 3.7. We should like to note that the obtained propositions are im-
provements of the corresponding theorems for n = 1 in [14]. Indeed, the author
considered a positive continuous function | = I(|z]) such that I'(t) = o(I(t)) as
t — +00. But our restrictions on the function [ are weaker. We study a positive
continuous function I = I(z) such that (—(u(r,)).)*/1*(r,0) — 0 uniformly in
6 € [0,27] as r — oo, where u(r,0) = I(re'?).

For example, if n = 1, then system (3.1) reduces to the following equation:

(2) fP) (2 +Zg] )9 (2) = h(z), (3.14)

where h and g; are entire functions. Theorem 3.1 implies the corollary for n = 1.

Corollary 3.8. Let | € QW and for all z € C such that |z| > r’ entire
functions h and g; satisfy the following conditions:

‘gj ’ < BjmlP7IT(2)|gy(2)| for every j € {0,...,p}, m € {0,1},
2) |W(2)] < DI(2)|h(2)l,

3) gp(2) # 0,
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where B, and D are positive constants. If an entire function f satisfies (3.14),
then f has bounded l-index in joint variables, and

. Inmax{|f(2)|: |z| =}

T o r i6
— eén[ozg;} fo [ (re?)dr

< max{l,c},

where ¢ = D(1+ 32570 Bjo) + 325 Bja + X5 Bjo-

Similar corollaries can be obtained from Theorems 3.2-3.4 for n = 1. Partic-
ularly, in a corollary from Theorem 3.2 the constant ¢ equals Z?;é Bjo, but in
a corollary from Theorem 3.4 the constant ¢ equals max;{p,2,2B,}, where p is
the order of differential equation. Each of these constants may be greater than
or lesser than the other [14].

Suppose that all coefficients in (3.14) are polynomials.

Corollary 3.9. Let h(z), gj(z) be polynomials for every j € {0,...,p — 1},

degg;(2) 4

gp(2) =1 in (3.14), s = max , I(z) = |2|°, z € C. Then every entire

0<j<p-1 P7J
solution f of (3.14) has bounded l-index, and

o mmax{|f(2)]: |o] =7}

<
r—00 Ts+1/(8 + 1) B maX{L 6}7

where J = {j: L;%?j =5, 0<j Sp—l}, 9j(2) = bjmz™ + -+ bjo, ¢ =
Z |bj,deggj|-
JjeT

Note that Theorems 3.1-3.4 are proved for system (3.1). Perhaps, the follow-
ing conjecture is true.

Conjecture 3.10 (O.B. Skaskiv). The counterparts of Theorems 3.1-3.4 for
entire solutions of system (1.3) are valid.
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Amnajsior Teopemu XeiiMaHa Ta Oro 3acToCyBaHHS J10
OJHi€l cucTeMu JIiHINHUX PiBHAHb 3 YaCTUHHUMUI
HOXigHIMU

Andriy Bandura and Oleh Skaskiv

Amnanor Bimomol Teopemm XeifiMaHa 3aCTOCOBYETHCHA 0 OCJIIIZKEHHS
obmexkenocTi L-iHmekcy 3a CyKymHICTIO 3MIHHUX IHJINX PO3B’SI3KIB JIETKUX
JIHIMHUX CUCTEM pIBHAHb 3 YACTUHHUMU IIOXIJIHUMH BUIIHUX IOPSJIKIB Ta
3HANJIEHO JOCTATHI yMOBH, IKi TapaHTYIOTh L0 OOMeKeHICTh, jge L(z) =
(11(2),...,ln(2)), l; : C* — R4 — menepepsua ¢dyukuis, j € {1,...,n}. Ta-
KOXK OTPMMAHO OIIHKU 3POCTaHHSA INX po3B’sa3KiB. HaBemeno mpukiamm cu-
crem PUII, gKi m10BOASATH TOUHICTH BCTAHOBJIEHUX OITIHOK JIJTST ITIJIUX PO3B’ 13-
kiB. OTpuMaHi pe3yJibTaTu TAKOXK € HOBUMH B OJHOBHMIPHOMY BHUIIQJKY, OO
moc1abJIeHO JI0/TATKOBI YMOBH Ha JIOJATHY HelepepBHY (YHKILO [.

KirogoBi cioBa: mina dyHKisa, odoMexkenmit L-iHIekc 3a CyKyHICTIO
aMimHUX, Jgirifina cucrema PUII Bumux mopsakis, anamditunara Teopis PYII,
Iituil po3B’sI30K, JiiHifHe qudepeHIiaibae PiBHIHHS BUAMIOTO MOPSIKY.
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