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Submanifolds with Metric of Revolution in
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It is proved that a submanifold of low codimension with induced metric
of revolution of sectional curvature of constant sign is a submanifold of
revolution if the coordinate geodesic lines are the lines of curvature.
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1. Introduction

The structure of surfaces of revolution with constant Gaussian curvature in
the Euclidean space E? is well known. From the fact that the induced metric
is a metric of revolution it does not follow that the surface in E? is a surface
of revolution. The following example can be constructed by using the Cauchy—
Kowalewski theorem. The analytic metric of revolution,

ds? = du® + p*(u)dv?,

locally admits isometric embedding in E? such that the geodesic line v = 0
mapped onto a space curve with torsion is not equal to zero at any point. There-
fore, it is naturally to ask when multidimensional submanifolds with induced
metric of revolution are submanifolds of revolution. We give the answer to this
question for submanifolds in Euclidean space. We distinguish 3 cases; namely,
when extrinsic sectional curvature is 1) negative, 2) zero, 3) positive.

Definition 1.1. A multidimensional Riemannian metric on a manifold M*
is called a metric of revolution if there exists a regular coordinate system such
that this Riemannian metric has the form

ds® = (du')? + ¢*(ul)do?, (1.1)

where ¢(u') is a regular positive function, do? is the Riemannian metric of con-
stant sectional curvature.
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2. Submanifolds of negative sectional curvature in Euclidean
space

Let F! be a submanifold in the Euclidean space E™ such that the induced
metric in some regular system of coordinates has the form

ds? = (du)? + ¢*(ut)do?,
where do? is a metric of constant curvature.

Definition 2.1. Let F! be a submanifold in EP and F'~! be a submanifold
of a unit sphere S"+P=2 C E!*P~1 of constant extrinsic sectional curvature with
the radius vector

p(u?, .. ul) = (pr(ud?, . ub), o o1 (W), 0).

Take a regular curve « in the plane E? = z'Oz!? :
z!' = f(ul)7 xH—p - h(ul)a

where ! is the arc-length parameter on the curve v, 2!, ..., /P is the orthogonal
Cartesian coordinate system in E'*P, O is the origin.
Then a submanifold F! ¢ EXP with the radius vector

a2t = f(ub)pr(u?, ... ub);

P = F) prypa (6 ul);

2P = h(ub)

is called a submanifold of revolution.
We say that the submanifold F! is obtained by rotating the curve 4 around
the axis z/*? along the submanifold F!~1.

Example 2.2. The Shur submanifold F! in E?~! with the radius vector

!

_ _ul u
2273 = ale™ cos -1

a

!

_ . [u
2272 = gle™ sin — s

a

0
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. l .
is a submanifold of revolution, where ¢ = 2,...,l, a* € R\ {0}, 2(@’)2 =1,
1=

1
fud) = e, h(ul) = [ VI e Fds.
1
The radius vector z! = eful, -1 = fou V1 — e~23ds defines the tractrix.
The Shur submanifold is obtained by rotating the tractrix along the torus
F'=1 with the radius vector

2 2 ! 1
U . u U . ()

p(u?, ... ul) = {aQCOS <2> ,a’sin <2) ....,al cos (l> ,alsin <l>}
a a a a

At a submanifold of revolution, the metric of revolution is induced. The
converse is true under the additional condition.

Definition 2.3. A line v C F! ¢ E™? is called a line of curvature of a
submanifold F! if for any normal ¢ from the normal space NF'! the tangent
vector * is a principal direction of the second fundamental form with respect to
the normal &.

The following theorem holds.

Theorem 2.4. Suppose F' is a C3-reqular submanifold in the Euclidean space
E?=1 with the induced metric of revolution of negative sectional curvature
ds? = (du")? + o*(u')do?,
where do? is a metric of constant curvature. If the coordinate lines u' are the

lines of curvature of the submanifold F', then this submanifold is a submanifold
of revolution.

Lemma 2.5. Let F! be a submanifold in the Euclidean space E?~1 with the
induced Riemannian metric of negative sectional curvature. Suppose the Rieman-
nian metric has the form (1.1).

1. Ifdo? is a flat metric, then ¢ #0, " #0, ¢ > 0;

2. If do? is the metric of a unit sphere, then ¢’ > 1(u' > 0), ¢” > 0, ©(0) = 0,
/
¢'(0) = 1;

3. Ifdo? is the metric of hyperbolic space of curvature —1, then ¢" >0, ¢ > 0.

Proof. 1. The matrix G of the coefficients of the first fundamental form of
F! has the form

1 0 0
0 > ... 0

G=1|. . . .| (2.1)
0 O ?

Then the Christoffel symbols of the metric ds? have the form

Iy, = 53% Ty = =8, 6,5=2,...,L (2.2)
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The sectional curvatures of F! along the coordinate 2-dimensional planes 1, Tij
are

K(ﬂ'lj) = —([:0”, K(Tl’ij) = — (90,)2. (23)

Since the sectional curvatures of F! are negative, we obtain ¢’ > 0,¢” > 0.
2. By assumption, the metric of F' is regular. From the singularity of polar
coordinates it follows that ¢(0) = 0,¢’(0) = 1. By direct computation, we get
" 1— N2
Kmj) = -2 <0, K=" g (2.4)
¥ ¥
From 2.4 we obtain ¢’ > 1(u! > 0), ¢" > 0.
3. By assumption, the metric of F! is regular. From this fact it follows that
@ > 0. From direct computation, we get
o 1 ()2

K(T['lj) = —? <0, K(mj) = 302 < 0.

This completes the proof of Lemma 2.5. O

1

Let r = r(u, ) be the radius Vector of a submanifold F! in the Euclidean

space. By 7, denot denote 3 ,7=1,...1.

’La j 9
Lemma 2.6. Let F! be a submanifolds in the Euclidean space E*~1 with the
induced Riemannian metric of revolution of negative sectional curvature
ds® = (du')? + ¢*(u')do?.
1

are the lines of curvature, then the rank of the map

S ¥
T=r——T

If the coordinate lines u

1 equal to one.

Proof. 1. Suppose that do? = (du?)? + ... + (du')?. By

o bY
BUZ 5 O'Zl,...,l*l,
/A A
denote the matrices of the coefficients of the second fundamental forms F! with

respect to orthonormal basis of normals £1,...,&_1. From the condition that the
coordinate lines are the lines of curvature it follows that

(]7.—7,:0’ 0—:17...’l_1,7;:27"~7l'

Now we calculate the Jacobi matrix of the map
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= 22 rL— £7“11
()2 o
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Il
\.l\D
o~

o P
j =T YR

2
Since

k
rij = Lijre + 7580

and only the following Christoffel symbols are not equal to zero

j _ ¥ 1 _ /
Flj = a, Fjj = —p¥,
we obtain
L e o S o
™ = 7(90/)27’1 + 071 &6 # 0, Ty = bljﬁg =0. (25)

Using (2.5), we get that the Jacobi matrix of the map 7 is

1

(%48
& 0 0
0 0 0
P Do :
iyt o oo 0

It now follows that the rank of the Jacobi matrix J is equal to one and the map
7 depends only on the variable u!, and we get 7 = ®(u').

2. When do? is the metric of positive or negative constant curvature, the
proof is similar. O

Proof of Theorem 2.4. For technical reasons, we devide the proof of the the-
orem into three parts.

1. Let do? be a flat metric, do? = (du?)?+ ...+ (du')?. Consider an ordinary

differential equation

r— Elrl = &(ul)

with respect to the vector function r. Solving this equation, we get

¢'(t)
©2(t)

dt + o(uhp(u?, ..., ub).

r= () /0 " ()

We set

Then we have
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The vectors tangent to the coordinate lines of F! have the form
re=9 (uh) + @ (uh)p(i®, . ),
rj = o(ul)p;(u?, ... Lub).
Since the metric of F' is written as
ds® = (du')? + Q*(uh) ((du?)? + ... + (du!)?),

it follows that the coefficients of the first fundamental form are

g1 = W) + 20/ W, p) + (), p) = 1, (2.7)
915 = (', pj) + 0’ (p, p;) =0,
gij = (©)*(pi, pj) = Sijp> (2.9)

Take the origin of coordinates at the point ®(0). Then for u! = 0,

T1(0) = ‘pl(o)p(uza s 7ul)7

and formula (2.7) transforms to

(' (0)*(p, p) =
for any u?, ..., u!. It follows that

1
(0:0) = o

(2.10)

and the submanifold F'=! with the radius vector p = p(u?,...,u') belongs to the
sphere of radius s@’%O)' From (2.9), we get that the submanifold F'~! has a flat
metric.

Let us show that the submanifold F'~1 does not belong to the Euclidean space
E2=3 In the converse case, F'~! is a submanifold of the sphere %4 ¢ E2-3,
It is known that

Kext = Kint — K,

where K = (¢/(0))? is the curvature of the sphere, Kiy = 0. It follows that
Kext = —(¢'(0))? and F'~! is an intrinsic flat submanifold of extrinsic negative
sectional curvature in the sphere S2~%. It is known that if a submanifold F'™ of a
Riemannian space M™P has negative extrinsic sectional curvature, then p > m—
1 [1, Theorem 3.2.2]. In our case m =1 — 1, M™P = §2=4 =] -3 =m — 2.
This contradiction concludes that the codimension of F'~! is equal to [—2, FI=1 ¢
S2=3_ From (2.8), it follows that

(W', ps) + ¢ (p, pj) = 0. (2.11)
From (2.10) and (2.11), we obtain

(¥, pj) =0. (2.12)
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Differentiating (2.12) with respect to u!, we get

(1/}”:%)]‘) =0, W/,/an) =0. (213)

We compute the derivative of the function ),

T NN SR 0 P
v == [ Gawi-E e,

The values of the derivatives 1", """ at the point u' = 0 are

" o _‘P/(O) /
meay (#'(0))* = 2¢"(0)(0) ., _ & "
¥ (0) = iy a0y - 2 e o)
And equations (2.13) have the form
(@/(0),p3) =0, (@"(0),py) =0. (2.14)

Let us prove that the vectors ®'(0), ®”(0) are collinear. Assume the con-
trary. Equations (2.14) are true for ®(u'), ®”(u'). We can rewrite (2.14) in the
following way:

(@'(ul),p) = cr(u'),  (@"(u'), p) = ca(u'). (2.15)

From (2.15), it follows that the submanifold F'~! belongs to the Euclidean space
E?'=3. We have proved before that it is impossible. The vectors ®'(u'), ®"(u!)
are collinear for any point on the curve ®(u'). Thus the curve ®(u!) is a segment
of a straight line and the submanifold F'~! belongs to the Euclidean space B2
orthogonal to the segment ®(u!). In E*~1 choose an orthogonal coordinate
system such that the axis #2~! coincides with the straight line ®(u'). Then
®(u') = (0,...,u(ul)). Hence the radius vector of the submanifold F! has the
form

at =g )p'(W?, ..., u);
ul /
21-1 1 ©'(t)
z =—p / t dt.
\ (u’) ; (t) 20
This is a submanifold of revolution with the meridian curve
z' = p(uh);
ul /
201 1 ©'(t)
— () [ ) 5 di
0 ©2(t)

This completes the proof of Theorem 2.4, part 1.
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2. Let do? be a metric of positive sectional curvature of the curvature one,

4

= T e

du®)? + -+ (duh)?).

In this case, u! > u(l) > 0. Assume that u(l) = 0. Every submanifold u! = ué
belongs to the sphere of radius ¢’(u}) with the center ®(0). From Lemma 2.5,
part 2, it follows that ¢'(uj) > 1, ¢"(u}) > 0. We obtain that the sphere of
radius ¢’(0) = 1 contains F' inside and is the supporting sphere ' at the point
u' = 0. The normal to the sphere ¢/(0) is the normal to F' at the point u! = 0.
And the second fundamental form F' with respect of the normal to the sphere
¢'(0) is positive definite. But any submanifold F! of negative sectional curvature
in £2=1 has 2!~! asymptotic directions at every point [2, Lemma 3.2.1]. This
contradiction concludes that u! > u} > 0. From the condition u! > uf > 0, it
follows that the extrinsic curvature of submanifold F'~! with the radius vector

p=p? ... u), {pp) = m has the form

Kext =1- (QD/(U(I)))2 < 0.

By the same argument as in part 1, the curve ®(u') is a line, and this completes
the proof.

3. When do? is the metric of constant negative curvature, the proof is similar
to that of part 1. O

3. Submanifolds with zero sectional curvature in Euclidean
space

Let F! be a hypersurface with the induced metric of revolution of zero sectional
curvature in the Euclidean space E'T!. In this case, the metric of the hypersurface
has one of the following forms:

1) ds® = (du')? + (du®)?® + ... + (du})?,
(I1) ds® = (du')? + (u')?do?,
where do? is the metric of the unit sphere. But it can not be of the form
ds® = (du')® + ¢*(u')do?,

where do? is the metric of the Lobachevsky space.

It is easy to compute that this metric is not a flat metric.

Theorem 3.1. Suppose that F' is a hypersurface of zero sectional curvature.
1) If the coordinate lines u' of metric (1) are the lines of curvature, then

a) either F' is a cylinder with the one-dimensional generator over a hypersur-

face F'=1 isometric to the Euclidean space E'~1 in the Fuclidean space E',

b) or F' is a cylinder with the (I — 1)-dimensional generator over a plane
curve.
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2) If the coordinate lines u' of metric (I1) are the lines of curvature, then F' is
a cone over a local isometric immersion of a domain of the unit sphere S
into the unit sphere S' C E'*1. The radius vector of the submanifold F* has
the form

r=ulpu?, ... ,ul),

where p is the radius vector of the submanifold F'=1 < S' which is locally
isometric to the unit sphere.

Proof. 1) From the conditions of the theorem and the Weingarten formulas,
it follows that

Tijzo,j:2,...,l.

From the above,
r=flu')+p?, ... ub).

From the form of the metric, we get

(' 1) =Apjspi) =1, {pirpj) = i, (f'spj) = 0. (3.1)
Differentiating the last equation, we obtain
<f”7 p]) =0.

Suppose that the vectors are non collinear for some interval u'. Then F'~!
belongs to the Euclidean space E'~! and is a domain in E‘~!. We obtain that F!
is a cylinder with (I — 1)-dimensional generatrices.

If f/, f" are collinear vectors for some interval u', then the curve with the
radius vector f(u') is a straight line, F! is a cylinder with one-dimensional gen-
eratrices, the directrix F'~! is a hypersurface in E' isometric to the Euclidean
space.

2) As in the proof of Theorem 2.4, consider the mapping

F=r—ulr,

71 = —bné,

7 =0, ji=2,...,1
a) Suppose that for some interval u', b;; = 0. Then
r— ulrl =0.
Solving this equation with respect to the vector function r, we get
r=ulp(u?, ... ub),

where (p, p) = 1. The submanifold F'~! with the radius vector p = p(u?, ..., u')
is a local isometric embedding of the unit sphere to the unit sphere St. If u! €
[0,ud], then F' is the Euclidean space E'.
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b) Suppose that for some interval u!, b1; # 0. At this case,
r—ulry = —by (u)E(ut) = d(ul),
where ¢ is the unit normal to the hypersurface F!. By the above,
& =0, 7=2,...1L (3.2)
From the Weingarten formulas and (3.2), is follows that
bia=0, j=2,....1, a=1,...,1 (3.3)
Recall the notion of the extrinsic null-index.

Definition 3.2. The extrinsic null-index p(Q) of a point @ of submanifold
F'in the Euclidean space E'*? is the maximal dimension of a subspace L(Q) of
the tangent space TQFZ such that

Bey =0 (3.4)

for any vector y € L(Q) and any normal & € NoF' at this point, where B is
the linear transformation in TQFZ corresponding to the second fundamental form
with respect to the normal £ [3].

From (3.3), (3.4), we obtain that in our case the extrinsic null-index
w(Q) =1—1 for any point @ € F! and the subspaces L(Q) are orthogonal to
the coordinate lines u!. The null-index is constant. Then the null-distribution is
integrable and the leaves are (I — 1)-dimentional planes in E‘*! and the normals
to F! are stationary along the leaf [3, Lemma 3.1.1]. But at same time, the leaves
are to be orthogonal to the coordinate lines u', which is impossible because the
coordinate lines u! are orthogonal to the intrinsic spheres u! = const and case b)
is also impossible. ]

4. Submanifolds with positive sectional curvature in Euclidean
space

Theorem 4.1. Suppose that F' is a reqular hypersurface with induced metric
of revolution of positive sectional curvature in the Euclidean space E'F.

1) If1>3, then F' is a hypersurface of revolution.

2) Ifl =2 and the coordinate lines u' are the lines of curvature, then the surface
F? is a surface of revolution in E3.

Proof. 1) A metric of revolution of positive sectional curvature has only one
form:
ds® = (du')? + ©*(ul)do?,
where do? is the metric of a unit sphere. The function ¢ satisfies the following
conditions:
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Let ¢ (u') denote foul V1 — (¢ (t)2dt and p = p(u?,...,u') be a radius vector of
the unit sphere S'=! in the Euclidean space E'. Then the hypersurface in E'*!
with the radius vector

! !
P, . ul;
Y(u)
is a hypersurface of revolution with induced metric of revolution of positive sec-
tional curvature. The rank of the second fundamental form F'! is {. If [ > 3 and
the ranks of the second fundamental forms of two isometric hypersurfaces FY, I
in B! are greater or equal to 3, then the hypersurfaces coincide up to a rigid

motion of the Euclidean space E'*! [4, Theorem 6.2].
2) For [ = 2, the proof is similar to that of Theorem 2.4. O

xl
.%‘H_l
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IIpo cTpyKTypy 6araTroBUMipHUX ITi/IMHOTOBUJIIB 3
METPUKOIO 00epTaHHs B €BKJIJIOBOMY HPOCTOPi

Alexander A. Borisenko
3HaliIeH0 YMOBH Ha 30BHIIIHI BJIACTUBOCTI IIMHOIOBUIIB MAJIOI KOBH-

MIPHOCTI 32 SKHMX HiJMHOTOBHU/I 3 1H/IyKOBAHOI METPUKOI 0OEPTAHHS CKJIa-
JeHOI KPUBUHU CTAJIOTO 3HAKY € ITiAMHOTOBUIOM OOEPTAHHSI.

KrrowoBi ciioBa: MeTpuka obepTaHHs, i IMHOTOBY, T 00€pTaHHs, JTiHil KpH-
BUHH, CEKIIiHA KPUBUHA.
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